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A NOTION OF COMPLIANCE ROBUSTNESS IN TOPOLOGY

OPTIMIZATION

SAMUEL AMSTUTZ AND MARC CILIGOT-TRAVAIN

Abstra
t. The goal of this paper is twofold. On one hand, our work revisits

the minimization of the robust 
omplian
e in shape optimization, with a more

natural and more general approa
h than what has been done before. On the

other hand, following a more re
ent viewpoint on robust optimization, we

study the maximization of the so-
alled stability radius for a �xed maximal


omplian
e. We provide theori
al as well as numeri
al results.

1. Introdu
tion

The 
omplian
e C(Ω, fΩ) of a linear elasti
 stru
ture o

upying a domain Ω and

submitted to a load fΩ is de�ned as the work done by the load, or equivalently

as the stored elasti
 energy. Minimizing the 
omplian
e for a �xed load is a very

standard shape optimization problem, for whi
h a wide range of methods have

been developed, see e.g. [1, 11℄ and the referen
es therein. However, it often o

urs

that the load is not known exa
tly. In this work we suppose that it takes the

form fN
Ω + BΩξ, ξ ∈ rB, with r > 0, B the 
losed unit ball of a Hibert spa
e,

fN
Ω a nominal load and BΩ a linear operator. The robust 
omplian
e (also 
alled

prin
ipal 
omplian
e) is then de�ned by

jwc(Ω) = sup
ξ∈rB

C(Ω, fN
Ω +BΩξ).

The robust 
omplian
e may repla
e the 
omplian
e when the load is un
ertain, so

that minimizing the robust 
omplian
e is just minimizing the 
omplian
e `in the

worst 
ase'. The way from 
omplian
e to robust 
omplian
e is just an illustration

of the transition from optimization to robust optimization. The robust 
omplian
e

has been �rst studied in [13℄, see also [14℄. The worst 
ase point of view has been

applied to other 
riteria in [2, 8, 23℄.

The goal of this paper is twofold. On one hand, our work revisits the paper by De

Gournay et al [15℄ about the minimization of the robust 
omplian
e, with a more

natural (and more general) approa
h. By de�nition, 
omputing the robust 
ompli-

an
e amounts to solving a quadrati
 optimization problem with a norm 
onstraint

in in�nite dimension. In [15℄, the authors 
learly announ
ed that they renoun
ed

to follow this dire
t way be
ause they did not see how to pro
eed, and used instead

a formulation where the displa
ement �eld is 
hosen as main unknown. We show

in the present arti
le how to deal with the dire
t formulation.

On the other hand, following another and more re
ent viewpoint on robust op-

timization, we study the maximization of the so-
alled stability radius for a �xed
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maximal 
omplian
e. This is a
tually the main purpose of this paper, and we shall

enter a little more into details. Suppose that the 
omplian
e should not ex
eed α.
Then the stability radius relatively to the level-set [C(Ω, fN

Ω +BΩ.) ≤ α] is de�ned
as

√

2jsr(Ω) = sup
{

r > 0
∣

∣ rB ⊂ [C(Ω, fN
Ω +BΩ.) ≤ α]

}

= dist(0, [C(Ω, fN
Ω +BΩ.) > α]).

A
tually we shall rather 
onsider the squared quantity jsr(Ω), as it will be identi�ed
with the value of a quadrati
 programming problem. Then it is natural to look

for the domain Ω whi
h maximizes jsr(Ω). In other words, we seek the shape

whi
h tolerates the greatest deviation from the nominal load, in the sense that the


omplian
e remains below α. This is a kind of robustness optimization. A
tually,

we will not ne
essarily �nd globally optimal shapes. It is more exa
t to say that

we show how to improve the stability radius of a given shape until rea
hing, with

respe
t to a 
ertain 
lass of perturbations, a lo
ally optimal design.

The notion of stability radius appeared in robust 
ontrol (see, e.g., [24, 25℄), and

has been developed in its full generality, but not from a very mathemati
al point

of view, at the end of the 90's by Ben�Haim (see [9℄ and the referen
es therein).

Compared to the worst 
ase approa
h, this one avoids �xing r a priori, whi
h is

not ne
essarily easy and natural in some 
ir
umstan
es. We think that, in many

situations, it is more natural to �x an upper bound α for the obje
tive fun
tion,

here the 
omplian
e. This amounts somehow to �xing some spe
i�
ations.

The paper is organized as follows. In se
tion 2, we des
ribe the general math-

emati
al setting of our problems. In se
tion 3, we �rst show that the two robust


riteria, namely jwc(Ω) and jsr(Ω), are the value fun
tions of some quadrati
 pro-

grams with equality 
onstraints. More pre
isely, the obje
tive fun
tion of ea
h

subproblem is a quadrati
 fun
tional and the equality 
onstraint is asso
iated with

another quadrati
 fun
tional. Su
h problems are known in the literature as trust�

region subproblems, and have been extensively studied in the �nite dimensional

setting, see e.g. [16, 18, 22, 29, 17, 32, 35, 36, 37℄. Here we prove the existen
e of


riti
al loads (i.e. solutions of the subproblems) in arbitrary dimension, for both

problems. Finally, using a strong duality argument for Lagrangian duality extend-

ing known results in �nite dimension, we show the existen
e of a unique solution

of the dual problem and give a 
omplete des
ription of the 
riti
al loads based on

this solution. In se
tion 4, for both problems again, we give an expression of the

Hadamard semiderivative of the two 
riteria relatively to the quadrati
 fun
tionals

depending on Ω, based on the Lagrangian and the solution of the dual problem.

Se
tions 5 through 7 spe
i�
ally deal with the optimization problem with respe
t

the shape Ω. To keep 
on
ise and avoid repetitions, we 
on
entrate on the maxi-

mization of the stability radius. Our pro
edure relies on the 
on
ept of topologi
al

derivative [21, 30, 34℄, whi
h evaluates the variation of the obje
tive fun
tional with

respe
t to small topologi
al perturbations. In se
tion 5, we dedu
e from se
tion 4

the expression of the topologi
al derivative of the stability radius. The optimiza-

tion algorithm is des
ribed in se
tion 6, while se
tion 7 reports on some numeri
al


omputations.
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2. General setting

We denote by Ω the domain to be optimized, and by E the set of admissible

domains. For ea
h Ω ∈ E we are given a re�exive Bana
h spa
e VΩ. We denote

by ‖.‖ the norm on VΩ and by 〈., .〉 the duality pairing between V ′
Ω and VΩ, where

V ′
Ω stands for the 
ontinuous dual spa
e of VΩ. We also 
onsider a 
ontinuous and

self-adjoint positive de�nite isomorphism AΩ from VΩ into V ′
Ω. We asso
iate to

ea
h fΩ ∈ V ′
Ω the ve
tor uΩ,fΩ = A−1

Ω fΩ ∈ VΩ and the s
alar

C(Ω, fΩ) =
1

2
〈fΩ, uΩ,fΩ〉 =

1

2
〈fΩ, A

−1
Ω fΩ〉.

Refering to the 
ontext of stru
tural me
hani
s, we will subsequently 
all fΩ the

load, uΩ,fΩ the displa
ement �eld, and C(Ω, fΩ) the 
omplian
e (a
tually the half


omplian
e). We will 
onsider a parameterized family of loads of the form

fΩ = fN
Ω +BΩξ, ξ ∈ H,

where fN
Ω ∈ V ′

Ω is a given nominal load, H is a �xed (i.e., independent of Ω) sepa-
rable Hilbert spa
e and BΩ : H → V ′

Ω is a linear, 
ompa
t and inje
tive operator.

We set

q(Ω, ξ) = C(Ω, fN
Ω +BΩξ).

Hen
e we have, for ξ ∈ H,

q(Ω, ξ) =
1

2
〈QΩξ, ξ〉+ 〈bΩ, ξ〉+ cΩ

with

(2.1) QΩ = B∗
ΩA

−1
Ω BΩ, bΩ = B∗

ΩA
−1
Ω fN

Ω , cΩ =
1

2
〈fN

Ω , A
−1
Ω fN

Ω 〉.

Note that QΩ : H → H is a 
ompa
t self�adjoint operator satisfying QΩ ≥ 0 and

QΩ 6= 0 (one supposes H 6= {0}).

ΓD
ΓN

Ω fN
Ω

fN
Ω +BΩξ

Before 
ontinuing with the abstra
t framework, let us give a typi
al 
on
rete

example. We 
onsider the problem of 
omplian
e minimization for a stru
ture

submitted to an un
ertain load. The stru
ture is represented by a domain Ω ⊂ R
d

(d = 2 or d = 3), whose boundary is split into three disjoint subsets Γ, ΓD and ΓN

withmeas(ΓD) > 0. Homogeneous Diri
hlet boundary 
onditions are pres
ribed on

ΓD, and Neumann boundary 
onditions are pres
ribed on Γ ∪ ΓN , with zero for
e

on Γ. We denote by H1
D(Ω)d the spa
e of ve
tor �elds belonging to H1(Ω)d with
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vanishing tra
e on ΓD. For a given load fΩ ∈ (H1
D(Ω)d)′ and a given displa
ement

u ∈ H1
D(Ω)d, the elasti
 energy is the quadrati
 fun
tional in u de�ned by

EΩ(u, fΩ) = −
1

2

∫

Ω

He(u) : e(u) + 〈fΩ, u〉

where e(u) = (∇u+∇uT )/2 is the strain tensor and H is the fourth�order elasti
ity

tensor (Hooke's tensor) su
h that He(u) is the stress tensor. The 
omplian
e is

de�ned as

C(Ω, fΩ) = max
u∈H1

D
(Ω)d

E(u, fΩ).

Therefore, setting VΩ = H1
D(Ω)d, the operator AΩ : VΩ → V ′

Ω is de�ned by

〈AΩu, v〉 =

∫

Ω

He(u) : e(v)

and the 
omplian
e admits the expression

C(Ω, fΩ) =
1

2
〈fΩ, A

−1
Ω fΩ〉.

We 
hoose H as a 
losed subspa
e of L2(ΓN )d, and we de�ne BΩ : H → V ′
Ω by

BΩξ : u ∈ VΩ 7→

∫

ΓN

ξ.u|ΓN
.

The 
ompa
tness of BΩ is due to the 
ompa
tness of the Sobolev embedding

L2(ΓN ) → H−1/2(ΓN ). A very standard problem in optimal design 
onsists in

minimizing the 
omplian
e with a �xed load fN
Ω , i.e.,

Minimize q(Ω, 0) = C(Ω, fN
Ω ), Ω ∈ E ,

where the set E 
an in
lude 
onstraints. One speaks of robust 
omplian
e mini-

mization when, at the same time, perturbations of the load are 
onsidered.

Let us now 
ome ba
k to the general 
ase. In this paper we will investigate two

notions of robustness and the asso
iated optimization problems.

(1) Stability radius as 
omplian
e robustness. Given a threshold α >
C(Ω, fN

Ω ) = cΩ, the fun
tional jsr is de�ned by

(2.2) jsr(Ω) =
1

2
dist(0, [q(Ω, .) > α])2 = inf

q(Ω,ξ)>α

1

2
‖ξ‖2 = inf

C(Ω,fN
Ω

+BΩξ)>α

1

2
‖ξ‖2.

In
reasing this value amounts to in
reasing the distan
e to unfeasability,

where unfeasability means that the 
omplian
e is greater than α. This leads
to 
onsidering the optimization problem:

Maximize jsr(Ω), Ω ∈ E ,

hen
e one speaks of robustness maximization.

(2) Robust 
omplian
e in the worst 
ase sense. Given a radius r > 0,
the worst 
ase 
omplian
e is de�ned by

(2.3) jwc(Ω) = sup
‖ξ‖≤r

q(Ω, ξ) = sup
‖ξ‖≤r

C(Ω, fN
Ω +BΩξ).

This is the maximal 
omplian
e obtained for a given family of loads. One

naturally wants to minimize this quantity, leading to the so-
alled worst


ase 
omplian
e minimization problem:

Minimize jwc(Ω), Ω ∈ E .
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In fa
t it is easily 
he
ked that the inequalities in (2.2) and (2.3) 
an be repla
ed

by equalities, i.e. we have

(2.4) jsr(Ω) =
1

2
dist(0, [q(Ω, .) = α])2 = inf

q(Ω,ξ)=α

1

2
‖ξ‖2 = inf

C(Ω,fN
Ω

+BΩξ)=α

1

2
‖ξ‖2.

(2.5) jwc(Ω) = sup
‖ξ‖=r

q(Ω, ξ) = sup
‖ξ‖=r

C(Ω, fN
Ω +BΩξ).

3. Expression of the robust 
riteria

In all this se
tion the domain Ω is �xed. Hen
e, for notational simpli
ity, we

drop the subs
ript Ω, denoting QΩ, bΩ, cΩ by Q, b, c.
A
tually, the framework of this se
tion does not require that Q, b, c be ne
essarily

de�ned by (2.1). It is su�
ient to assume that Q : H → H is a 
ompa
t, self�adjoint

operator with Q ≥ 0, Q 6= 0, b ∈ H, and α, r, c ∈ R satisfy c < α and r > 0.
We shall give pra
ti
al pro
edures to 
ompute the values of jsr(Ω) and jwc(Ω).
The two optimization problems appearing in (2.4) and (2.5) 
an be formulated

in the form

(P) Minimize q1(ξ), subje
t to q2(ξ) = 0, ξ ∈ H,

with two quadrati
 fun
tionals q1 and q2 written as

q1(ξ) =
1

2
〈Q1ξ, ξ〉+ 〈b1, ξ〉+ c1, q2(ξ) =

1

2
〈Q2ξ, ξ〉+ 〈b2, ξ〉+ c2.

In all this se
tion, these quantities are de�ned as follows, where I is the identity of

H.

(1) Complian
e robustness :

(3.1) q1(ξ) =
1

2
‖ξ‖2, q2(ξ) = q(Ω, ξ)− α,

i.e.,

Q1 = I, b1 = 0, c1 = 0,

Q2 = Q, b2 = b, c2 = c− α.

(2) Worst 
ase robust 
omplian
e :

(3.2) q1(ξ) = −q(Ω, ξ), q2(ξ) =
1

2
‖ξ‖2 −

1

2
r2,

i.e.,

Q1 = −Q, b1 = −b, c1 = −c,

Q2 = I, b2 = 0, c2 = −r2/2.

Problems of form (P) are known in the literature as trust region problems (or

subproblems). They have been extensively studied, but almost always in the 
ase

of a �nite dimensional spa
e H, see e.g. [16, 18, 22, 29, 17, 32, 35, 36, 37℄.
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3.1. Existen
e of 
riti
al loads.

Theorem 3.1. Problem (P) admits at least a solution.

Proof. Consider �rst the 
ase (3.1). In this 
ase, Q2 is 
ompa
t with Q2 = Q ≥ 0,
Q2 6= 0 and c2 = c− α < 0. Hen
e, q2(0) < 0, there exists ξ0 su
h that q2(ξ0) > 0
so [q2 = 0] 6= ∅. Let (ξn) be a minimizing sequen
e. For any β > 0, [q1 ≤ β]
is a 
losed ball. Thus, up to a subsequen
e, there exists ξ ∈ H su
h that ξn ⇀
ξ. By 
ompa
tness of Q2, we have q2(ξ) = lim q2(ξn) = 0. Sin
e q1 is 
onvex

and 
ontinuous, it is weakly lower-semi
ontinuous, thus q1(ξ) ≤ lim inf q1(ξn) =
inf [q2=0] q1.

Let us turn to the se
ond 
ase (3.2). Re
all that, in this 
ase, Q1 is 
ompa
t,

negative semi-de�nite. Let (ξn) be a minimizing sequen
e of the problem inf [q2≤0] q1.
[q2 ≤ 0] is a 
losed ball. Thus, up to a subsequen
e, there exists ξ ∈ H su
h

that ξn ⇀ ξ. By 
ompa
tness of Q1, we have q1(ξ) = lim q1(ξn) = inf [q2≤0] q1.
As q2 is 
onvex and 
ontinuous, it is weakly lower-semi
ontinuous, thus q2(ξ) ≤
lim inf q2(ξn) ≤ 0. Therefore, the in�mum inf [q2≤0] q1 is attained at some points of

[q2 ≤ 0]. Finally, as q1 is 
on
ave and [q2 ≤ 0] is 
onvex, at least one of these points

an be found in [q2 = 0]. �

Remark 3.2. From the proof it appears that Problem (P) still admits solutions

if (Q2, b2, c2), with Q2 : H → H self�adjoint, 
ompa
t, is su�
iently 
losed to

(Q̄2, b̄2, c̄2) with Q̄2 : H → H self�adjoint, 
ompa
t, Q̄2 ≥ 0, Q̄2 6= 0 and c̄2 < α.

3.2. Dual formulation: general framework. For all (ξ, µ) ∈ H×R we asso
iate

to Problem (P) the Lagrangian

L(ξ, µ) = q1(ξ) + µq2(ξ) =
1

2
〈(Q1 + µQ2)ξ, ξ〉+ 〈b1 + µb2, ξ〉+ c1 + µc2.

The dual 
riterion is

g(µ) = inf
ξ∈H

L(ξ, µ).

For any self-adjoint linear 
ontinuous operator T : H → H, we have

H = kerT
⊥
⊕ cl(imT ),

hen
e the restri
tion T |cl(imT ) : cl(im T ) → im T is a bije
tion. We denote by

T † := T |−1
cl(imT ) : imT → cl(imT ) the inverse operator, whi
h, by virtue of the

open mapping theorem, is 
ontinuous as soon as imT is 
losed. For all µ ∈ R su
h

that b1 + µb2 ∈ im(Q1 + µQ2) we set

ψ(µ) = −
1

2
〈(Q1 + µQ2)

†(b1 + µb2), b1 + µb2〉+ c1 + µc2.

Lemma 3.3. The dual 
riterion is expressed by

g(µ) =







−∞ if Q1 + µQ2 6≥ 0,
−∞ if Q1 + µQ2 ≥ 0 and b1 + µb2 /∈ im(Q1 + µQ2),
ψ(µ) if Q1 + µQ2 ≥ 0 and b1 + µb2 ∈ im(Q1 + µQ2).

Proof. We �rst note that the 
ondition

(3.3) ∀µ ∈ R, Q1 + µQ2 ≥ 0 =⇒ im(Q1 + µQ2) is 
losed

is ful�lled in the two 
ases under study. Indeed, in the �rst 
ase, we haveQ1+µQ2 =
I + µQ, whose image is always 
losed sin
e Q is 
ompa
t. In the se
ond 
ase we
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have Q1 +µQ2 = −Q+µI, and Q1 +µQ2 ≥ 0 implies µ > 0, whereby we 
on
lude

as before. For simpli
ity, we set Qµ = Q1 + µQ2, bµ = b1 + µb2, cµ = c1 + µc2, so
that

g(µ) = inf
ξ∈H

qµ(ξ) :=
1

2
〈Qµξ, ξ〉+ 〈bµ, ξ〉+ cµ.

If Qµ 6≥ 0, it is 
lear that g(µ) = −∞. Therefore we assume now that Qµ ≥ 0. By
(3.3), imQµ is 
losed, thus

H = kerQµ

⊥
⊕ imQµ.

For all ξ ∈ H, we make the de
omposition ξ = ξ1 + ξ2, with ξ1 ∈ kerQµ and

ξ2 ∈ imQµ. We get

qµ(ξ) = qµ(ξ2) + 〈bµ, ξ1〉.

Two 
ases 
an arise.

(1) If bµ 6∈ imQµ, 
hoosing ξ = tb̃µ with t ∈ R and b̃µ the orthogonal proje
tion

of bµ onto kerQµ, we obtain

qµ(ξ) = t‖bµ‖
2.

Letting t go to −∞ yields g(µ) = −∞.

(2) If bµ ∈ imQµ, we have qµ(ξ) = qµ(ξ2) for all ξ ∈ H, and

g(µ) = inf
ξ2∈imQµ

qµ(ξ2) :=
1

2
〈Qµξ2, ξ2〉+ 〈bµ, ξ2〉+ cµ.

The unique minimizer of this quadrati
 problem is ξ2 = −Q†
µbµ, and the

value of the minimum is − 1
2 〈Q

†
µbµ, bµ〉+ cµ, i.e., ψ(µ).

�

The dual problem is

(D) Maximize ψ(µ) subje
t to

{

Q1 + µQ2 ≥ 0,
b1 + µb2 ∈ im(Q1 + µQ2),

µ ∈ R.

The following result is an adaptation of Theorem 2.1 of [37℄. Due to its impor-

tan
e in the sequel, we nevertheless give a proof.

Theorem 3.4. Let ξ̄ ∈ H. The following statements are equivalent:

(1) ξ̄ is a (global) minimizer of (P);

(2) q2(ξ̄) = 0 and there exists µ̄ ∈ R su
h that

∂ξL(ξ̄, µ̄) = (Q1 + µ̄Q2)ξ̄ + (b1 + µ̄b2) = 0,(3.4)

∂2ξξL(ξ̄, µ̄) = Q1 + µ̄Q2 ≥ 0;(3.5)

(3) there exists µ̄ ∈ R su
h that

(3.6) ξ̄ ∈ argminL(., µ̄) ∩ [q2 = 0].

Proof. We shall prove the impli
ations (1) ⇒ (2) ⇒ (3) ⇒ (1).
First step. Let us assume that ξ̄ is a minimizer of (P). As the 
onstraint is s
alar,

the 
lassi
al 
onstraint quali�
ation redu
es to

(3.7) ∇q2(ξ̄) = Q2ξ̄ + b2 6= 0.

In 
ase (3.1), Q2ξ̄+ b2 = Qξ̄+ b 6= 0 sin
e otherwise the 
onstraint q2(ξ) = 0 would

yield 〈Qξ̄, ξ̄〉 = 2(c− α) < 0. In 
ase (3.2), Q2ξ̄ + b2 = ξ̄ 6= 0 sin
e ‖ξ̄‖ = r > 0.
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Therefore, by the �rst order ne
essary optimality 
ondition (see e.g. [27℄ 1.1.1,

Theorem 1), there exists µ̄ ∈ R su
h that

∂ξL(ξ̄, µ̄) = 0.

The se
ond order ne
essary optimality 
ondition reads (see e.g. [27℄ 7.2.1, Corollary

of Theorem 1)

(3.8) 〈∂2ξξL(ξ̄, µ̄)ζ, ζ〉 ≥ 0 ∀ζ ∈ Tξ̄,

Tξ̄ = {ζ ∈ H, 〈Q2ξ̄ + b2, ζ〉 = 0}.

Now, suppose that ζ /∈ Tξ̄. We assume �rst that Q2ζ 6= 0. Sin
e Q2 ≥ 0, this
entails 〈Q2ζ, ζ〉 > 0. Set

t̄ = −2
〈Q2ξ̄ + b2, ζ〉

〈Q2ζ, ζ〉
6= 0, ξ = ξ̄ + t̄ζ.

After 
al
ulation we �nd that q2(ξ) = q2(ξ̄) = 0. This implies

(3.9) L(ξ, µ̄)− L(ξ̄, µ̄) = q1(ξ)− q1(ξ̄) ≥ 0.

Yet we have

(3.10) L(ξ, µ̄)− L(ξ̄, µ̄) = t̄〈(Q1 + µ̄Q2)ξ̄ + b1 + µ̄b2, ζ〉+
t̄2

2
〈(Q1 + µ̄Q2)ζ, ζ〉.

Combining (3.4), (3.9), (3.10) and t̄ 6= 0, we derive that 〈(Q1 + µ̄Q2)ζ, ζ〉 ≥ 0.
Assume now that Q2ζ = 0. As Q2 6= 0, we 
hoose some ξ0 ∈ H su
h that Q2ξ0 6= 0.
Let (tn) be an arbitrary sequen
e of positive real numbers su
h that tn → 0 as

n → ∞. We set ζn = ζ + tnξ0. For all n we have Q2ζn = tnQ2ξ0 6= 0, hen
e
〈(Q1 + µ̄Q2)ζn, ζn〉 ≥ 0. Passing to the limit yields 〈(Q1 + µ̄Q2)ζ, ζ〉 ≥ 0. We have

proved that Q1 + µ̄Q2 ≥ 0. In other words, the se
ond order optimality 
ondition

(3.8) holds for any ζ, whi
h is a typi
al fa
t in quadrati
 programming.

Se
ond step. Sin
e the fun
tion ξ 7→ L(ξ, µ̄) is quadrati
, a Taylor expansion

immediately shows that the 
onditions (3.4) and (3.5) imply ξ̄ ∈ argminL(., µ̄).
Third step. We remark that, for all µ ∈ R, it holds

(3.11) [L(., µ) = q1 + δ[q2=0]] = [q2 = 0],

with δC the indi
ator fun
tion of the set C, i.e., δC(x) = 0 if x ∈ C and δC(x) = +∞
if x /∈ C. By (A.2) in the appendix, we have ξ̄ ∈ argminL(., µ̄) ∩ [q2 = 0] ⊂
argmin q1 + δ[q2=0]. �

Remark 3.5. One 
an also dedu
e the impli
ation (1⇒3) of Theorem 3.4 from the

following version of the S�lemma (see [19℄ for the original version in Russian).

Theorem 3.6 (S�lemma, [20℄, Theorem 2.1). Let si : H → R, i = 1, 2, be two

quadrati
 fun
tionals of the form si : ξ → 1
2 〈Siξ, ξ〉 + 〈di, ξ〉 + ei, Si : H → H


ontinuous and self�adjoint, di ∈ H and ei ∈ R. Suppose that s2 is nonlinear, that

there exist ξ+, ξ− ∈ H su
h that s2(ξ+) > 0, s2(ξ−) < 0 and

∀ξ ∈ H, s2(ξ) = 0 =⇒ s1(ξ) ≥ 0.

Then there exists λ ∈ R su
h that

∀ξ ∈ H, s1(ξ)− λs2(ξ) ≥ 0.

In fa
t, one sets s1 = q1 − q1(ξ̄), s2 = q2, s2 is nonlinear be
ause Q2 6= 0, and
there exist ξ+, ξ− ∈ H su
h that s2(ξ+) > 0, s2(ξ−) < 0 due to (3.7) and q2(ξ̄) = 0.
Then (1⇒3) of Theorem 3.4 results from the S�lemma 3.6.
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The following Theorem is a 
onsequen
e of Theorem 3.4 together with general

results on duality (
f. appendix A).

Theorem 3.7. The primal problem (P) and the dual problem (D) have the same

optimal values. In addition, (D) admits solutions, and, if µ̄ is one of these solutions,

we have

argmin(P) = argminL(., µ̄) ∩ [q2 = 0].

Proof. In view of Theorem 3.1, Theorem 3.4 and (3.11), one uses su

essively (A.5),

(A.3) and (A.6). �

3.3. Expression of the 
riti
al loads for the 
omplian
e robustness. In this


ase, with the notations (2.1), the primal problem (P) and the dual problem (D)

read, respe
tively,

(3.12) Minimize
1

2
‖ξ‖2 subje
t to q(ξ) :=

1

2
〈Qξ, ξ〉+ 〈b, ξ〉+ c = α, ξ ∈ H,

(3.13) Maximizeψsr(µ) = −
1

2
〈(I + µQ)†(µb), µb〉+ µ(c− α)

subje
t to

{

I + µQ ≥ 0,
µb ∈ im(I + µQ),

µ ∈ R.

We denote by λmax the largest eigenvalue of Q. The following theorem re�nes

Theorem 3.7 and uses the same terminology as [37℄.

Theorem 3.8. The primal problem (3.12) and the dual problem (3.13) have the

same optimal values. The dual problem (3.13) admits a unique solution µ̄ ∈ R,

whi
h 
an be 
omputed in the following way.

• Easy 
ase: b /∈ ker(Q − λmaxI)
⊥
. Then µ̄ is the unique solution in ] −

1/λmax, 0[ of the equation

(3.14) q(−µ(I + µQ)−1b) = α.

• Hard 
ase I: b ∈ ker(Q− λmaxI)
⊥

and

(3.15) q((λmaxI −Q)†b) > α.

Then µ̄ is also the unique solution in ]− 1/λmax, 0[ of (3.14).

• Hard 
ase II: b ∈ ker(Q − λmaxI)
⊥

and q((λmaxI − Q)†b) ≤ α. Then

µ̄ = −1/λmax.

The set Ξ of solutions of the primal problem (3.12) is given by the following expres-

sions.

• Easy 
ase and Hard 
ase I. There is a unique 
riti
al load given by

Ξ = {−µ̄(I + µ̄Q)−1b}.

• Hard 
ase II. The set of 
riti
al loads is

Ξ =

[

{(λmaxI −Q)†b}+ ker(Q− λmaxI)

]

∩ [q = α].

Proof. Let us reformulate the 
onstraints of the dual problem (3.13). The �rst one

is equivalent to µ ≥ −1/λmax, and we have by the 
lassi
al theory of 
ompa
t
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perturbations of the identity im(I + µQ) = ker(I + µQ)⊥ = H as soon as µ >
−1/λmax. Therefore we have

{

I + µQ ≥ 0
µb ∈ im(I + µQ)

}

⇐⇒

{

µ > −1/λmax if b /∈ ker(Q − λmaxI)
⊥

µ ≥ −1/λmax if b ∈ ker(Q − λmaxI)
⊥

}

.

If −1/λmax < µ we have

(3.16) ψsr(µ) = −
µ2

2
〈(I + µQ)−1b, b〉+ µ(c− α).

Di�erentiating entails

ψ′
sr(µ) = −µ〈(I + µQ)−1b, b〉+

µ2

2
〈(I + µQ)−2Qb, b〉+ (c− α)(3.17)

= q(−µ(I + µQ)−1b)− α.(3.18)

Repla
ing µQ by (I + µQ)− I in the se
ond term of the right hand side of (3.17)

leads to the alternative expressions

ψ′
sr(µ) = −

µ

2
〈
(

(I + µQ)−1 + (I + µQ)−2
)

b, b〉+ (c− α),(3.19)

= −
µ

2
〈(I + µQ)−2(2I + µQ)b, b〉+ (c− α).(3.20)

Di�erentiating another time from (3.19) yields

ψ′′
sr(µ) = −

1

2
〈
(

(I + µQ)−1 + (I + µQ)−2
)

b, b〉+

µ

2
〈
(

(I + µQ)−2 + 2(I + µQ)−3
)

Qb, b〉(3.21)

= −〈(I + µQ)−3b, b〉.(3.22)

Let Λ be the set of eigenvalues of Q, Λ⋆ := Λ \ {0} and, for λ ∈ R, denote

by bλ the orthogonal proje
tion of b on ker(Q − λI). From (3.20) we get for all

µ ∈]− 1/λmax,+∞[

ψ′
sr(µ) = −

µ

2

∑

λ∈Λ

2 + µλ

(1 + µλ)2
‖bλ‖

2 + c− α

= −µ‖b0‖
2 +

1

2

∑

λ∈Λ⋆

(

1

λ(1 + µλ)2
−

1

λ

)

‖bλ‖
2 + c− α.(3.23)

Note that ψ′
sr(0) = c− α < 0.

• Easy 
ase: b /∈ ker(Q − λmaxI)
⊥
. Then bλmax

6= 0 and, due to (3.23),

limµ→(−1/λmax)+ ψ
′
sr(µ) = +∞. Due to (3.22), it follows that ψ′

sr is de-


reasing and ψsr admits a unique maximizer µ̄ on ] − 1/λmax,+∞[. It is


hara
terized by ψ′
sr(µ̄) = 0 and obviously belongs to ]− 1/λmax, 0[.

• Hard 
ase: b ∈ ker(Q−λmaxI)
⊥
. Then the expressions (3.16)-(3.18) remain

true for µ = −1/λmax, provided that the restri
tion of I + µQ to ker(Q −
λmaxI)

⊥
is 
onsidered. In parti
ular,

ψ′
sr(−1/λmax) = q((λmaxI −Q)†b)

is �nite.

If ψ′
sr(−1/λmax) > 0 (hard 
ase I), then b 6= 0. Due to (3.22), it

follows that ψ′
sr is de
reasing and ψsr admits a unique maximizer µ̄ in
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] − 1/λmax,+∞[, 
hara
terized by ψ′
sr(µ̄) = 0 and 
learly belonging to

]− 1/λmax, 0[.
If ψ′

sr(−1/λmax) ≤ 0 (hard 
ase II), in view of (3.22) and ψ′
sr(0) =

c − α < 0, ψsr is de
reasing and −1/λmax is the unique maximizer of ψsr

in [−1/λmax,+∞[.

By Theorem 3.7, the set of solutions of the primal problem is given by

Ξ = argminL(., µ̄) ∩ [q = α].

Here the Lagrangian is

L(ξ, µ̄) =
1

2
〈(I + µ̄Q)ξ, ξ〉+ µ̄〈b, ξ〉+ µ̄(c− α).

In the easy 
ase and the hard 
ase I, L(., µ̄) is stri
tly 
onvex sin
e µ̄ > −1/λmax.

It admits as unique minimizer

ξ̄ = −µ̄(I + µ̄Q)−1b.

From (3.18) and ψ′
sr(µ̄) = 0 we derive that q(ξ̄) = 1

2 〈Qξ̄, ξ̄〉+ 〈b, ξ̄〉+ c = α.
In the hard 
ase II, we have µ̄ = −1/λmax and

argminL(., µ̄) = {ξ ∈ H, (Q− λmaxI)ξ = −b}.

Using that b ∈ ker(Q− λmaxI)
⊥ = im(Q− λmaxI) we obtain

argminL(., µ̄) = {(λmaxI −Q)†b}+ ker(Q− λmaxI).

Observe that q(−(Q − λmaxI)
†b) ≤ α 
on�rms that Ξ 6= ∅. �

Remark 3.9. If fN
Ω ∈ imBΩ, then the expressions (3.14) and (3.15) 
an be 
on-

veniently rewritten. Indeed, writing fN
Ω = BΩξ

N
yields b = QξN as well as

c = 1
2 〈Qξ

N , ξN 〉. Plugging these expressions into (3.14) entails after simpli�
a-

tion

ψ′
sr(µ) = q((I + µQ)−1ξN − ξN )− α = C(Ω, BΩ(I + µQ)−1ξN )− α.

To 
on
lude this se
tion, we present an interesting 
onne
tion between the dual

problem (3.13) and a semide�nite programming problem inspired by [10℄.

We will need the following version of the S�Lemma in Hilbert spa
es . It relies

on slightly di�erent assumptions from Theorem 3.6, but its statement is 
ontained

in the same referen
e (see again [19℄ for the original version in Russian).

Theorem 3.10 (S�lemma, [20℄, Theorem 2.1). Let si : H → R, i = 1, 2, be two

quadrati
 fun
tionals of the form si : ξ → 1
2 〈Siξ, ξ〉 + 〈di, ξ〉 + ei, Si : H → H


ontinuous and self�adjoint, di ∈ H and ei ∈ R, i = 1, 2. Suppose that there exists

ξ+ ∈ H su
h that s2(ξ+) > 0 and

∀ξ ∈ H, s2(ξ) ≥ 0 =⇒ s1(ξ) ≥ 0.

Then there exists λ ≥ 0 su
h that

∀ξ ∈ H, s1(ξ)− λs2(ξ) ≥ 0.

Moreover, if there exists ξ− su
h that s1(ξ−) < 0, one 
an suppose that λ > 0.

Let us 
onsider the following problem:

(3.24) Maximize ρ subje
t to ρB ⊂ [q ≤ α], ρ ∈ R
⋆
+,
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whose (unique) solution is ρ = dist(0, [q = α]) = dist(0, [q > α]) ∈ R
⋆
+ sin
e

c = q(0) < α and Q ≥ 0, Q 6= 0 so there exists ξ0 su
h that q(ξ0) ≥ α. Yet we have
for all ρ > 0

ρB ⊂ [q ≤ α] ⇐⇒ ∀ξ ∈ H, ‖ξ‖ ≤ ρ⇒ q(ξ) ≤ α,

⇐⇒ ∀ξ ∈ H, ‖ξ‖ ≤ 1 ⇒ q(ρξ) ≤ α,

⇐⇒ ∀ξ ∈ H, 1− ‖ξ‖2 ≥ 0 ⇒ α− q(ρξ) ≥ 0.

As 1− ‖ξ‖2 = 1 > 0 for ξ = 0 and α − q(ρξ) < 0 for some ξ, using Theorem 3.10,

one obtains

ρB ⊂ [q ≤ α] ⇐⇒ ∃λ > 0, ∀ξ ∈ H, α− q(ρξ) − λ[1− ‖ξ‖2] ≥ 0.

But q(ξ) 
an be expressed as

q(ξ) = max
v∈VΩ

−
1

2
〈AΩv, v〉+ 〈fN

Ω +BΩξ, v〉,

whereby

α− q(ρξ)− λ[1− ‖ξ‖2] ≥ 0 ⇐⇒

∀v ∈ VΩ,
1

2
〈AΩv, v〉+ λ‖ξ‖2 − ρ〈BΩξ, v〉 − 〈fN

Ω , v〉+ α− λ ≥ 0.

Changing (ξ, v) into (s−1ξ, s−1v) for any s 6= 0, one also has

∀ξ ∈ H, α− q(ρξ) − λ[1− ‖ξ‖2] ≥ 0 ⇐⇒ ∀(v, ξ, s) ∈ VΩ ×H× R,

1

2
〈AΩv, v〉 + λ‖ξ‖2 − ρ〈BΩξ, v〉

−s〈fN
Ω , v〉+ (α − λ)s2 ≥ 0,

⇐⇒





AΩ ρBΩ (fN
Ω )∗

ρB∗
Ω 2λI 0

fN
Ω 0 2(α− λ)



 ≥ 0,

where (fN
Ω )∗ : R → V ′

Ω is de�ned as s→ sfN
Ω . Finaly

(3.25) ρB ⊂ [q ≤ α] ⇐⇒ ∃λ > 0,





AΩ ρBΩ (fN
Ω )∗

ρB∗
Ω 2λI 0

fN
Ω 0 2(α− λ)



 ≥ 0.

Therefore, ρ̄ > 0 is the solution of (3.24) if and only if there exists λ̄ > 0 su
h that

(ρ̄, λ̄) is solution of:

(3.26) Maximize ρ subje
t to





AΩ ρBΩ (fN
Ω )∗

ρB∗
Ω λI 0

fN
Ω 0 2α− λ



 ≥ 0, ρ, λ ∈ R
⋆
+.

Note that the above matrix is a�ne in (ρ, λ) and that, as Problem (3.24) admits a

solution, it is also the 
ase for Problem (3.26).

Proposition 3.11. Problem (3.26) admits a unique solution (ρ̄, λ̄). This solution

is su
h that ρ̄ = dist(0, [q > α]) and −ρ̄2/λ̄ is the solution of the dual problem

(3.13).
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Proof. Let (ρ̄, λ̄) be a solution of (3.26). The 
onstraint implies

(3.27) ∀ξ ∈ H, α− q(ρ̄ξ)−
λ̄

2
[1− ‖ξ‖2] ≥ 0.

Let ξ̄ be a solution of the primal problem (P). Substituting ξ for ρ̄ξ in (3.27) and

multiplying by ρ̄2/λ̄ we arrive at

∀ξ ∈ H,
1

2
‖ξ‖2 −

ρ̄2

λ̄
[q(ξ)− α] ≥

1

2
ρ̄2 =

1

2
‖ξ̄‖2.

As q(ξ̄) = α we 
an write

∀ξ ∈ H,
1

2
‖ξ‖2 −

ρ̄2

λ̄
[q(ξ)− α] ≥

1

2
‖ξ̄2‖ −

ρ̄2

λ̄
[q(ξ̄)− α].

It follows that

ξ̄ ∈ argminL(.,−ρ̄2/λ̄) ∩ [L(.,−ρ̄2/λ̄) =
1

2
‖.‖2]

thus, by virtue of (A.7), −ρ̄2/2λ̄ is the solution of the dual problem (3.13). The

uni
ity of the solution of the dual problem and the impli
ation just proved imply

the uni
ity of the solution of Problem (3.26). �

3.4. Expression of the 
riti
al loads for the robust 
omplian
e in the

worst 
ase sense. Here, using again the notation (2.1), the primal problem (P)

and the dual problem (D) are equivalent, respe
tively, to:

(3.28) Minimize−q(ξ) = −
1

2
〈Qξ, ξ〉 − 〈b, ξ〉 − c subje
t to ‖ξ‖ = r, ξ ∈ H,

(3.29)

Maximize
1

2
〈(Q− µI)†b, b〉 − c− µ

r2

2
subje
t to

{

−Q+ µI ≥ 0,
b ∈ im(Q− µI),

µ ∈ R.

The largest eigenvalue ofQ is still denoted by λmax. Applying Theorem 3.7 similarly

to Theorem 3.8 provides the following result.

Theorem 3.12. The primal problem (3.28) and the dual problem (3.29) have the

same optimal values. The dual problem (3.29) admits a unique solution µ̄ ∈ R,

whi
h 
an be 
omputed in the following way.

• Easy 
ase: b /∈ ker(Q−λmaxI)
⊥
. Then µ̄ is the unique solution in ]λmax,+∞[

of the equation

(3.30) ‖(−Q+ µI)−1b‖ = r.

• Hard 
ase I: b ∈ ker(Q − λmaxI)
⊥

and ‖(−Q + λmaxI)
†b‖ > r. Then µ̄ is

also the unique solution in ]λmax,+∞[ of (3.30).

• Hard 
ase II: b ∈ ker(Q − λmaxI)
⊥

and ‖(−Q + λmaxI)
†b‖ ≤ r. Then

µ̄ = λmax.

The set Ξ of solutions of the primal problem (3.28) is given by the following expres-

sions.

• Easy 
ase and Hard 
ase I. There is a unique 
riti
al load given by

Ξ = {(−Q+ µ̄I)−1b}.
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• Hard 
ase II. The set of 
riti
al loads is

Ξ =

[

{(−Q+ λmaxI)
†b}+ ker(Q − λmaxI)

]

∩ [ ‖ . ‖ = r].

As in the pre
eding subse
tion, we present a 
onne
tion between the dual prob-

lem (3.29) and a semide�nite programming problem. Let us 
onsider the following

problem:

(3.31) Minimize α subje
t to rB ⊂ [q ≤ α], α ∈ R,

where r > 0 and whose (unique) solution is α = sup‖ξ‖≤r q(ξ).

Therefore, using (3.25), ᾱ is the solution of (3.31) if and only if there exists λ̄ > 0
su
h that (ᾱ, λ̄) is solution of:

(3.32) Minimize α subje
t to





AΩ rBΩ (fN
Ω )∗

rB∗
Ω λI 0

fN
Ω 0 2α− λ



 ≥ 0, α ∈ R, λ ∈ R
⋆
+.

Note that the above matrix is a�ne in (α, λ) and that, as Problem (3.31) admits

a solution, the same holds for Problem (3.32). Similarly to Proposition 3.11 we

obtain the following.

Proposition 3.13. Problem (3.32) admits a unique solution (ᾱ, λ̄). This solution

is su
h that ᾱ = sup‖ξ‖≤r q(ξ) and λ̄/r
2
is the solution of the dual problem (3.29).

4. Hadamard semiderivative of the robust 
riteria

The fun
tionals jsr(Ω) and jwc(Ω) 
an be written as

(4.1) jsr(Ω) = Jsr(wΩ), jwc(Ω) = Jwc(wΩ),

with wΩ = (QΩ, bΩ, cΩ) de�ned by (2.1), wΩ ∈ W := Ks(H)×H×R, where Ks(H)
stands for the spa
e of self-adjoint 
ompa
t linear operators from H into itself.

Moreover Jsr, Jwc :W → R ∪ {+∞} are de�ned, for w ∈W , by

(4.2) Jsr(w) = inf
q(w,ξ)=α

1

2
‖ξ‖2,

and

(4.3) Jwc(w) = sup
‖ξ‖=r

q(w, ξ)

with, for w = (Q, b, c) ∈W ,

q(w, ξ) =
1

2
〈Qξ, ξ〉+ 〈b, ξ〉+ c.

In view of (4.1), 
al
ulating the shape derivative or the topologi
al derivative of

jsr or jwc requires to 
al
ulate the Hadamard semiderivative of Jsr or Jwc. This

is the aim of this se
tion. The sensitivity of w with respe
t to Ω, spe
i�
ally its

topologi
al derivative, will be studied in Se
tion 5.

Our approa
h, on one hand, adapts the proof of Theorem 4.24 in [12℄ to a slightly

di�erent 
ontext, while, on the other hand, it shows that the modi�ed assumptions

of this Theorem, in parti
ular the strong assumption (iii), are ful�lled.

In all this se
tion, we 
onsider some w̄ = (Q̄, b̄, c̄) ∈ W with Q̄ : H → H a self�

ajoint 
ompa
t operator su
h that Q̄ ≥ 0, Q̄ 6= 0 and some α, r ∈ R with c̄ < α,
r > 0.
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4.1. Hadamard semiderivatives. Let X be a Bana
h spa
e and 
onsider a fon
-

tion f : X → R ∪ {−∞,+∞}. If z, d ∈ X and f(z) ∈ R the upper and lower

Hadamard semiderivatives of f at point z in dire
tion d are de�ned, respe
tively,

as

f ′
+(z, d) = lim sup

t↓0
v→d

f(z + tv)− f(z)

t
, f ′

−(z, d) = lim inf
t↓0
v→d

f(z + tv)− f(z)

t
.

If f ′
+(z, d) = f ′

−(z, d), their 
ommon value is 
alled the Hadamard semiderivative

of f at point z in dire
tion d, denoted by f ′(z, d).

4.2. Hadamard semiderivative of the 
omplian
e robustness. Let w ∈ W
and denote by Ξ(w) the minimizing set of (4.2). Re
all that the Lagrangian of this

problem is

L(w, ξ, µ) =
1

2
‖ξ‖2 + µ(q(w, ξ) − α),

and that the dual 
riterion is

g(w, µ) = inf
ξ∈H

L(w, ξ, µ).

We denote by µ̄ the unique solution of the dual problem for w̄, i.e. the unique

element of argmax g(w̄, .).

Lemma 4.1. Let ξ̄ ∈ H be su
h that q(w̄, ξ̄) = α. There exists a neighborhood W
of w̄ and a fun
tion Sw̄,ξ̄ : W → H of 
lass C∞

su
h that Sw̄,ξ̄(w̄) = ξ̄ and

q(w, Sw̄,ξ̄(w)) = α ∀w ∈ W .

Proof. Consider the fun
tion F : (w, s) ∈ W × R 7→ q(w, sξ̄) − α, whi
h is 
learly

of 
lass C∞
. We have

∂sF (w̄, 1) = 〈Q̄ξ̄, ξ̄〉+ 〈b̄, ξ̄〉 =
1

2
〈Q̄ξ̄, ξ̄〉 − (c̄− α),

due to q(w̄, ξ̄) = α. Using that Q̄ ≥ 0 and c̄ < α we infer ∂sF (w̄, 1) > 0. The

impli
it fun
tion theorem leads to the result. �

Lemma 4.2. We have, for any h̄ ∈ W ,

(Jsr)
′
+(w̄, h̄) ≤ inf

ξ̄∈Ξ(w̄)
∂wL(w̄, ξ̄, µ̄)h̄.

Proof. Choose an arbitrary ξ̄ ∈ Ξ(w̄). Let (tn, hn) ∈ R
∗
+ ×W be su
h that tn → 0,

hn → h̄, and

(Jsr)
′
+(w̄, h̄) = lim

n→+∞

Jsr(w̄ + tnhn)− Jsr(w̄)

tn
.

We assume that n is large enough so that wn := w̄ + tnhn ∈ W . Denoting ξn :=
Sw̄,ξ̄(wn), we have q(wn, ξn) = α, hen
e (4.2) entails

Jsr(wn) ≤
1

2
‖ξn‖

2 = L(wn, ξn, µ),

for any µ ∈ R. As ξ̄ ∈ Ξ(w̄), (4.2) also yields

Jsr(w̄) =
1

2
‖ξ̄‖2 = L(w̄, ξ̄, µ).

Therefore we have

Jsr(wn)− Jsr(w̄)

tn
≤
L(wn, ξn, µ)− L(w̄, ξ̄, µ)

tn
.
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For all w in a neighborhood of w̄ we set

Φ(w) = L(w, Sw̄,ξ̄(w), µ).

We have

L(wn, ξn, µ)− L(w̄, ξ̄, µ) = Φ(wn)− Φ(w̄) = dΦ(w̄)(tnhn) + on→+∞(tnhn),

sin
e Φ is Fré
het di�erentiable by 
omposition. The 
hain rule gives, for v ∈ H,

dΦ(w̄)(v) = ∂wL(w̄, ξ̄, µ)v + ∂ξL(w̄, ξ̄, µ)(dSw̄,ξ̄(w̄)v).

We 
an 
hoose µ = µ̄, for whi
h it holds ∂ξL(w̄, ξ̄, µ̄) = 0. We arrive at dΦ(w̄)(v) =
∂wL(w̄, ξ̄, µ̄)v, and

Jsr(w̄ + tnhn)− Jsr(w̄)

tn
≤ ∂wL(w̄, ξ̄, µ̄)hn + o(1).

Passing to the limit yields

(Jsr)
′
+(w̄, h̄) ≤ ∂wL(w̄, ξ̄, µ̄)h̄.

This being true for any ξ̄ ∈ Ξ(w̄), we arrive at the desired result. �

Lemma 4.3. For any h̄ ∈W we have

(Jsr)
′
−(w̄, h̄) ≥ inf

ξ̄∈Ξ(w̄)
∂wL(w̄, ξ̄, µ̄)h̄.

Proof. Let (tn, hn) ∈ R
∗
+ ×W be su
h that tn → 0, hn → h̄, and

(Jsr)
′
−(w̄, h̄) = lim

n→+∞

Jsr(w̄ + tnhn)− Jsr(w̄)

tn
.

For all n we set wn = w̄ + tnhn and 
hoose some ξn ∈ Ξ(wn) (
f. Remark 3.2).

Step 1. We 
hoose an arbitrary ξ ∈ H su
h that q(w̄, ξ) = α. By Lemma 4.1, there

exists a neighborhood W of w̄ and a fun
tion Sw̄,ξ : W → H of 
lass C ∞
su
h that

Sw̄,ξ(w̄) = ξ and
q(w, Sw̄,ξ(w)) = α ∀w ∈ W .

Sin
e wn → w̄, it holds for n large enough q(wn, Sw̄,ξ(wn)) = α, hen
e

(4.4)

1

2
‖ξn‖

2 ≤
1

2
‖Sw̄,ξ(wn)‖

2.

This shows that the sequen
e (ξn) is bounded. Therefore there exists ξ̄ ∈ H su
h

that ξn ⇀ ξ̄ weakly for some non-relabeled subsequen
e.

Step 2. We shall show that ξ̄ ∈ Ξ(w̄). From wn = w̄ + tnhn and q(wn, ξn) = α,
denoting hn = (Qn, bn, cn), we obtain

(4.5) q(wn, ξn) =
1

2
〈(Q̄ + tnQn)ξn, ξn〉+ 〈b̄+ tnbn, ξn〉+ c̄+ tncn = α.

We have Q̄+ tnQn → Q̄, Q̄ 
ompa
t, b̄+ tnbn → b̄, c̄+ tncn → c̄ and ξn ⇀ ξ̄. Hen
e
(Q̄+ tnQn)ξn → Q̄ξ̄ strongly and

1
2 〈(Q̄+ tnQn)ξn, ξn〉 →

1
2 〈Q̄ξ̄, ξ̄〉. Passing to the

limit in (4.5) yields

1

2
〈Q̄ξ̄, ξ̄〉+ 〈b̄, ξ̄〉+ c̄ = q(w̄, ξ̄) = α.

Moreover, sin
e ξn ⇀ ξ̄ and Sw̄,ξ(wn) → Sw̄,ξ(w̄) = ξ, (4.4) entails

1

2
‖ξ̄‖2 ≤

1

2
lim inf
n→+∞

‖ξn‖
2 ≤

1

2
lim inf
n→+∞

‖Sw̄,ξ(wn)‖
2 =

1

2
‖ξ‖2.
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This proves that ξ̄ ∈ Ξ(w̄).

Step 3. From Theorem 3.7, we have Jsr(w̄) = g(w̄, µ̄) = infξ∈H L(w̄, ξ, µ̄). It

follows that Jsr(w̄) ≤ L(w̄, ξn, µ̄). As ξn ∈ Ξ(w̄n), we have Jsr(wn) = 1
2‖ξn‖

2 =
L(wn, ξn, µ̄). We arrive at

Jsr(wn)− Jsr(w̄)

tn
≥
L(wn, ξn, µ̄)− L(w̄, ξn, µ̄)

tn
.

Yet we have

L(wn, ξn, µ̄)− L(w̄, ξn, µ̄)

tn
= µ̄[

1

2
〈Qnξn, ξn〉+ 〈bn, ξn〉+ cn].

Denoting h̄ = (Q, b, c) and using that Qn → Q 
ompa
t, bn → b, cn → c and ξn ⇀ ξ̄
weakly, one obtains

L(wn, ξn, µ̄)− L(w̄, ξn, µ̄)

tn
−→ µ̄[

1

2
〈Qξ̄, ξ̄〉+ 〈b, ξ〉+ c] = ∂wL(w̄, ξ̄, µ̄)h̄.

It follows that

(Jsr)
′
−(w̄, h̄) = lim

n→+∞

Jsr(w̄ + tnhn)− Jsr(w̄)

tn
≥ ∂wL(w̄, ξ̄, µ̄)h̄.

The proof is therefore 
omplete. �

From Lemmas 4.2 and 4.3, we derive the following.

Theorem 4.4. For any h̄ ∈W , Jsr admits a Hadamard semiderivative at point w̄
in the dire
tion h̄ given by

J ′
sr(w̄, h̄) = inf

ξ̄∈Ξ(w̄)
∂wL(w̄, ξ̄, µ̄)h̄ = inf

ξ̄∈Ξ(w̄)
µ̄q(h̄, ξ̄),

where µ̄ is the unique solution of the dual problem (3.13).

4.3. Hadamard semiderivative of the robust 
omplian
e in the worst 
ase

sense. We denote by Ξ(w̄) the maximizing set of (4.3) with w = w̄, whi
h has been

obtained in Theorem 3.12. Slightly adapting the proof of Theorem 4.13 in [12℄, one

obtains the following result.

Theorem 4.5. For any h̄ ∈ W , the worst 
ase fun
tional Jwc admits a Hadamard

semiderivative at point w̄ in the dire
tion h̄ given by

J ′
wc(w̄, h̄) = sup

ξ̄∈Ξ(w̄)

∂wq(w̄, ξ̄)h̄ = sup
ξ̄∈Ξ(w̄)

q(h̄, ξ̄).

5. Topologi
al derivative of the robust 
riteria

Consider a referen
e domain Ω = Ω0 ∈ E and a family of perturbed domains

(Ωt)t>0 su
h that, for all t small enough, Ωt ∈ E . We 
hoose a nominal load

of the form fN
Ω = BΩξ

N ∈ V ′
Ω with ξN ∈ H. As in the previous se
tions, set

wΩ = (QΩ, bΩ, cΩ) with

QΩ = B∗
ΩA

−1
Ω BΩ, bΩ = B∗

ΩA
−1
Ω BΩξ

N = QΩξ
N ,

cΩ =
1

2
〈B∗

ΩA
−1
Ω BΩξ

N , ξN 〉 =
1

2
〈QΩξ

N , ξN 〉.

We make the following assumption, whi
h will be veri�ed for spe
i�
 problems

in Se
tion 6.
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Assumption 5.1. There exists δ > 0 and a self-adjoint linear operator GΩ : H →
H su
h that

〈QΩt
ξ, ξ〉 − 〈QΩξ, ξ〉 = t〈GΩξ, ξ〉+O(t1+δ) ∀ξ ∈ H.

Lemma 5.2. The fun
tion t ∈ R+ 7→ QΩt
∈ L(H) admits a right derivative at 0

given by

d

dt
[QΩt

]|t=0 = GΩ.

Proof. Assumption 5.1 and the polarization identity entail

〈QΩt
ξ, ζ〉 − 〈QΩ, ξ, ζ〉 = t〈GΩξ, ζ〉+O(t1+δ) ∀ξ, ζ ∈ H,

that is,

∀ξ, ζ ∈ H, sup
t>0

t−δ

∣

∣

∣

∣

〈(

QΩt
−QΩ

t
−GΩ

)

ξ, ζ

〉∣

∣

∣

∣

< +∞.

By the Bana
h-Steinhaus theorem we obtain

∀ξ ∈ H, sup
t>0

t−δ

∥

∥

∥

∥

(

QΩt
−QΩ

t
−GΩ

)

ξ

∥

∥

∥

∥

H

< +∞.

Another appli
ation of the Bana
h-Steinhaus theorem yields

sup
t>0

t−δ

∥

∥

∥

∥

QΩt
−QΩ

t
−GΩ

∥

∥

∥

∥

L(H)

< +∞.

In parti
ular we have

lim
t↓0

∥

∥

∥

∥

QΩt
−QΩ

t
−GΩ

∥

∥

∥

∥

L(H)

= 0,

and the proof is a
hieved. �

The following theorem states the right derivative of t→ jsr(Ωt).

Theorem 5.3. The fun
tion t 7→ jsr(Ωt) admits a right derivative at 0 given by

(5.1)

d

dt
[jsr(Ωt)]|t=0 = inf

ξ̄∈Ξ

1

2
µ̄〈ξN + ξ̄, GΩ(ξ

N + ξ̄)〉,

where Ξ is the set of solutions of the primal problem (3.12) and µ̄ is the solution of

the dual problem (3.13).

Proof. By Lemma 5.2, we get that the map t 7→ wΩt
admits a right derivative at 0

given by

(5.2)

d

dt
[QΩt

]|t=0 = GΩ,
d

dt
[bΩt

]|t=0 = GΩξ
N ,

d

dt
[cΩt

]|t=0 =
1

2
〈GΩξ

N , ξN 〉.

Next, with the notation of Se
tion 4, we have

jsr(Ωt) = Jsr(wΩt
).

By 
omposition (see, e.g., [12℄ Proposition 2.47), the fun
tion t 7→ jsr(Ωt) admits

a right derivative at 0 given by

d

dt
[jsr(Ωt)]|t=0 = J ′

sr

(

wΩ,
d

dt
[wΩt

]|t=0

)

.
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Theorem 4.4 yields

d

dt
[jsr(Ωt)]|t=0 = inf

ξ̄∈Ξ
µ̄

[

1

2
〈
d

dt
[QΩt

]|t=0ξ̄, ξ̄〉+ 〈
d

dt
[bΩt

]|t=0, ξ̄〉+
d

dt
[cΩt

]|t=0

]

.

Using (5.2) we arrive at

d

dt
[jsr(Ωt)]|t=0 = inf

ξ̄∈Ξ
µ̄

[

1

2
〈GΩξ̄, ξ̄〉+ 〈GΩξ

N , ξ̄〉+
1

2
〈GΩξ

N , ξN 〉

]

.

A rearrangement 
ompletes the proof. �

6. Algorithm

6.1. Problem setting. In the examples we will present we want to minimize

J (Ω) := Φ(jsr(Ω)) + ℓ|Ω|,

where Φ : R∗
+ → R is a smooth and de
reasing fun
tion, ℓ is a user-given Lagrange

multiplier, and |Ω| is the Lebesgue measure of Ω. In order to maintain jsr(Ω)
positive during the iterations, we further assume that limt→0 Φ(t) = +∞. In our


omputations, for numeri
al purposes, we have used the fun
tion with moderate

growth Φ(t) = − log t.
We 
hoose E as the set of all subdomains of a �xed �hold-all� domain D ⊂

R
N
. Our model problem is that of linear elasti
ity, with the following standard

framework. The domain Ω is o

upied by an elasti
 material of unitary Young

modulus, and its 
omplement D \ Ω is �lled with a weak phase, i.e., a �
titious

material with small Young modulus ε. This permits to formulate the equilibrium

equations, represented by the operator AΩ, in the �xed domain D. Therefore

the fun
tion spa
e VΩ is the subspa
e H1
D(D)N in
luding the Diri
hlet boundary


ondition on the appropriate part ΓD of ∂Ω.
For some x̂ ∈ D \ ∂Ω, we 
onsider the topologi
al perturbation

Ωt =

{

Ω \ B(x̂, ρ(t)) if x̂ ∈ Ω,
(Ω ∪ B(x̂, ρ(t))) ∩D if x̂ ∈ D \ Ω,

with ρ(t) = t1/N .

6.2. Optimality 
ondition. The derivative of J (Ωt) with respe
t to t is the so


alled topologi
al derivative. It is given by the 
hain rule:

gΩ(x̂) :=
d

dt
[J (Ωt)]|t=0 = Φ′(jsr(Ω))

d

dt
[jsr(Ωt)]|t=0 + ℓ

d

dt
[|Ωt|]|t=0.

Of 
ourse, this is only valid if the derivatives

d
dt [jsr(Ωt)]|t=0 and

d
dt [|Ωt|]|t=0 exist.

For this latter one this is obviously true. In the two dimensional 
ase N = 2 in

whi
h we hen
eforth pla
e ourselves we have

d

dt
[|Ωt|]|t=0 =

{

−π if x̂ ∈ Ω,

π if x̂ ∈ D \ Ω.

The expression of

d
dt [jsr(Ωt)]|t=0 has been obtained in Theorem 5.3 upon Assump-

tion 5.1. The operator GΩ that satis�es Assumption 5.1 is asso
iated with the

topologi
al derivative of the 
lassi
al 
omplian
e. Its expression is known as (see

[4, 6℄):

〈GΩξ, ξ〉 = −π
r − 1

κr + 1

κ+ 1

2

[

2σ : e+
(ε− 1)(κ− 2)

κ+ 2ε− 1
tr σ tr e

]

,
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with

r =

{

ε if x̂ ∈ Ω,

ε−1
if x̂ ∈ D \ Ω,

κ = (λL +3µL)/(λL + µL), λL, µL the Lamé 
oe�
ients of the material, and (σ, e)
the stress and strain tensors respe
tively at point x̂ for the load BΩξ.

A ne
essary optimality 
ondition for this 
lass of perturbations is 
learly

(6.1) gΩ(x̂) ≥ 0 ∀x̂ ∈ D,

whi
h is the starting point of our algorithm.

6.3. Des
ription of the algorithm. In order to solve (6.1) we use the algorithm

introdu
ed in [6℄ and further analyzed in [5℄. We re
all its main features. Ea
h

domain Ω is represented by a smooth fun
tion ψΩ : D → R su
h that

Ω = {x ∈ D,ψΩ(x) < 0}.

Su
h a level-set representation is very standard in shape optimization. It is usually


ombined with a Hamilton-Ja
obi evolution equation, see [3, 31℄ to 
ite only the

seminal works. However the Hamilton-Ja
obi formulation does not allow to easily

nu
leate holes, whi
h 
an be a serious limitation in topology optimization. We

pro
eed di�erently, de�ning �rst the signed topologi
al derivative as

g̃Ω(x̂) =

{

−gΩ(x̂) if x̂ ∈ Ω,
gΩ(x̂) if x̂ /∈ Ω.

It appears that (6.1) will be solved as soon as

(6.2) g̃Ω ∼ ψΩ,

with the equivalen
e relation ∼ de�ned by

ψ1 ∼ ψ2 ⇐⇒ ∃α > 0, ψ1 ∼ αψ2.

We apply to (6.2) the �xed point iteration with relaxation, i.e., the update of the

fun
tion ψΩ at iteration k is

ψΩk+1
∼ (1− ωk)ψΩk

+ ωkg̃Ωk
.

The parameter ωk ∈ (0, 1] a
ts as step size and is �xed at every iteration by a line

sear
h.

Remark 6.1. Consider a 
ombination of disjoint topologi
al perturbations, su
h as

for instan
e

Ωt = Ω \
n
⋃

i=1

B(x̂i, ρ(t)).

The topologi
al derivative of the 
omplian
e is additive with respe
t to the pertur-

bation (see [7℄), i.e.,

GΩ =

n
∑

i=1

GΩ,i,

where GΩ,i is the topologi
al derivative for a single perturbation. The topologi
al

derivative of Ω → jsr(Ω) for the 
ombination of perturbations is then

d

dt
[jsr(Ωt)]|t=0 = inf

ξ̄∈Ξ
µ̄

n
∑

i=1

〈GΩ,i(ξ
N + ξ̄), ξN + ξ̄〉 ≥

n
∑

i=1

inf
ξ̄∈Ξ

µ̄〈GΩ,i(ξ
N + ξ̄), ξN + ξ̄〉.
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This means that jsr is superadditive with respe
t to the perturbation, hen
e a 
om-

bination of des
ent dire
tions for the fun
tional J still provides a des
ent dire
tion

(re
all that Φ is de
reasing).

For solving the dual problem (3.14) in the easy 
ase and the hard 
ase I, we have


ontented ourselves with the bise
tion method, as in our examples the spa
e H was

of small dimension.

Also, we have always en
ountered simple eigenvalues λmax. In su
h 
ases the set

of 
riti
al loads Ξ 
onsists of at most two points, therefore solving the minimization

problem in (5.1) is trivial. Further investigation would be needed to design a

numeri
al pro
edure able to deal with the general 
ase.

7. Numeri
al examples

In the subsequent 
omputations, the linear elasti
ity equations are solved by

means of P1 �nite elements (re
all that the spa
e dimension is N = 2), leading
to a sti�ness matrix denoted by KΩ. We 
onsider a �nite-dimensional spa
e of

perturbations H, say H = R
m

equipped with its 
anoni
al inner produ
t and its


anoni
al basis (ei)
m
i=1. Ea
h ei 
orresponds to an applied load φi and a for
e ve
tor

Fi in the �nite element framework. Then the matrix QΩ admits the entries:

[QΩ]ij =
1

2
FT
i K

−1
Ω Fj .

7.1. Beam. The hold all domain D is the unit square ]0, 1[×]0, 1[, with a Diri
hlet

boundary 
ondition on the left side. We denote by p the middle of the right side

and by φ1 the unit horizontal for
e applied at p. The nominal load fN
Ω 
orresponds

to φ1.
At �rst we 
onsider a one-dimensional spa
e H, for whi
h the value ξ = 1 of

the parameter 
orresponds to the for
e φ1. The threshold α is 
hosen as 10 times

the 
omplian
e of the initial domain, whi
h is the band ]0, 1[×]0.4, 0.6[, under the
nominal load. The Lagrange multiplier for the area is �xed to ℓ = 10. In this

situation, only the easy 
ase o

urs. The optimized domain is represented in Figure

1, left. The 
onvergen
e history of the 
riterion J is shown in Figure 2, left.

Next we add a unit verti
al for
e φ2, still applied at point p, and represented by

the parameter ξ = (0, 1) in the spa
e H = R
2
. The for
e φ1, represented by the

parameter ξN = (1, 0), remains the nominal load. The other data are un
hanged.

The optimized domain is given in Figure 1, right, with the 
onvergen
e history in

Figure 2, right. For 
omparison, note that the area of this domain (0.168) is 
lose to
the area obtained in the previous 
ase (0.160). The 
on�guration at 
onvergen
e is

the hard 
ase II, with the 
riti
al loads (in
luding the nominal load) 
orresponding

to the for
es 1.09φ1 ± 0.76φ2.

7.2. Mast. For this problem the hold-all domain D is the union of the re
tangles

]− 1, 1[×]0, 4[ and ]− 2, 2[×]4, 6[. A Diri
hlet boundary 
ondition is applied at the

bottom side. We 
onsider 4 for
es:

• φ1 is the for
e of 
omponents (0,−1) applied at point p1 = (−1, 4),
• φ2 is the for
e of 
omponents (0,−1) applied at point p2 = (1, 4),
• φ3 is the for
e of 
omponents (1, 0) applied at point p1,
• φ4 is the for
e of 
omponents (1, 0) applied at point p2.
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Figure 1. Beam: obtained domains for one load (left) and two

loads (right)
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Figure 2. Beam: 
onvergen
e histories for one load (left) and two

loads (right)

The nominal load 
orresponds to the for
es φ1 and φ2 applied simultaneously.

As �rst 
ase we again 
onsider a one-dimensional spa
e of perturbations, spanned

by the nominal load. The for
es φ3 and φ4 are not taken into a

ount. The

initialization is the full domain D, and α is 
hosen as 10 times the 
omplian
e of

this domain under the nominal load. The Lagrange multiplier ℓ is �xed to 0.8. The
optimized domain is represented in Figure 3, left.

Then we 
onsider a two-dimensional spa
e of perturbations, spanned by the

for
es φ1 and φ2 applied independently. All the other data are un
hanged. The

optimized domain is represented in Figure 3, middle. Due to the symmetry of

the problem, this is a hard 
ase II. The 
riti
al loads are 1.98φ1 + 1.01φ2 and

1.01φ1 + 1.98φ2.
Finally we 
onsider four independent perturbations, given by the for
es φ1, φ2,

φ3 and φ4. We obtain the domain represented in Figure 3, right. This is again a

hard 
ase II, with the 
riti
al loads given by 1.28φ1+1.09φ2− 0.30φ3 − 0.39φ4 and
its symmetri
 1.09φ1 + 1.28φ2 + 0.39φ3 + 0.30φ4.

>From the �rst 
ase to the last one, we 
learly observe, �rst, a sti�ening under

non-symmetri
 verti
al load, then, a sti�ening under horizontal load.
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Figure 3. Mast: obtained domains for one load (left), two loads

(middle) and four loads (right)

Appendix A. Lagrangian duality

Here we gather useful results on general Lagrangian duality theory, whi
h are

essentially reformulations of 
lassi
al results found in [26, 28, 33℄. We nevertheless

provide 
on
ise proofs for 
ompleteness.

Let X,Y be two sets and L : X × Y → R := R ∪ {−∞,+∞} be an appli
ation,


alled the Lagrangian. We de�ne

f(x) = sup
y∈Y

L(x, y), x ∈ X,

g(y) = inf
x∈X

L(x, y), y ∈ Y.

The duality theory aims at �nding relations between the primal problem

(P) Minimize f(x), x ∈ X,

and the so-
alled dual problem

(D) Maximize g(y), y ∈ Y.

We denote by v(P) = infx∈X f(x) and v(D) = supy∈Y g(y) the values of the primal

and the dual problems, respe
tively.

Moreover, for any y ∈ Y , we 
onsider the problem

(Ly) Minimize L(x, y), x ∈ X,

with value v(Ly) = infx∈X L(x, y) = g(y). We always have (weak duality):

(A.1) ∀y ∈ Y, v(Ly) ≤ v(D) ≤ v(P).

Theorem A.1. (1) For all y ∈ Y it holds

(A.2) argmin(Ly) ∩ [L(., y) = f ] ⊂ argmin(P).

(2) For all y ∈ Y it holds

(A.3) v(P) = v(Ly) ⇐⇒

{

y ∈ argmax(D),

v(D) = v(P).
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(3) We have the relations:

(A.4) v(P) = v(Ly) =⇒ argmin(Ly) ∩ [L(., y) = f ] = argmin(P).

(4) For all y ∈ Y it holds

(A.5) argmin(Ly) ∩ [L(., y) = f ] 6= ∅ =⇒ v(Ly) = v(P),

hen
e

(A.6) argmin(Ly)∩[L(., y) = f ] 6= ∅ =⇒ argmin(Ly)∩[L(., y) = f ] = argmin(P).

(5) We always have

(A.7)

{

y ∈ Y
∣

∣ argmin(Ly) ∩ [L(., y) = f ] 6= ∅
}

⊂ argmax(D).

Proof. (1) If x̄ ∈ argmin(Ly) ∩ [L(., y) = f ] then, for all x ∈ X , f(x̄) =
L(x̄, y) ≤ L(x, y) ≤ f(x).

(2) If v(Ly) = v(P), using (A.1), one obtains v(D) = v(P) = v(Ly) = g(y)
and y ∈ argmax(D). If y ∈ argmax(D) and v(D) = v(P) then v(Ly) =
g(y) = v(D) = v(P).

(3) If x̄ ∈ argmin(P) then L(x̄, y) ≤ f(x̄) = v(P) = v(Ly) ≤ L(x, y) for all
x ∈ X . In parti
ular L(x̄, y) = f(x̄) and x̄ ∈ argmin(Ly). The reverse

in
lusion is given by (A.2).

(4) If x̄ ∈ argmin(Ly) ∩ [L(., y) = f ] then

v(P) = inf
x∈X

f(x) ≤ f(x̄) = L(x̄, y) = v(Ly) = inf
x∈X

L(x, y) ≤ inf
x∈X

f(x) = v(P).

(5) If argmin(Ly) ∩ [L(., y) = f ] 6= ∅, then using (A.5), one infers v(Ly) =
v(P). We 
on
lude using (A.3).

�

A
knowledgements. The authors thank the anonymous referees for their 
areful

reading, useful 
omments and suggestions.

Referen
es

[1℄ G. Allaire. Con
eption optimale de stru
tures, volume 58 of Mathématiques & Appli
ations

(Berlin) [Mathemati
s & Appli
ations℄. Springer-Verlag, Berlin, 2007. With the 
ollaboration

of Mar
 S
hoenauer (INRIA) in the writing of Chapter 8.

[2℄ G. Allaire and C. Dapogny. A linearized approa
h to worst-
ase design in parametri


and geometri
 shape optimization. Mathemati
al Models and Methods in Applied S
ien
es,

24(11):2199�2257, 2014.

[3℄ G. Allaire, F. Jouve, and A.-M. Toader. Stru
tural optimization using sensitivity analysis

and a level-set method. J. Comput. Phys., 194(1):363�393, 2004.

[4℄ S. Amstutz. Sensitivity analysis with respe
t to a lo
al perturbation of the material property.

Asymptot. Anal., 49(1-2):87�108, 2006.

[5℄ S. Amstutz. Analysis of a level set method for topology optimization. Optim. Methods Softw.,

26(4-5):555�573, 2011.

[6℄ S. Amstutz and H. Andrä. A new algorithm for topology optimization using a level-set

method. J. Comput. Phys., 216(2):573�588, 2006.

[7℄ S. Amstutz and M. Ciligot-Travain. Optimality 
onditions for shape and topology optimiza-

tion subje
t to a 
one 
onstraint. SIAM J. Control Optim., 48(6):4056�4077, 2010.

[8℄ I. Babu²ka, F. Nobile, and R. Tempone. Worst 
ase s
enario analysis for ellipti
 problems

with un
ertainty. Numer. Math., 101(2):185�219, 2005.

[9℄ Y. Ben-Haim. Information-gap de
ision theory. Series on De
ision and Risk. A
ademi
 Press

In
., San Diego, CA, 2001. De
isions under severe un
ertainty.

[10℄ A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust optimization. Prin
eton Series in Ap-

plied Mathemati
s. Prin
eton University Press, Prin
eton, NJ, 2009.



A NOTION OF COMPLIANCE ROBUSTNESS IN TOPOLOGY OPTIMIZATION 25

[11℄ M. P. Bendsøe and O. Sigmund. Topology optimization. Springer-Verlag, Berlin, 2003. Theory,

methods and appli
ations.

[12℄ J. F. Bonnans and A. Shapiro. Perturbation analysis of optimization problems. Springer Series

in Operations Resear
h. Springer-Verlag, New York, 2000.

[13℄ A. Cherkaev and E. Cherkaev. Optimal design for un
ertain loading 
ondition. In Homoge-

nization, volume 50 of Ser. Adv. Math. Appl. S
i., pages 193�213. World S
i. Publ., River

Edge, NJ, 1999.

[14℄ E. Cherkaev and A. Cherkaev. Prin
ipal 
omplian
e and robust optimal design. J. Elasti
-

ity, 72(1-3):71�98, 2003. Essays and papers dedi
ated to the memory of Cli�ord Ambrose

Truesdell III. Vol. III.

[15℄ F. de Gournay, G. Allaire, and F. Jouve. Shape and topology optimization of the robust


omplian
e via the level set method. ESAIM Control Optim. Cal
. Var., 14(1):43�70, 2008.

[16℄ J.-M. Feng, G.-X. Lin, R.-L. Sheu, and Y. Xia. Duality and solutions for quadrati
 program-

ming over single non-homogeneous quadrati
 
onstraint. J. Global Optim., 54(2):275�293,

2012.

[17℄ O. Flippo and B. Jansen. Duality and sensitivity in non
onvex quadrati
 optimization over

an ellipsoid. European Journal of Operational Resear
h, 94(1):167�178, 1996.

[18℄ C. Fortin and H. Wolkowi
z. The trust region subproblem and semide�nite programming.

Optim. Methods Softw., 19(1):41�67, 2004.

[19℄ A. L. Fradkov and V. A. Jakubovi£. The S-pro
edure and the duality relation in 
onvex

quadrati
 programming problems. Vestnik Leningrad. Univ., (1 Mat. Meh. Astronom. Vyp.

1):81�87, 155, 1973.

[20℄ A. L. Fradkov and V. A. Jakubovi£. The S-pro
edure and the duality relation in 
onvex

quadrati
 programming problems. Vestnik Leningrad. Univ., (Vol. 6, n

o
2):101�109, 1979.

[21℄ S. Garreau, P. Guillaume, and M. Masmoudi. The topologi
al asymptoti
 for PDE systems:

the elasti
ity 
ase. SIAM J. Control Optim., 39(6):1756�1778 (ele
troni
), 2001.

[22℄ D. M. Gay. Computing optimal lo
ally 
onstrained steps. SIAM J. S
i. Statist. Comput.,

2(2):186�197, 1981.

[23℄ X. Guo, W. Zhang, and L. Zhang. Robust stru
tural topology optimization 
onsidering

boundary un
ertainties. Comput. Methods Appl. Me
h. Engrg., 253:356�368, 2013.

[24℄ D. Hinri
hsen and A. J. Prit
hard. Real and 
omplex stability radii: a survey. In Control

of un
ertain systems (Bremen, 1989), volume 6 of Progr. Systems Control Theory, pages

119�162. Birkhäuser Boston, Boston, MA, 1990.

[25℄ D. Hinri
hsen, A. J. Prit
hard, and S. B. Townley. Ri

ati equation approa
h to maximizing

the 
omplex stability radius by state feedba
k. Internat. J. Control, 52(4):769�794, 1990.

[26℄ J.-B. Hiriart-Urruty and C. Lemaré
hal. Convex analysis and minimization algorithms. II,

volume 306 of Grundlehren der Mathematis
hen Wissens
haften [Fundamental Prin
iples of

Mathemati
al S
ien
es℄. Springer-Verlag, Berlin, 1993. Advan
ed theory and bundle methods.

[27℄ A. D. Io�e and V. M. Tihomirov. Theory of extremal problems, volume 6 of Studies in

Mathemati
s and its Appli
ations. North-Holland Publishing Co., Amsterdam-New York,

1979. Translated from the Russian by Karol Makowski.

[28℄ C. Lemaré
hal. The omnipresen
e of Lagrange. Ann. Oper. Res., 153:9�27, 2007.

[29℄ J. J. More. Generalizations of the trust region problem. Optimization Methods and Software,

2(3-4):189�209, 1993.

[30℄ A. A. Novotny and J. Sokoªowski. Topologi
al derivatives in shape optimization. Intera
tion

of Me
hani
s and Mathemati
s. Springer, Heidelberg, 2013.

[31℄ S. Osher and J. A. Sethian. Fronts propagating with 
urvature-dependent speed: algorithms

based on Hamilton-Ja
obi formulations. J. Comput. Phys., 79(1):12�49, 1988.

[32℄ F. Rendl and H. Wolkowi
z. A semide�nite framework for trust region subproblems with

appli
ations to large s
ale minimization. Math. Programming, 77(2, Ser. B):273�299, 1997.

Semide�nite programming.

[33℄ R. T. Ro
kafellar. Conjugate duality and optimization. So
iety for Industrial and Applied

Mathemati
s, Philadelphia, Pa., 1974. Le
tures given at the Johns Hopkins University, Balti-

more, Md., June, 1973, Conferen
e Board of the Mathemati
al S
ien
es Regional Conferen
e

Series in Applied Mathemati
s, No. 16.

[34℄ J. Sokoªowski and A. �o
howski. On the topologi
al derivative in shape optimization. SIAM

J. Control Optim., 37(4):1251�1272 (ele
troni
), 1999.



26 SAMUEL AMSTUTZ AND MARC CILIGOT-TRAVAIN

[35℄ D. C. Sorensen. Newton's method with a model trust region modi�
ation. SIAM J. Numer.

Anal., 19(2):409�426, 1982.

[36℄ R. J. Stern and H. Wolkowi
z. Trust region problems and nonsymmetri
 eigenvalue pertur-

bations. SIAM J. Matrix Anal. Appl., 15(3):755�778, 1994.

[37℄ R. J. Stern and H. Wolkowi
z. Inde�nite trust region subproblems and nonsymmetri
 eigen-

value perturbations. SIAM J. Optim., 5(2):286�313, 1995.

Laboratoire de Mathématiques d'Avignon, Fa
ulté des S
ien
es, 33 rue Pasteur,

84000 Avignon, Fran
e.

Laboratoire de Mathématiques d'Avignon, Fa
ulté des S
ien
es, 33 rue Pasteur,

84000 Avignon, Fran
e.


