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A NOTION OF COMPLIANCE ROBUSTNESS IN TOPOLOGY

OPTIMIZATION

SAMUEL AMSTUTZ AND MARC CILIGOT-TRAVAIN

Abstrat. The goal of this paper is twofold. On one hand, our work revisits

the minimization of the robust ompliane in shape optimization, with a more

natural and more general approah than what has been done before. On the

other hand, following a more reent viewpoint on robust optimization, we

study the maximization of the so-alled stability radius for a �xed maximal

ompliane. We provide theorial as well as numerial results.

Introdution

The ompliane C(Ω, fΩ) of a linear elasti struture oupying a domain Ω and

submitted to a load fΩ is de�ned as the work done by the load, or equivalently

as the stored elasti energy. Minimizing the ompliane for a �xed load is a very

standard shape optimization problem, for whih a wide range of methods have been

developed, see e.g. [1, 7℄ and the referenes therein. However, it often ours that

the load is not known exatly. In this work we suppose that it takes the form

f̄Ω + BΩξ, ξ ∈ rB, with r > 0 and B the losed unit ball of a Hibert spae. The

robust ompliane (also alled prinipal ompliane) is then de�ned by

JWC(Ω) = sup
ξ∈rB

C(Ω, f̄Ω +BΩξ).

The robust ompliane may replae the ompliane when the load is unertain, so

that minimizing the robust ompliane is just minimizing the ompliane `in the

worst ase'. The way from ompliane to robust ompliane is just an illustration

of the transition from optimization to robust optimization. The robust ompliane

has been �rst studied in [9℄, see also [10℄.

The goal of this paper is twofold. On one hand, our work revisits the paper by

De Gournay et al [11℄ about the minimization of the robust ompliane, with a

more natural (and more general) approah. In [11℄, the authors learly announed

that they renouned to follow this way beause they did not see how to proeed,

but we show in the present artile how to overome these di�ulties.

On the other hand, following another and more reent viewpoint on robust op-

timization, we study the maximization of the so-alled stability radius for a �xed

maximal ompliane. This is atually the main purpose of this paper, and we shall

enter a little more into details. Let f̄Ω be the nominal load, i.e., the load whih is

expeted, and suppose that it is desired that the ompliane do not exeed α. Then
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the stability radius relatively to the level-set [C(Ω, f̄Ω +BΩ.) ≤ α] is de�ned as

√

2JSR(Ω) = sup
{

r > 0
∣

∣ rB ⊂ [C(Ω, f̄Ω +BΩ.) ≤ α]
}

=

dist(0, [C(Ω, f̄Ω +BΩ.) > α]).

Then it is natural to look for the domain Ω whih maximizes the stability radius

√

2JSR(Ω). In other words, we seek the shape whih tolerates the greatest deviation

from the nominal load, in the sense that the ompliane remains below α. This is
a kind of robustness optimization. Atually, we will not neessarily �nd globally

optimal shapes. It is more exat to say that we show how to improve the stability

radius of a given shape.

The notion of stability radius appeared in robust ontrol (see, e.g., [17, 18℄), and

has been developed in its full generality, but not from a very mathematial point

of view, at the end of the 90's by Ben�Haim (see [6℄ and the referenes therein).

Compared to the worst ase approah, this one avoids �xing r a priori, whih is

not neessarily easy and natural in some irumstanes. We think that in many

situations, it is more natural to �x an upper bound α for the objetive funtion,

here the ompliane. This amounts somehow to �xing some spei�ations.

The paper is organized as follows. In setion 1, we desribe the general math-

ematial setting of our problems. In setion 2, we �rst show that the two robust

riteria, namely JWC(Ω) and JSR(Ω), are the value funtions of some quadrati

programs with equality onstraints. More preisely, the objetive funtion of eah

subproblem is a quadrati funtional and the equality onstraint is assoiated with

another quadrati funtional. Suh problems are known in the literature as trust�

region subproblems, and have been extensively studied in the �nite dimensional

setting, see e.g. [12, 14, 16, 21, 13, 23, 26, 27, 28℄. Then, in arbitrary dimension

and for both problems, we prove the existene of ritial loads (i.e. solutions of

the subproblems). Finally, using a strong duality argument for Lagrangian duality

extending known results in �nite dimension, we show the existene of a unique

solution of the dual problem and give a omplete desription of the ritial loads

based on this solution. In setion 3, for both problems again, we give an expres-

sion of the Hadamard semiderivative of the two riteria relatively to the quadrati

funtionals depending on Ω, based on the Lagrangian and the solution of the dual

problem. Setions 4 through 6 spei�ally deal with the optimization problem with

respet the shape Ω. To keep onise and avoid repetitions, we onentrate on the

maximization of the stability radius. Our proedure is based on the onept of

topologial derivative [15, 22, 25℄, whih evaluates the variation of the objetive

funtional with respet to small topologial perturbations. In setion 4, we dedue

from setion 3 the expression of the topologial derivative of the stability radius.

The optimization algorithm is desribed in setion 5, while setion 6 reports on

some numerial omputations.

1. General setting

We denote by Ω the domain to be optimized, and by E the set of admissible

domains. For eah Ω ∈ E we are given a re�exive Banah spae VΩ. We denote

by ‖.‖ the norm on VΩ and by 〈., .〉 the duality pairing between V ′
Ω and VΩ, where

V ′
Ω stands for the ontinuous dual spae of VΩ. We also onsider a ontinuous and

self-adjoint positive de�nite isomorphism AΩ from VΩ into V ′
Ω. In partiular, there
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exist two onstants γ+Ω , γ
−
Ω > 0 suh that

γ−Ω ‖u‖2 ≤ 〈AΩu, u〉 ≤ γ+Ω ‖u‖2 ∀u ∈ VΩ.

We assoiate to eah f ∈ V ′
Ω the vetor uΩ,f = A−1

Ω f ∈ VΩ and the salar

C(Ω, fΩ) =
1

2
〈fΩ, uΩ,fΩ〉 =

1

2
〈fΩ, A

−1
Ω fΩ〉.

Refering to the ontext of strutural mehanis, we will subsequently all fΩ the

load, uΩ,fΩ the displaement �eld, and C(Ω, fΩ) the ompliane (atually the half

ompliane). We will onsider a parameterized family of loads of the form

fΩ = f̄Ω +BΩξ, ξ ∈ H,

where f̄Ω ∈ V ′
Ω is a nominal load, H is a �xed (i.e., independent of Ω) separable

Hilbert spae and BΩ : H → V ′
Ω is a linear, ompat and injetive operator. We set

C(Ω, ξ) = C(Ω, f̄Ω +BΩξ).

ΓD
ΓN

Ω f̄Ω

f̄Ω +BΩξ

Before ontinuing with the abtrat framework, let us give a typial onrete exam-

ple. We onsider the problem of ompliane minimization for a struture submitted

to an unertain load. The struture is represented by a domain Ω ⊂ R
d
(d = 2

or d = 3), whose boundary is split into three disjoint subsets Γ, ΓD and ΓN with

meas(ΓD) > 0. Homogeneous Dirihlet boudary onditions are presribed on ΓD,

and Neumann boundary onditions are presribed on Γ∪ΓN , with zero fore on Γ.
We denote byH1

D(Ω)d the spae of vetor �elds belonging to H1(Ω)d with vanishing

trae on ΓD. For a given load fΩ ∈ H1
D(Ω)d and a given displaement u ∈ H1

D(Ω)d,
the elasti energy is the negative quadrati funtional in u de�ned by

(1.1) EΩ(u, fΩ) = −
1

2

∫

Ω

He(u) : e(u) + 〈fΩ, u〉

where e(u) = (∇u+∇uT )/2 is the strain tensor and H is the fourth�order elastiity

tensor (Hooke's tensor) suh that He(u) is the stress tensor. The ompliane is

de�ned as

(1.2) C(Ω, fΩ) = max
u∈H1

D
(Ω)d

E(u, fΩ).

Therefore, setting VΩ = H1
D(Ω)d, the operator AΩ : VΩ → V ′

Ω is de�ned by

(1.3) 〈AΩu, v〉 =

∫

Ω

He(u) : e(v)

and the ompliane admits the expression

(1.4) C(Ω, fΩ) =
1

2
〈fΩ, A

−1
Ω fΩ〉.
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We hoose H as a losed subspae of L2(ΓN )d, and we de�ne BΩ : H → V ′
Ω by

(1.5) BΩξ : u ∈ VΩ 7→

∫

ΓN

ξ.u|ΓN
.

The ompatness of BΩ is due to the ompatness of the Sobolev embedding

H1/2(ΓN ) → L2(ΓN ). A very standard problem in optimal design onsists in

minimizing the ompliane with a �xed load f̄Ω, i.e.,

Minimize C(Ω, 0) = C(Ω, f̄Ω), Ω ∈ E ,

where the set E an inlude onstraints. One speaks of robust ompliane mini-

mization when, at the same time, perturbations of the load are onsidered.

Let us now ome bak to the general ase. In this paper we will investigate two

notions of robustness and the assoiated optimization problems.

(1) Stability radius as ompliane robustness. Given a threshold α >
CΩ(0) = CΩ(f̄Ω), the stability radius is de�ned by

(1.6)

JSR(Ω) =
1

2
dist(0, [C(Ω, .) ≥ α])2 = inf

C(Ω,ξ)≥α

1

2
‖ξ‖2 = inf

C(Ω,f̄Ω+BΩξ)≥α

1

2
‖ξ‖2.

Inreasing this value amounts to inreasing the distane to unfeasability,

where unfeasability means that the ompliane greater than α. This leads
to onsidering the optimization problem:

(1.7) Maximize JSR(Ω), Ω ∈ E ,

hene one speaks of robustness maximization.

(2) Robust ompliane in the worst ase sense. Given a radius r > 0,
the worst ase ompliane is de�ned by

(1.8) JWC(Ω) = sup
‖ξ‖≤r

C(Ω, ξ) = sup
‖ξ‖≤r

C(Ω, f̄Ω +BΩξ).

This is the maximal ompliane obtained for a given family of loads. One

naturally wants to minimize this quantity, leading to the so-alled worst

ase ompliane minimization problem:

(1.9) Minimize JWC(Ω), Ω ∈ E .

In fat it is easily heked that the inequalities in (1.6) and (1.8) an be replaed

by equalities, i.e. we have

(1.10)

JSR(Ω) =
1

2
dist(0, [C(Ω, .) = α])2 = inf

C(Ω,ξ)=α

1

2
‖ξ‖2 = inf

C(Ω,f̄Ω+BΩξ)=α

1

2
‖ξ‖2.

(1.11) JWC(Ω) = sup
‖ξ‖=r

C(Ω, ξ) = sup
‖ξ‖=r

C(Ω, f̄Ω +BΩξ).

2. Expression of the robust riteria

In this setion the domain Ω is �xed. We shall give pratial proedures to

ompute the values of JSR(Ω) and JWC(Ω).
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2.1. Notation. The two optimization problems appearing in (1.10) and (1.11) an

be formulated in the form

(P) Minimize q1(ξ), ξ ∈ H subjet to q2(ξ) = 0,

with two quadrati funtionals q1 and q2 written as

q1(ξ) =
1

2
〈Q1ξ, ξ〉+ 〈b1, ξ〉+ c1, q2(ξ) =

1

2
〈Q2ξ, ξ〉+ 〈b2, ξ〉+ c2.

Above, for eah i = 1, 2, Qi : H → H is a self-adjoint linear ontinuous operator,

bi ∈ H, ci ∈ R. Spei�ally, these quantities are de�ned as follows.

(1) Compliane robustness :

(2.1) q1(ξ) =
1

2
‖ξ‖2, q2(ξ) = C(Ω, ξ)− α,

i.e.,

Q1 = I, b1 = 0, c1 = 0,

Q2 = B∗
ΩA

−1
Ω BΩ, b2 = B∗

ΩA
−1
Ω f̄Ω, c2 =

1

2
〈f̄Ω, A

−1
Ω f̄Ω〉 − α.

(2) Worst ase robust ompliane :

(2.2) q1(ξ) = −C(Ω, ξ), q2(ξ) =
1

2
‖ξ‖2 −

1

2
r2,

i.e.,

Q1 = −B∗
ΩA

−1
Ω BΩ, b1 = −B∗

ΩA
−1
Ω f̄Ω, c1 = −

1

2
〈f̄Ω, A

−1
Ω f̄Ω〉,

Q2 = I, b2 = 0, c2 = −r2/2.

Problems of form (P) are known in the literature as trust region problems (or

subproblems). They have been extensively studied, but almost always in the ase

of a �nite dimensional spae H, see e.g. [12, 14, 16, 21, 13, 23, 26, 27, 28℄.

2.2. Existene of ritial loads.

Theorem 2.1. Assume one of the following hypotheses hold :

(1) either Q1 is ompat, negative semi-de�nite and Q2 is positive de�nite,

(2) or Q1 is positive de�nite and Q2 is ompat.

Then (P) admits at least a solution.

In partiular, the optimal values in (1.10) and (1.11) are attained.

Proof. Consider the �rst ase. Let (ξn) be a minimizing sequene of the prob-

lem inf [q2≤0] q1. Sine Q1 is ompat, we have q1(ξ) = lim q1(ξn) = inf [q2≤0] q1.
As q2 is onvex and ontinuous, it is weakly lower-semiontinuous, thus q2(ξ) ≤
lim inf q2(ξn) ≤ 0. Therefore, the in�mum inf [q2≤0] q1 is attained at some points

of [q2 ≤ 0]. Finally, as q1 is onave, at least one of these points an be found in

[q2 = 0].
Let us turn to the seond ase. Let again (ξn) be a minimizing sequene. For any

β ∈ R, the level set [q1 ≤ β] is bounded. Thus, up to a subsequene, there exists

ξ ∈ H suh that ξn ⇀ ξ. By ompatness of Q2, we have q2(ξ) = lim q2(ξn) = 0.
Sine q1 is onvex and ontinuous, it is weakly lower-semiontinuous, thus q1(ξ) ≤
lim inf q1(ξn) = inf [q2=0] q1.

Obviously, for the funtionals (2.1) and (2.2), items (1) and (2) are ful�lled,

respetively. �
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2.3. Dual formulation: general framework.

2.3.1. Dual problem. For all (ξ, µ) ∈ H× R we de�ne the Lagrangian

L(ξ, µ) = q1(ξ) + µq2(ξ) =
1

2
〈(Q1 + µQ2)ξ, ξ〉+ 〈b1 + µb2, ξ〉+ c1 + µc2.

The dual riterion is

ψ̂(µ) = inf
ξ∈H

L(ξ, µ).

For any self-adjoint linear ontinuous operator T : H → H, we have

H = kerT
⊥
⊕ imT ,

hene the restrition T|im(T ) : im(T ) → imT is a bijetion. We denote by T † :=

(T|im(T ))
−1 : imT → im(T ) the inverse operator, whih, by virtue of the open

mapping theorem, is ontinuous as soon as im T is losed. For all µ ∈ R we set

ψ(µ) = −
1

2
〈(Q1 + µQ2)

†(b1 + µb2), b1 + µb2〉+ c1 + µc2.

Throughout all this setion 2.3, we assume that

(2.3) ∀µ ∈ R, Q1 + µQ2 ≥ 0 =⇒ im(Q1 + µQ2) is losed.

Note that this assumption is ful�lled in the two ases under study. Indeed, in the

�rst ase, we have Q1+µQ2 = I+2µB∗
ΩA

−1
Ω BΩ, whose image is always losed sine

B∗
ΩA

−1
Ω BΩ is ompat. In the seond ase we have Q1+µQ2 = −2B∗

ΩA
−1
Ω BΩ+µI,

and Q1 + µQ2 ≥ 0 implies µ > 0, whereby we onlude as before.

Lemma 2.2. Under Assumption (2.3), the dual riterion is expressed by

ψ̂(µ) =







−∞ if Q1 + µQ2 6≥ 0,
−∞ if Q1 + µQ2 ≥ 0 and b1 + µb2 /∈ im(Q1 + µQ2),
ψ(µ) if Q1 + µQ2 ≥ 0 and b1 + µb2 ∈ im(Q1 + µQ2).

Proof. For simpliity, we set Qµ = Q1 + µQ2, bµ = b1 + µb2, cµ = c1 + µc2, so that

ψ̂(µ) = inf
ξ∈H

qµ(ξ) :=
1

2
〈Qµξ, ξ〉+ 〈bµ, ξ〉+ cµ.

If Qµ 6≥ 0, it is lear that ψ̂(µ) = −∞. Therefore we assume now that Qµ ≥ 0. By
Assumption (2.3), imQµ is losed, thus

H = kerQµ

⊥
⊕ imQµ.

For all ξ ∈ H, we make the deomposition ξ = ξ1 + ξ2, with ξ1 ∈ kerQµ and

ξ2 ∈ imQµ. We get

qµ(ξ) = qµ(ξ2) + 〈bµ, ξ1〉.

Two ases an arise.

(1) If bµ 6∈ imQµ, hoosing ξ = tb̃µ with t ∈ R and b̃µ the orthogonal projetion

of bµ onto kerQµ, we obtain

qµ(ξ) = t‖bµ‖
2.

Letting t go to −∞ yields ψ̂(µ) = −∞.
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(2) If bµ ∈ imQµ, we have qµ(ξ) = qµ(ξ2) for all ξ ∈ H, and

ψ̂(µ) = inf
ξ2∈imQµ

qµ(ξ2) :=
1

2
〈Qµξ2, ξ2〉+ 〈bµ, ξ2〉+ cµ.

The unique minimizer of this quadrati problem is ξ2 = −Q†
µbµ, and the

value of the minimum is − 1
2 〈Q

†
µbµ, bµ〉+ cµ, i.e., ψ(µ).

�

The dual problem is then

(D) Maximize
µ∈R

ψ(µ) subjet to

{

Q1 + µQ2 ≥ 0,
b1 + µb2 ∈ im(Q1 + µQ2).

2.3.2. Optimality onditions. The following result is an adaptation of Theorem 2.1

of [28℄. Due to its importane in the sequel, we nevertheless give a proof.

Theorem 2.3. Let ξ̄ ∈ H be suh that

(2.4) ∇q2(ξ̄) = Q2ξ̄ + b2 6= 0.

The following statements are equivalent:

(1) ξ̄ is a (global) minimizer of (P);

(2) q2(ξ̄) = 0 and there exists µ̄ ∈ R suh that

∂ξL(ξ̄, µ̄) = (Q1 + µ̄Q2)ξ̄ + (b1 + µ̄b2) = 0,(2.5)

∂2ξξL(ξ̄, µ̄) = Q1 + µ̄Q2 ≥ 0;(2.6)

(3) there exists µ̄ ∈ R suh that

(2.7) ξ̄ ∈ argminL(., µ̄) ∩ [q2 = 0].

Proof. We shall prove the impliations (1) ⇒ (2) ⇒ (3) ⇒ (1).
First step. Let us assume that ξ̄ is a minimizer of (P). By the �rst order neessary

optimality ondition, there exists µ̄ ∈ R suh that

∂ξL(ξ̄, µ̄) = 0.

The seond order neessary optimality ondition reads

〈∂2ξξL(ξ̄, µ̄)ζ, ζ〉 ≥ 0 ∀ζ ∈ Tξ̄,

Tξ̄ = {ζ ∈ H, 〈Q2ξ̄ + b2, ζ〉 = 0}.

Now, suppose that ζ /∈ Tξ̄. We assume �rst that Q2ζ 6= 0. Sine Q2 ≥ 0, this
entails 〈Q2ζ, ζ〉 > 0. Set

t̄ = −2
〈Q2ξ̄ + b2, ζ〉

〈Q2ζ, ζ〉
6= 0, ξ = ξ̄ + t̄ζ.

After alulation we �nd that q2(ξ) = q2(ξ̄) = 0. This implies

(2.8) L(ξ, µ̄)− L(ξ̄, µ̄) = q1(ξ)− q1(ξ̄) ≥ 0.

Yet we have

(2.9) L(ξ, µ̄)− L(ξ̄, µ̄) = t̄〈(Q1 + µ̄Q2)ξ̄ + b1 + µ̄b2, ζ〉+
t̄2

2
〈(Q1 + µ̄Q2)ζ, ζ〉.

Combining (2.5), (2.8), (2.9) and t̄ 6= 0, we derive that 〈(Q1 + µ̄Q2)ζ, ζ〉 ≥ 0.
Assume now that Q2ζ = 0. As Q2 6= 0, we hoose some ξ0 ∈ H suh that ξ0 6= 0.
Let (tn) be an arbitrary sequene of positive real numbers suh that tn → 0 as
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n → ∞. We set ζn = ζ + tnξ0. For all n we have Q2ζn = tnQ2ζ0 6= 0, hene
〈(Q1 + µ̄Q2)ζn, ζn〉 ≥ 0. Passing to the limit yields 〈(Q1 + µ̄Q2)ζ, ζ〉 ≥ 0. We have

proved that Q1 + µ̄Q2 ≥ 0.
Seond step. Sine the funtion ξ 7→ L(ξ, µ̄) is quadrati, a Taylor expansion

immediately shows that the onditions (2.5) and (2.6) imply ξ̄ ∈ argminL(., µ̄). As
q2(ξ̄) = 0, we have L(ξ̄, µ) = q1(ξ̄) for all µ ∈ R.

Third step. We remark that, for all µ ∈ R, it holds

(2.10) [L(., µ) = q1 + δ[q2=0]] = [q2 = 0],

with δC the indiator funtion of the set C. By (A.2) in the appendix, we have

ξ̄ ∈ argminL(., µ̄) ∩ [q2 = 0] ⊂ argmin q1 + δ[q2=0]. �

2.3.3. Strong duality. The following Theorem is a onsequene of Theorem 2.3 to-

gether with general results on duality (f. appendix A).

Theorem 2.4. Suppose that (P) admits a solution ξ̄ whih satis�es the onstraint

quali�ation (2.4). Then the primal problem (P) and the dual problem (D) have

the same optimal values. In addition, (D) admits solutions, and, if µ̄ is one of

these solutions, we have

argmin
q2(ξ)=0

q1(ξ) = argmin
ξ∈H

L(ξ, µ̄) ∩ [q2 = 0].

Proof. In view of (2.7) and (2.10), one uses suessively (A.5), (A.3) and (A.6). �

2.4. Expression of the ritial loads for the ompliane robustness. In this

ase, the primal problem (P) and the dual problem (D) read, respetively,

(2.11) Minimize
ξ∈H

q(ξ) =
1

2
‖ξ‖2 subjet to

1

2
〈Qξ, ξ〉+ 〈b, ξ〉+ c− α = 0,

(2.12)

Maximize
µ∈R

ψ(µ) = −
µ2

2
〈(I + µQ)†b, b〉+ µ(c− α) subjet to

{

I + µQ ≥ 0,
µb ∈ im(I + µQ),

with

(2.13) Q = B∗
ΩA

−1
Ω BΩ, b = B∗

ΩA
−1
Ω f̄Ω, c =

1

2
〈f̄Ω, A

−1
Ω f̄Ω〉.

The operator Q : H → H is self-adjoint positive semi-de�nite and ompat. We

denote by λmax the largest eigenvalue of Q.

The largest eigenvalue of Q is denoted by λmax. The next theorem re�nes The-

orem 2.4 and uses the same terminology as [28℄.

Theorem 2.5. The primal problem (2.11) and the dual problem (2.12) have the

same optimal values. The dual problem (2.12) admits a unique solution µ̄ ∈ R,

whih an be omputed in the following way.

• Easy ase: b /∈ ker(Q − λmaxI)
⊥
. Then µ̄ is the unique solution in ] −

1/λmax, 0[ of the equation

(2.14)

1

2
〈(I + µQ)−2Q−1b, b〉 −

1

2
〈Q−1b, b〉+ c− α = 0.

• Hard ase I: b ∈ ker(Q− λmaxI)
⊥

and

(2.15) ∆ :=
1

2
〈λ2maxQ

−1(Q− λmaxI)
††b, b〉 −

1

2
〈Q−1b, b〉+ c− α > 0.

Then µ̄ is also the unique solution in ]− 1/λmax, 0[ of (2.14).
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• Hard ase II: b ∈ ker(Q− λmaxI)
⊥

and ∆ ≤ 0. Then µ̄ = −1/λmax.

The set Ξ of solutions of the primal problem (2.27) is given by the following expres-

sions.

• Easy ase and Hard ase I. There is a unique ritial load given by

Ξ = {−µ̄(I + µ̄Q)−1b}.

• Hard ase II. The set of ritial loads is

Ξ =

[

{−(Q− λmaxI)
†b}+ ker(Q− λmaxI)

]

∩ Sr,

with Sr = {ξ ∈ H, q(ξ) = 0}.

Proof. By Theorem 2.1, there exists at least a solution ξ̄ ∈ H to (2.11). The

onstraint quali�ation (2.4) is Qξ̄ + b 6= 0, whih is ful�lled sine otherwise the

onstraint in (2.11) would yield 〈Qξ̄, ξ̄〉 = 2(c−α) < 0. Hene Theorem 2.4 applies.

Let us reformulate the onstraints of the dual problem (2.12). The �rst one is

equivalent to µ ≥ −1/λmax and we have im(I + µQ) = ker(I + µQ)⊥ = H as soon

as µ > −1/λmax. Therefore we have

{

I + µQ ≥ 0
µb ∈ im(I + µQ)

}

⇐⇒

{

µ > −1/λmax if b /∈ ker(Q − λmaxI)
⊥

µ ≥ −1/λmax if b ∈ ker(Q − λmaxI)
⊥

}

.

If −1/λmax < µ ≤ 0 we have

ψ(µ) = −
µ2

2
〈(I + µQ)−1b, b〉+ µ(c− α).

On writing µ2〈(I + µQ)−1b, b〉 = 〈(I + µQ)−1Q−2b, µ2Q2b〉 = 〈(I + µQ)−1Q−2b,
I + (µQ− I)(µQ + I)b〉 we arrive at the more onvenient expression

(2.16) ψ(µ) = −
1

2
〈(I + µQ)−1Q−2b, b〉 −

µ

2
〈Q−1b, b〉+

1

2
〈Q−2b, b〉+ µ(c− α).

Di�erentiating entails

(2.17) ψ′(µ) =
1

2
〈(I + µQ)−2Q−1b, b〉 −

1

2
〈Q−1b, b〉+ (c− α),

(2.18) ψ′′(µ) = −〈(I + µQ)−3b, b〉 < 0.

We infer that ψ is stritly onave on ]− 1/λmax, 0] and ψ
′(0) = c− α < 0. Again

we deompose b as b =
∑

i bi with bi ∈ ker(Q−λiI) and λi the distint eigenvalues
of Q in dereasing order suh that λ0 = λmax. We have for all µ ∈]− 1/λmax, 0]

ψ′(µ) =
∑

i

1

λi(1 + µλi)2
‖bi‖

2 −
1

2
〈Q−1b, b〉+ c− α.

• Easy ase: b /∈ ker(Q−λmaxI)
⊥
. Then b0 6= 0 and limµ→(−1/λmax)+ ψ

′(µ) =
+∞. It follows that ψ admits a unique maximizer µ̄ ∈] − 1/λmax, 0[ har-
aterized by ψ′(µ̄) = 0.

• Hard ase: b ∈ ker(Q−λmaxI)
⊥
. Then the expressions (2.16)-(2.18) remain

true for µ = −1/λmax, provided that the restrition of I + µQ to ker(Q −
λmaxI)

⊥
is onsidered. In partiular, ψ′(−1/λmax) is �nite.

If ψ′(−1/λmax) > 0 (hard ase I), then ψ admits a unique maximizer µ̄
in ] − 1/λmax, 0[, haraterized by ψ′(µ̄) = 0. If ψ′(−1/λmax) ≤ 0 (hard

ase II), then −1/λmax is the unique maximizer of ψ in [−1/λmax, 0[.
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By Theorem 2.4, the set of solutions of the primal problem is given by

Ξ = argmin
ξ∈H

L(ξ, µ̄) ∩ Sr.

Here the Lagrangian is

L(ξ, µ̄) =
1

2
〈(I + µ̄Q)ξ, ξ〉+ µ̄〈b, ξ〉+ µ̄(c− α).

In the easy ase and the hard ase I, L(., µ̄) is stritly onvex sine µ̄ > −1/λmax.

It admits as unique minimizer

ξ̄ = −µ̄(I + µ̄Q)−1b.

From (2.17) and ψ′(µ̄) = 0 we derive after some algebra that q(ξ̄) = 1
2 〈Qξ̄, ξ̄〉 +

〈b, ξ̄〉+ c− α = 0.
In the hard ase II, we have µ̄ = −1/λmax and

argmin
ξ∈H

L(ξ, µ̄) = {ξ ∈ H, (Q− λmaxI)ξ = −b}.

Using that b ∈ ker(Q− λmaxI)
⊥ = im(Q− λmaxI) we obtain

argmin
ξ∈H

L(ξ, µ̄) = {−(Q− λmaxI)
†b}+ ker(Q− λmaxI).

�

Remark 2.6. If f̄ ∈ im(BΩ), then the expressions (2.14) and (2.15) an be simpli�ed

thanks to the equality:

−
1

2
〈Q−1b, b〉+ c = 0.

Indeed, writing f̄ = BΩξ̄ yields b = Qξ̄ as well as c = 1
2 〈Qξ̄, ξ̄〉.

To onlude this setion, we will present an interesting reformulation of the dual

problem as a semide�nite programming problem. Again, this kind of approah is

standard in �nite dimension. Let us go bak to the primal problem (2.11):

(2.19) Minimize
ξ∈H

q(ξ) =
1

2
‖ξ‖2 subjet to g(ξ) :=

1

2
〈Qξ, ξ〉+ 〈b, ξ〉+ c = α.

If ξ̄ is a solution of this problem then ‖ξ̄‖ = dist(0, [g = α]) = dist(0, [g ≥ α]). It

follows that ‖ξ̄‖ is a solution of

Maximize ρ,(2.20)

s.t. ρB ⊂ [g ≤ α],(2.21)

ρ ∈ R
⋆
+.(2.22)

Yet we have for ρ > 0

ρB ⊂ [g ≤ α] ⇐⇒ ∀ξ ∈ H, ‖ξ‖ ≤ ρ⇒ g(ξ) ≤ α,

⇐⇒ ∀ξ ∈ H, ‖ξ‖ ≤ 1 ⇒ g(ρξ) ≤ α,

⇐⇒ ∀ξ ∈ H, 1− ‖ξ‖2 ≥ 0 ⇒ α− g(ρξ) ≥ 0.

As 1 − ‖ξ‖2 = 1 > 0 for ξ = 0 and α − g(ρξ) = α − c > 0 for ξ = 0, using the

S�lemma, one obtains

ρB ⊂ [g ≤ α] ⇐⇒ ∃λ > 0, ∀ξ ∈ H, α− g(ρξ)− λ[1 − ‖ξ‖2] ≥ 0.
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But g(ξ) an be expressed as

g(ξ) = max
v∈VΩ

−
1

2
〈AΩv, v〉+ 〈f̄Ω +BΩξ, v〉,

whereby

α− g(ρξ)− λ[1 − ‖ξ‖2] ≥ 0 ⇐⇒

∀v ∈ VΩ,
1

2
〈AΩv, v〉+ λ‖ξ‖2 − ρ〈BΩξ, v〉 − s〈f̄Ω, v) + (α− λ) ≥ 0

Changing (ξ, v) into (s−1ξ, s−1v) for any s 6= 0, one also has

∀ξ ∈ H, α− g(ρξ)− λ[1− ‖ξ‖2] ≥ 0
⇐⇒ ∀(v, ξ, s) ∈ VΩ ×H× R,
1
2 〈AΩv, v〉+ λ‖ξ‖2 − ρ〈BΩξ, v〉 − s〈f̄Ω, v) + (α− λ)s2 ≥ 0

⇐⇒





AΩ ρBΩ f̄∗

ρB∗
Ω λI 0
f̄ 0 2α− λ



 ≥ 0.

Therefore, if ξ̄ is a solution of the primal problem, then ‖ξ̄‖ is a solution of

Maximize ρ,(2.23)

s.t.





AΩ ρBΩ f̄∗

ρB∗
Ω λI 0
f̄ 0 2α− λ



 ≥ 0,(2.24)

f̄ρ, λ ∈ R
⋆
+.(2.25)

Note that the above matrix is a�ne in (ρ, λ).

Proposition 2.7. Let (ρ̄, λ̄) be a solution of (2.23)-(2.25), then −ρ̄2/2λ̄ is the

solution of the dual problem (D).

Proof. We have

(2.26) ∀ξ ∈ H, α− g(ρ̄ξ)− λ̄[1− ‖ξ‖2] ≥ 0.

Let ξ̄ be a solution of the primal problem. Substituting ξ for ρ̄ξ in (2.26) and

multiplying by ρ̄2/2λ̄ we arrive at

∀ξ ∈ H,
1

2
‖ξ‖2 −

ρ̄2

2λ̄
[g(ξ)− α] ≥

1

2
ρ̄2 =

1

2
‖ξ̄‖2.

As g(ξ̄) = α we an write

∀ξ ∈ H,
1

2
‖ξ‖2 −

ρ̄2

2λ̄
[g(ξ)− α] ≥

1

2
‖ξ̄2‖ −

ρ̄2

2λ̄
[g(ξ̄)− α].

It follows that ξ̄ ∈ argminL(.,−ρ̄2/2λ̄) ∩ [L(.,−ρ̄2/2λ̄) = q] 6= ∅ thus, by virtue of

(A.7), −ρ̄2/2λ̄ is the solution of the dual problem (D). �

2.5. Expression of the ritial loads for the robust ompliane in the

worst ase sense. Here, using again the notation (2.13), the primal problem (P)

and the dual problem (D) read, respetively:

(2.27) Minimize
ξ∈H

q(ξ) = −
1

2
〈Qξ, ξ〉 − 〈b, ξ〉 − c subjet to ‖ξ‖ = r,
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(2.28)

Maximize
µ∈R

ψ(µ) =
1

2
〈(Q − µI)†b, b〉 − c− µ

r2

2
subjet to

{

−Q+ µI ≥ 0,
b ∈ im(Q− µI).

The largest eigenvalue ofQ is still denoted by λmax. Applying Theorem 2.4 similarly

to Theorem 2.5 provides the following result.

Theorem 2.8. The primal problem (2.27) and the dual problem (2.28) have the

same optimal values. The dual problem (2.28) admits a unique solution µ̄ ∈ R,

whih an be omputed in the following way.

• Easy ase: b /∈ ker(Q−λmaxI)
⊥
. Then µ̄ is the unique solution in ]λmax,+∞[

of the equation

(2.29) 〈(Q − µI)−2b, b〉 = r2.

• Hard ase I: b ∈ ker(Q−λmaxI)
⊥

and 〈(Q−λmaxI)
††b, b〉 > r2. Then µ̄ is

also the unique solution in ]λmax,+∞[ of (2.29).

• Hard ase II: b ∈ ker(Q − λmaxI)
⊥

and 〈(Q − λmaxI)
††b, b〉 ≤ r2. Then

µ̄ = λmax.

The set Ξ of solutions of the primal problem (2.27) is given by the following expres-

sions.

• Easy ase and Hard ase I. There is a unique ritial load given by

Ξ = {(−Q+ µ̄I)−1b}.

• Hard ase II. The set of ritial loads is

Ξ =

[

{(Q− λmaxI)
†b}+ ker(Q − λmaxI)

]

∩ Sr,

where Sr = {ξ ∈ H, ‖ξ‖ = r}.

3. Hadamard semiderivative of the robust riteria

3.1. Notation. Let X be a Banah spae and onsider a fontion f : X →
R ∪ {−∞,+∞}. If z, d ∈ X and f(z) ∈ R the upper and lower Hadamard

semiderivatives of f at point z in diretion d are de�ned, respetively, as

f ′
+(z, d) = lim sup

t↓0
v→d

f(z + tv)− f(z)

t
, f ′

−(z, d) = lim inf
t↓0
v→d

f(z + tv)− f(z)

t
.

If f ′
+(z, d) = f ′

−(z, d), their ommon value is alled the Hadamard semiderivative

of f at point z in diretion d, denoted by f ′(z, d).
This setion aims at alulating the Hadamard semiderivative of the robust om-

pliane, if it exists, with respet to the parameter

w = (Q, b, c) ∈ W := Ks(H)×H × R

de�ned by (2.13). Here, Ks(H) stands for the set of self-adjoint ompat linear

operators from H into itself. The sensitivity of w with respet to Ω, spei�ally its

topologial derivative, will be studied in Setion 4.

Our approah speializes and omplements, by heking some tehnial assump-

tions, the proof of Theorem 4.24 in [8℄. For the reader's onveniene, we give the

full proof in details.

3.2. Hadamard semiderivative of the ompliane robustness.
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3.2.1. Notations and preliminaries. The objetive funtion is the stability radius

(3.1) ϕ(w) = inf
q(w,ξ)=0

1

2
‖ξ‖2,

with

(3.2) q(w, ξ) =
1

2
〈Qξ, ξ〉+ 〈b, ξ〉+ c− α.

We denote by Ξ(w) the minimizing set of (3.1), whih is nonempty and whose

omposition has been obtained in Theorem 2.5. Reall that the Lagrangian of this

problem is

(3.3) L(w, ξ, µ) =
1

2
‖ξ‖2 + µq(w, ξ),

and that the dual riterion is

ψ̂(w, µ) = inf
ξ∈H

L(w, ξ, µ).

We all Λ(w) the solution set of the dual problem, i.e.,

Λ(w) = argmax
µ∈R

ψ̂(w, µ),

whih has been shown to be a singleton.

Lemma 3.1. Let (w̄, ξ̄) ∈ W ×H be suh that q(w̄, ξ̄) = 0. There exists a neigh-

borhood W of w̄ and a funtion s : W → R of lass C∞
suh that s(w̄) = 1 and

q(w, s(w)ξ̄) = 0 ∀w ∈ W .

Proof. Consider the funtion F : (w, s) ∈ W × R 7→ q(w, sξ̄), whih is learly of

lass C∞
. We have

∂sF (w̄, 1) = 〈Qξ̄, ξ̄〉+ 〈b, ξ̄〉 =
1

2
〈Qξ̄, ξ̄〉 − (c− α),

due to q(w̄, ξ̄) = 0. Using that Q ≥ 0 and c < α we infer ∂sF (w̄, 1) > 0. The

impliit funtion theorem leads to the result. �

In order to emphasize the generality of the following derivations, we ollet below

the di�erent properties we will need to obtain the Hadamard semiderivative of the

funtion ϕ. Property (1) is a straightforward onsequene of Lemma 3.1, with

Sw̄,ξ̄(w) = s(w)ξ̄. Properties (2), (3) and (4) have been proved in Setion 2, see in

partiular Theorems 2.1, 2.4 and 2.5.

Assumption 3.2.

(1) If (w̄, ξ̄) ∈ W ×H satisfy q(w̄, ξ̄) = 0, then there exists a neighborhood W
of w̄ and a funtion Sw̄,ξ̄ : W → H of lass C∞

suh that Sw̄,ξ̄(w̄) = ξ̄ and

q(w, Sw̄,ξ̄(w)) = 0 ∀w ∈ W .

(2) For all w̄ ∈ W the sets Ξ(w̄) and Λ(w̄) are nonempty.

(3) For all w̄ ∈ W and ξ̄ ∈ Ξ(w̄) there exists µ̄ ∈ Λ(w̄) suh that ξ̄ ∈
argminξ∈H L(w̄, ξ, µ̄).

(4) There is no duality gap, i.e., it holds ϕ(w̄) = supµ∈R
ψ̂(w̄, µ) for all w̄ ∈W .
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3.2.2. Upper bound for the upper Hadamard semiderivative.

Lemma 3.3. Suppose that items (1), (2) and (3) of Assumption 3.2 hold. For any

w̄, h̄ ∈W we have

ϕ′
+(w̄, h̄) ≤ inf

ξ̄∈Ξ(w̄)
sup

µ̄∈Λ(w̄)

∂wL(w̄, ξ̄, µ̄)h̄.

Proof. Choose an arbitrary ξ̄ ∈ Ξ(w̄). Let (tn, hn) ∈ R
∗
+ ×W be suh that tn → 0,

hn → h̄, and

ϕ′
+(w̄, h̄) = lim

n→+∞

ϕ(w̄ + tnhn)− ϕ(w̄)

tn
.

We assume that n is large enough so that w̄+ tnhn ∈ W . Denoting ξn := Sw̄,ξ̄(w̄+
tnhn), we have q(w̄ + tnhn, ξn) = 0, hene (3.1) entails

ϕ(w̄ + tnhn) ≤
1

2
‖ξn‖

2 = L(w̄ + tnhn, ξn, µ),

for any µ ∈ R. As ξ̄ ∈ Ξ(w̄), (3.1) also yields

ϕ(w̄) =
1

2
‖ξ̄‖2 = L(w̄, ξ̄, µ).

Therefore we have

ϕ(w̄ + tnhn)− ϕ(w̄)

tn
≤
L(w̄ + tnhn, ξn, µ)− L(w̄, ξ̄, µ)

tn
.

For all w̃ in a neighborhood of 0 we set

Φ(w̃) = L(w̄ + w̃, Sw̄,ξ̄(w̄ + w̃), µ).

We have

L(w̄ + tnhn, ξn, µ)− L(w̄, ξ̄, µ) = Φ(tnhn)− Φ(0) = dΦ(0)(tnhn) + on→+∞(tnhn),

sine Φ is Fréhet di�erentiable by omposition. The hain rule gives

dΦ(0)(w̃) = ∂wL(w̄, ξ̄, µ)w̃ + ∂ξL(w̄, ξ̄, µ)(dSw̄,ξ̄(w̄)w̃).

By item (3) of Assumption 3.2, we an hoose µ = µ̄ ∈ Λ(w̄) suh that ξ̄ ∈
argminξ∈H L(w̄, ξ, µ̄), whih in turn implies ∂ξL(w̄, ξ̄, µ̄) = 0. We arrive at dΦ(0)(w̃) =

∂wL(w̄, ξ̄, µ̄)w̃, and

ϕ(w̄ + tnhn)− ϕ(w̄)

tn
≤ ∂wL(w̄, ξ̄, µ̄)hn + o(1).

Passing to the limit yields

ϕ′
+(w̄, h̄) ≤ ∂wL(w̄, ξ̄, µ̄)h̄ ≤ sup

µ∈Λ(w̄)

∂wL(w̄, ξ̄, µ)h̄.

This being true for any ξ̄ ∈ Ξ(w̄), we arrive at the desired result. �
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3.2.3. Lower bound for the lower Hadamard semiderivative.

Lemma 3.4. Suppose that items (1), (2) and (4) of Assumption 3.2 hold. For any

w̄, h̄ ∈W we have

ϕ′
−(w̄, h̄) ≥ inf

ξ̄∈Ξ(w̄)
sup

µ̄∈Λ(w̄)

∂wL(w̄, ξ̄, µ̄)h̄.

Proof. Let (tn, hn) ∈ R
∗
+ ×W be suh that tn → 0, hn → h̄, and

ϕ′
−(w̄, h̄) = lim

n→+∞

ϕ(w̄ + tnhn)− ϕ(w̄)

tn
.

For all n we set wn = w̄ + tnhn and hoose some ξn ∈ Ξ(wn).

Step 1. Let ξ̂ ∈ Ξ(w̄) be arbitrary. By item (1) of Assumption 3.2 there exists

a neighborhood W of w̄ and a funtion Sw̄,ξ̂ : W → H of lass C∞
suh that

Sw̄,ξ̂(w̄) = ξ̂ and

q(w, Sw̄,ξ̂(w)) = 0 ∀w ∈ W .

Sine wn → w̄, it holds for n large enough q(wn, Sw̄,ξ̂(wn)) = 0, hene

1

2
‖ξn‖

2 ≤
1

2
‖Sw̄,ξ̂(wn)‖

2.

This shows that the sequene (ξn) is bounded. Therefore there exists ξ̄ ∈ H suh

that ξn ⇀ ξ̄ weakly for some non-relabeled subsequene.

Step 2. We shall show that ξ̄ ∈ Ξ(w̄). >From wn = w̄ + tnhn and q(wn, ξn) = 0,
denoting w̄ = (Q̄, b̄, c̄) and hn = (Qn, bn, cn), we obtain

1

2
〈(Q̄ + tnQn)ξn, ξn〉+ 〈b̄+ tnbn, ξn〉+ c̄+ tncn − α = 0.

A rearrangement yields

(3.4)

1

2
〈Q̄ξn, ξn〉+ 〈b̄, ξn〉+ c̄− α = −tn

(

1

2
〈Qnξn, ξn〉+ 〈bn, ξn〉+ cn

)

.

By boundedness of ξn and hn, the right hand side of (3.4) tends to 0. By ompat-

ness of Q̄, we have Q̄ξn → Q̄ξ̄ strongly, thus 1
2 〈Q̄ξn, ξn〉 →

1
2 〈Q̄ξ̄, ξ̄〉. We infer that

the left hand side of (3.4) tends to

1

2
〈Q̄ξ̄, ξ̄〉+ 〈b̄, ξ̄〉+ c̄− α = q(w̄, ξ̄),

and subsequently that q(w̄, ξ̄) = 0. Consider now an arbitrary ξ ∈ H suh that

q(w̄, ξ) = 0. Using again item (1) of Assumption 3.2 there exists a neighborhood

of w̄, whih we an assume equal to W , and a funtion Sw̄,ξ : W → H of lass C∞

suh that Sw̄,ξ(w̄) = ξ and

q(w, Sw̄,ξ(w)) = 0 ∀w ∈ W .

As previously this implies for n large enough q(wn, Sw̄,ξ(wn)) = 0, and thus

1

2
‖ξn‖

2 ≤
1

2
‖Sw̄,ξ(wn)‖

2.

Sine ξn ⇀ ξ̄, this entails

1

2
‖ξ̄‖2 ≤

1

2
lim inf
n→+∞

‖ξn‖
2 ≤

1

2
lim inf
n→+∞

‖Sw̄,ξ(wn)‖
2,
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and, using that Sw̄,ξ(wn) → Sw̄,ξ(w̄) = ξ,

1

2
‖ξ̄‖2 ≤

1

2
‖ξ‖2.

This onludes the proof of the fat that ξ̄ ∈ Ξ(w̄).
Step 3. Let µ̄ ∈ Λ(w̄). >From item (4) of Assumption 3.2, we have ϕ(w̄) =

ψ̂(w̄, µ̄) = infξ∈H L(w̄, ξ, µ̄). It follows that ϕ(w̄) ≤ L(w̄, ξn, µ̄). As ξn ∈ Ξ(w̄ +
tnhn), we have ϕ(w̄ + tnhn) =

1
2‖ξn‖

2 = L(wn + tnhn, ξn, µ̄). We arrive at

ϕ(w̄ + tnhn)− ϕ(w̄)

tn
≥
L(w̄ + tnhn, ξn, µ̄)− L(w̄, ξn, µ̄)

tn
.

As L is twie di�erentiable, the Taylor-Lagrange inequality yields for n large enough

|L(w̄ + tnhn, ξn, µ̄)− L(w̄, ξn, µ̄)− ∂wL(w̄, ξ̄, µ̄)tnhn| ≤ c‖tnhn‖
2,

with c a positive onstant independent of n. It follows that

ϕ′
−(w̄, h̄) = lim

n→+∞

ϕ(w̄ + tnhn)− ϕ(w̄)

tn
≥ ∂wL(w̄, ξ̄, µ̄)h̄.

This being true for any µ̄ ∈ Λ(w̄) and some ξ̄ ∈ Ξ(w̄), we obtain the desired

result. �

3.2.4. Hadamard semiderivative of the robust riterion in the abstrat setting. Com-

bining Lemmas 3.3 and 3.4 leads to the following result.

Proposition 3.5. Suppose that items (1), (2), (3) and (4) of Assumption 3.2 hold.

For any w̄, h̄ ∈ W the funtion ϕ admits a Hadamard semiderivative at point w̄ in

the diretion h̄ given by

ϕ′(w̄, h̄) = inf
ξ̄∈Ξ(w̄)

sup
µ̄∈Λ(w̄)

∂wL(w̄, ξ̄, µ̄)h̄.

3.2.5. Hadamard semiderivative of the ompliane robustness. We now ome bak

to the spei� ase of the stability radius. As said before, all items of Assumption

3.2 are satis�ed. In addition, we have seen that for any w̄ ∈W the set of Lagrange

multipliers Λ(w̄) is a singleton. We arrive at the following theorem.

Theorem 3.6. For any w̄, h̄ ∈ W the stability radius ϕ admits a Hadamard

semiderivative at point w̄ in the diretion h̄ given by

ϕ′(w̄, h̄) = inf
ξ̄∈Ξ(w̄)

∂wL(w̄, ξ̄, µ̄)h̄,

where {µ̄} = Λ(w̄) is the solution set of the dual poblem (2.12).

3.3. Hadamard semiderivative of the robust ompliane in the worst ase

sense. The objetive funtion is now

(3.5) ϕ(w) = inf
‖ξ‖=r

q(w, ξ),

with

(3.6) q(w, ξ) = −
1

2
〈Qξ, ξ〉 − 〈b, ξ〉 − c.

We denote by Ξ(w) the minimizing set of (3.5), whih has been obtained in Theorem

2.8.

Slightly adapting the proof of Theorem 4.13 in [8℄, one obtains the following

result.
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Theorem 3.7. For any w̄, h̄ ∈ W with w̄ = (Q̄, b̄, c̄) and Q̄ de�nite negative

the worst ase funtional ϕ admits a Hadamard semiderivative at point w̄ in the

diretion h̄ given by

ϕ′(w̄, h̄) = inf
ξ̄∈Ξ(w̄)

∂wq(w̄, ξ̄)h̄.

4. Topologial derivative of the robust riteria

Consider a referene domain Ω = Ω0 ∈ E and a family of perturbed domains

(Ωt)t>0 suh that, for all t small enough, Ωt ∈ E . We hoose a nominal load of the

form f̄ = BΩξ̄ ∈ V ′
Ω with ξ̄ ∈ H. We set wΩ = (QΩ, bΩ, cΩ) with

QΩ = 2B∗
ΩA

−1
Ω BΩ, bΩ = 2B∗

ΩA
−1
Ω BΩξ̄ = QΩξ̄, cΩ = 〈B∗

ΩA
−1
Ω BΩξ̄, ξ̄〉 = 〈QΩξ̄, ξ̄〉.

We make the following assumption, whih will be veri�ed for spei� problems

in Setion 5.

Assumption 4.1. There exists δ > 0 and a self-adjoint linear operator GΩ : H →
H suh that

〈f,QΩt
f〉 − 〈f,QΩf〉 = t〈f,GΩf〉+O(t1+δ) ∀f ∈ H.

Lemma 4.2. The funtion t ∈ R+ 7→ QΩt
∈ L(H) admits a right derivative at 0

given by

d

dt
[QΩt

]|t=0 = GΩ.

Proof. Assumption 4.1 and the polarization identity entail

〈f,QΩt
g〉 − 〈f,QΩg〉 = t〈f,GΩg〉+O(t1+δ) ∀f, g ∈ H,

that is,

∀f, g ∈ V ′, sup
t>0

t−δ

∣

∣

∣

∣

〈

f,

(

QΩt
−QΩ

t
−GΩ

)

g

〉∣

∣

∣

∣

< +∞.

By the Banah-Steinhaus theorem we obtain

∀g ∈ V ′, sup
t>0

t−δ

∥

∥

∥

∥

(

QΩt
−QΩ

t
−GΩ

)

g

∥

∥

∥

∥

H

< +∞.

Another appliation of the Banah-Steinhaus theorem yields

sup
t>0

t−δ

∥

∥

∥

∥

QΩt
−QΩ

t
−GΩ

∥

∥

∥

∥

L(H)

< +∞.

In partiular we have

lim
t↓0

∥

∥

∥

∥

QΩt
−QΩ

t
−GΩ

∥

∥

∥

∥

L(H)

= 0,

and the proof is ahieved. �

The following theorem states the right derivative of the stability radius. A similar

result holds for the worst ase ompliane, whih is left to the reader.

Theorem 4.3. The funtion t 7→ JSR(Ωt) admits a right derivative at 0 given by

(4.1)

d

dt
[JSR(Ωt)]|t=0 = inf

ξ∈Ξ
µ̄〈ξ̄ + ξ,GΩ(ξ̄ + ξ)〉,

where Ξ is the set of solutions of the primal problem (2.11) and µ̄ is the solution of

the dual poblem (2.12).
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Proof. By Lemma 4.2, we get that the map t 7→ wΩt
admits a right derivative at 0

given by

(4.2)

d

dt
[QΩt

]|t=0 = 2GΩ,
d

dt
[bΩt

]|t=0 = 2GΩξ̄,
d

dt
[cΩt

]|t=0 = 〈ξ̄, GΩξ̄〉.

Next, with the notation of Setion 3, we have

JSR(Ωt) = ϕ(wΩt
).

By omposition (see, e.g., [8℄ Proposition 2.47), the funtion t 7→ JSR(Ωt) admits

a right derivative at 0 given by

d

dt
[JSR(Ωt)]|t=0 = ϕ′

(

wΩ,
d

dt
[wΩt

]|t=0

)

.

Theorem 3.6 yields

d

dt
[JSR(Ωt)]|t=0 = inf

ξ̄∈Ξ

∂L

∂Q
(wΩ, ξ̄, µ̄)

d

dt
[QΩt

]|t=0 +
∂L

∂b
(wΩ, ξ̄, µ̄)

d

dt
[bΩt

]|t=0+

∂L

∂c
(wΩ, ξ̄, µ̄)

d

dt
[cΩt

]|t=0.

Using the expressions (3.3), (3.2) we obtain

∂L

∂Q
(w, ξ, µ)Q̃ = µ

1

2
〈Q̃ξ, ξ〉,

∂L

∂b
(w, ξ, µ)b̃ = µ〈b̃, ξ〉,

∂L

∂c
(w, ξ, µ)c̃ = µc̃.

Using (4.2) we arrive at

d

dt
[JSR(Ωt)]|t=0 = inf

ξ∈Ξ
µ̄
[

〈GΩξ, ξ〉+ 〈2GΩξ̄, ξ〉+ 〈ξ̄, GΩξ̄〉
]

.

A rearrangement ompletes the proof. �

5. Algorithm

5.1. Problem setting. In the examples we will present we want to minimize

J (Ω) := Φ(JSR(Ω)) + ℓ|Ω|,

where Φ : R∗
+ → R is a smooth and dereasing funtion, ℓ is a user-given Lagrange

multiplier, and |Ω| is the Lebesgue measure of Ω. In our omputations we have

used Φ(t) = − log t.
We hoose E as the set of all subdomains of a �xed �hold-all� domain D ⊂

R
N
. Our model problem is that of linear elastiity, with the following standard

framework. The domain Ω is oupied by an elasti material of unitary Young

modulus, and its omplement D \ Ω is �lled with a weak phase, i.e., a �titious

material with small Young modulus ε. This permits to formulate the equilibrium

equations, represented by the operator AΩ, in the �xed domain D. Therefore

the funtion spae VΩ is the subspae H1
D(D)N inluding the Dirihlet boundary

ondition on the appropriate part ΓD of ∂Ω.
For some x̂ ∈ D \ ∂Ω, we onsider the topologial perturbation

Ωt =

{

Ω \ B(x̂, ρ(t)) if x̂ ∈ Ω,
(Ω ∪ B(x̂, ρ(t))) ∩D if x̂ ∈ D \ Ω,

with ρ(t) = t1/N .
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5.2. Optimality ondition. The derivative of J (Ωt) with respet to t is alled

topologial derivative. It is given by the hain rule:

gΩ(x̂) :=
d

dt
[J (Ωt)]|t=0 = Φ′(JSR(Ω))

d

dt
[JSR(Ωt) + ℓ|Ωt|]|t=0.

Of ourse, this is only valid if the topologial derivatives

d
dt [JSR(Ωt)]|t=0 and

d
dt [|Ωt|]|t=0 exist. For this later one this is obviously true, as one has

d

dt
[|Ωt|]|t=0 =

{

−π if x̂ ∈ Ω,

π if x̂ ∈ D \ Ω.

The expression of

d
dt [JSR(Ωt)]|t=0 has been obtained in Theorem 4.3 upon As-

sumption 4.1. The operator GΩ that satis�es Assumption 4.1 is assoiated to the

topologial derivative of the lassial ompliane. Its expression is known as (see

[2, 4℄):

〈f,GΩf〉 = −π
r − 1

κr + 1

κ+ 1

2

[

2σ : e+
(ε− 1)(κ− 2)

κ+ 2ε− 1
trσ tr e

]

,

with

r =

{

ε if x̂ ∈ Ω,

ε−1
if x̂ ∈ D \ Ω,

κ = (λL +3µL)/(λL + µL), λL, µL the Lamé oe�ients of the material, and (σ, e)
the stress and strain tensors at point x̂, respetively.

In order to solve the minimization problem in (4.1), we make the simplifying

assumption that the largest eigenvalue λmax of Q is simple, whih we have always

enountered in our test ases. Therefore, Ξ is either a singleton (Easy ase and

Hard ase I) or a pair (Hard ase II), hene the minimization is trivial.

A neessary optimality ondition for this lass of perturbations is learly

(5.1) gΩ(x̂) ≥ 0 ∀x̂ ∈ D,

whih is the starting point of our algorithm.

5.3. Desription of the algorithm. In order to solve (5.1) we use the algorithm

introdued in [4℄ and further analyzed in [3℄. We reall its main features. Eah

domain Ω is represented by a smooth funtion ψΩ : D → R suh that

Ω = {x ∈ D,ψΩ(x) < 0}.

We de�ne the signed topologial derivative as

g̃Ω(x̂) =

{

−gΩ(x̂) if x̂ ∈ Ω,
gΩ(x̂) if x̂ /∈ Ω.

Therefore (5.1) will be solved as soon as

(5.2) g̃Ω ∼ ψΩ,

with the equivalene relation ∼ de�ned by

ψ1 ∼ ψ2 ⇐⇒ ∃α > 0|ψ1 ∼ αψ2.

We apply to (5.2) the �xed point iteration with relaxation, i.e., the update of the

funtion ψΩ at iteration k is

ψΩk+1
∼ (1− ωk)ψΩk

+ ωkg̃Ωk
.

The parameter ωk ∈ (0, 1] ats as step size and is �xed at every iteration by a line

searh.
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Remark 5.1. Consider a ombination of disjoint topologial perturbations, suh as

for instane

Ωt = Ω \
n
⋃

i=1

B(x̂i, ρ(t)).

The topologial derivative of the ompliane is additive with respet to the pertur-

bation (see [5℄), i.e.,

GΩ =

n
∑

i=1

GΩ,i,

where GΩ,i is the topologial derivative for a single perturbation. The topologial

derivative of the stability radius for the ombination of perturbations is then

d

dt
[JSR(Ωt)]|t=0 = inf

ξ̄∈Ξ
µ̄

n
∑

i=1

〈f̄+Bξ̄,GΩ,i(f̄+Bξ̄)〉 ≥
n
∑

i=1

inf
ξ̄∈Ξ

µ̄〈f̄+Bξ̄,GΩ,i(f̄+Bξ̄)〉.

This means that the stability radius is superadditive with respet to the perturba-

tion, hene a ombination of desent diretions for the funtional J still provides

a desent diretion (reall that Φ is dereasing).

6. Numerial examples

6.1. Beam. The hold all domainD is the unit square (0, 1)×(0, 1), with a Dirihlet

boundary ondition on the left side. We denote by p the middle of the right side

and by φ1 the unit horizontal fore applied at p. The nominal load f̄Ω orresponds

to φ1.
At �rst we onsider a spae of perturbations of dimension 1, for whih the value

ξ = 1 of the parameter orresponds to the fore φ1. The threshold α is hosen as

10 times the ompliane of the initial domain, whih is the band (0, 1)× (0.4, 0.6),
under the nominal load. The Lagrange multiplier for the area is �xed to ℓ = 10.
The optimized domain is represented in Figure 1, left.

Next we add a unit vertial fore φ2, still applied at point p, and represented

by the parameter ξ = (0, 1). The fore φ1, represented by ξ = (1, 0), remains the

nominal load. The other data are unhanged. The optimized domain is given in

Figure 1, right. For omparison, note that its area (0.168) is lose to the area

obtained in the previous ase (0.160).

6.2. Mast. For this problem the hold-all domain D is the union of the retangles

(−1, 1) × (0, 4) and (−2, 2) × (4, 6). A Dirihlet boundary ondition is applied at

the bottom side. We onsider 4 fores:

• φ1 is a unit vertial fore applied at point p1 = (−1, 4),
• φ2 is a unit vertial fore applied at point p1 = (1, 4),
• φ3 is a unit horizontal fore applied at point p1,
• φ4 is a unit horizontal fore applied at point p2.

The nominal load orresponds to the fores φ1 and φ2 applied simultaneously.

As �rst ase we again onsider a one-dimensional spae of perturbations, spanned

by the nominal load. The fores φ3 and φ4 are not taken into aount. The

initialization is the full domain D, and α is hosen as 10 times the ompliane of

this domain under the nominal load. The Lagrange multiplier ℓ is �xed to 0.8. The
optimized domain is represented in Figure 2, left.
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Figure 1. Beam: obtained domains for one load (left) and two

loads (right)

Then we onsider a two-dimensional spae of perturbations, spanned by the

fores φ1 and φ2 applied independently. All the other data are unhanged. The

optimized domain is represented in Figure 2, middle.

Finally we onsider four independent perturbations, given by the fores φ1, φ2,
φ3 and φ4. We obtain the domain represented in Figure 2, right.

From the �rst ase to the last one, we learly observe, �rst, a sti�ening under

non-symmetri vertial load, then, a sti�ening under horizontal load.

Figure 2. Mast: obtained domains for one load (left), two loads

(middle) and four loads (right)

Appendix A. Lagrangian duality

Here we gather useful results on general Lagrangian duality theory, whih are

essentially reformulations of lassial results found in [24, 19, 20℄. We nevertheless

provide onise proofs for ompleteness.

Let X,Y be two sets and L : X × Y → R := R ∪ {−∞,+∞} be an appliation,

alled the Lagrangian. We de�ne

f(x) = sup
y∈Y

L(x, y), x ∈ X,
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g(y) = inf
x∈X

L(x, y), y ∈ Y.

The duality theory aims at �nding relations between the primal problem

(P) Minimize f(x), x ∈ X.

and the so-alled dual problem

(D) Maximize g(y), y ∈ Y.

We denote by v(P) = infx∈X f(x) and v(D) = supy∈Y g(y) the values of the primal

and the dual problems, respetively.

Moreover, for any y ∈ Y , we onsider the problem

(Ly) Minimize L(x, y), x ∈ X,

with value v(Ly) = infx∈X L(x, y) = g(y). We always have (weak duality):

(A.1) ∀y ∈ Y, v(Ly) ≤ v(D) ≤ v(P).

Theorem A.1. (1) For all y ∈ Y it holds

(A.2) argmin(Ly) ∩ [L(., y) = f ] ⊂ argmin(P)

(2) For all y ∈ Y it holds

(A.3) v(P) = v(Ly) ⇐⇒

{

y ∈ argmax(D),

v(D) = v(P).

(3) We have the relations:

(A.4)

y ∈ argmax(D)
v(D) = v(P)

}

⇐⇒ v(P) = v(Ly) =⇒ argmin(Ly)∩[L(., y) = f ] = argmin(P).

(4) For all y ∈ Y it holds

(A.5) argmin(Ly) ∩ [L(., y) = f ] 6= ∅ =⇒ v(Ly) = v(P),

hene

(A.6) argmin(Ly)∩[L(., y) = f ] 6= ∅ =⇒ argmin(Ly)∩[L(., y) = f ] = argmin(P).

(5) We always have

(A.7)

{

y ∈ Y
∣

∣ argmin(Ly) ∩ [L(., y) = f ] 6= ∅
}

⊂ argmax(D).

(6) We have

(A.8)

{

y ∈ Y
∣

∣ argmin(Ly) ∩ [L(., y) = f ] 6= ∅
}

6= ∅ =⇒ v(D) = v(P).

(7) We have

(A.9)

{

y ∈ Y
∣

∣ argmin(Ly) ∩ [L(., y) = f ] 6= ∅
}

6= ∅ =⇒
{

y ∈ Y
∣

∣ argmin(Ly) ∩ [L(., y) = f ] 6= ∅
}

= argmax(D).

Proof. (1) If x̄ ∈ argmin(Ly) ∩ [L(., y) = f ] then, for all x ∈ X , f(x̄) =
L(x̄, y) ≤ L(x, y) ≤ f(x).

(2) If v(Ly) = v(P), using (A.1), one obtains v(D) = v(P) = v(Ly) = g(y)
and y ∈ argmax(D). If y ∈ argmax(D) and v(D) = v(P) then v(Ly) =
g(y) = v(D) = v(P).
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(3) If x̄ ∈ argmin(P) then L(x̄, y) ≤ f(x̄) = v(P) = v(Ly) ≤ L(x, y) for all
x ∈ X . In partiular L(x̄, y) = f(x̄) and x̄ ∈ argmin(Ly).

(4) If x̄ ∈ argmin(Ly) ∩ [L(., y) = f ] then

v(P) = inf
x∈X

f(x) ≤ f(x̄) = L(x̄, y) = v(Ly) = inf
x∈X

L(x, y) ≤ inf
x∈X

f(x) = v(P).

(5) If argmin(Ly) ∩ [L(., y) = f ] 6= ∅, then using (A.5), one infers v(Ly) =
v(P). We onlude using (A.3).

(6) This stems from the seond assertion of (A.3).

(7) Let y ∈ argmax(D). Using (A.8) we obtain v(D) = v(P), and from (A.4),

we arrive at

argmin(Ly) ∩ [L(., y) = f ] = argmin(P).

Now there exists y0 ∈ Y suh that argmin(Ly0
) ∩ [L(., y0) = f ] 6= ∅, and

(A.2) implies

argmin(Ly0
) ∩ [L(., y0) = f ] ⊂ argmin(P).

Therefore argmin(Ly) ∩ [L(., y) = f ] 6= ∅.
�
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