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A NOTION OF COMPLIANCE ROBUSTNESS IN TOPOLOGY
OPTIMIZATION

SAMUEL AMSTUTZ AND MARC CILIGOT-TRAVAIN

ABsTrRACT. The goal of this paper is twofold. On one hand, our work revisits
the minimization of the robust compliance in shape optimization, with a more
natural and more general approach than what has been done before. On the
other hand, following a more recent viewpoint on robust optimization, we
study the maximization of the so-called stability radius for a fixed maximal
compliance. We provide theorical as well as numerical results.

INTRODUCTION

The compliance C(£2, fq) of a linear elastic structure occupying a domain 2 and
submitted to a load fq is defined as the work done by the load, or equivalently
as the stored elastic energy. Minimizing the compliance for a fixed load is a very
standard shape optimization problem, for which a wide range of methods have been
developed, see e.g. [1, 7] and the references therein. However, it often occurs that
the load is not known exactly. In this work we suppose that it takes the form
fa + Bqé, € € rB, with » > 0 and B the closed unit ball of a Hibert space. The
robust compliance (also called principal compliance) is then defined by

Jwco(Q) = sup C(Q, fa + Baf).
ferB
The robust compliance may replace the compliance when the load is uncertain, so
that minimizing the robust compliance is just minimizing the compliance ‘in the
worst case’. The way from compliance to robust compliance is just an illustration
of the transition from optimization to robust optimization. The robust compliance
has been first studied in [9], see also [10].

The goal of this paper is twofold. On one hand, our work revisits the paper by
De Gournay et al [11] about the minimization of the robust compliance, with a
more natural (and more general) approach. In [11], the authors clearly announced
that they renounced to follow this way because they did not see how to proceed,
but we show in the present article how to overcome these difficulties.

On the other hand, following another and more recent viewpoint on robust op-
timization, we study the maximization of the so-called stability radius for a fixed
maximal compliance. This is actually the main purpose of this paper, and we shall
enter a little more into details. Let fqo be the nominal load, i.e., the load which is
expected, and suppose that it is desired that the compliance do not exceed a. Then
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2 SAMUEL AMSTUTZ AND MARC CILIGOT-TRAVAIN
the stability radius relatively to the level-set [C(Q, fo + Bq.) < o] is defined as

2Jsr(2) = sup {7’ >0 ‘ rB C [C(Q, fo + Bq.) < a]} =
dist(0, [C(%, fo + Ba.) > al).

Then it is natural to look for the domain €2 which maximizes the stability radius

2Jsr(92). In other words, we seek the shape which tolerates the greatest deviation
from the nominal load, in the sense that the compliance remains below a. This is
a kind of robustness optimization. Actually, we will not necessarily find globally
optimal shapes. It is more exact to say that we show how to improve the stability
radius of a given shape.

The notion of stability radius appeared in robust control (see, e.g., [17, 18]), and
has been developed in its full generality, but not from a very mathematical point
of view, at the end of the 90’s by Ben—Haim (see [6] and the references therein).
Compared to the worst case approach, this one avoids fixing r a priori, which is
not necessarily easy and natural in some circumstances. We think that in many
situations, it is more natural to fix an upper bound « for the objective function,
here the compliance. This amounts somehow to fixing some specifications.

The paper is organized as follows. In section 1, we describe the general math-
ematical setting of our problems. In section 2, we first show that the two robust
criteria, namely Jwc(€2) and Jsg(f2), are the value functions of some quadratic
programs with equality constraints. More precisely, the objective function of each
subproblem is a quadratic functional and the equality constraint is associated with
another quadratic functional. Such problems are known in the literature as trust—
region subproblems, and have been extensively studied in the finite dimensional
setting, see e.g. [12, 14, 16, 21, 13, 23, 26, 27, 28]. Then, in arbitrary dimension
and for both problems, we prove the existence of critical loads (i.e. solutions of
the subproblems). Finally, using a strong duality argument for Lagrangian duality
extending known results in finite dimension, we show the existence of a unique
solution of the dual problem and give a complete description of the critical loads
based on this solution. In section 3, for both problems again, we give an expres-
sion of the Hadamard semiderivative of the two criteria relatively to the quadratic
functionals depending on 2, based on the Lagrangian and the solution of the dual
problem. Sections 4 through 6 specifically deal with the optimization problem with
respect the shape ). To keep concise and avoid repetitions, we concentrate on the
maximization of the stability radius. Our procedure is based on the concept of
topological derivative [15, 22, 25|, which evaluates the variation of the objective
functional with respect to small topological perturbations. In section 4, we deduce
from section 3 the expression of the topological derivative of the stability radius.
The optimization algorithm is described in section 5, while section 6 reports on
some numerical computations.

1. GENERAL SETTING

We denote by €2 the domain to be optimized, and by & the set of admissible
domains. For each Q) € & we are given a reflexive Banach space Vo. We denote
by ||.|| the norm on Vq and by (.,.) the duality pairing between V{, and Vq, where
V¢, stands for the continuous dual space of V. We also consider a continuous and
self-adjoint positive definite isomorphism Aq from Vg into V(. In particular, there
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exist two constants ’y{{ Vg > 0 such that
o llul? < (Agu,u) < A& flul®  Vu e Vo

We associate to each f € V, the vector uq f = Ag'f € Vg and the scalar

C(Q, fa) = %<fﬂauﬂ,fu> = %<fQ,A§1fQ>-

Refering to the context of structural mechanics, we will subsequently call fq the
load, ugq,f, the displacement field, and C(£2, fq) the compliance (actually the half
compliance). We will consider a parameterized family of loads of the form

fa = fa + Ba&, EEH,

where fo € V{, is a nominal load, H is a fixed (i.e., independent of Q) separable
Hilbert space and Bg : H — VY, is a linear, compact and injective operator. We set

fo

fa + Baé

Before continuing with the abtract framework, let us give a typical concrete exam-
ple. We consider the problem of compliance minimization for a structure submitted
to an uncertain load. The structure is represented by a domain Q C R? (d = 2
or d = 3), whose boundary is split into three disjoint subsets I', I'p and T'y with
meas(I'p) > 0. Homogeneous Dirichlet boudary conditions are prescribed on I'p,
and Neumann boundary conditions are prescribed on I'UT'y, with zero force on I
We denote by H%(92)¢ the space of vector fields belonging to H*(Q)¢ with vanishing
trace on I'p. For a given load fo € H5 ()% and a given displacement u € H(Q)4,
the elastic energy is the negative quadratic functional in u defined by

(1.1) Eq(u, fa) = f%/QHe(u) ce(u) + (fa,u)

where e(u) = (Vu+Vu®)/2 is the strain tensor and H is the fourth—order elasticity
tensor (Hooke’s tensor) such that He(u) is the stress tensor. The compliance is
defined as

(1.2) C(Q, fo) = e e E(u, fa).
Therefore, setting Vo = HL ()4, the operator Ag : Vo — V} is defined by
(1.3) (Aqu,v) = / He(u) : e(v)

Q

and the compliance admits the expression

(1.4) C(Q, fa) = %<anA§1fQ>~
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We choose H as a closed subspace of L?(I'y)¢, and we define Bg : H — V§ by

(1.5) Boé :u € Vg — Eulry-

I'n
The compactness of Bgq is due to the compactness of the Sobolev embedding
HY*('y) — L*(T'y). A very standard problem in optimal design consists in
minimizing the compliance with a fixed load fq, i.e.,

Minimize C(£,0) =C(Q, fa), Q€ &,

where the set & can include constraints. One speaks of robust compliance mini-
mization when, at the same time, perturbations of the load are considered.

Let us now come back to the general case. In this paper we will investigate two
notions of robustness and the associated optimization problems.

(1) Stability radius as compliance robustness. Given a threshold o >
Cq(0) = Ca(fa), the stability radius is defined by

(1.6)
1 1 1
Jsr(Q) = = dist(0,[C(Q,.) > a)?2 = inf =[¢]|? = inf ~11€)1%
s(®) = 3dist(0.[C( ) 2 o) = _inf SlelP= it S

Increasing this value amounts to increasing the distance to unfeasability,
where unfeasability means that the compliance greater than «. This leads
to considering the optimization problem:

(1.7) Maximize Jgr(2), Q€ &,

hence one speaks of robustness maximization.
(2) Robust compliance in the worst case sense. Given a radius r > 0,
the worst case compliance is defined by

(18) Twe(@) = sup C(Q,6) = sup C(Q, Jo + Bat).
gl <r gl <r

This is the maximal compliance obtained for a given family of loads. One
naturally wants to minimize this quantity, leading to the so-called worst
case compliance minimization problem:

(1.9) Minimize Jyc(Q), Q€ &.

In fact it is easily checked that the inequalities in (1.6) and (1.8) can be replaced
by equalities, i.e. we have

(1.10)
1 1 1
Jsr(Q) = = dist(0,[C(Q,.) =a])> = inf =|¢||>= inf 1.
sr(§) = 5 dist(0,[C(%,.) = of) o 5 11€]l L 5 l1€]l
(1.11) Jwe(Q) = sup C(,€) = o C(Q, fa + Baf).
gll=r gll=r

2. EXPRESSION OF THE ROBUST CRITERIA

In this section the domain € is fixed. We shall give practical procedures to
compute the values of Jsr(£2) and Jwc(£2).
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2.1. Notation. The two optimization problems appearing in (1.10) and (1.11) can
be formulated in the form

(2) Minimize ¢ (£), & € H subject to ¢2(&) = 0,

with two quadratic functionals ¢; and ¢o written as

06 = LQEE + (b8 ter B(E) = 5(QEE) +(bs.6) +on

Above, for each ¢ = 1,2, Q; : H — H is a self-adjoint linear continuous operator,
b; € H, ¢; € R. Specifically, these quantities are defined as follows.

(1) Compliance robustness :

1
(2.) @) = 3lEl”, @@ = 00,6 o
ie.,
Q1=1, b1 =0, c1 =0,
_ « A-1F 1,2 1z
Q2 = B4A, ' B, by = BoAG fa, c2 = 5<f97AQ1fQ>*Oé~
(2) Worst case robust compliance :
1 1
(22) q1 (g) - 7C(Qa€)7 QQ(S) - 5”5”2 - §T27
ie.,
_ v A—1F - 1z
Qu=-ByAg'Bo,  bi=-ByAg'fo,  a=-5(fo, A5 fa),
Q2=1, by =0, cg = —1%/2.

Problems of form (£?) are known in the literature as trust region problems (or
subproblems). They have been extensively studied, but almost always in the case
of a finite dimensional space H, see e.g. [12, 14, 16, 21, 13, 23, 26, 27, 28].

2.2. Existence of critical loads.

Theorem 2.1. Assume one of the following hypotheses hold :
(1) either Q1 is compact, negative semi-definite and Q2 is positive definite,
(2) or Q1 is positive definite and Q2 s compact.

Then (Z7) admits at least a solution.

In particular, the optimal values in (1.10) and (1.11) are attained.

Proof. Consider the first case. Let (£,) be a minimizing sequence of the prob-
lem infj,, <o) q1. Since Q is compact, we have ¢1(£) = limq;(§,) = infig,<q) q1-
As ¢o is convex and continuous, it is weakly lower-semicontinuous, thus g2(§) <
liminf ¢2(§,) < 0. Therefore, the infimum inf},, <) ¢1 is attained at some points
of [g2 < 0]. Finally, as ¢; is concave, at least one of these points can be found in
[g2 = 0].

Let us turn to the second case. Let again (§,,) be a minimizing sequence. For any
B € R, the level set [¢1 < ] is bounded. Thus, up to a subsequence, there exists
¢ € H such that &, — &. By compactness of Q2, we have ¢2(§) = lim¢2(&,) = 0.
Since ¢ is convex and continuous, it is weakly lower-semicontinuous, thus ¢;(§) <
lim inf g1 (£,) = infg,—0) q1-

Obviously, for the functionals (2.1) and (2.2), items (1) and (2) are fulfilled,
respectively. O
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2.3. Dual formulation: general framework.
2.3.1. Dual problem. For all (¢, ) € H x R we define the Lagrangian

L& 1) = q1(§) + pgz(8) = %<(Q1 + 1Q2)&, &) + (br + pba, &) + c1 + pca.

The dual criterion is
b(p) = inf L(&, ).
Wip) = inf L(, n)
For any self-adjoint linear continuous operator 1" : H — H, we have
1
H=kerT ®&imT,

hence the restriction TIW : im(7T) — im T is a bijection. We denote by TT :=

i

(T‘m)*1 : imT — im(T") the inverse operator, which, by virtue of the open
mapping theorem, is continuous as soon as im 7" is closed. For all ;1 € R we set

1
b(p) = —5((@Q1+ 1Q2) (b1 + pb2), b1 + pba) + ¢1 + pco.
Throughout all this section 2.3, we assume that
(2.3) Yu € R, Q1+ pQ2 > 0 = im(Q1 + puQ2) is closed.

Note that this assumption is fulfilled in the two cases under study. Indeed, in the
first case, we have Q1 +uQ2 =1 +2MB§‘2A5139, whose image is always closed since
BEA&IBQ is compact. In the second case we have Q1 + uQs = 72BEA51BQ +ul,
and Q1 + pQ2 > 0 implies o > 0, whereby we conclude as before.

Lemma 2.2. Under Assumption (2.3), the dual criterion is expressed by

—0 Zf Ql + IU’QQ Z 07
P(p) =4 —oo if Q1+ pQ2 >0 and by + pbs & iIm(Q1 + pQ2),
P(p) if Q1+ pQ2 > 0 and by + pbs € im(Qq + pQ2).
Proof. For simplicity, we set ), = Q1 + uQ2, b, = by + pba, ¢, = c1 + pcg, so that

P(1) = inf () = 5 (@uE,E) + By + i

Eer

If Q. 20, it is clear that 1[)(u) = —o00. Therefore we assume now that ¢, > 0. By
Assumption (2.3), im @, is closed, thus

1
H=kerQ, ®imQ,.
For all £ € H, we make the decomposition { = & + &, with & € ker @, and
& €im@,. We get
qu(§) = qu(&2) + (bu, &1).

Two cases can arise.

(1) Ifb, ¢ im @, choosing = tl;u with ¢t € R and Bu the orthogonal projection

of b, onto ker @),,, we obtain

4. (&) = tl[by.]1*.

Letting ¢ go to —oo yields ¢(p) = —oc.
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(2) If b, € im Q,, we have ¢, (§) = qu(&) for all £ € H, and

D) = dnf ) 062) = 5(Que ) + (bne) + i

§2€im Qy
The unique minimizer of this quadratic problem is & = —QLbH, and the
value of the minimum is —3(Q}b,, b.) + ¢y, i.e., (p).
O
The dual problem is then
.. . Ql + MQQ Z 07
(2) Ma;(é%nzew(p) subject to { by + by € Im(Q1 + 1Qs).

2.3.2. Optimality conditions. The following result is an adaptation of Theorem 2.1
of [28]. Due to its importance in the sequel, we nevertheless give a proof.

Theorem 2.3. Let £ € H be such that
(2.4) Vaa(§) = Q26 + by #0.

The following statements are equivalent:

) € is a (global) minimizer of (2);
) q2(€) = 0 and there exists fi € R such that

(1
(2
(2.5) O¢L(E, 1) = (Q1 + FQ2)E + (by + fiba) =
(2.6) eL(E, 1) = Q1 + iQ2 > 0;

(3) there exists i € R such that
(2.7) ¢ € argmin L(., i) N [g2 = 0].
Proof. We shall prove the implications 1)=(2)=3)=(1).

First step. Let us assume that ¢ is a minimizer of (£?). By the first order necessary
optimality condition, there exists i € R such that

O L(E, 1) = 0.
The second order necessary optimality condition reads
(02L(§,1)C.¢) =0 V(ETg,

Te = {C € H,(Q2€ + b2, ) = 0}.
Now, suppose that ¢ ¢ Te. We assume first that QQ2¢ # 0. Since Q2 > 0, this
entails (Q2¢,¢) > 0. Set

r_ <Q2g+b27<> T

T e Th T
After calculation we find that ¢2(&) = g2(€) = 0. This implies
(2.8) L(& ) — L& 1) = q1(€) — a1 (€) > 0.

Yet we have
2

(2.9)  L(§,A) — L€, i) = H((Q1 + iQ2)€ + by + bz, ¢) + t—((Q1 + 11Q2)C, C).

Combining (2.5), (2.8), (2.9) and ¢ # 0, we derive that ((Q1 + 1Q2)¢,¢) > 0
Assume now that Q2¢ = 0. As Q2 # 0, we choose some & € H such that & 7£
Let (¢,) be an arbitrary sequence of positive real numbers such that ¢, — 0 a
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n — oo. We set (, = ( + t,&. For all n we have Q2(, = t,Q2(y # 0, hence
(@1 + pQ2)Cn, Cn) > 0. Passing to the limit yields ((Q1 + 1Q2)¢, () > 0. We have
proved that Q1 + nQ2 > 0.

Second step. Since the function ¢ — L(& ) is quadratic, a Taylor expansion
immediately shows that the conditions (2.5) and (2.6) imply ¢ € argmin L(., 7). As
¢2(€) =0, we have L(&, 1) = q1(€) for all p € R.

Third step. We remark that, for all ;4 € R, it holds

(2.10) [L( 1) = a1 + djgo=0)] = a2 = 0],
with dc the indicator function of the set C. By (A.2) in the appendix, we have
§ € argmin L(., i) N [g2 = 0] C argmin g + g, —o]- O

2.3.3. Strong duality. The following Theorem is a consequence of Theorem 2.3 to-
gether with general results on duality (cf. appendix A).

Theorem 2.4. Suppose that (2?) admits a solution & which satisfies the constraint
qualification (2.4). Then the primal problem (&) and the dual problem () have
the same optimal values. In addition, (2) admits solutions, and, if i is one of
these solutions, we have

argmin ¢1(€) = argmin L(¢, 7)) N [g2 = 0.
q2(£)=0 geH

Proof. In view of (2.7) and (2.10), one uses successively (A.5), (A.3) and (A.6). O

2.4. Expression of the critical loads for the compliance robustness. In this
case, the primal problem (£?) and the dual problem (2) read, respectively,

(2.11) Mi?érﬁize q(&) = %HEHQ subject to %<Q€,§) + & +c—a=0,

(2.12)
2

o 2 ; B . I+ p@Q >0,
Mafé%nzew(ﬂ) T (I 4+ pQ)'b,b) + p(c — ) subject to { ub € im(I + pQ),
with

_ . 1 1, -
(2.13) Q = B4AG! Ba, b= BHAG fa, c:§<fQ,A91fQ>.

The operator @@ : H — H is self-adjoint positive semi-definite and compact. We
denote by Aq. the largest eigenvalue of Q.

The largest eigenvalue of @ is denoted by A;q- The next theorem refines The-
orem 2.4 and uses the same terminology as [28].

Theorem 2.5. The primal problem (2.11) and the dual problem (2.12) have the
same optimal values. The dual problem (2.12) admits a unique solution i € R,
which can be computed in the following way.

e Easy case: b ¢ ker(Q — ApmazI)t. Then [i is the unique solution in | —
1/Amaz, O] of the equation

%«1 Q) 2Q b, by — %(Q‘lb, B)+c—a=0.

e Hard case I: b € ker(Q — Apael)™ and

(2.14)

(2.15) A= %(AimQ_l(Q — Amax )70, b) — %(Q‘lb, b) +c—a>0.

Then i is also the unique solution in | — 1/Apmaq, 0] of (2.14).



A NOTION OF COMPLIANCE ROBUSTNESS IN TOPOLOGY OPTIMIZATION 9

e Hard case II: b € ker(Q — Aoz l)t and A < 0. Then i = —1/Amax-

The set 2 of solutions of the primal problem (2.27) is given by the following expres-
S40MS.

e Fasy case and Hard case I. There is a unique critical load given by
2= {~all +pQ)~'b}.
e Hard case II. The set of critical loads is

E= {7(Q - Amai[ﬁb} + ker(Q - Amazj) N Sra

Proof. By Theorem 2.1, there exists at least a solution & € H to (2.11). The
constraint qualification (2.4) is Q€ + b # 0, which is fulfilled since otherwise the
constraint in (2.11) would yield (Q¢, £) = 2(c—a) < 0. Hence Theorem 2.4 applies.
Let us reformulate the constraints of the dual problem (2.12). The first one is
equivalent to g > —1/\42 and we have im(1 + pQ) = ker(I + uQ)+ = H as soon
as ft > —1/Apaz. Therefore we have
I+p@Q>0 > =1/ Amaz if b ¢ ker(Q — Mnazl)™*
{ b € im(I + pQ) } — { 10> —1/Amag if b € ker(Q — Amao)* } '

If —1/Amaz < 0 < 0 we have

2
() = =5+ 1Q)710.b) + ple — ).

On writing 1*((I + pQ)~'b,b0) = ((I + pQ)~'Q 7%, *Q%b) = ((I + pQ)~'Q?D,
I+ (p@Q —I)(p@ + I)b) we arrive at the more convenient expression

(216)  (n) = —5{(T + Q)" Q b b) — (@ b,y + L@ 7b.b) + ple ).

Differentiating entails

(2.17) V) = ST+ Q) Q708 — Q7Mbb + (e~ a),

N~

(2.18) (1) = —((I + Q) ~5b,b) < 0.

We infer that v is strictly concave on | — 1/Amag, 0] and ¢/(0) = ¢ — a < 0. Again
we decompose b as b = ZZ b; with b; € ker(Q — A\;I) and \; the distinct eigenvalues
of @ in decreasing order such that Ao = Ajaz. We have for all p €] — 1/ A\az, 0]

1 1
V' (p) = Z WHMHQ - §<Q71b,b> +c—a

e Easy case: b & ker(Q—ApmazI)*. Then by # 0 and lim,,_,_q/x,,,.)+ ¥/ (1) =
~+oo. It follows that ¢ admits a unique maximizer i €] — 1/Apnaz, 0] char-
acterized by ¢’ (i) = 0.

e Hard case: b € ker(Q—\ar)®. Then the expressions (2.16)-(2.18) remain
true for p = —1/A\paz, provided that the restriction of I 4+ u@ to ker(Q —
AmazI)* is considered. In particular, ¥’'(—1/Apnaz) is finite.

If ' (—1/Amaz) > 0 (hard case I), then ¢ admits a unique maximizer i
in | — 1/Amas, 0[, characterized by ¢'(f) = 0. If ¢'(—=1/Amasz) < 0 (hard
case II), then —1/\;,q, is the unique maximizer of ¢ in [—1/A44, 0.
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By Theorem 2.4, the set of solutions of the primal problem is given by
E =argmin L(§, @) N S,
EEH

Here the Lagrangian is

L&) = (T + Q)& &) + (b, &) + e — o).

In the easy case and the hard case I, L(., i) is strictly convex since i > —1/Amaz-
It admits as unique minimizer

&= —a(I + pQ)'b.
From (2.17) and ¢/(f1) = 0 we derive after some algebra that ¢(§) = 3(Q&, &) +

b,8) +c—a=0.
In the hard case II, we have it = —1/\q. and

argmin L(&, i) = {€ € H, (Q — Anaal)é = —b}.
EEH

Using that b € ker(Q — Apazl)t = im(Q — Ajnaz!) we obtain

argmin L(&, 1) = {—(Q — MnazI) b} + ker(Q — Az ).
EeEH

O

Remark 2.6. If f € im(Bg), then the expressions (2.14) and (2.15) can be simplified
thanks to the equality:

1
—§<Q_1b, b> +c=0.
Indeed, writing f = Bqé yields b = Q€ as well as ¢ = %(Qf_, £).

To conclude this section, we will present an interesting reformulation of the dual
problem as a semidefinite programming problem. Again, this kind of approach is
standard in finite dimension. Let us go back to the primal problem (2.11):

(2.19) Minimizeq(€) = L[€[2  subject to g(€) = —(QE,€) + (b,€) + ¢ = a
EEH 2 2

If £ is a solution of this problem then [|£]| = dist(0, [y = a]) = dist(0, [g > a]). It
follows that ||£]| is a solution of

(2.20) Maximize p,
(2.21) s.t. pB C [g < o],
(2.22) p€RY.

Yet we have for p > 0
PBClg<al <= YEeH, K] <p=g(f) <a
— VEEH, ||€|| §1:>g(p€)§0é,
= VeeH, 1-¢IP>0= a—g(pg) >0

As1— ¢ =1>0for £ =0and a — g(p€) = a—c > 0 for & = 0, using the
S-lemma, one obtains

pB C [g < a] <= 3IN>0,YE € H, a—g(p) — A1 — [€]?] > 0.
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But g(&) can be expressed as

9(6) = ma —(Aaw,v) + (o + Bat,v),

vEVQ

whereby

—9(p§) = AL = [[¢]*) 2 0 =
Vo € Va, 1<AQU v) + A€ = p(Bag, v) = s(fa,v) + (@ =X) >0

Changing (&, v) into (s71&,s71v) for any s # 0, one also has
VEeH, a—g(pf) — A1 - [I€°] =
<:>V(’U,€,)€VQX/HXR
3(Aav,v) + €] = p(Bag, v) — s(fa,v) + (@ = X)s? > 0
Ao pBa [T
e | pBy M 0 > 0.
f 0 20—\

Therefore, if £ is a solution of the primal problem, then ||£| is a solution of
(2.23) Maximize p,
Aq  pBq f

(2.24) st. | pBy AL 0 >0,
f 0 2a-—2A
(2.25) fp, A ERY.

Note that the above matrix is affine in (p, A).

Proposition 2.7. Let (p,\) be a solution of (2.23)-(2.25), then —p*/2) is the
solution of the dual problem (2).

Proof. We have
(2.26) VEEH, a—g(p) — AL —[I€]*] >

Let £ be a solution of the primal problem. Substituting ¢ for p¢ in (2.26) and
multiplying by p%/2\ we arrive at
72

1._ 1, -
veeH, el Llo(e) —al > 37 = Sl
As g(€) = a we can write
2 P Loy P2 -
VEEM, —||§|| - —[ (&) —a] = 5lIE7 = 55[9(&) —al.
It follows that £ € argmin L(., —p?/2X) N [L(., —p*/2)) = q] # 0 thus, by virtue of
(A.7), —p?/2X is the solution of the dual problem (2). O

2.5. Expression of the critical loads for the robust compliance in the
worst case sense. Here, using again the notation (2.13), the primal problem (£?)
and the dual problem (2) read, respectively:

(2.27) Mi?gﬁize q(§) = —%(QE,Q —(,&) —c subject to ||&]| = r,
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(2.28)
1 r2 —Q+pul>0
o — 200 _ ot e i pe ="
Ma’;(é%llzew(’u) 5 <(Q MI) b, b> c— 5 SUb,]eCt to { be 1m(Q B /LI)

The largest eigenvalue of @ is still denoted by Ajq.. Applying Theorem 2.4 similarly
to Theorem 2.5 provides the following result.

Theorem 2.8. The primal problem (2.27) and the dual problem (2.28) have the
same optimal values. The dual problem (2.28) admits a unique solution i € R,
which can be computed in the following way.

e Easy case: b ¢ ker(Q—Nael). Then [i is the unique solution in | \pmaz, +00|
of the equation
(2-29) (Q — uI)~2b,0) =12,
e Hard case I: b € ker(Q — Mnaz )™ and {(Q — Mo D)7, 0) > 12, Then [i is
also the unique solution in |Amag, +00[ of (2.29).
e Hard case II: b € ker(Q — Apazl)™ and ((Q — Amaed)TT0,0) < 7. Then
H= Amag-
The set 2 of solutions of the primal problem (2.27) is given by the following expres-
$40MS.

e Fasy case and Hard case I. There is a unique critical load given by

= = {(-Q+al)"'b}.
e Hard case II. The set of critical loads is

== {(Q - )\maxI)Tb} + ker(Q - )\maacl) n ST’
where S, = {£ € H, ||&|| = r}.

3. HADAMARD SEMIDERIVATIVE OF THE ROBUST CRITERIA

3.1. Notation. Let X be a Banach space and consider a fonction f : X —
RU{-o00,400}. If z,d € X and f(z) € R the upper and lower Hadamard
semiderivatives of f at point z in direction d are defined, respectively, as
fi(z,d) =limsup flett) = f(z) f(z), fl(z,d) = liminf flett) = f2) f(z)

tl0 t tl0 t

v—d v—d
If fi(2,d) = f’'(z,d), their common value is called the Hadamard semiderivative
of f at point z in direction d, denoted by f'(z, d).

This section aims at calculating the Hadamard semiderivative of the robust com-

pliance, if it exists, with respect to the parameter

w=(Q,b,c) e W :=Ks(H) xH xR

defined by (2.13). Here, K4 (H) stands for the set of self-adjoint compact linear
operators from # into itself. The sensitivity of w with respect to €2, specifically its
topological derivative, will be studied in Section 4.

Our approach specializes and complements, by checking some technical assump-
tions, the proof of Theorem 4.24 in [8]. For the reader’s convenience, we give the
full proof in details.

3.2. Hadamard semiderivative of the compliance robustness.
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3.2.1. Notations and preliminaries. The objective function is the stability radius
1

(31) plw) = it Slel?,
with
(32) w, ) = 5(QE. &) + (b,8) +c—a.

We denote by Z(w) the minimizing set of (3.1), which is nonempty and whose
composition has been obtained in Theorem 2.5. Recall that the Lagrangian of this
problem is

(33) L(w,& k) = 5 €] + paluw,©),

and that the dual criterion is

= inf L .
Y(w, p) = inf L(w,& p)
We call A(w) the solution set of the dual problem, i.e.,
A(w) = argmaxt)(w, ),
pER

which has been shown to be a singleton.

Lemma 3.1. Let (w,£) € W x H be such that q(w,&) = 0. There ezists a neigh-
borhood W of @ and a function s : W — R of class C* such that s(w) =1 and

q(w, s(w)€) =0 Yw e W.

Proof. Consider the function F : (w,s) € W x R + g(w, s£), which is clearly of
class C*°. We have

0.F(0,1) = (QE.8) + (0.6) = 2(QE.&) — (c— a)

due to q(w,€&) = 0. Using that Q > 0 and ¢ < a we infer 9,F(w,1) > 0. The
implicit function theorem leads to the result. O

In order to emphasize the generality of the following derivations, we collect below
the different properties we will need to obtain the Hadamard semiderivative of the
function ¢. Property (1) is a straightforward consequence of Lemma 3.1, with
Sy e(w) = s(w)€. Properties (2), (3) and (4) have been proved in Section 2, see in

particular Theorems 2.1, 2.4 and 2.5.

Assumption 3.2.

(1) If (w,€) € W x H satisfy q(w,€) = 0, then there exists a neighborhood W
of w and a function S ¢ : W — H of class C* such that S ¢(w) = £ and

q(w, Sy g(w)) =0 Yw e W.
(2) For all w € W the sets Z(w) and A(w) are nonempty. B
(3) For all w € W and ¢ € Z(w) there exists i € A(w) such that ¢ €
argming 4, L(w, &, [i). A
(4) There is no duality gap, i.e., it holds ¢(w) = sup,,cg ¥(w, p) for all w € W.
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3.2.2. Upper bound for the upper Hadamard semiderivative.

Lemma 3.3. Suppose that items (1), (2) and (3) of Assumption 3.2 hold. For any
w,h € W we have

¢ (w,h) < _inf  sup OwL(w,E 1)h.
§EE(W) peA(w)

Proof. Choose an arbitrary £ € Z(w). Let (tn, hy) € R% x W be such that ¢, — 0,
hyn, — h, and

oy (@,7) =l L Infn) = 9(0)

n—+00 tn

We assume that n is large enough so that w +t,h,, € W. Denoting &, := Sy ¢(w +
tnhy), we have (w0 + tphy, &) = 0, hence (3.1) entails

1
P + tahn) < Sl1&nll* = LD + tahn, €n, 1),
for any 1 € R. As & € Z(w), (3.1) also yields

p(w) = ||§||2 L(w, ¢, p)-

Therefore we have

CP(U_) + tnh’ﬂ) — cp(u_)) < L(U_) + tnhnafn,ﬂ) — L(’II),&T, ,LL)
tn - tn '

For all w in a neighborhood of 0 we set
Q(w) = L(w + W, Sy g(w + ), ).
We have
L(0 4 tphp, &y pt) — L(w, €, 1) = ®(tyhy) — @(0) = d®(0)(tnhn) + 0ns 100 (tnhn),
since @ is Fréchet differentiable by composition. The chain rule gives

d®(0)(@) = 00 L(w, &, ) + e L(w, &, 11)(dSy, () ).

By item (3) of Assumption 3.2, we can choose p = i € A(w) such that £ €
argmingcy, L(w, &, i), which in turn implies 0¢ L(w, £, i) = 0. We arrive at d®(0)(w) =

0, L(w, &, )i

(0 +tyhy) — @
tn

D) < 90 L@, € i) + o(1).

Passing to the limit yields

) < OuL(w, &, i)h < sup OpL(w, &, pu)h.
HEA(W)

=

¢’ (w,

This being true for any ¢ € Z(w), we arrive at the desired result. O
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3.2.3. Lower bound for the lower Hadamard semiderivative.

Lemma 3.4. Suppose that items (1), (2) and (4) of Assumption 3.2 hold. For any
w,h € W we have

w, h inf sup O, L(w,¢&, f)h.

E E(w) peA(w)
Proof. Let (t,,h,) € R x W be such that t, — 0, h, — h, and
o (@, F) = tip £ F Inhn) = o)

n—+00 tn

For all n we set wy, = @ + t,h, and choose some &, € =(wy,).
Step 1. Let & € E(w) be arbitrary. By item (1) of Assumption 3.2 there exists
a neighborhood W of w and a function Spe W H of class C* such that

Sp (W) = ¢ and
q(w, Sy ¢(w)) =0 Yw € W.

Since wy, — w, it holds for n large enough g(wy, S, :(wn)) = 0, hence

1
Fllénll* < —IISwg(wn)IIQ-

This shows that the sequence (&) is bounded. Therefore there exists £ € H such
that &, — € weakly for some non-relabeled subsequence.

Step 2. We shall show that £ € Z(w). >From w, = @ + t,h, and q(w,,&,) = 0,
denoting w = (Q, b,¢) and h,, = (Qp, bn, c,,), We obtain

%<(Q + 10 Qn)€ns &n) + (b + tubn, &) + C+ they —a = 0.

A rearrangement yields

B 506G+ 6.6 4o a =t (5Qubn&ad + un) +cn).

By boundedness of &, and h,,, the right hand side of (3.4) tends to 0. By compact-

ness of @, we have Q&, — Q¢ strongly, thus 2(Q¢&,.&,) — 2(QE,£). We infer that
the left hand side of (3 .4) tends to

<Q€ §> (b,@—l—é—a:q(ﬁ},g),

and subsequently that q(w,£) = 0. Consider now an arbitrary & € H such that
q(w,&) = 0. Using again item (1) of Assumption 3.2 there exists a neighborhood
of w, which we can assume equal to W, and a function Sz ¢ : W — H of class C*=°
such that Sz ¢(w) = € and

g(w, Sge(w)) =0 Yw e W.
As previously this implies for n large enough ¢(wy,, Sge(w,)) =0, and thus
1 1
Slnll” < 1S c(wn)l
Since &, — &, this entails

1 - 1 1
SIEI® < 5 lim it €)% < 2 Timinf |Su e (wn)]1%
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and, using that Sg¢(wn) = Sg.e(W0) =&,
Liznz o Lyep2
- < = .
€I < Zlel

This concludes the proof of the fact that & € Z(w).
Step 8. Let i € A(w). >From item (4) of Assumption 3.2, we have ¢(w) =
Y(w, i) = infeey L(w,&, ). It follows that p(w) < L(w,&,, ). As &, € E(w +
tnhn), we have o(w + tyhy) = (|6, ]12 = L(wn + taha, &, ). We arrive at
P(@ + tnhn) = (W) _ L0 + tnhn, &n, 1) = L(0, &0, 1)
tn - tn '
As L is twice differentiable, the Taylor-Lagrange inequality yields for n large enough
|L(u_) + tnhna fn, ﬁ) - L(U_)a fn, ,L_") - awL(u_)a E_, ﬁ)tnhn| < C”tnhn”2a
with ¢ a positive constant independent of n. It follows that
¢ (w,h) = lim (@ + tahn) = (@)

n—-+oo tn

> 0, L(w, &, f)h.

This being true for any i € A(w) and some ¢ € Z(w), we obtain the desired
result. O

3.2.4. Hadamard semiderivative of the robust criterion in the abstract setting. Com-
bining Lemmas 3.3 and 3.4 leads to the following result.

Proposition 3.5. Suppose that items (1), (2), (3) and (4) of Assumption 3.2 hold.
For any w,h € W the function ¢ admits a Hadamard semiderivative at point w in
the direction h given by
cp'(u_), B) = inf sup awL(wa ga ,L_")}_L
EEE(W) peA(w)

3.2.5. Hadamard semiderivative of the compliance robustness. We now come back
to the specific case of the stability radius. As said before, all items of Assumption
3.2 are satisfied. In addition, we have seen that for any w € W the set of Lagrange
multipliers A(w) is a singleton. We arrive at the following theorem.

Theorem 3.6. For any w,h € W the stability radius ¢ admits a Hadamard
semiderivative at point w in the direction h given by
¢'(w,h) = inf 08,L(w,&, i)h,
§eE(w)
where {i} = A(w) is the solution set of the dual poblem (2.12).

3.3. Hadamard semiderivative of the robust compliance in the worst case
sense. The objective function is now

(3.5) plw) = il qw,),
with
(36) a(w, ) = ~5(Q6,6) ~ (1,6) ~ c.

We denote by Z(w) the minimizing set of (3.5), which has been obtained in Theorem
2.8.

Slightly adapting the proof of Theorem 4.13 in [8], one obtains the following
result.
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Theorem 3.7. For any w,h € W with w = (Q,b,¢) and Q definite negative
the worst case functional ¢ admits a Hadamard semiderivative at point w in the
direction h given by

4. TOPOLOGICAL DERIVATIVE OF THE ROBUST CRITERIA

Consider a reference domain 2 = Qg € £ and a family of perturbed domains
(82¢)¢>0 such that, for all ¢ small enough, ©; € £. We choose a nominal load of the
form f = Bq& € V{, with £ € H. We set wg = (Qq, ba, co) with

Qo = 2BHAG Ba,  bo = 2B4AG" Bod = Qaé, co = (BhAg " Ba&, &) = (Qa&, ).

We make the following assumption, which will be verified for specific problems
in Section 5.

Assumption 4.1. There exists § > 0 and a self-adjoint linear operator Gq : H —
‘H such that

(f,Qa, f) — (f,Qaf) = t{f,Gaf) + O(t'?)  VfeH.

Lemma 4.2. The function t € Ry — Qq, € L(H) admits a right derivative at 0
given by

d
E[Qm]ltZO = Gq.
Proof. Assumption 4.1 and the polarization identity entail

<f’QQfg> - <f7QQg> :t<fa GQg>+O(t1+6) vfag GH,

<f7 (QQ’ ; Qa - GQ) g>‘ < +00.

By the Banach-Steinhaus theorem we obtain
(Qnt Qo GQ) gH < 4o
t H

Another application of the Banach-Steinhaus theorem yields

that is,

Vf,geV, supt~?
>0

Vg €V, supt~?
>0

supt° Qo — Qo — Gq < 4o00.
t>0 t L(H)
In particular we have
lim |92 —92 g =0,
t10 t LH)
and the proof is achieved. O

The following theorem states the right derivative of the stability radius. A similar
result holds for the worst case compliance, which is left to the reader.

Theorem 4.3. The function t — Jsr(Q:) admits a right derivative at 0 given by

S Usn(@)]o = int €+ 6 Galé +8),

where Z is the set of solutions of the pmmal problem (2.11) and [ is the solution of
the dual poblem (2.12).

(4.1)
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Proof. By Lemma 4.2, we get that the map ¢ — wq, admits a right derivative at 0
given by

(4.2) Qa,lji=0 = 2Gq, %[bmht:o = 2Gq¢, i[cﬂtht:o = (£, Gab).

4
dt dt

Next, with the notation of Section 3, we have
Jsr(Qt) = p(wg,).

By composition (see, e.g., [8] Proposition 2.47), the function t — Jgr(2:) admits
a right derivative at 0 given by

d d
7 Jsr(Q)]j— = ¢ (wﬂ, a[wnt]t=o> :
Theorem 3.6 yields
d . . OL _ . d oL - . d
7 Isr(Q)]j— = 222 @(wmf, ) [Qali=o + 5 (wa, & 1) = [baJj=o+
oL _ . d
a(wmf,ﬂ)%[cmhmo
Using the expressions (3.3), (3.2) we obtain
oL N 1, - oL ~ - oL - -
@(wa€7M)Q = ,U/§<Q€7§>a %(wa€7u)bzu<b7§>a %(U},g,p)C— He.
Using (4.2) we arrive at
d . - ~ =
7 [Jsr(Q2)] =0 = égg B [(Ga&, &) + (2Ga&, &) + (€, Gal)] .
A rearrangement completes the proof. O

5. ALGORITHM

5.1. Problem setting. In the examples we will present we want to minimize
T (Q) == (Jsr()) + (9],

where ® : R — R is a smooth and decreasing function, £ is a user-given Lagrange
multiplier, and || is the Lebesgue measure of Q. In our computations we have
used ®(t) = —logt.

We choose £ as the set of all subdomains of a fixed “hold-all” domain D C
RY. Our model problem is that of linear elasticity, with the following standard
framework. The domain € is occupied by an elastic material of unitary Young
modulus, and its complement D \ 2 is filled with a weak phase, i.e., a fictitious
material with small Young modulus €. This permits to formulate the equilibrium
equations, represented by the operator Ag, in the fixed domain D. Therefore
the function space Vg is the subspace Hh (D) including the Dirichlet boundary
condition on the appropriate part I'p of 0.

For some & € D \ 990, we consider the topological perturbation

0 _{ Q\ B(z, p(1)) if #eq,
Tl (QUB@E, p()ND if #eD\Q,

with p(t) = t*/N.
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5.2. Optimality condition. The derivative of J(€);) with respect to ¢ is called
topological derivative. It is given by the chain rule:

. d d
ga(2) == E[j(Qt)ht:o = ‘I’I(JSR(Q))E[JSR(QJ + £ |]j¢=o0-
Of course, this is only valid if the topological derivatives %[JSR(Qt)ht:Q and
4 [|9[]j4=o exist. For this later one this is obviously true, as one has
d x if 2eq,
EmMmﬂ{w if #e€D\Q.
The expression of %[JSR(Qt)]\t:O has been obtained in Theorem 4.3 upon As-

sumption 4.1. The operator Gq that satisfies Assumption 4.1 is associated to the
topological derivative of the classical compliance. Its expression is known as (see

(2, 4]):

<f;GQf>:77T

-1 1 —1)(k—2
! Al [2a:e+wtrotre ,

kr+1 2 K+2—-1
with
_f e if 2eQ,
r{alﬁ 2eD\Q,

k= (Ar+3uL)/(AL + pr), AL, 1z the Lamé coefficients of the material, and (o, e)
the stress and strain tensors at point &, respectively.

In order to solve the minimization problem in (4.1), we make the simplifying
assumption that the largest eigenvalue \;,q, of @ is simple, which we have always

—_

encountered in our test cases. Therefore, Z is either a singleton (Easy case and
Hard case I) or a pair (Hard case II), hence the minimization is trivial.
A necessary optimality condition for this class of perturbations is clearly

(5.1) ga(&) >0 Vi € D,
which is the starting point of our algorithm.

5.3. Description of the algorithm. In order to solve (5.1) we use the algorithm
introduced in [4] and further analyzed in [3]. We recall its main features. Each
domain €2 is represented by a smooth function g : D — R such that

O ={z € D,yva(z) <0}.

We define the signed topological derivative as

{28 % 22
Therefore (5.1) will be solved as soon as
(5.2) ga ~ Ya,
with the equivalence relation ~ defined by

Y1 ~ P2 <= Ja > 011 ~ aths.
We apply to (5.2) the fixed point iteration with relaxation, i.e., the update of the
function g at iteration k is

Yo, ~ (1 —wk)va, +wiede,-

The parameter wy, € (0, 1] acts as step size and is fixed at every iteration by a line
search.
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Remark 5.1. Consider a combination of disjoint topological perturbations, such as

for instance
n
= U B 1’1; P

The topological derivative of the comphance is additive with respect to the pertur-

bation (see [5]), i.e.,
Gq = Z Ga,
i=1

where Gg; is the topological derivative for a single perturbation. The topological
derivative of the stability radius for the combination of perturbations is then

d
dt

n

—[JsR(Q)]j1=0 = mfuz f+BE, Gai(f+BE)) > i

i=1 i=1

nf f(f+BE, Ga.i(f+BE)).

n-m_‘

This means that the stability radius is superadditive with respect to the perturba-
tion, hence a combination of descent directions for the functional 7 still provides
a descent direction (recall that @ is decreasing).

6. NUMERICAL EXAMPLES

6.1. Beam. The hold all domain D is the unit square (0,1) x (0, 1), with a Dirichlet
boundary condition on the left side. We denote by p the middle of the right side
and by ¢; the unit horizontal force applied at p. The nominal load fq corresponds
to ¢1.

At first we consider a space of perturbations of dimension 1, for which the value
& =1 of the parameter corresponds to the force ¢;. The threshold « is chosen as
10 times the compliance of the initial domain, which is the band (0,1) x (0.4, 0.6),
under the nominal load. The Lagrange multiplier for the area is fixed to ¢ = 10.
The optimized domain is represented in Figure 1, left.

Next we add a unit vertical force ¢o, still applied at point p, and represented
by the parameter £ = (0,1). The force ¢;, represented by & = (1,0), remains the
nominal load. The other data are unchanged. The optimized domain is given in
Figure 1, right. For comparison, note that its area (0.168) is close to the area
obtained in the previous case (0.160).

6.2. Mast. For this problem the hold-all domain D is the union of the rectangles
(=1,1) x (0,4) and (—2,2) x (4,6). A Dirichlet boundary condition is applied at
the bottom side. We consider 4 forces:

e ¢ is a unit vertical force applied at point p; = (—1,4),

e ¢ is a unit vertical force applied at point p; = (1,4),

e ¢3 is a unit horizontal force applied at point p1,

e ¢, is a unit horizontal force applied at point pso.

The nominal load corresponds to the forces ¢, and ¢2 applied simultaneously.

As first case we again consider a one-dimensional space of perturbations, spanned
by the nominal load. The forces ¢3 and ¢4 are not taken into account. The
initialization is the full domain D, and « is chosen as 10 times the compliance of
this domain under the nominal load. The Lagrange multiplier ¢ is fixed to 0.8. The
optimized domain is represented in Figure 2, left.
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FIGURE 1. Beam: obtained domains for one load (left) and two
loads (right)

Then we consider a two-dimensional space of perturbations, spanned by the
forces ¢1 and ¢9 applied independently. All the other data are unchanged. The
optimized domain is represented in Figure 2, middle.

Finally we consider four independent perturbations, given by the forces ¢1, @2,
¢3 and ¢4. We obtain the domain represented in Figure 2, right.

From the first case to the last one, we clearly observe, first, a stiffening under
non-symmetric vertical load, then, a stiffening under horizontal load.

FIGURE 2. Mast: obtained domains for one load (left), two loads
(middle) and four loads (right)

APPENDIX A. LAGRANGIAN DUALITY

Here we gather useful results on general Lagrangian duality theory, which are
essentially reformulations of classical results found in [24, 19, 20]. We nevertheless
provide concise proofs for completeness.

Let X,Y be twosets and L : X x Y — R := RU {—o00, +00} be an application,
called the Lagrangian. We define

f(z) = sup L(z,y), re X,
yey
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g(y) = ;g{L(w,y), yevy.

The duality theory aims at finding relations between the primal problem

(2) Minimize f(z), z € X.
and the so-called dual problem
(2) Maximize g(y), y €Y.

We denote by v(#) = inf,ex f(x) and v(2) = sup,cy g(y) the values of the primal
and the dual problems, respectively.
Moreover, for any y € Y, we consider the problem

(“) Minimize L(z,y), =z € X,
with value v(.%},) = infex L(z,y) = g(y). We always have (weak duality):
(A1) ey, %) <u@)<u(2).
Theorem A.1. (1) Forally €Y it holds
(A.2) argmin(.%,) N [L(.,y) = f] C argmin(Z)
(2) For ally €Y it holds
€ argmax(9%),
(A.3) 0(P) = v(Z,) = {Z(@) E v(gg)')
(3) We have the relations:
(A4)
yf(;;gilix((;i } —= v(Z) = v(Z,) = argmin(.Z,)N[L(.,y) = f] = argmin(Z?).
(4) For ally €Y it holds
(A.5) argmin(.%,) N [L(.,y) = f] # 0 = v(Z,) = v(2),

hence
(A.6) argmin(.Zy)N[L(.,y) = f] # 0 = argmin(Z,)N[L(.,y) = f] = argmin(Z?).
(5) We always have
(A7) {y €Y | argmin(Z,) N [L(.,,y) = f] # (Z)} C argmax(9).
(6) We have
A8)  {yev|agmin(%) N [Li,y) = 1] 40} £ 0= v(2) = v(P).
(7) We have

(A.9) {y ey ‘ argmin(%,) N [L(.,y) = f] # @} #0=

{y €Y | argmin(Z,) N [L(.,y) = f] # (Z)} = argmax(9).

Proof. (1) If z € argmin(.%,) N [L(.,y) = f] then, for all z € X, f(z) =
L(z,y) < L(z,y) < f(x)-
(2) If v(Z) = v(&?), using (A.1), one obtains v(2) = v(Z) = v(Z) = g9(y)
and y € argmax(?). If y € argmax(?) and v(2) = v(&?) then v(%,) =
9(y) = v(7) = v(P).
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(3) If z € argmin(&?) then L(z,y) < f(Z) = v(&) = v(Zy) < L(z,y) for all
z € X. In particular L(Z,y) = f(Z) and T € argmin(.Z}).
(4) If € argmin(%,) N [L(.,y) = f] then

o(#) = inf () < f(@) = L(z,y) = v(%) = ink Liz,y) < it f(z) =o(2).

(5) If argmin(%,) N [L(.,y) = f] # 0, then using (A.5), one infers v(.%,) =
v(Z?). We conclude using (A.3).

(6) This stems from the second assertion of (A.3).

(7) Let y € argmax(2). Using (A.8) we obtain v(2) = v(<), and from (A.4),
we arrive at

argmin(Z,) N [L(.,y) = f] = argmin(2?).

Now there exists yo € Y such that argmin(%,,) N [L(.,y0) = f] # 0, and
(A.2) implies

argmin(Z,,) N [L(.,yo) = f] C argmin(Z?).
Therefore argmin(.%,) N [L(.,y) = f] # 0.
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