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Approximation algorithms for deterministic continuous-review inventory
lot-sizing problems with time-varying demand

G. Massonnét J.-P. Gayofy C. Rapiné

aGrenoble INP, Laboratoire G-SCOP, 46 avenue Feélix Viall8031 Grenoble Cedex, France.
bUniversité de Lorraine, Laboratoire LGIPM, le du Saul&7045 Metz Cedex 1, France.

Abstract

This work deals with the continuous time lot-sizing invagtproblem when demand and costs are time-dependent.
We adapt a cost balancing technique developed for the peniediew version of our problem to the continuous-
review framework. We prove that the solution obtained castaost twice the cost of an optimal solution. We study
the numerical complexity of the algorithm and generalizepblicy to several important extensions while preserving
its performance guarantee of two. Finally, we propose a figatlversion of our algorithm for the lot-sizing model
with some restricted settings that improves the worst-based.

Keywords: Inventory theory, approximation algorithms, continusasiew policy, deterministic model

1. Introduction cost parameters. Later, Donaldson (1977) proposes an

. . optimal policy for a linear demand rata(f) = at + )
.The Economlc Qrder Quantity (EOQ) problem deals and Barbosa & Friedman (1978) generalize to power-
with a single location that faces a demand of constant ¢/ 4004 ratesi(t) = off, B > —2). This re-

rate A. In this model, costs are incured when an order
is placed as well as when units are physically held in
the stock. The goal is to determine a continuous-review
policy of minimal cost. More precisely, placing an or-
der incurs a fixed order cost and a linear order cost
while holding an inventory unit incurs a casiper unit

of time. This problem has been solved for a long time by
Harris (1913) in the early twentieth century and popu-
larized by Wilson (1934). Since then, many extensions
and variations have been studied including production
capacity, backorders, perishability, multi-echelon sys-
tems (see e.g. Zipkin (2000) for a state of the art).

One of the important limitations of the EOQ model
is the assumption of time-independent parameters. In
particular, it assumes a constant demand Ratehich
is not realistic in numerous practical situations. Many
author relax this assumption and consider a more gen-
eral model with time-varying demand rai¢t). How-
ever they only solve the problem under very restrictive
assumptions. Resh et al. (1976) consider a time propor-
tional demand rated(t) = at) with time-independent

sult is then extended by Henery (1979) to increasing

log-concave demand patterns and Hariga (1994) who
studies a more general model for any monotonic log-

concave demand rate when shortages are allowed. Fi-
nally, Henery (1990) focuses on non monotonic demand

patterns in the special case of cyclic demands.

These papers use a similar general approach that con-
sists in finding the optimal policy for a fixed num-
ber of orders over the planning horizon, then to deter-
mine the optimal number of orders minimizing the to-
tal cost. This concept has been studied and generalized
by Benkherouf & Gilding (2009), who show that the
the optimal cost over a finite planning horizon is a con-
vex function of the number of orders. However, this
method requires specific properties on the cost func-
tion and therefore the papers mentioned above restrict
their attention to specific demand patterns and time-
independent cost parameters. There is no general tech-
nique to determine an optimal continuous-review policy
for time-varying parameters without the restrictive as-
sumptions discussed above.

As the problem is dficult for more general demand
(G. Massonnet)j ean—philippe. gayonQg-scop. £x pattern;, _the literature proposes several heuristicsdba_se
(J.-P. Gayon)christophe.rapine@univ-lorraine.fr on empirical methods such as the greedy (or myopic)
(C. Rapine) approach. Silver (1979) introduces a heuristic where
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the length of a replenishment cycle is chosen such thatthat a policy that balances holding and set-up costs in
the average cost is minimized (locally) on the replen- each replenishment cycle has a performance guarantee
ishment cycle. This heuristic is inspired from the well of two. Bitran et al. (1984) extend the results of Ater
known Silver & Meal (1973) heuristic designed for a to the case with time-varying holding costs. Recently,
periodic-review setting. Another one, widely used in Van den Heuvel & Wagelmans (2010) have proven that
practice, consists of averaging the demand rate and ap-in fact this worst-case guarantee cannot be improved for
ply the EOQ formula with the average demand to com- online heuristics, i.e. procedures that use a forward in-
pute the order times. Goyal & Giri (2003) consider an duction mechanism and cannot modify their past order-
extension of Silver (1979) with backorders and time- ing periods.

varying demand raté(t), production rate:(t) and dete- ) , ,
rioration rates(t). They also use a greedy approach, op- N this paper, we apply the ideas of cost balancing
timizing the average cost on each cycle rather than glob- INtroduced by Bitran et al. (1984) to the continuous-
ally. Many other heuristics and extensions have been "€View problem and prove that the performance guaran-
considered in the literature. We refer the reader to Goyal €€ Of two remains valid for this problem. We then show
& Giri (2001) and Bakker et al. (2012) for a review that the ideas devgloped are quite generic and_can be ex-
of deteriorating-inventory models with time-varying de- tended to several important models from the inventory

mand and to Teng et al. (2007) for some references on literature (production rate, deterioration rate, noredin

the Economic Production Quantity (EPQ) model with holding costs, models with shortages, time-varying or-
time-varying demand. der costs) while preserving the performance guarantee.

g Similarly to Bitran, our method uses a myopic mecha-
use dynamic programming techniques to solve the cor- nism to dgcide whethgr to place anew order or increas_e
responding periodic-review problem. Indeed, there ex- t€ quantity ordered in the previous one and hence is
ists several polynomial time algorithms that are optimal Unlikely to achieve a worst-case guarantee lower than
for the periodic-review lot-sizing problem. In the dis- WO However, we introduce at the end of this paper
crete time version, the planning horizon is divided into &N @lternative procedure that enables us to improve the
n periods. In each period a demand occurs and an orderP€rformance guarantee t¢23 with some additional as-
can be placed to replenish the stock. Wagner & Whitin SuUmptions.

(1958) present an algorithm of complex®{n?), while
Aggarwal & Park (1993) propose @(n) algorithm to

Another important heuristic is to discretize time an

Note that Hariga (1996) applies a similar cost bal-
i s . ancing technique to the time-varying demand model
solve this problem using Monge arrays. However, it it shortages and compares its performances to several
is very unlikely that the optimal solution for the dis-  gther heuristics widely used in practice. Although his
cretized problem matches an optimal policy for the orig-  gy,qy presents numerical experiments and compare the
inal continuous-review version. performances of the fierent techniques, it focuses on

More generally: the previous heuristics have an im- e independent cost parameters. Moreover, the the-
portant drawback: They can perform arbitrarily bad (i.e. etical performance and complexity are not discussed

no guarantee of performance has been proven). Eveni, his paper. Thus, to the best of our knowledge, this
in the periodic-review setting, Agser (1982) shows  aher s the first to derive algorithms and prove their
that the heuristic of Silver & Meal (1973) can per- g arantee of performance for lot-sizing problems with

form arbitrarily bad. That is, on some instances, the {ime_yarying parameters in a continuous-time setting.
cost of the heuristic is arbitrary large compared to the

cost of the optimal policy. Similarly, the EOQ heuris- The rest of the paper is organized as follows$#)
tic (that averages the demand and uses the EOQ for-we formally introduce the basic lot-sizing problem and
mula) is also shown to perform arbitrarily bad (see Bi- useful notations to describe the solutions and prove their
tran et al. (1984)), even if the average demand is recal- guarantee§3 explains how to adapt the balancing pol-
culated whenever an order is placed. icy of Bitran et al. (1984) for a continuous-time set-
In this paper, we aim to derive tractable policies for ting and prove that the resulting policy preserves the
the continuous lot-sizing problem with time-varying pa- performance guarantee of 2. §4, we introduce sev-
rameters that have provable performance guarantees. Aeral extensions to the lot-sizing model and show how
policy is said to have a performance guarantee (or a the balancing algorithm can be modified to solve them.
worst-case guarantee) ofif its cost is at mostr times Finally, we generalize the concept of cost balancing to
the cost of an optimal policy. In the periodic-review set- present a new policy for the lot-sizing model and prove
ting with time-varying demand, A¥der (1982) shows  its worst-case guarantee iSin §5.
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2. Assumptions and notations

We consider a single location that faces a continuous

demand with ratd(t) at timet. We denote byA(s,t) =
fst A(u)duthe cumulated demand oveg f]. Holding an
inventory unit at time incurs a cosh(t) per unit of time.
We assume that(-) andh(-) are piece-wise continuous
functions. Placing an order at timécurs a fixed order
cost (or set-up cos¥(t) and a linear order cos(t).

The inventory level at time 0, before placing the first
order, is denoted by,. For the majority of the mod-

els presented in this paper, it is dominant to place the

first replenishment at tim& such thatx(tp) = 0 and
Atg) > 0: Hence we will assume w.l.o.g. thag = 0
andA(0) > 0, unless explicitely said otherwise. In what
follows, apolicyis defined as a set of rules to determine

Proposition 1. Let = be a feasible policy for the
continuous-review problem and 16t = ay < a; <
.-+ < a, < apy1 = T be a sequence of points in time.
Then if«] < «f and C' (&, a,1) < oC (&, a,1) for all

i =0,...,nand all feasible policy Py has a worst case
guarantee ofr.

Proof. Summing all the partial costs as in equation (1)
leads toC™ < aCF for any feasible policyP. In partic-
ular, this inequality holds wheR is an optimal policy
and the proof follows. O

Given a policyP, a (replenishment) cycles(t] is de-
fined as a time interval such that an order is placed at
time s, an order is placed at time > s and no or-

the ordering times and quantities for each instance of der is placed inbetween. In particular, if the sequence

the problem. The objective is to find a policy minimiz-
ing costs over a finite horizon [¥] while satisfying all

the demands: In particular, a policy that achieves the
lowest possible cost for any instance of the problem is
said to be optimal.

PO=g <5 < <% < S =T is the sequence
of ordering times of policyP, one can decomposeNote
that given Finally, we say that a policy satisfies #ero
Inventory Orderingoroperty, or is ZIO, if it orders only

When the demand rate is constant, the cost parame-when its inventory level is zero. Note that under a ZIO

ters are time-independent and the horizon is infinite, this

policy P, the quantity ordered at the beginning of a cycle

problem reduces to the EOQ problem and can be solved(s;t] is exactly A(s, ), the cumulated demand over the

analytically (see e.g. Zipkin (2000)). On the contrary,
it is generally hard to solve the problem to optimality

cycle. Moreover, the inventory level can be easily ex-
pressed in cycleg(t] as x(u) = A(u,t). Hence the cu-

when parameters are time-dependent. The aim of this mulated holding codtl(s, t) of a ZIO policy over a cycle

paper is to develop approximation algorithms for the
time-varying version of the problem.

Without loss of generality, we assume that the pro-
curement leadtime is null: All demands being determin-
istic, a deterministic positive leadtime simply shifts the
decision earlier in time. We now introduce some use-
ful notations and concepts for the rest of the paper. Let
XF(u) be the inventory level at time, under some pol-
icy P and letCP(s,t) be the cost incurred by a polidy
over (s t]. More preciselyCF (s t) includes holding cost
fst h(u)x (u)duand set-up costs oves, {], excluding the
set-up cost at times, if any. Then, for any sequence
ap=0<a; < < an =T, the total cosC® of pol-
icy P over the whole time horizon can be decomposed
as

CP = +C'O.T) =k + » C'@.aw) (1)
i=0

, Where «j is equal toK(0) if P orders at time O
and O otherwise. Note that since intervads, §;.1]
partition the time horizon, equation (1) partitions the
cost incurred by any policy according to the sequence
In particular, the following proposition

(s,t] can be simply expressed as an integral of holding
cost and demand functions.

H(s t) = ft h(uA(u, t)du

Note that sinceh(-) and A(:,-) are both nonnegative
piecewise continuous functiond(s, -) is a nondecreas-
ing continuous function for als. We give below a
summary of the notations used through the paper:

A(t) demand rate at time

A(s,t)  cumulated demand oves, ]

A(t) cumulated demand from time 0 toA[O, t]
h(t) per-unit holding cost at time

K(t) fixed order cost (or set-up cost) at tine
c(t) linear order cost at time

X0 inventory level at time O

T time horizon

XE(u) inventory level at timeu, under policyP
CP(s,t) cost of policyP over (s, t] (time s excluded)
CF cost of policyP over [0, T]

HP(s,t) holding cost of policyP over cycle 6 t]
H(s,t)  holding cost of a ZIO policy over cycles(t]



3. An approximation algorithm

In this section, we present the central idea of our algo-
rithm. Roughly, the main concept is to balance in each
replenishment cycle the holding costs with the fixed or-
der cost. For ease of understanding, we first make sim-
ilar assumptions as Bitran et al. (1984) who have inves-
tigated a periodic-review version of this problem. More
precisely, we assume that the fixed order cost and the
linear order cost are time-independent, th&{§ = K
andc(t) = cforallt € [0, T]. These assumptions will be
relaxed in§4. Notice that without loss of generality, we
can assume = 0 as any policy incurs a linear order cost
of exactlyc(A(0, T) — Xo) over the planning horizon to
satisfy all the demands. Throughout the remainder of
this section, we restrict our attention to policies that re-
spect the Zero Inventory Ordering (ZIO) property, as it
is dominant for the model we are interested in.

3.1. The balancing policy

The concept of cost balancing is well known in the
inventory literature and can even be found in the clas-
sical EOQ problem, where all parameters are time-
independent. Indeed, it is well known that for this spe-
cial case the optimal policy balances exactly the holding
costs with the order costs. More precisely, the optimal
average cost* over an infinite horizon is

C* = yAKh/2 + +/aKh/2
S— —
Holding costs  Fixed order costs

In the time-varying setting, we introduce thalanc-
ing policy, denoted BL in what follows, which balances
in each cycle the two parts of the cost discussed above.
The BL policy is inspired by the periodic-review policy
proposed by Axater (1982) and Bitran et al. (1984). In
fact, itis a ZIO policy whose order times are determined
by a forward induction as follows: A first order is placed
at the last moment when the inventory is nonnegative. If
the BL policy places an order at ting the next order
time is then defined as the last tirnsuch that

H(st) < K @)

Recall thatH(s t) represents the holding cost in-
curred by a ZIO policy over cycles(t]. As H(s,") is
a nondecreasing continuous function at¢k, s) = 0,
inequality (2) is tight for at least one point i, [T] if
and only ifH(s, T) > K (see Figure 1). When the latter
condition is not satisfied thesis the last order time of
the BL policy and the quantity ordered ais A(s, T),
such that all the remaining demand is orderes &ore
precisely, we define the BL policy as follows:

H(si. 1)

9=

Figure 1: Computing the next ordering tirsgwhen the current order

is placed at times; = 0 (K = 1.5, h(t) = "8, 1(t) = 2y,

$=0

Definition 1. The BL policy is the ZIO replenishment
policy whose order times;s< s, < --- < &, are given
by Algorithm 1.

Algorithm 1 BL policy

sets; =0

setn« 1

while H(s,,T) > K do
S — Max{t < T : H(s,,t) = K}
n—n+1

end while

return (sg,...,S)

Since the BL policy is ZIO, it is completely defined
by the vector of order timess{, ..., s;). By convention
we setsy = 0 ands,;; = T. Then fori > 1, the quan-
tity ordered by the BL policy at time is exactly the
cumulated demand oves[s.1], i.e. A(S, S4i).

3.2. Performance guarantee of the BL policy

The BL policy is an interesting inventory policy both
for its simplicity and for the quality of the solution ob-
tained. In particular, we show in this section that the
cost of the BL policy is at most twice the cost of an op-
timal policy. We first present a lower bound on the cost
incurred by any policy between two instarsts t:

Lemma 1. For any instants s t and any feasible pol-
icy P, we have

C"(s t) > min{H(s, 1), K}

Proof. If policy P places an order ons(t], clearly
CP(s,t) = K. Otherwise, the inventory levef(s) of
policy P at instantsis at leastA(s, t) to prevent stockout
on [s t]. Since no order is placed os, (], we have that
for all u € (s1], X*(u) > A(u,t) for u € (s t] and thus
HP(s ) = [T h(Wx*(U)du > [T h(UA(u t)du = H(s b).
The results follows. O



We now use this result to state and prove the follow-

first turn our attention to the issue of computing the next

ing theorem on the performance guarantee of the BL order timet given the current order time From the def-

policy:

Theorem 1. For piece-wise continuous functiong-)
and K-) and constant functions (§ and d-), the BL
policy has a worst-case guarantee of two. That is, the
cost incurred by the BL policy is at most twice the cost
of an optimal policy.

Proof. Let P be a feasible policy for the continuous-
review lot-sizing problem considered and &t..., s,

be the sequence of order times of the BL policy. We
prove that on any time intervak(s.1], the cost in-
curred by the BL policy is at most twice the cost in-
curred byP.

SinceP is feasible, we clearly havé® = «*. On the
last interval &,, T], the cost incurred by BL i$l(s,, T),
which is lower thanK by construction. According to
Lemma 1, we have

CP(s,, T) = min{H(s,, T), K}
=H(s, T)
=C™(s, T)

Now consider an intervals(, 5,1], with 1 <i < n-
1. By construction, the BL policy incurs a holding cost
H(s, s+1) = K and thuC? (s, ;1) = H(s, S41) +K =
2K. Due to Lemma 1, any feasible policy pays at least
min{H(s, s;1), K} = K on (s, S:1]. In particular, we
have thaCC*(s, s.1) > K and therefore

C" (s, S+1) < 2C°(s, Si+1)

foralli =0,...,n—=1. The theorem then follows from
Proposition 1. O

Remark 1. The BL policy is optimal in the case of the
EOQ problem.

Assume thafi(t) = 4 and Ht) = h for all t. In this
case, we hav(s,t) = (t — )4 and H(s t) = Ah(t —
$)?/2. Solving Equation (2) yields

sz 42X
“ Y ah

The time between orders is precisely the optimal order
interval for the EOQ model (see e.g. Zipkin (2000)),
which proves the optimality of the BL policy.

3.3. Numerical issues and complexity

In this section, we discuss how the order times can be ¢ —

computed by the balancing algorithm in practice. We
5

inition of H(s, -), we have thatH(s, s) = 0 andH(s, ‘) is
a nondecreasing continuous function @nT]]. Hence
there exists at least one solutibi [s, T] to the equa-
tion H(s,t) = K (unlessH(s, T) < K). However, in
most cases there is no analytical expressioh ddne
can then use classical root-finding algorithms, such as
the bissection method, to compute an approximate value
of t. The next ordering momett found by such tech-
nigues is such that € [t—4,t + ] for a given preci-
sion¢é > 0 and the final complexity depends 6nFor
instance when using the bisection method, each compu-
tation oft’ requires0(log(T/6)) evaluations of function
H(s ).

For some classes of functiohg) andA(:), like poly-
nomial, exponential, sinusoidal, the integkH(s, t) can
be expressed analytically. Otherwise, one can use clas-
sical numerical methods to evaluate this integral with
some precision error. In what follows, we assume that
H(s,t) can be computed (exactly) in tim@(1) and we
only focus on the complexity of determining the order
timess,,..., s, of the BL policy. Notice that the num-
ber of order times of the BL policy, as for an optimal
policy, may be arbitrary large (for instance considering
an exponential holding cosi(t) = €). Thus the time
complexity can not be bounded in general with respect
to the instance size. For this reason we consider in what
follows a natural restriction of the problem.

Assume that the demand function and the holding
cost function are both upper bounded [@T]. That
is, there existsl, h such that for alt € [0, T], A(t) < A
andh(t) < h. Then the following theorem holds:

Theorem 2. For anye > 0, the BL policy can be imple-
mented to provide a solution with a performance guar-
antee of(2 + ¢) usingO (® log @) evaluations of i, -),

whered = (1 + })/l—hTz.
e’ K

Proof. See Appendix Appendix A. O

Remark 2. In practice, Hs t) is often too complex to
be computed exactly in constant time. However, if one
uses a numerical method to computésH) with max-
imum errory > 0 in time O(f(y, T)), this error can be
somehow included in the general erroof BL. Specif-
ically, the precision for H,-) must satisfyy < &K

and the total complexity i® (¥’ log @’ f(y, T)), where

1+e an
———2hT2.
eK—y



3.4. Bad example The policy we propose in this case follows exactly

We should be able to present a quick bad examp|e, Algorlthm 1. This pOllcy satisfies the ZIO property, thus
where demand rate is null everywhere except on regular the same arguments as the ones used in Theorem 1 hold
small intervals, and its limit when the length of the in- and the performance guarantee of 2 remains valid in the
tervals tends to zero reach the worst-case guarantee. —general case of nonlinear holding costs.

| found a simple bad example, just need to write it down
clearly. 4.2. Perishable products

Classical inventory models generally assume that one
4. Extensions can store units indefinitely to meet future demands.
However, many products do not satisfy this assumption
The previous section introduces a cost balancing in practice, e.g. because they deteriorate or become ob-
technique for a basic continuous lot-sizing model, but solete (see Goyal & Giri (2001) for a recent review on
the underlying idea appears to be rather generic. In this these models). In this section, we consider a model in
section, we apply this concept to several important ex- which the inventory on hand at tineleteriorates at rate
tensions of the lot-sizing problem. Although in most 4(t), incurring a per unit deterioration cosft). In a cy-
cases Algorithm 1 cannot be used directly, we adapt cle (s, s'], the inventory levek(t) satisfies the following
the policy to the specific settings of each extension and first-order diferential equation:
prove that the performance guarantee of two fourgBin

remains valid for these more general models. —d;((tt) +0(Ox(®) = -A(t), x(s)=0

4.1 Nonhnegr h°'d'”9 costs ] ] . which can be solved easily, see e.g. Goyal & Giri
The analysis used i§3 remains valid for nonlinear (2003). Note that even though we only present our re-

holding costs. In this model, the holding cost incurred gyts for the simple inventory model derived fro§8,

depends on both the time moment and the currentinven-tpis equation can also be solved with production rate

tory on hand. Specifically, we dendtéx, t) the holding u(t) and backorders (see Goyal & Giri (2003)).

cost value at for holding x units in stock. The only The sum of holding and deterioration costs over a
(natural) assumption we make is tik,t) is nonde-  time interval [, s for a policy P can be expressed as:
creasing in.

Essentially, one only has to check that Lemma 1 re- s b .o
mains valid in this context to ensure the approximation H' (5 ) = f [h(®) +a(e(O]x" (dt = f h(®)x"(dt
result holds. As before, ldti(s, t) be the holding cost ° °
incurred on a cyclegt] by a ZIO policy. We have  whereh(t) = h(t) + a(t)6(t). Using this modified hold-
H(st) = fst h(A(u,t),u)du. Now consider a feasible ing cost parameter, we can apply Algorithm 1 ag

policy P that does not order in the time interva {]. The arguments used to prove the performance guaran-
The holding cosHP(s t) incurred byP on (s, t] satis- tee of BL remain valid in this more general context and
fies: thus the resulting algorithm is a 2-approximation for the

model with perishable products.

HP(s 1) = fh(x"(u),u)du

4.3. Finite production rate

t
= f h(x"(s) - A(s u), u) du The model studied i§3 assumes that replenishments
St are instantaneous. We now relax this assumption and
> f h(A(s t) — A(s ), U) du foc_us on a model wh_ere ur_uts are produced accordlng to
s a time-dependent, piecewise continuous production rate

u(+). In addition, we denotg(s, s) = f: u(2dzthe cu-
mulative production capacity org[s]. If a production
starts at timesfor g units, all units are available on hand
at times+ t such thap(s,t) = g. Each production start
where the second equality is due to the fact tRat incurs a time-independent fixed cé&{(the nonspecula-
does not order ing t) and subsequent inequalities come tive linear production cost is omitted w.l.0.g. as before).
from the nondecreasing property o, u). Therefore The objective is again to minimize total costs overlp
Lemma 1 is still valid. without stockout.

:fth(/\(u,t),u)du = H(st)



Although classical production models assume that the
production rateu(t) is larger than the demand ratg),
for all t, we relax this constraint and consider a more
general situation where the only assumption is that the
production capacity is sficient to satisfy the entire de-
mand without stockout, that jg0, t) > A(O, t) for all t.

As a consequence, a poli&for the problem is fea-
sible if and only if it can satisfy the demandgs, t)
on any time interval §,t], either by producing during
this interval or by using its stock on hand at instant
s. Observe that any policy cannot produce more than
(s, 1) units during the interval. Thus aficient condi-
tion for P to avoid stockouts is that for any tinte> s,
X() = A(s,t) — u(s b).

Property 1. Any feasible policy P satisfies

Vse[0,T], X*(S) = Xmin(9) (3)

With Xmin(S) = Mmaxs{A(s,t) — u(s 1)}

When t s, this condition simply implies that
XF(s) = 0. According to this new definition, we modify
the initial condition and assume w.l.o.g. in this model
thatxg = Xmin(0) anda(0) > 0.

Note that in the special case wherft) > A(t) for
all t, we havexmin(s) = 0 for all s and the ZIO prop-
erty remains dominant. However in this more general
production model, it is not necessarily the case. Conse-
guently we focus on policies that order at timenly if
their inventory level is equal t&y,n(S). In the remainder
of this section, we call such policies MIO (Minimum
Inventory Ordering) policies. In addition to this main
property, the final stock of a MIO policy must be null
(X(T) = 0). MIO policies are clearly dominant for our
problem since for any non MIO policy, one can easily
build a MIO policy with lower cost by delaying orders.
Figure 2 illustrates a MIO policy.

For a MIO policyP, one can easily compute the stock
evolution during a replenishment cycls {]. First,
note that by definition we have®(s) = Xmin(S) and
XF(t) = Xmin(t). Due to the continuous production pro-
cess, cycleg t] consists now of an active period, (1]
(when production is on-going) and an idle perieglt]
(when production is over). The idle period starts at time
u, whereu satisfies the following equation:

4)

The value of the inventory level over a replenishment
cycle (s t] is then easy to compute:

Xmin(t) = Xmin(S) + (s, U) — A(s, 1)

ifz<u
otherwise

Xmin(S) + (S, 2) — A(s 2

X(@) = { Xmin(®) + A2, )

X(t)

— X(t)
== Xmin(t)

=)

Figure 2: An example of a MIO policy fof = 10,
At) =2(1- cos(%)), u(t) = 2.5. Time intervalsy; anday correspond
to production (active) periods whilg andi, are idle periods.

Using equation (4) we can unify the expressiondd(f)

as follows. Consider an instat < u. We have
X (2) = [Xmin(t) — (s, u) + A(s )] +u(s,2 - A(s 2 and
thereforex?(2) = Xmin(t) — u(z u) + A(zt). Assuming
u(b,a) = 0 fora < b, we get:

X'(2) = Xmin(t) — u(z ) + Az 1) Vze[st] (5)

Let H(s, t) be the holding cost incurred by a MIO pol-
icy over a replenisment cycles,t]. Since for any fea-
sible policy P the stock level at any instaatis at least
Xmin(2), the holding cost can now be split into two parts,
H(s t) = Hi(s 1) + Hmin(s, t), where:

t
Ha(s 1) = f h2)(X(@) - Xmin(@)dz 0

is thepolicy dependent paxf H(s,t) and

Hmin(s 1) = ft h(2) Xmin(2)du> 0

is theindependent parbf H(s,t). Notice that due to
Equation 3 Hnin(s t) is incurred by any feasible policy
for the problem we consider.

We now present an extension of the BL policy to this
production model, called PB policy in what follows.
The PB policy balances in each cycle the fixed order
cost K with the policy dependent part of the holding
cost. Formally, the algorithm for the production model
works as follows:



Algorithm 2 Balancing policy for production models
(PB)
sets; « 0
setn« 1
while Hi(s,, T) = K do
St — max{t < T : Hy(sy, t) = K}
n—n+1
end while
return (s, ...

. S)

Fori =1,...,n, the quantity ordered by policy PB at
time s is theng; = A(S;, S+1) + Xmin(S+1) — Xmin(S)) and
the following theorem holds:

Theorem 3. The PB policy has a worst-case guarantee
of 2 for the general production model.

Proof. See Appendix Appendix B. O

4.4. A model with backlogging
One major constraint in the previous models is that

which inventory is held, andu(t], when backorders ac-
cumulate.

In the remainder of the section, the balancing policy
for models with backlogging is denoted BB. For a given
policy P, let BP(st) be the backlogging cost incurred
by P over (s, t]. In addition, we denot®(s, t) the back-
logging cost incurred overs(t] by a policy that does
not order in §t) and whose inventory at timsis 0.
Formally, the algorithm works as follows:

Algorithm 3 Balancing policy for models with back-
logging (BB)

setsy « 0,5 « max{t < T : B(0,t) = K}

setn « 1

while H(s,, T) > K do

sn+1<—max{t <T: min {H(s,U) + B(u,t) = K}}
ue[sn.t]

nNn—n+1
end while

return (sg,...,S)

demand has to be satisfied immediately. However, there Given's < t, the algorithm computes the quantity

exists more flexible models in which the demand does

not necessarily have to be fulfilled on time. We now

that minimizes the holding and backlogging costs in-
curred over § t]. This quantity has to satisfy all the

focus on such a model and present an approximation .y orders as (before the order occurs) plus the to-
algorithm based on the same balancing idea as the one| yemand during the first part of the cycle (when in-

discussed ir§3.
In this section, we assume backlogging is allowed.
The model is similar to the one presenteds§ia, ex-

cept that demand is not necessarily satisfied immedi-

ately anymore. We still assume that the policy incurs
a fixed order cosK for each order placed while hold-
ing inventory induces an per-unit holding costhgf) at
timet. On the other hand, unmet demandasklogged
Customers are willing to wait until the stock on hand is
suficient to fulfill their requirement. Thus backlogged

demand is served with a subsequent order placed later

in time and incurs a per-unit backlogging costot) at
timet.
Without loss of generality, we assume the units

Moreover, we modify the initial conditions and simply
consider that < 0. The balancing policy for models

with backlogging uses an idea rather similar to the one
used in the basic model: It balances the costs incurred

ventory is physically held). Since satisfying the back-
logged units ats does not induce any cost, the algo-
rithm aims to findu* € (s t) such that functiorfs:(u) =

fsu h(9)A(z uydz + fut b()A(u, 2dz is minimized. The
first derivative offg;(-) is the following expression:

dfse(u)
du

- f " h@Audz- f bWz

- (fsu h(2)dz— fut b(z)dZ) A(u)

As A(-) is a nonnegative function, it is easy to see that

g ] > for s < t, there existsI* € (s, t) such that:
are consumed on a first-ordered first consumed basis.

dfse(u)

du
dfse(u)

du

<0 forallue (s uf

>0 forallue (ut]

between two consecutive order times with the fixed or- Thereforefs(-) is unimodal and reaches its minimum at

der costK. The main diference is that instead of using
only the holding costs, both holding and backlogging

costs are considered. However, the policy decides to

serve or backlog demand in a way that minimizes the

u* € (s t) such that:

fs h(2)dz = f t b(2)dz

sum of the costs incurred over the cycle. Each cycle This property of functionsfs(:) is illustrated on Fig-

(s, t] is consequently split into two partss,{], during

ure 3.



H(s1,u) + B(u,t3)

H(s1,u) + B(u,t2)
AA, u) + B(u ty)

Figure 3: Computing* for different values of (t; = 5.3,t, = 6.156,

ts3 = 7) when the previous order is placed at time= 1 (K(t) = 2,
h(t) = 1, p(t) = 1.5, A(t) = f{(l—vf) (1— ﬁ)) The next order chosen

by the BB policy iss; = t since the minimum cost incurred over
(s1,t2] is exactly equal tak. Furthermore the quantity orderedsat
increases the inventory level up Agsy, u3).

If s <t are two consecutive order times of the BB
policy, the quantity ordered at timgincreases the in-
ventory level up taA(s, u*). Note that consequently the
remaining A(u*,t) units are backlogged and served at
timet. Finally if the last order computed by the algo-
rithm is s, < T, the BB policy orders up ta(s,, T) at
time s,. Otherwise §&, = T), it orders up to 0 at time
T and satisfies all the demand backloggedsny( s,].

We now state and prove the following theorem on the
performance guarantee of the balancing algorithm for
models with backlogging:

Theorem 4. The BB policy for continuous lot-sizing
models with backlogging has a worst-case guarantee of
two.

Proof. See Appendix Appendix C. O

In practice, one can use classical search algorithms
such as the Fibonacci search technique (see Kiefer
(1953)) to compute the minimumr* € (st) in
O(log(T/6)), wheres is the chosen precision. Thus as-
suming thati() (resp. h(:), p(-)) is bounded by a con-
stant (resp. h, p), one can choos® as in§3.3 and
compute the order times ®(Q(log Q)?) (using the pre-
cisiong = T/Q) while bounding the error in the cost by
a chosen gap.

4.5. Time-dependent order costs

In §3 we restricted our attention to time-independent
fixed order costs. We now relax this assumption and al-
low for monotonic time-varying fixed order costs and
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nonspeculative linear order costs. Specifically, we as-
sume that functiofk(t) is continuous in time and either
nonincreasing or nondecreasing wiftwhile c(-) satis-
fies for allds> 0O:

st+ds
c(s+d9 <c(s) + f h(u)du (6)

In other words, given two potential order timgs< s,

to serve a specific demandtat s,, it is always cheaper

to order ats, rather than order earlier at and hold the
corresponding units for a longer period. One can notice
that inequality (6) resemble the weel-known assumption
of nonspeculative motivations often encountered in dis-
crete lot-sizing models.

Intuitively, the replenishment rule used by the
policy consists in balancing in each cycle the holding
costs and the linear order costs incurred with the
minimum fixed order cost over this cycle. Due to our
assumption, this minimum fixed order cost is realized
at one of the extremities of the cycle. That isKif:)
is nonincreasing (resp. nondecreasing) the holding
cost H(s,t) + c(9)A(st) incurred over a cycle t]
is balanced withK(s) (resp. K(t)). The procedure is
then applied in a forward or in a backward manner
depending on the variation &(-). Notice that Bitran
et al. (1984) also define a forward and a backward
method for the discrete time problem when ordering
costs are time-independent. In our case, these two
algorithms are defined as follows:

Algorithm 4 Forward balancing policy for nonincreas-
ing order costs

sets; « 0

setn« 1

while ¢($))A(sh, T) + H(s,, T) = K(T) do
Swre—max{t < T : c(sn)A(s, 1) + H(sn, t) = K(t)}
nN—n+1

end while

return (sg,...,S)

Remark 3. When K:) is nondecreasing andyx> O,
placing an order before the initial stock is depleted may
reduce the total cost incurred by the policy. Hence in
this case, we relax the initial condition discussedgh
and only assumeyx 0.



H(si. 1)

K(t)

|
|
?
5 =0 S
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Figure 5:K(t) = €2 , h(t) = "2 1) = 2040,

Algorithm 5 Backward balancing policy for nonde-
creasing order costs
setsg=T
setty « max{t < T : A(O,t) < Xo}
seth« 0
while c(to)A(to, Sn) + H(to, $h) > K(tg) do
Sw1 < minft > to : C(A(L, $7) + H(L, s5) = K(t)}
Nn—n+1
end while
if 55> tgthen
Swi1 < min{0 <t <ty : c(t)A(to, Sn)

n—n+1
end if

return (S,, ..., S1)

Figures 4 and 5 show how the forward and backward

algorithms compute the next and the previous order, re-

spectively.

Note that in the case of the backward algorithm, the
order times are computed in a reverse ordek §, <
--- < 5 < T. Moreover, the ZIO rule is not necessarily
respected for the first order. Lep be the initial in-
ventory on hand and leég = max{t < T : A(0,t) < xo}:
If s1 < to, the quantity ordered at tims, is g, =
A(to, Si-1). All the other orders are of size
A(S,S-1).

Theorem 5. For time-dependent order costs, the for-
10

ward (resp. backward) balancing policy has a worst-
case guarantee of two wher(-Kis a continuous nonin-
creasing (resp. nondecreasing) function.

Proof. See Appendix Appendix D O

5. Improvement of the performance guarantee

In this section, we present a generalization of the bal-
ancing technique used §8 and use it to improve the
performance guarantee from 2 t(23 The idea remains
to balance the costs incurred over a time intergas’{
with order costs but we now consider the possibility to
place additional orders in the interval. We present this
modified algorithm in the simple situation of Section 3,
in which order costs are time-independent and holding
costs are linear.

5.1. A generalized balancing policy

Consider a time intervals(t] and letk be a positive
integer. We defin&y(s,t) as the minimum cost over
(s,t) incurred by a feasible policy ordering at mdst
timesin @, t).

Note that a policy that minimizes the cdsi(s,t) is
Z10. Thus fork = 0 we haveGy(s,t) = H(st) and
clearly, the BL policy incurs on each of its ordering in-
terval (s, '] a costGy(s, §').We can generalize Lemma 1
to the following result:

Lemma 2. Letke N, s< t and P a feasible policy. We
have
C’(s 1) = min{Gk(s 1), (k + 1)K}

Proof. The proof is immediate due to the definition of
Gy. If policy P places at mosk orders inside the time
interval, thenCP(s,t) > Gk(s,t). OtherwiseC*(s,t) >
(k+ D)K. O

For a given positive integet, we propose the fol-
lowing balancing policy, denoted Rlin the remainder
of this section. Its principle is to balan€&(s, t) with
(k + 1)K in each of its replenishment cyclg, {]. That
is, given an instans, the policy computes the largest
instantt < T such thatGy(s;t) < (k + 1)K. Notice
that in this case policy BLorders at instants andt
and possibly up t& times in the interval g t). We call
main order times the instants andt, while the other
order times in §t) are calledsecondaryorder times.
Although main and secondary orders play the same role
in the final solution, we dferentiate these two types of
orders to simplify the definition and the proof of perfor-
mance of the algorithm. Similarly to BL, the first (main)
order of Bl is placed at the last instast such that the



initial inventory xo can satisfy the demands on, ).
The following result generalizes Theorem 1:

Theorem 6. For K(-) and ) constant functions and

h(-) and A(:) a piece-wise continuous function, the,BL

policy has a worst-case guaranteeﬁ%.

Proof. The proof is very similar to the one of Theo-

7(V1, <+ Vi) = AV)h(vicg, vi) — h(vi)A(Vi, Vis1)

y
whereh(x,y) = h(t)dt.
Hence the opt?mal secondary order points satisfy the

rem 1 and only the main arguments are given here. Let following equality for 1<i < k:

P be a feasible policy and let, ..., s, be the sequence
of the main order times of the RLpolicy. First no-
tice that any feasible policl places an order at time 0
and thereforeg ™ = K = «%. Now consider an interval
(s, s:1], with 0 < i < n- 1. By construction, the BL
policy incurs a cos€CB(s, s.1) < G(s,Ss1) + K =
(k + 2)K in this time interval. Due to Lemma 2, pol-
icy P pays at least mii®y(s, S+1), (K + 1)K} = (k +
K. It results thatCPik(s, s.1) < K2CP(s, s.0).
Then consider the last interval. O8,[T], we have
CB(s,, T) = Gy(sy, T), which is lower tharCF(s,, T)

. . fo
due to Lemma 2. As a consequence the inequality

CBk(s, S41) < %Cp(s, s.+1) holds for every interval

(s, s+1] and the proof follows. O

5.2. Complexity analysis
Contrarily to the balancing policy presented the

ANV)h(Vi—1, vi) = h(vi)A(Vi, Vi11) (7)

Note that this condition is necessary but noffisient
since there may exist several solutions to Equation (7).
For time-independent holding cokft) = h, condi-
tion (7) reduces to a simpler condition that was estab-
lished by Barbosa & Friedman (1978y; £ vi_1)A(Vi) =
A(O,vi;1)—A(0,V;). However even in this restrictive set-
ting, the problem of solving equation (7) ididtult, ex-
cept for very specific demand functions (linear, power-

rm).

k=1

We now turn our attention to the case: 1, where the
problem is to find a single optimal intermediary order.
In this case, there is a single varialbjghat we rename
for ease of understanding. If we assume that the demand

family of algorithms presented in the previous section functionA(-) and the holding cost functidn(-) are once
does not fall within the class of myopic policies and en- derivative, we can compute the second derivativ(gf
ables us to desigrigcient procedures to solve the prob-

lem introduced ir§2. In particular, the resulting perfor-

mance guarantee can be as close as aimed to the cost
of an optimal policy. However the problem of deter-
mining (analytically or numerically) the minimal cost

Gk(s,t) on an interval §t) is likely to require a large
computing &ort, especially for large values & In
this section, we first discuss the computatiorgfs, t)
for an arbitraryk. Then, fork = 1, we show that th&8L;
policy can be computed i@ (@ (log ®)?) with some re-
strictions on the demand and holding cost functions.

Arbitrary k

Whenk secondary orders are placed in intengk)
at timesvy, - - - , W, the inventory holding cost of a ZIO
policy on interval §,t) is

K Visl

fva, ) =

i=0 YVi

h(Xx)A(X, vi;1)dx

wherevg = sandvy,; = t.
The problem is then to minimizewith the constraint
thatvg = s < v; < -+ < W1 = T. We have for
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32—\,;(\/) = X (Vh(s, V) + 22(V)h(V) — h' (VA (v, t)

As a consequencd,(-) is convex if and only if the
following condition is satisfied:

A (Wh(s v) + 22(v)h(v) - W (V)A(v,t) >0  (8)

Unfortunately, there exists numerous demand func-
tions that do not satisfy inequality (8), even when the
holding cost function is constant (see for example Fig-
ure 6). However, we now exhibit two cases satisfying
inequality (8). Both cases relax some assumptions made
in the existing literature.

Casel: h() and A(-) once derivative, i) non-
increasing andi(-) non-decreasing.
In this case-h'(-) andA’(-) are positive and the
inequality (8) is trivially satisfied. These as-
sumptions relax the framework used in Resh
et al. (1976), Donaldson (1977) and Henery
(1979) to any increasing demand function.

Case2: h(-) once derivative, non-increasing and
At) = at?, witha > 0andg > -2.



--- Au)
A(u,t)
fst(u) = —uA(u,t)

Figure 6: A bad example for functiofy(-) with triangular demand,
s=0,t=5andh=1.

In this case —-h() is nonnegative and
h(s,v) > (v - 9)h(v). The second derivative of
f(-) then becomes

a2f(y) _

T BV Ih(s,v) + 2avh(v) — i (V)A(V, 1)

> ah(v) (B(v - V' + 2V
> ah(v) ((8 + 2V - psv¥?)

Hence for8 > 0 we have
d?f(v)

dv2
and for-2 < 8 < 0, we have
d?f(v)

dv2

> 2ah(V)V#

> ah(V)(8 + 2V

In both cases% > 0 andf() is convex.

Note that this setting extends the problem stud-
ied in Barbosa & Friedman (1978) to a time-
varying holding cost function.

As a consequence, Blprovides solutions that are

Proof. The proof is similar to the one of Theorem 2, ex-
cept that in this case for evetycandidate for the next
order time, the algorithm has to compute the optimal in-
termediary ordev. For s < t, one can use the convexity
of f(-) and apply the bisection method to compute the
optimal secondary order in O (T/5) for a chosen pre-
cisions. Hence for an abitrarg > 0, one can define
® as in§3.3 and choose a precision= T/®. The fi-

nal complexity of Bly for a maximum error of is then
O( (log®)?). O

6. Conclusion

The EOQ formula for time-independent lot-size mod-
els has been extensively studied and is now considered
as a classical result in the literature. On the contrary, the
optimal policy for its time-varying extension is still an
open question and the existing research is limited to re-
stricted cases where demand has a specific pattern (i.e.
linear, power form, monotonic log-concave, etc.).

In this paper, we introduce a cost balancing technique
and apply it to continuous-review inventory models
when demands and cost parameters are time-varying.
We prove that the resulting algorithm has a worst-case
guarantee of two for the lot-size problem with time-
varying parameters. In addition, we show that the un-
derlying idea is rather generic and adapt it to many im-
portant extensions, such as perishable products, produc-
tion systems or models with backlog (among others).
For specific demand patterns, we also improve upon the
performance guarantee of two and propose a 1.5 ap-
proximation algorithm for increasing or power form de-
mand. Finally, we show that the complexity of our al-
gorithm depends mainly on the chosen precision for the
approximation ratio. The resulting running time makes
it an interesting practical tool for decision makers.

One natural direction for further research is to exper-
iment the cost balancing technique on numerical exam-
ples and compare its performances with existing opti-
mal policies or heuristics. Furthermore, we believe that

both computationally tractable and provably close to the the concept is very generic and can also be applied to

optimal, while relaxing assumptions made in the exist-
ing literature. The following theorem summarizes the

performance guarantee and the complexity of the tech-

nigue in practice.

Theorem 7. Assume thafi(-) and H-) are bounded,
once derivative and satisfy inequalig) for all s <

v < t. Then for anye > 0, the BL policy can be
implemented to provide a solution with a performance
guarantee o{3/2 + £) usingO (®(log ®)?), whered is
defined as in 3.3.
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multi-echelon systems under mild restrictions. In par-
ticular, a first step in this direction would be to study
how the algorithm can be extended to series systems.

Appendix A. Proof of Theorem 2

Assume the current order is placed at tie 0 and
thatH(s, T) > K. The BL algorithm defines the next
order time ag = max{u < T : H(s,u) < K}. Numeri-
cally, using the bisection method with a precisirhe



next order time’ is found in -6, t+ 6]. We choose the
precisions of the bisection method to be:

K ¢ T

:ﬁﬁl+s:®

In addition we require that two consecutive order times
are separated at least Bythat ist” > s+ 6. Therefore
the BL policy orders at mosk/é times on the planning
horizon. If the computational time to evalua#€s, t) is
O(1) for anys < t, the final complexity of the BL policy

is thenO ((T/6) log (T /6)) = O (® log D).

It remains to prove that applying the bisection method
with the precisiord leads to the expected approximation
factor of 2+ £. Recall that the next order tinteéfound
by the bisection method belongs [io- 6,t + 6], even
if we imposet’ > s+ 6. For conciseness we denote
by AH(s, r) the diferenceH(s,r + 6) — H(s,r) for any
instantr > s. According to Lemma 1 and using the fact
thatH(s t) = K, we can bound the cost ratio between
BL and any feasible policf? on (s, 1] as follows:

Casel. t' e [t—6,1]:

CBL(s,t) - H(st)+K
Ch(st) = H(st)
< H(st-0)+K
H(s,t-9)
_ 2H(st) = (H(st) - H(s,t - 6))
~ H(st)- (H(st) - H(st-9))
_ 2H(s;t) - AH(s,t - )
~ H(st)-AH(st-9)

3 AH(s t-06)
T K-AH(st-9)
Case2. t' € (t,t +4]:
CBL(s 1) - H(s t+6) + K
CP(st) ~ K
_ 2K+ (H(s,t+6) - H(s 1))
B K
3 AH(s,t)
=R

We next bound the holding cogtH(s,r) for any
instantss<r <T -§:
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H(s,r +6) — H(sr) = fr+6 h(u) (A(r + 6) — A(u))du
- fr h(u) (A(r) — A(u)) du
= fr h(u) (A(r + 6) — A(r))du
+ fms h(u) (A(r + 6) — A(u)) du
r r+6
< (A(r+96) - A(r))f h(u)du
ST
< (A(r+96) - A(r))fO h(u)du
< AshT

ahT o :
Leta = Td = i . The previous inequality
&
shows thatnH(s,r) < aK for any instantss, r with s <
r <T -4§. Using this upper bound, we obtain in the two
previous cases:

Casel. Sincex — x/(K —X) is clearly a nondecreasing
function ofx on [0, K) we have:

CBL(s 1) - aK a
Ch(st) T K—aK
=2+e¢

Case2. We have directly, using that/(1 + x) < x for
anyx > 0:

CBL(s,t/)

— <24+ — =2

Crs D) ~ + K +a
<2+e¢

Therefore in both cases the performance ratio is
bounded by 2 ¢. In particular, the previous inequalities
are true forP an optimal policy and the result follows.

Appendix B. Proof of Theorem 3

Consider a feasible polidy for the production prob-
lem and two consecutive order time instastandt of
PB. Similarly to Lemma 1, we establish that the cost
CP(s,t) incurred byP on time interval §,t] is at least
K + Hmin(S 1).

As already noticed, the holding cost of any feasible
policy on (s, T]is at leastHmin(s, t). Thus the inequality
clearly holds ifP orders (i.e. starts a production) in the



time interval & t]. Conversely assume th&does not
order on 6,t]. Letu € (s, t] be the end of the active
period of PB in the time interval. We establish that the
stock level in policyP is greater or equal to the stock
level in policy PB at any point in time ofs(t]. That is,
the balancing policy PB carries the minimum possible
inventory for a policy that does not order inside the time
interval (s,t]. First note that for any € [u, t], we have
xP(2) > xPB(2) asP satisfies demand iru[t] without
stockouts. In addition, Since’(s) > Xmin(S) = X B(9),
xP(u) = xPB(u) andPB continuously produces irs[u],
we also have(2) > xPB(2) for all z € [s, u]. As aresult,
the holding cost incurred by polidyon (s, T] is at least
H(s t) = K + Hmin(s 1).

Thus for any policyP we haveCP(s;t) > K +
Hmin(s,t) and a proof similar to the one of Theorem 1
leads to the same approximation guarantee of two.

Appendix C. Proof of Theorem 4

Consider a feasible policy for the problem with
shortages and les < - - - < s, be the sequence of orders
found by the BB policy. We prove that the total cQS
incurred by BB on the time horizon is at most twiCg,
the total cost incurred by policl. We use again the
notationCF(s,t) to denote the total cost incurred 1By
over (s, 1], including backlogging costs.

We start by noticing that the BB policy places its first
order at times;, such thatB(0,s;) = K > 0: Hence
s1 > 0 and«g® = 0. For the last cycle, we distinguish
between two cases, depending on whethek T or
s, =T. If s, < T, the BB policy incurs a total cost
of H(sy, T) < K on (s, T]. As policy P is feasible,
either it orders ong,, T] or it does not and then its in-
ventory level ats, is at leastA(s,, T). Therefore it in-
curs on &,, T] a cost of at leasE®(s,, T) > H(s,, T) =
CBB(s,, T). If 5, =T, the BB policy incurs a cost

C*®(sh-1,S) = K+ min_{H(sh-1,u) + B(u, T)}
Ue[$h-1,%0]
<2K

Note that since BB orders at, the algorithm ensures
thatH(s,-1, T) > K by construction. Therefore, #®
orders in 6,.1, T] it incurs an order cost oK, while
if it does not it incurs a holding cost greater thin
Consequently we hav@®®(s,_1, T) < 2CP(s_1, T).

Now lets ands.; be two consecutive order times of
the BB policy, withs;; < T. The total cost incurred by
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BB over (5, S11] is

C®(s,ss1) = min {H(s,u) + B(u,s.1)} + K
uels,s41]
= 2K

On the other hand, eithd? orders in §, s:1] and
incurs a cost of at leasK or it does not and then
there existsu® e [st] such thatx’(z) > 0 for all
z e [s,uP]andx’(2) < O for all z € (UP, s;1]. Hence
P incurs a holding and backlogging cost of at least
MiNye[s s, {H(S, W) + B(u, s+1)} = K. Therefore we
haveC®®(s;, s.1) = 2K < 2C*(s, S+1).

The proof follows from Proposition 1.

Appendix D. Proof of Theorem 5

In this proof, we modify the notation introduced
in §2 as follows: Fors < t and P a policy for the
problem, letCF(s,t) be the sum of the fixed order
cost incurred byP in (s,t] plus the linear order cost
and holding cost incurred by the units used to serve
demands ing t]. For instance, assume thatorders at
time v € (s 1] to satisfy demands inu[t] and at time
r < sto serve demands irs,(v). Then we have:

CP(s, 1) = c(rA(s, V) + C(VA(V, t) + fs h(X)A(s, v)dx
+ fv h(X)A(x, v)dx + ft h(X)A(x, t)dx

Note that this is an extension of the original definition
of CF(-,-) and thus all the previous proofs remain valid
with this new definition.

We start by proving the result for the forward algo-
rithm. Let P be a feasible policy for the problem with
nonincreasing order costs. We again heffe= K(0) =
kg, for any feasible policyP. Now leti < nand focus on
the ordering cycleg, s+1]. We bound the cost incurred
by policy P over (s, s+1] as follows:

Casel. Pplaces an order attimee (s, S+1]: Itincurs

an order cosK(u) > K(S+1)-

P does not order ing, 5,1]: Itincurs a holding
cost of at leasH(s, s+1). Moreover,P orders
the units used to serve the demandsgng, 1]

at a previous point in tima < s, incurring

an additional linear order cost and holding cost
of (c(s) + [; h(u)du) A(s:, s1). According to
equation 6, we thus have:

Case2.



C¥ (s, §.1) = (c(sf) - h(u)du) AS, $2)

+H(s, s11)
> c(s)A(S, S41) + H(S, S41)
> K(S+l)

Thus for anyi < nand ordering cycleq, s.1], we have:

CP (s, si41) = 2K(si11) < 2C7(s, S1)

Finally, one can use similar arguments to prove that we

have
C* (50 T) = c(50)A(S, T) + H(sn, T) < C°

and the cost incurred by the balancing policy over the
entire planning horizon can be bounded as follows:

n-1
CP(0,T) = C™(0,tg) + . C(s, §12) + C(s, T)
i=1
n-1
= CP(0,to) + ) 2K(42) + C(s, T)
i=1
n-1
< CP(O,to) + . 2C™(s, 111) + C7 (s, T)
i=1
< 2C°(0,T)

For the backward algorithm, the cost accounting for
a cycle 6, t] of the balancing policy is slightly modified
since we now account for the order cost in persazhd
the holding cost overd t). As a consequence, a cycle is
denoted §, t) in the remaining of the proof.

Let P be a feasible policy for the problem with
nondecreasing order costs.
where the first order is place earlier thgns, < to. By
definition we have:

C®(to, Sh-1) = K(sn) + c(sn)A(to. $n-1)
+ H(sn, $1-1) — H(sn, o)
< 2K(sn)

On the other hand, eithét orders at some time in-
stantu € [s,, $,-1) and incurs a fixed order coki{u) >

K(sn), or it does not and the units used to serve demands

in (to, S-1] are ordered in some previous perigck s,.
15

Therefore we have:

S
C¥(to, $11) = (c(s“) + f h(u)du) Alto, $1.2)

+ H(sn, S$-1) = H(sh, o)
< ¢(Sh)A(to, Sn-1)

+ H(sh, $1-1) = H(sn, to)
< K(sn)

Fori < n, we bound the cost incurred by poli&over
the cycle B, 5-1) using similar arguments as the for-
ward case: EitheP places an order ing, 5-1) and in-
curs an order cost of at leak{(s) or it does not and
thus incurs a linear order cost and holding cost of at
leastK(s) to serve demands irs| 5_1). Therefore we
have:

CPH(0,T) = C™(0, ) + »_ C™(s,51)
i=1
<CP0.5) + ) 2K(s)

i=1

n
<C"O.5)+2) C7(s.5-0)
i=1

< 2C*(0, T)

and the proof follows.
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