
HAL Id: hal-00947049
https://hal.science/hal-00947049

Preprint submitted on 14 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Maximum flow under proportional delay constraint
Pierre Bonami, Dorian Mazauric, Yann Vaxès

To cite this version:
Pierre Bonami, Dorian Mazauric, Yann Vaxès. Maximum flow under proportional delay constraint.
2014. �hal-00947049�

https://hal.science/hal-00947049
https://hal.archives-ouvertes.fr

Maximum flow under proportional delay constraint

Pierre Bonamia,b, Dorian Mazaurica, and Yann Vaxèsa

(a) Aix-Marseille Université, CNRS, LIF UMR 7279, 13000, Marseille, France.
(b) IBM ILOG CPLEX, Madrid, Spain.

{pierre.bonami,dorian.mazauric,yann.vaxes}@lif.univ-mrs.fr

Abstract. Given a network and a set of source destination pairs (connections), we con-
sider the problem of maximizing the sum of the flow under proportional delay constraints.
In this paper, the delay for crossing a link is proportional to the total flow crossing this
link. If a connection supports non-zero flow, then the sum of the delay along any path
corresponding to that connection must be lower than a given bound. The constraints of
delay are on-off constraints because if a connection does not support non-zero flow, then
there is no constraint for that connection. The difficulty of the problem comes from the
choice of the connections supporting non-zero flow.
We first prove a general approximation ratio using linear programming for a variant of
the problem. We then prove a Polynomial Time Approximation Scheme when the graph
of intersection of the paths has bounded treewidth. We finally prove that the problem is
NP-hard even when the network is a tree.

Keywords: Maximum flow, on-off delay constraints, polynomial time approximation scheme
(PTAS), dynamic programming, bounded treewidth, linear programming, NP-hardness.

1 Introduction

The multi-commodity flow problem is a classical network flow problem with multiple commodities
(flow demands) between different source and sink nodes. This problem has been widely studied in
the literature. Given a network, a set of capacities on edges, and a set of demands (commodities),
the problem consists in finding a network flow satisfying all the demands and respecting capacities
and flow conservation constraints. The integer version of the problem is NP-complete [6], even
for only two commodities and unit capacities (making the problem Strongly NP-complete in this
case). In that version, the problem consists in producing an integer flow satisfying all demands
and respecting the previously mentionned constraints. However, if fractional flows are allowed,
the problem can be solved in polynomial time through linear programming [4, 1, 9].

Network operators must satisfy some Quality of Service requirements for their clients. One
of the most important parameters in telecommunications networks is the end to end delay of a
unit of flow between a source node and a destination node. This requirement is not taken into
consideration in the multi-commodity flow problem. The delay through a link depends on the
amount of flow supported by this link; classicaly it is modeled by a convex function. The end
to end delay for a demand and a path associated with this demand, is the sum of the delay
through all links of this path. Some papers focused on minimizing the mean end to end delay.
This problem consists in minimizing a convex function under linear constraints [3, 10] and can be
solved using semidefinite programming [11]. Other papers focused on finding a multi-commodity
flow that satisfies the demands and that minimizes the maximum end to end delay [5].

As the authors of [2], we think that a more realistic problem consists in adding strict end to
end delay constraints for all connections. Indeed, in communication networks, there are multiple
classes of services, and for each of them, it is crucial to respect a certain level of Quality of Service,

2 P. Bonami, D. Mazauric, Y. Vaxès

that is respecting a threshold for the end to end delay. It is why we study a multicommodity flow
problem in which all demands have to respect an end to end delay constraint.

In this paper, we focus on multicommodity network flow problems in which each edge possesses
a proportional latency function that describes the common delay experienced by the flow on that
edge as a function of the flow rate. This problem models congestion effects that appear in a variety
of applications such as communication networks, vehicular traffic, supply chain management, or
evacuation planning.

We investigate the problem of maximizing the sum of the flow under proportional delay
constraints. We allow fractional flows for all connections. As mentionned before, we have a end
to end delay constraint for each demand. But, if a path associated with one connection does not
support non-zero flow, then the constraint is not considered. These on-off constraints make the
problem more difficult to solve than just a simple linear program [8].

We formally present our problem in Section 1.1. We then describe a simple example in Sec-
tion 1.2 and preliminary results in Section 1.3. We present our contributions in Section 1.4.

1.1 Problem formulation and model

Let G = (V,E) be a connected graph (that represents a network) with a coefficient αe for each
edge e ∈ E. Let {(s1, t1), . . . , (sm, tm)} be a set of m source destination pairs (connections). Let
P = {P1, . . . , Pm} be a set of m paths in G. The path Pi corresponds to the source destination
pair (si, ti) for all i = 1, . . . ,m. Without loss of generality, we suppose that there is a unique
path for each source destination pair. As described later, the objective is to maximize the sum of
the flows, and so if there are several paths for a connection, we assign a source destination pair
to each path. In that case (si, ti) can be equal to (sj , tj) with i 6= j. We denote by xi the flow
through the path Pi for all i = 1, . . . ,m. We suppose that the delay τe for crossing an edge e ∈ E
is proportional to the total flow

∑

i:e∈E(Pi)
xi crossing the edge e, i.e. τe = αe

∑

i:e∈E(Pi)
xi. Let

λ > 0. For all i = 1, . . . ,m, we require for path Pi that, if xi > 0, then the end to end delay
∑

e∈Pi
τe is at most λ. By scaling the coefficients of the αe, we can make this bound λ equal to one.

A multicommodity flow x = (x1, . . . , xm) satisfies the latency requirement if for all j = 1, . . . ,m
such that xj > 0, the following constraint for path Pj is satisfied:

∑

e∈E(Pj)
τe ≤ 1. Using the

notation βi,j :=
∑

e∈E(Pi)∩E(Pj)
αe, this constraint can be written as follows:

∑m
i=1 βi,jxi ≤ 1.

The Maximum Flow under Delay Constraint problem consists in finding among the solutions
satisfying these constraints a solution of maximum value

∑m
i=1 xi. In other words, the problem

remains to solve:






Max
∑m

i=1 xi
∑m

i=1 βi,jxi ≤ 1 j = 1, . . . ,m xj > 0
xi ≥ 0 i = 1, . . . ,m

The hardness of this problem comes from the choice of the paths supporting a non-zero flow.
Indeed, if we are given a set of paths P∗ ⊆ P carrying non-zero flow in some optimal solution,
then the problem becomes polynomial since it reduces to solve the linear program LP (P∗).
Without loss of generality let P∗ = {P1, . . . , Pm∗} with m∗ ≤ m.

LP (P∗)







Max
∑m∗

i=1 xi
∑m∗

i=1 βi,jxi ≤ 1 j = 1, . . . ,m∗

xi ≥ 0 i = 1, . . . ,m∗

The dual of this linear program is:

DLP (P∗)











Min
∑m∗

j=1 yj
∑m∗

j=1 βi,jyj ≥ 1 i = 1, . . . ,m∗

yj ≥ 0 j = 1, . . . ,m∗

Maximum flow under proportional delay constraint 3

s2s1 t3t2s3t1

Fig. 1. Instance of the Maximum Flow under Delay Constraint problem. The graph G = (V,E) is a path
composed of seven nodes and αe = 1 for all e ∈ E. There are three source destination pairs: (s1, t1),
(s2, t2), and (s3, t3). The three paths are represented above G.

Note that LP (P∗) and its dual DLP (P∗) differ only by the sense of inequalities and the direction

of optimization. In particular, if the system of equations
∑m∗

i=1 βi,jxi = 1, j = 1, . . . ,m∗, has a
solution then this solution is optimal for the primal and for the dual since it satisfies both primal
and dual complementary slackness conditions.

1.2 Example

Consider the path G = (V,E) described in Figure 1 and the three source destination pairs (s1, t1),
(s2, t2), and (s3, t3). The path Pi for (si, ti) is the unique simple path between si and ti in G,
for all i ∈ {1, 2, 3}. We set αe = 1 for all e ∈ E. The Maximum Flow under Delay Constraint
problem remains to solve:























Max x1 + x2 + x3

x1(3x1 + 2x2) ≤ x1

x2(2x1 + 4x2 + x3) ≤ x2

x3(x2 + 2x3) ≤ x3

x1, x2, x3 ≥ 0

The first constraint means that, if the path P1 supports a non-zero flow x1, then the end to end
delay for connection (s1, t1) must be at most one. The delay for crossing the leftmost edge of P1

is x1. The delay is x1 + x2 for each of the two other edges. Thus, if x1 > 0, then 3x1 + 2x2 ≤ 1.
Note that if x1 = 0, the first constraint is always satisfied. The second and the third inequalities
are constructed similarly.

One can observe that x∗ = (1/3, 0, 1/2) is the optimal solution. Note that connection (s2, t2)
does not support non-zero flow, that is x2 = 0, and so the second constraint is satisfied. That
explains why the end to end delay 2x1+4x2+x3 = 7/6 > 1 for connection (s2, t2) is not satisfied.

1.3 Preliminaries

We first prove in Lemma 1 that we can consider instances such that the path of any connection
is not included in a path of another connection (but the paths may intersect).

Lemma 1. Let I be an instance of the Maximum Flow under Delay Constraint problem. If there

are two different connections Pj and Pk such that E(Pk) ⊆ E(Pj), then there is an optimal

solution x∗ such that x∗
j = 0.

Proof. Consider any admissible flow x for I such that xj > 0. We construct another admissible
flow x′ from x in which we only change the amount of flow for paths Pj and Pk. More precisely,
we set x′

k := xk + xj , x
′
j := 0, and x′

i := xi for all i ∈ {1, . . . ,m} \ {j, k}. Clearly, the total

amount of flow is unchanged, that is
∑m

i=1 xi =
∑m

i=1 x
′
i. Let τ and τ ′ denote the vector of

flow per edge for x and x′, respectively. By construction of x′, we get τ ′e ≤ τe for all e ∈ E
because E(Pk) ⊆ E(Pj). As x is an admissible flow, then it follows that

∑

e∈E(Pi)
τ ′e ≤ 1, for all

4 P. Bonami, D. Mazauric, Y. Vaxès

i = 1, . . . ,m. Thus, the vector of flow x′ is admissible. To conclude, if x is an optimal solution,
then x′ is an optimal solution such that x′

j = 0. ⊓⊔

By Lemma 1, we only consider instances such that E(Pk) 6⊆ E(Pj) and E(Pj) 6⊆ E(Pk) for
all j, k ∈ {1, . . . ,m}, j 6= k.

Let us define the graph of intersection of the paths, denotedH, of an instance of the Maximum
Flow under Delay Constraint problem. The set of nodes V (H) = {h1, . . . , hm} corresponds to
the set of paths P = {P1, . . . , Pm}. For i, j ∈ {1, . . . ,m}, i 6= j, there is an edge {hi, hj} ∈ E(H)
between two nodes hi ∈ V (H) and hj ∈ V (H) if, and only if, there exists e ∈ E such that
e ∈ E(Pi) ∩ E(Pj), that is when Pi and Pj share at least one edge. The graph of intersection of
the paths H of the instance depicted in Figure 1 is a path composed of three nodes. Without
loss of generality, we assume that the graph H is a connected graph.

1.4 Contributions

• In Section 2, we analyze the quality of the solution given by the linear program for a variant of
the Maximum Flow under Delay Constraint problem in which all the delay constraints must
be satisfied even for connections that do not support flow. We prove a general bound for the
ratio between the value of such a solution and the value of an optimal solution, and so we get
a polynomial approximation algorithm. We deduce a polynomial L-approximation algorithm
where L is the size of a longest path of P. We also prove a polynomial 2-approximation
algorithm when the graph G is a path.

• In Section 3, we prove a Polynomial Time Approximation Scheme when the graph of intersec-
tion of the paths H has bounded treewidth. To do that, we first developp an exact dynamic
programming algorithm for a variant of the problem in which the possible amount of flow
per connection is taken from a given set X. The Polynomial Time Approximation Scheme
is based on the fact that the dynamic programming algorithm is polynomial when H has
bounded treewidth and when X is a constant (that depends on the approximation ratio).

• In Section 4, we show that the problem is NP-hard even if the graph G is a tree.

2 Approximation Algorithms

We first define a variant of the Maximum Flow under Delay Constraint problem, called Maximum
Flow under Strong Delay Constraint problem, for which all the end to end delay constraints must
be satisfied even for connections that do not support flow. This problem is polynomial since it
reduces to solve the following linear program:

LP (P)







Max
∑m

i=1 xi
∑m

i=1 βi,jxi ≤ 1 j = 1, . . . ,m
xi ≥ 0 i = 1, . . . ,m

Consider the example of Figure 1. One can observe that x = (1/4, 0, 1/2) is an optimal solution
for this variant of the problem. Such a solution for the Maximum Flow under Strong Delay
Constraint problem obtained by solving LP (P) is closed to the optimal solution x∗ for the
Maximum Flow under Delay Constraint problem. Indeed, (x∗

1 + x∗
2 + x∗

3)/(x1 + x2 + x3) = 10/9.
In this section, we analyze the ratio between the value of an optimal solution for the Maxi-

mum Flow under Strong Delay Constraint problem and the value of an optimal solution for the
Maximum Flow under Delay Constraint problem. We then deduce some polynomial approxima-
tion algorithms based on the resolution of the linear program LP (P) for the Maximum Flow

Maximum flow under proportional delay constraint 5

under Strong Delay Constraint problem. More precisely, we first prove a general polynomial ap-
proximation algorithm (Theorem 1). We then deduce a polynomial L-approximation algorithm
where L = maxi=1,...,m |E(Pi)| is the size of a longest path (Corollary 1) and we finally prove
a polynomial 2-approximation algorithm when the graph is a path (Corollary 2). We conclude
the section by proving another polynomial 2-approximation algorithm when the graph is a path
(Lemma 3). We conjecture that a generalization of this method could give a Polynomial Time
Approximation Scheme when the graph is a path.

We prove in Theorem 1 a polynomial approximation algorithm based on the resolution of the
linear program LP (P) for the Maximum Flow under Strong Delay Constraint problem. Let us
first define some parameters and prove Lemma 2.

Definition 1. For all k = 1, . . . ,m, let S∗
k ⊆ {1, . . . ,m} \ {k} be a maximum cardinality set of

indices such that for all i ∈ S∗
k , there exists e ∈ E(Pk) ∩ E(Pi) such that for all j ∈ S∗

k \ {i},
e /∈ E(Pj). Let |S

∗| = maxi=1,...,m |S∗
i |.

Lemma 2. Let I be any instance. Let x∗ be an optimal solution for the Maximum Flow under

Delay Constraint problem and let x be an optimal solution for the Maximum Flow under Strong

Delay Constraint problem. Then
∑m

i=1 xi ≥
∑m

i=1 x
∗
i /|S

∗|.

Proof. Recall that if x∗
k > 0, then

∑

e∈E(Pk)
τ∗e ≤ 1. We first prove that if x∗

k = 0, then
∑

e∈E(Pk)
τ∗e ≤ |S∗

k |. Let Pk be a path such that x∗
k = 0. Consider a minimal (by inclusion)

set of paths {Pi : i ∈ S} supporting non-zero flow that covers all edges of Pk supporting non-zero
flow. By definition of S∗

k , |S| ≤ |S∗
k |. Assign to each edge e ∈ E(Pk) supporting non-zero flow, a

path Pi, i ∈ S such that e ∈ Pi. For each i ∈ S, let Ei be the set of edges assigned to the path
Pi. Since x∗

i > 0,
∑

e∈Ei
τ∗e ≤ 1, that is the sum of the delays on the edges of Ei is at most 1.

There are |S| groups of edges, and thus
∑

e∈E(Pk)
τ∗e ≤ |S| ≤ |S∗

k |, that is the total delays on the

edges of Pk is at most |S∗
k |.

For all k ∈ {1, . . . ,m} such that x∗
k = 0, then

∑

e∈E(Pk)
τ∗e ≤ |S∗

k |. Consider the solution

x′ obtained by dividing all the flows of x∗ by |S∗|. Formally, set x′
i := x∗

i /|S
∗| for all i =

1, . . . ,m. Recall that |S∗| = maxi=1,...,m |S∗
k |. By previous claims, x′ is an admissible solution.

By construction,
∑m

i=1 x
′
i =

∑m
i=1 x

∗
i /|S

∗|. To conclude, one can observe that an optimal solution
x of the Maximum Flow under Strong Delay Constraint problem obtained by solving the linear
program LP (P) is such that

∑m
i=1 xi ≥

∑m
i=1 x

′
i. Indeed all the end to end delay constraints for

x′ are satisfied even for connections that do not support flow, and so x′ is an admissble solution
for the Maximum Flow under Strong Delay Constraint problem. ⊓⊔

By Lemma 2, we deduce a polynomial |S∗|-approximation algorithm.

Theorem 1. There exists a polynomial |S∗|-approximation algorithm for the Maximum Flow

under Delay Constraint problem.

Corollary 1. Let I be any instance and let L = maxi=1,...,m |E(Pi)|. Let x
∗ be an optimal solu-

tion for the Maximum Flow under Delay Constraint problem and let x be an optimal solution for

the Maximum Flow under Strong Delay Constraint problem. Then
∑m

i=1 xi ≥
∑m

i=1 x
∗
i /L. There

exists a polynomial L-approximation algorithm for the Maximum Flow under Delay Constraint

problem.

When the graph G is a path, one can observe that |S∗| ≤ 2. We deduce in Corollary 2 a
polynomial 2-approximation algorithm for such class of instances.

6 P. Bonami, D. Mazauric, Y. Vaxès

Corollary 2. Let I be any instance and suppose that the graph is a path. Let x∗ be an optimal

solution for the Maximum Flow under Delay Constraint problem and let x be an optimal solution

for the Maximum Flow under Strong Delay Constraint problem. Then
∑m

i=1 xi ≥
∑m

i=1 x
∗
i /2.

There exists a polynomial 2-approximation algorithm for the Maximum Flow under Delay Con-

straint problem when the graph is a path.

Note that we cannot find a similar result when the graph G is a tree. Indeed, |S∗| may be
arbitrarily large for this class of graphs. On the other hand, it gives a L-approximation algorithm
for instances such that every paths between source-destination pair consist of at most L edges.

The rest of this section is devoted to prove the last point of Corollary 2 (polynomial 2-
approximation algorithm when the graph is a path) with another technique. We conjecture that
a generalization could give a polynomial time (k + 1)/k-approximation algorithm (with k ≥ 1 a
constant integer). A solution x of the Maximum Flow under Delay Constraint problem is said to
be independent if its support {Pk : xk > 0} is a family of edge-disjoint paths. In other words, x
is independent if the set of vertices {hk : xk > 0} ⊂ V (H) forms an independent set of H. Recall
that the graph H is the graph of intersection of the paths. We prove in Lemma 3 that a best
independent solution has a value which is at least half the total flow of an optimal solution (the
proof is given in Section 6).

Lemma 3. Let I be any instance and suppose that the graph is a path. Let x∗ be an optimal

solution and let x be a best indepedent solution for the Maximum Flow under Delay Constraint

problem. Then
∑m

i=1 xi ≥
1
2

∑m
i=1 x

∗
i . There exists a polynomial 2-approximation algorithm for

the Maximum Flow under Delay Constraint problem when the graph is a path.

For all k = 1, . . . ,m, the weight wk := 1/
∑

e∈E(Pk)
αe of a node hk ∈ V (H) represents the

maximum amount of flow on the path Pk if the paths sharing an edge with Pk do not carry any
flow. Computing an optimal independent solution when G is a path reduces to the maximum
weighted independent set on H and is therefore polynomial because H is an interval graph.

Note that we cannot find a similar result when the graph G is a tree. Indeed, a best indepen-
dent solution may be arbitrarily far than an optimal solution for this class of graphs.

As mentionned before, we conjecture better approximations for paths generalizing this tech-
nique. Let K ≥ 1 be any constant integer. We construct the graph HK as follows. The set of
vertices of HK are all the subsets of paths of size at most K such that any two paths of such a
subset share at least one edge. There is an edge between two nodes u ∈ V (HK) and v ∈ V (HK)
if, and only if, there is at least one edge that belongs to one path of the set of u and that belongs
to one path of the set of v. The weight of a node u is the maximum total amount of flow that can
be sent through the paths that belongs to the set of u if the paths (not in the set of u) sharing
an edge with at least one path of the set of u do not carry any flow. The graph HK and the
set of weights can be computed in polynomial time because K is constant. The idea is then to
compute a maximum weighted independent set of HK . We conjecture that this procedure gives a
((K+1)/K)-approximation algorithm when the graph G is a path. Note that K = 1 corresponds
to the polynomial 2-approximation algorithm proved in Lemma 3.

3 Polynomial Time Approximation Scheme for some classes

We first define a variant of the problem, called Maximum Discrete Flow under Delay Constraint
problem, as follows. The only change is that the possible amount of flow for all connections is
taken among a finite set of non negative values containing zero. More formally, given a finite

Maximum flow under proportional delay constraint 7

set X of non negative values containing zero, xi ∈ X for all i = 1, . . . ,m. In other words, the
Maximum Discrete Flow under Delay Constraint problem remains to solve:







Max
∑m

i=1 xi
∑m

i=1 βi,jxi ≤ 1 j = 1, . . . ,m xj > 0
xi ∈ X i = 1, . . . ,m

Consider the instance described in Figure 1 with X = {0, 1/3, 2/3, 1}. One can observe that
x = (1/3, 0, 1/3) is an optimal solution for this variant of the problem.

In this section, we prove an exact dynamic programming algorithm for the Maximum Dis-
crete Flow under Delay Constraint problem (Lemma 4). We then deduce a Polynomial Time
Approximation Scheme for the Maximum Flow under Delay Constraint problem when the graph
of intersection of the paths H has bounded treewidth (Theorem 2).

Lemma 4. Let X be a finite set of non negative values containing zero. There exists an exact

O(m|X|tw(H)+1)-time complexity algorithm for the Maximum Discrete Flow under Delay Con-

straint problem where tw(H) is the treewidth of H.

Proof. Consider a tree decomposition T of H, with set of nodes V (T) = {Y1, . . . , Yn}, where
each Yi is a subset of V (H), satisfying the following properties:

– The union ∪n
i=1Yi of all sets Yi equals V (H), that is each vertex h ∈ V (H) is contained in

at least one node of T .
– If Yi and Yj both contain a vertex h ∈ V (H), then all nodes Yk of T in the (unique) path

between Yi and Yj contain h as well. Equivalently, the tree nodes containing vertex h form a
connected subtree of T .

– For every edge {h, h′} ∈ E(H), there is a subset Yi that contains both h and h′, that is
vertices are adjacent in H only when the corresponding subtrees have a node in common.

We suppose that T is such that tw(H) = maxi=1,...,n |Yi| − 1. Let t = tw(H) + 1. Let r ∈ V (T)
be the root (arbitrarily chosen) of the tree T . The set N(u) represents the children of u for all
u ∈ V (T). Let du = |N(u)|. The subtree Tu is the connected component of T containing u when
removing the edge {u, u′} where u′ is the parent of u, for all u ∈ V (T) \ {r}. Recall that the
set of nodes V (H) = {h1, . . . , hm} corresponds to the set of source destination pairs, and so
corresponds to the set of paths P = {P1, . . . , Pm}. Let us define Pu = {Pi : ∃v ∈ V (Tu) : hi ∈
v, hi /∈ u′, i = 1, . . . ,m} and let Qu = {Pi : ∃v ∈ V (Tu) : hi ∈ v, hi ∈ u′, i = 1, . . . ,m} where u′

is the parent of u in T , for all u ∈ V (T). Note that the set Pu ∪Qu represents all the paths that
correspond to nodes of subtree Tu.

Let u ∈ V (T). Let {q1u, q
2
u, . . . , q

|X||Qu|

u } be the set of all possible vectors of flows for the set of
paths Qu. For all i = 1, . . . , |X||Qu|, let xi

u be an optimal solution for the sub-problem induced by
the set of paths Pu∪Qu when the vector of flows for paths of Qu is qiu. Without loss of generality,
we suppose that the vector qiu is admissible for all u ∈ V (T) and for all i = 1, . . . , |X||Qu|.

We aim at computing vectors xi
u for all i = 1, . . . , |X||Qu| and for all u ∈ V (T). As |Qu| ≤ t,

then there are O(|X|t) vectors to compute for each u.
We proceed by induction. Consider any leaf u ∈ V (T). Then |Pu ∪ Qu| ≤ t by construction

of T . Thus, we compute xi
u for all i = 1, . . . , |X||Qu| by enumerating all the possible vectors for

paths of Qu. This can be done in O(|X||Pu∪Qu|) = O(|X|t)-time.
Consider a node u ∈ V (T) such that u is not a leaf of T . Let N(u) = {u1, . . . , udu

} be the set

of children of u. Suppose we have computed xi
uj

for all j = 1, . . . , du and for all i = 1, . . . , |X||Quj
|.

We now compute xi
u for all i = 1, . . . , |X||Qu|. In other words, we compute for all possible vectors

of flows for paths of Qu, an optimal solution for the sub-problem induced by the set of paths
Qu∪Pu. To do that, let Ru = Pu\∪

du

j=1Puj
. We compute for all possible vectors of flows for paths

8 P. Bonami, D. Mazauric, Y. Vaxès

of Qu∪Ru, an optimal solution for the sub-problem induced by the set of paths Qu∪Ru∪
du

j=1Puj
.

Let {r1u, . . . , r
|Qu∪Ru|
u } be the set of all possible vectors of flow forQu∪Ru. Note that |Qu∪Ru| ≤ t.

By construction of T and by definition of P and Q, if a path P ∈ Puj′
, for some j′ ∈ {1, . . . , du},

then P /∈ Puj
for all j ∈ {1, . . . , du} \ {j

′}. Thus, for all i = 1, . . . , |X||Qu∪Ru|, we consider the
vector of flow riu and we compute an optimal solution for the sub-problem induced by the set of
paths Qu ∪Ru ∪ Puj

for all j = 1, . . . , du. By previous remarks, that can be done independently
for each j, and so such a computation can be done in O(du|X|t)-time because |Qu ∪ Ru| ≤ t.
Finally, for all possible vectors of flows for paths of Qu, we keep an optimal solution for the
sub-problem induced by the set of paths Qu ∪ Pu. This can be done in O(|X|t)-time. Thus, we
have computed xi

u for all i = 1, . . . , |X||Qu|.
We now prove that, for all i = 1, . . . , |X||Qu|, xi

u represents an optimal vector for the sub-
problem induced by the set of paths Pu∪Qu when the vector of flow for paths of Qu is qiu. Suppose
it is not the case and let i ∈ {1, . . . , |X||Qu|} be such that x = xi

u is not an optimal vector. Let
x′ be an optimal vector for the sub-problem induced by the set of paths Pu ∪ Qu. Without
loss of generality, the |Pu| first indices correspond to flows for paths of Pu. Furthermore, the
|∪j=1,...,du

Puj
| first indices correspond to flows for paths of ∪j=1,...,du

Puj
. By definition, xk = x′

k

for all k ∈ {|Pu|+ 1, . . . , |Pu|+ |Qu|}. Furthermore, as we have computed xu among all possible
vectors of flows for paths of Quj

for all j ∈ {1, . . . , du}, then we assume that xk = x′
k for all

k ∈ {| ∪j=1,...,du
Puj

| + 1, . . . , |Pu|}. Thus, there exists j ∈ {1, . . . , du} such that the sum of the
flows for the set of paths Puj

∪Quj
with x′ is strictly greater than for x. As Puj1

∩ Puj2
= ∅ for

all j1, j2 ∈ {1, . . . , du}, j1 6= j2, then it means that there exists k ∈ {1, . . . , |X|Quj } such that
xk
uj

is not optimal for the sub-problem induced by the set of paths Puj
∪ Quj

when the vector

of flow for the paths of Quj
is qkuj

. A contradiction with the induction hypothesis. Thus, for all

i = 1, . . . , |X||Qu|, xi
u represents an optimal vector for the sub-problem induced by the set of

paths Pu ∪Qu when the vector of flow for paths of Qu is qiu.
Finally, we have computed xi

u for all i = 1, . . . , |X||Qu| and for all u ∈ V (T). As Qr = ∅, we
deduce an optimal vector of flow choosing the unique vector x1

r of the root of T . Thus x∗ = x1
r

is an optimal solution for the Maximum Discrete Flow under Delay Constraint problem. The
complexity of the algorithm is O(|X|t

∑

u∈V (T) du) = O(|E(T)||X|t) = O(m|X|tw(H)+1). ⊓⊔

Let xmax = maxi=1,...,m 1/
∑

e∈E(Pi)
αe and xmin = mini=1,...,m 1/

∑

e∈E(Pi)
αe. We prove

in Theorem 2 a Polynomial Time Approximation Scheme for the Maximum Flow under Delay
Constraint problem when the graph H has bounded treewidth and xmax/xmin is bounded by a
constant.

Theorem 2. Let b, t ≥ 1 be any constant values. For any ε > 0, there is a polynomial (1 + ε)-
approximation algorithm for the Maximum Flow under Delay Constraint problem when tw(H) ≤ t
and xmax/xmin ≤ b.

Proof. To prove Theorem 2, we show that any optimal solution xε for an instance of the Maximum
Discrete Flow under Delay Constraint problem (the set X will be described later) is such that
∑m

i=1 x
ε
i ≥ (

∑m
i=1 x

∗
i)/(1 + ε), where x∗ is an optimal solution for the Maximum Flow under

Delay Constraint problem when xmax/xmin ≤ b and tw(H) ≤ t.
As tw(H) ≤ t, then there exists an independent set IS(H) of H such that |IS(H)| ≥

|V (H)|/(t+1). Indeed H has degeneracy at most t, and then we construct IS(H) as follows: we
add one node of degree at most t in IS(H), we remove the neigbhors of this node, and we repeat
this process on the remaining graph (of degeneracy at most t). The number of steps is at least
V (H)/(t+ 1). Let R be any constant such that R ≥ m/|IS(H)|. Recall that m = V (H).

Let ε′ be such that 0 < ε′ < ε. Let X0 = ∪p
i=0{xmax/(1+ε′)i} where p is such that xmax/(1+

ε′)p ≤ (ε− ε′)xmin/R and X = {0} ∪X0 ∪ {xmin}. Thus, (1+ ε′)p ≥ xmaxR/((ε− ε′)xmin), and

Maximum flow under proportional delay constraint 9

so p ≥ log1+ε′(xmaxR/((ε− ε′)xmin)). One can check that p is constant because xmax/xmin ≤ b,
with b a constant, R is also a constant, and ε′ only depends on ε (e.g. ε′ = ε/2). Thus, |X| = O(1).

By Lemma 4, we compute in polynomial time an optimal solution xε for the Maximum
Discrete Flow under Delay Constraint problem with X as set of possible flow values. Recall that
t and |X| are constant.

Let us define f(x+) =
∑m

i=1 xi1xi≥xmax/(1+ε′)p and f(x−) =
∑m

i=1 xi1xi<xmax/(1+ε′)p for
any vector x. We set f(x) = f(x+) + f(x−). Consider an optimal solution x∗ for the Maximum
Flow under Delay Constraint problem. We get f(x∗) < f(x∗+) +mxmax/(1 + ε′)p.

We construct an auxiliary vector x′ from x∗ as follows. For all i = 1, . . . ,m, if there exists j,
1 ≤ j ≤ p, such that xmax/(1+ε′)j ≤ x∗

i ≤ xmax/(1+ε′)j−1, then set x′
i = xmax/(1+ε′)j . For all

i = 1, . . . ,m, if x∗
i < xmax/(1+ε′)p, then set x′

i = 0. We get f(x∗+)/f(x′) ≤ 1+ε′ by construction
of x′. As x′ takes flow values in X, then f(xε) ≥ f(x′) because xε is an optimal solution for the
Maximum Discrete Flow under Delay Constraint problem. Thus, f(x∗+)/f(xε) ≤ 1 + ε′.

We now prove that f(x∗)/f(xε) ≤ 1 + ε. By previous claims, it is sufficient to prove that
f(x∗+)/f(xε) + (mxmax)/((1 + ε′)pf(xε)) ≤ 1 + ε. First, recall that f(x∗+)/f(xε) ≤ 1 + ε′. It
remains to prove that (xmaxm)/((1 + ε′)pf(xε)) ≤ ε− ε′.

As R ≥ m/|IS(H)| and xmin ∈ X, then f(xε) ≥ mxmin/R. Indeed the polynomial al-
gorithm described in Lemma 4 finds, at least, a set of m/R disjoint paths (connections) with
amount of flow (at least) xmin (other connections can be zero). The corresponding nodes forms
an independent set of H. Recall that p is such that xmax/(1 + ε′)p ≤ (ε − ε′)xmin/R, and
so xmin ≥ (xmaxR)/((1 + ε′)p(ε − ε′)). Thus, f(xε) ≥ (xmaxm)((1 + ε′)p(ε − ε′)), and so
(xmaxm)/((1 + ε′)df(xε)) ≤ ε − ε′. We conclude that f(x∗)/f(xε) ≤ 1 + ε, and so the poly-
nomial time algorithm of Lemma 4 is a (1 + ε)-approximation algorithm for the Maximum Flow
under Delay Constraint problem. ⊓⊔

Let us first define χe = |{i : E(Pi)∩e 6= ∅, i = 1, . . . ,m}| for all e ∈ E, as the number of paths
that contain edge e. Let χG = maxe∈E χe be the maximum number of paths that share an edge.
Let ∆G be the maximum degree of G. We directly deduce a Polynomial Time Approximation
Scheme when the graph G is a bounded degree tree, and xmax/xmin and χG are bounded by
constants.

Corollary 3. Let b, d, t ≥ 1 be any constant values. For any ε > 0, there is a polynomial (1+ε)-
approximation algorithm for the Maximum Flow under Delay Constraint problem when the graph

G = (V,E) is a tree, xmax/xmin ≤ b, ∆G ≤ d, and χG ≤ t.

We also deduce a Polynomial Time Approximation Scheme when the graph G is a path, and
xmax/xmin and χG are bounded by constants.

Corollary 4. Let b, t ≥ 1 be any constant values. For any ε > 0, there is a polynomial (1 + ε)-
approximation algorithm for the Maximum Flow under Delay Constraint problem when the graph

G is a path, xmax/xmin ≤ b, and χG ≤ t.

However, the complexity of the Maximum Flow under Delay Constraint problem remains open
when the graph G is a path if χG is not bounded. More precisely, we don’t know if the problem
is NP-hard and if there exists a polynomial approximation algorithm with approximation ratio
less than 2.

To conclude this section, we observe that the previous results still hold with any end to end
delay for connections. More precisely, for all i = 1, . . . ,m, we require for path Pi that, if xi > 0,
then the end to end delay

∑

e∈Pi
τe is at most λi. The problem is now:







Max
∑m

i=1 xi
∑m

i=1 βi,jxi ≤ λj j = 1, . . . ,m xj > 0
xi ≥ 0 i = 1, . . . ,m

10 P. Bonami, D. Mazauric, Y. Vaxès

s1

r

sns2

u1

t0t

u0
nu0

2u0
1unu2

v01vnv2v1 v0nv02

Fig. 2. Graph used in the proof of Theorem 3.

This new version may change the values of xmax and xmin but the dynamic programming algo-
rithm of Lemma 4 for the Maximum Discrete Flow under Delay Constraint problem is unchanged.
Thus, Lemma 4 and Theorem 2 are still correct replacing 1 by λi for all i = 1, . . . ,m assuming
that xmax/xmin is bounded by a constant.

4 Hardness result for trees

This section is devoted to prove that the Maximum Flow under Delay Constraint problem is
NP-hard (Theorem 3). Recall that the problem has been proved NP-hard in [2] (for convex delay
function) and the question has been let open when the graph is a tree. Indeed their proof involves
a choice among two different paths for each connection, and so forces the graph G to have cycles.

Theorem 3. The Maximum Flow under Delay Constraint problem is NP-hard.

Our reduction uses Partition problem, a well known NP-hard problem [7]. Let n ≥ 2 and
N = {1, . . . , n}. Let I = (p1, . . . , pn) such that

∑n
i=1 pi = 2M . The problem Partition consists

in deciding whether there exists a subset S ⊂ N such that
∑

i∈S pi = M .
Let G = (V,E) be a tree with V = {s1, . . . , sn} ∪ {r, t, t′} ∪ {u1, . . . , un} ∪ {u′

1, . . . , u
′
n} ∪

{v1, . . . , vn} ∪ {v′1, . . . , v
′
n} and E = {r, t} ∪ {r, t′} ∪n

i=1 {si, r} ∪n
i=1 {t, ui} ∪n

i=1 {t′, u′
i} ∪n

i=1

{ui, vi}∪
n
i=1 {u

′
i, v

′
i}. The graph G is depicted in Figure 2. In the following, we abuse the notation

writing αu,v instead of α{u,v} for all e ∈ E. We denote by τu,v the delay for crossing any edge
{u, v} ∈ E. We set αu,v = 1 for all {u, v} ∈ E. Thus, τu,v represents the amount of flow supported
by {u, v}. We consider the capacity constraints τu,v ≤ cu,v where cu,v represents the maximum
amount of flow that can support any edge {u, v} ∈ E. For all i = 1, . . . , n, csi,r = pi, and
cr,t = cr,t′ = M . Other capacities are infinite (or sufficiently large). The source destination pairs
are (si, ui), (si, u

′
i), (t, vi), (t

′, v′i) for all i = 1, . . . , n. We denote by xu,v the amount of flow of
any connection (u, v). We consider general delay constraints as described at the end of Section 3.
We denote by λu,v the maximum end to end delay for any connection (u, v). For all i = 1, . . . , n,
λsi,ui

= λsi,u′
i
= 2pi +M and λt,vi = λt′,v′

i
= 2ε where 0 < ε < 1/n.

Note that tw(H) ≥ n− 1 = Ω(|V (H)|). Thus, the Polynomial Time Approximation Scheme
described in Section 3 does not work for this class of instances.

Maximum flow under proportional delay constraint 11

Let Pu,v be the unique path of the tree G between node u ∈ V and node v ∈ V . The Maximum
Flow under Delay Constraint problem remains to solve:























































Max
∑n

i=1 xsi,ui
+ xsi,u′

i
+ xt,vi + xt′,v′

i
∑

e∈Psi,ui
τe ≤ 2pi +M i = 1, . . . , n xsi,ui

> 0
∑

e∈Psi,u
′
i

τe ≤ 2pi +M i = 1, . . . , n xsi,u′
i
> 0

∑

e∈Pt,vi
τe ≤ 2ε i = 1, . . . , n xt,vi

> 0
∑

e∈Pt′,v′
i

τe ≤ 2ε i = 1, . . . , n xt′,v′
i
> 0

τsi,r ≤ pi i = 1, . . . , n
τr,t, τr,t′ ≤ M
xsi,ui

, xsi,u′
i
, xt,vi

, xt′,v′
i
≥ 0 i = 1, . . . , n

Finally, as the construction of the instance can be done in polynomial time, to prove Theorem 3,
it suffices to prove Lemma 5.

Lemma 5. There exists an admissible vector of flow x such that
∑n

i=1 xsi,ui
+ xsi,u′

i
+ xt,vi + xt′,v′

i
≥

2M + nε if, and only if, there exists a solution for the instance I of Partition problem.

Proof. (⇐). Suppose there exists a solution for the instance I of Partition problem. Let S ⊂ N
be such that

∑

i∈S pi = M . Let S′ = N \ S. Note that
∑

i∈S′ pi = M . We construct the vector
of flow x as follows. For all i ∈ S, xsi,ui

:= pi, xsi,u′
i
:= 0, xt,vi := 0, and xt′,v′

i
:= ε. For all

i ∈ S′, xsi,u′
i
:= pi and xsi,ui

:= 0, xt′,v′
i
:= 0, and xt,vi := ε. The total amount of flow is

∑n
i=1 xsi,ui

+ xsi,u′
i
+ xt,vi + xt′,v′

i
= 2M + nε.

We now prove that x is an admissible solution. By construction, τr,t = τr,t′ = M , and
τsi,r = pi for all i = 1, . . . , n. Thus, the capacity constraints are satisfied. Furthermore, for all
i ∈ S, τt,ui

= pi, and for all j ∈ S′, τt′,u′
j
= pj . Thus, for all i = 1, . . . , n, the total delay for

connection (si, ui) is 2pi +M and so the delay constraints are satisfied. For all i ∈ S, xt,vi = 0
and for all j ∈ S′, xt′,v′

j
= 0, and so the delay constraints are not considered by definition of the

problem. For all i ∈ S, xt′,v′
i
= ε and for all j ∈ S′, xt,vj

= ε, and so the delay constraints are
satisfied because by construction τt′,u′

i
= ε and τt,uj

= ε. Recall that λt′,v′
i
= 2ε and λt,vj = 2ε.

Finally, x is an admissible flow such that
∑n

i=1 xsi,ui
+ xsi,u′

i
+ xt,vi + xt′,v′

i
= 2M + nε.

(⇒). First, for any vector of flow x, then
∑n

i=1 xsi,ui
+ xsi,u′

i
≤ 2M because cr,t = cr,t′ = M .

Suppose there does not exist a solution for the instance I of Partition problem. We prove
that for any admissible vector of flow x, then

∑n
i=1 xsi,ui

+ xsi,u′
i
+ xt,vi + xt′,v′

i
< 2M + nε.

First assume that
∑n

i=1 xsi,ui
+ xsi,u′

i
= 2M . Since there does not exist a solution for

the instance I of Partition problem, then there exists an i ∈ N such that xsi,ui
6= 0 and

xsi,u′
i
6= 0. Without loss of generality, assume that i = 1 satisfies the previous property. Since

∑n
i=1 xsi,ui

+ xsi,u′
i
= 2M , then xs1,u1

+xs1,u′
1
= p1. Let xs1,u1

= µpi and xs1,u′
1
= (1−µ)p1 with

0 < µ < 1. The delay constraint for connection (t, v1) gives 2xt,v1 + xs1,u1
≤ 2ε. Thus, it means

that xt,v1 ≤ ε−µp1/2. The delay constraint for connection (t′, v′1) gives xt′,v′
1
≤ ε− (1−µ)p1/2.

Thus, xt,v1 + xt′,v′
1
≤ 2ε − p1/2. As the pi’s are positive integers and ε < 1/n with n ≥ 2,

then p1/2 > ε and so xt,v1
+ xt′,v′

1
< ε. For all i = 2, . . . , n, either xt,vi + xt′,v′

i
< ε or

xt,vi = ε and xt′,v′
i
= 0 or xt,vi = 0 and xt′,v′

i
= ε. Thus,

∑n
i=1 xt,vi

+ xt′,v′
i
< nε, and so

∑n
i=1 xsi,ui

+ xsi,u′
i
+ xt,vi + xt′,v′

i
< 2M + nε.

Assume that
∑n

i=1 xsi,ui
+ xsi,u′

i
< 2M . If xsi,ui

+ xsi,u′
i
> 0, for all i = 1, . . . , n, the proof

is similar to the previous case replacing pi by xsi,ui
+ xsi,u′

i
. If there exists an i ∈ N such that

xsi,ui
+ xsi,u′

i
= 0, then

∑n
i=1 xsi,ui

+ xsi,u′
i
≤ 2M − 1 because the pi’s are positive integers. We

prove the result even if xt,vi = xt′,v′
i
= ε for all i = 1, . . . , n, that is when the delay constraints

are all tights. Indeed, since ε < 1/n, we get
∑n

i=1 xsi,ui
+ xsi,u′

i
+ xt,vi + xt′,v′

i
< 2M + nε. ⊓⊔

12 P. Bonami, D. Mazauric, Y. Vaxès

5 Future works

We now recall the questions we have asked throughout the paper and add some new questions.

• What is the complexity of the Maximum Flow under Delay Constraint problem when the
graph G is a path? A first interesting open question is to determine the complexity of the
Maximum Flow under Delay Constraint problem when the graph G is a path such that all
(connections) paths share an edge e ∈ E, that is when χG = m = |P|.

• Is there a polynomial approximation algorithm with approximation ratio less than 2 when
the graph G is a path with χG unbounded? To answer this question, an idea is to analyze
the value of an maximum independent set of HK . What is the approximation ratio obtained
by computing a best independent solution for HK?

• Is there an exact polynomial algorithm for the Maximum Flow under Delay Constraint
problem when tw(H) is bounded?

• Is there classes of instances with tw(H) unbounded that admit a Polynomial Time Approx-
imation Scheme for the Maximum Flow under Delay Constraint problem?

• Is the Maximum Flow under Delay Constraint problem in APX?
• An interesting work is to develop polynomial reduction rules for the Maximum Flow under
Delay Constraint problem. For instance, we may use information given by the solutions of the
Maximum Flow under Strong Delay Constraint problem as follows. Consider any (connection)
path Pi ∈ P . For which classes of instances can we remove Pi if LP (P \ {Pi}) > LP (P)?
For which classes of instances, LP (P \ {Pi}) < LP (P) implies the existence of an optimal
solution such that xi > 0?

To conclude, we are investigating a problem in which we are allowed to reduce the delay for
a subset of links in respect with a certain given budget. As for the Maximum Flow under Delay
Constraint problem, we aim at finding a set of links to modify in order to maximize the sum of
the flows respecting the budget given for these transformations.

References

1. Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network flows: theory, algorithms,
and applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

2. Walid Ben-Ameur and Adam Ouorou. Mathematical models of the delay constrained routing prob-
lem. Algorithmic Operations Research, 1(2), 2006.

3. Dimitri Bertsekas and Robert Gallager. Data networks (2nd ed.). Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1992.

4. Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. Introduction to
Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

5. José R. Correa, Andreas S. Schulz, and Nicolás E. Stier Moses. Fast, fair, and efficient flows in
networks. Operations Research, 55(2):215–225, 2007.

6. Shimon Even, Alon Itai, and Adi Shamir. On the complexity of timetable and multicommodity flow
problems. SIAM J. Comput., 5(4):691–703, 1976.

7. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

8. Hassan Hijazi, Pierre Bonami, Gérard Cornuéjols, and Adam Ouorou. Mixed-integer nonlinear
programs featuring ”on/off” constraints. Comp. Opt. and Appl., 52(2):537–558, 2012.

9. Michel Minoux. Networks synthesis and optimum network design problems: Models, solution meth-
ods and applications. Networks, 19(3):313–360, 1989.

10. A. Ouorou, P. Mahey, and J.-Ph. Vial. A survey of algorithms for convex multicommodity flow
problems, 1997.

11. C. Touati, E. Altman, and J. Galtier. Semi-definite programming approach for bandwidth allocation
and routing in networks. Game Theory and Applications, 9:169–179, 2003.

Maximum flow under proportional delay constraint 13

6 Appendix

Proof. (of Lemma 3) Consider an optimal solution x∗ of an instance I and the instance I ′

obtained from I by removing all source-destination pairs that do not belong to the support of
x∗. Since instances I and I ′ have the same optimum and an independent solution for I ′ is also an
independent solution for I, it suffices to prove the claim of lemma 3 for I ′. For the instance I ′,
there is an optimal solution in which all delay constraints are active. This solution is therefore
an optimal solution of the linear program LP (P∗) where P∗ := {Pk : x∗

k > 0} and its value is at
most the value of any feasible dual solution y of DLP (P∗). Let xI′ be an optimal independent
solution of I ′, we will show that there exists a feasible solution yI′ of DLP (P∗) whose value is
at most twice the value of xI′ .

Let C be the set of maximal cliques of the interval graph H. Since H is perfect, the caracter-
istic vector z of maximum weighted independent set is an optimal solution of the following linear
program LPQ(P∗) :

(LPQ(P∗))







Max
∑

k wkzk
∑

k:Pk∈C zk ≤ 1 ∀C ∈ C
zk ≥ 0 ∀k.

Consider the dual (DLPQ(P∗)) of this linear program :

(DLPQ(P∗))







Min
∑

C tC
∑

C:Pk∈C tC ≥ wk ∀k
tC ≥ 0 ∀C ∈ C.

Let t be an optimal solution of DLPQ(P∗). The following algorithm computes from t, a feasible
solution y of DLP (P∗) whose value is at most twice the value of t. Let C ∈ C, we denote i(C)
(resp. j(C)) the index of the leftmost (resp. rightmost) path that belong to the clique C.

1. For all i = 1, . . . ,m do
2. yi := 0
3. For all C ∈ C do
4. yi(C) := yi(C) + tC
5. yj(C) := yj(C) + tC

For all k = 1, . . . ,m, if e ∈ Pk the following inequality holds :

∑

i:e∈Pi

yi ≥
∑

C:Pk∈C

tC ≥ wk.

Since t is a feasible solution of DLPQ(P∗), the second inequality is trivially true. In order to
verify the first inequality, note that if the path Pk belongs to the clique C then e ∈ E(Pk) implies
that e ∈ E(Pi(C)) or e ∈ E(Pj(C)). Therefore, if a clique C contributes tC for the second sum
then yi(C) or yj(C) contribubes tC for the first one. We conclude that, for all paths Pk ∈ P∗,

∑

e∈Pk

αe(
∑

i:e∈Pi

yi) ≥
∑

e∈Pk

αewk = wk

∑

e∈Pk

αe = 1.

This shows that y is a feasible solution of DLP (P∗). By the definition of y, its value is at most
twice the weight of a maximum weight stable set S of H. The independent solution corresponding
to S is thus a 2-approximation for the instance I ′, this concludes the proof of Lemma 3. ⊓⊔

