Pierre Bonami
email: pierre.bonami@lif.univ-mrs.fr

Dorian Mazauric
email: dorian.mazauric@lif.univ-mrs.fr

Yann Vaxès
email: yann.vaxes@lif.univ-mrs.fr

Maximum flow under proportional delay constraint

Keywords: Maximum flow, on-off delay constraints, polynomial time approximation scheme (PTAS), dynamic programming, bounded treewidth, linear programming, NP-hardness

Given a network and a set of source destination pairs (connections), we consider the problem of maximizing the sum of the flow under proportional delay constraints. In this paper, the delay for crossing a link is proportional to the total flow crossing this link. If a connection supports non-zero flow, then the sum of the delay along any path corresponding to that connection must be lower than a given bound. The constraints of delay are on-off constraints because if a connection does not support non-zero flow, then there is no constraint for that connection. The difficulty of the problem comes from the choice of the connections supporting non-zero flow. We first prove a general approximation ratio using linear programming for a variant of the problem. We then prove a Polynomial Time Approximation Scheme when the graph of intersection of the paths has bounded treewidth. We finally prove that the problem is NP-hard even when the network is a tree.

Introduction

The multi-commodity flow problem is a classical network flow problem with multiple commodities (flow demands) between different source and sink nodes. This problem has been widely studied in the literature. Given a network, a set of capacities on edges, and a set of demands (commodities), the problem consists in finding a network flow satisfying all the demands and respecting capacities and flow conservation constraints. The integer version of the problem is NP-complete [START_REF] Even | On the complexity of timetable and multicommodity flow problems[END_REF], even for only two commodities and unit capacities (making the problem Strongly NP-complete in this case). In that version, the problem consists in producing an integer flow satisfying all demands and respecting the previously mentionned constraints. However, if fractional flows are allowed, the problem can be solved in polynomial time through linear programming [START_REF] Thomas | Introduction to Algorithms[END_REF][START_REF] Ravindra | Network flows: theory, algorithms, and applications[END_REF][START_REF] Minoux | Networks synthesis and optimum network design problems: Models, solution methods and applications[END_REF].

Network operators must satisfy some Quality of Service requirements for their clients. One of the most important parameters in telecommunications networks is the end to end delay of a unit of flow between a source node and a destination node. This requirement is not taken into consideration in the multi-commodity flow problem. The delay through a link depends on the amount of flow supported by this link; classicaly it is modeled by a convex function. The end to end delay for a demand and a path associated with this demand, is the sum of the delay through all links of this path. Some papers focused on minimizing the mean end to end delay. This problem consists in minimizing a convex function under linear constraints [START_REF] Bertsekas | Data networks[END_REF][START_REF] Ouorou | A survey of algorithms for convex multicommodity flow problems[END_REF] and can be solved using semidefinite programming [START_REF] Touati | Semi-definite programming approach for bandwidth allocation and routing in networks[END_REF]. Other papers focused on finding a multi-commodity flow that satisfies the demands and that minimizes the maximum end to end delay [START_REF] José | Fast, fair, and efficient flows in networks[END_REF].

As the authors of [START_REF] Ben | Mathematical models of the delay constrained routing problem[END_REF], we think that a more realistic problem consists in adding strict end to end delay constraints for all connections. Indeed, in communication networks, there are multiple classes of services, and for each of them, it is crucial to respect a certain level of Quality of Service, that is respecting a threshold for the end to end delay. It is why we study a multicommodity flow problem in which all demands have to respect an end to end delay constraint.

In this paper, we focus on multicommodity network flow problems in which each edge possesses a proportional latency function that describes the common delay experienced by the flow on that edge as a function of the flow rate. This problem models congestion effects that appear in a variety of applications such as communication networks, vehicular traffic, supply chain management, or evacuation planning.

We investigate the problem of maximizing the sum of the flow under proportional delay constraints. We allow fractional flows for all connections. As mentionned before, we have a end to end delay constraint for each demand. But, if a path associated with one connection does not support non-zero flow, then the constraint is not considered. These on-off constraints make the problem more difficult to solve than just a simple linear program [START_REF] Hijazi | Mixed-integer nonlinear programs featuring "on/off" constraints[END_REF].

We formally present our problem in Section 1.1. We then describe a simple example in Section 1.2 and preliminary results in Section 1.3. We present our contributions in Section 1.4.

Problem formulation and model

Let G = (V, E) be a connected graph (that represents a network) with a coefficient α e for each edge e ∈ E. Let {(s 1 , t 1), . . . , (s m , t m)} be a set of m source destination pairs (connections). Let P = {P 1 , . . . , P m } be a set of m paths in G. The path P i corresponds to the source destination pair (s i , t i) for all i = 1, . . . , m. Without loss of generality, we suppose that there is a unique path for each source destination pair. As described later, the objective is to maximize the sum of the flows, and so if there are several paths for a connection, we assign a source destination pair to each path. In that case (s i , t i) can be equal to (s j , t j) with i = j. We denote by x i the flow through the path P i for all i = 1, . . . , m. We suppose that the delay τ e for crossing an edge e ∈ E is proportional to the total flow i:e∈E(Pi) x i crossing the edge e, i.e. τ e = α e i:e∈E(Pi) x i . Let λ > 0. For all i = 1, . . . , m, we require for path P i that, if x i > 0, then the end to end delay e∈Pi τ e is at most λ. By scaling the coefficients of the α e , we can make this bound λ equal to one. A multicommodity flow x = (x 1 , . . . , x m) satisfies the latency requirement if for all j = 1, . . . , m such that x j > 0, the following constraint for path P j is satisfied: e∈E(Pj) τ e ≤ 1. Using the notation β i,j := e∈E(Pi)∩E(Pj) α e , this constraint can be written as follows:

m i=1 β i,j x i ≤ 1.
The Maximum Flow under Delay Constraint problem consists in finding among the solutions satisfying these constraints a solution of maximum value m i=1 x i . In other words, the problem remains to solve:

   Max m i=1 x i m i=1 β i,j x i ≤ 1 j = 1, . . . , m x j > 0 x i ≥ 0 i = 1, . . . , m
The hardness of this problem comes from the choice of the paths supporting a non-zero flow. Indeed, if we are given a set of paths P * ⊆ P carrying non-zero flow in some optimal solution, then the problem becomes polynomial since it reduces to solve the linear program LP (P *). Without loss of generality let

P * = {P 1 , . . . , P m * } with m * ≤ m. LP (P *)    Max m * i=1 x i m * i=1 β i,j x i ≤ 1 j = 1, . . . , m * x i ≥ 0 i = 1, . . . , m *
The dual of this linear program is: Note that LP (P *) and its dual DLP (P *) differ only by the sense of inequalities and the direction of optimization. In particular, if the system of equations m * i=1 β i,j x i = 1, j = 1, . . . , m * , has a solution then this solution is optimal for the primal and for the dual since it satisfies both primal and dual complementary slackness conditions.

DLP (P *)      Min m * j=1 y j m * j=1 β i,j y j ≥ 1 i = 1, . . . , m * y j ≥ 0 j = 1, . . . , m * s 2 s 1 t 3 t 2 s 3 t 1

Example

Consider the path G = (V, E) described in Figure 1 and the three source destination pairs (s 1 , t 1), (s 2 , t 2), and (s 3 , t 3). The path P i for (s i , t i) is the unique simple path between s i and t i in G, for all i ∈ {1, 2, 3}. We set α e = 1 for all e ∈ E. The Maximum Flow under Delay Constraint problem remains to solve:

           Max x 1 + x 2 + x 3 x 1 (3x 1 + 2x 2) ≤ x 1 x 2 (2x 1 + 4x 2 + x 3) ≤ x 2 x 3 (x 2 + 2x 3) ≤ x 3 x 1 , x 2 , x 3 ≥ 0
The first constraint means that, if the path P 1 supports a non-zero flow x 1 , then the end to end delay for connection (s 1 , t 1) must be at most one. The delay for crossing the leftmost edge of P 1 is x 1 . The delay is x 1 + x 2 for each of the two other edges. Thus, if x 1 > 0, then 3x 1 + 2x 2 ≤ 1.

Note that if x 1 = 0, the first constraint is always satisfied. The second and the third inequalities are constructed similarly. One can observe that x * = (1/3, 0, 1/2) is the optimal solution. Note that connection (s 2 , t 2) does not support non-zero flow, that is x 2 = 0, and so the second constraint is satisfied. That explains why the end to end delay 2x 1 +4x 2 +x 3 = 7/6 > 1 for connection (s 2 , t 2) is not satisfied.

Preliminaries

We first prove in Lemma 1 that we can consider instances such that the path of any connection is not included in a path of another connection (but the paths may intersect). Lemma 1. Let I be an instance of the Maximum Flow under Delay Constraint problem. If there are two different connections P j and P k such that E(P k) ⊆ E(P j), then there is an optimal solution x * such that x * j = 0.

Proof. Consider any admissible flow x for I such that x j > 0. We construct another admissible flow x ′ from x in which we only change the amount of flow for paths P j and P k . More precisely, we set x ′ k := x k + x j , x ′ j := 0, and x ′ i := x i for all i ∈ {1, . . . , m} \ {j, k}. Clearly, the total amount of flow is unchanged, that is

m i=1 x i = m i=1 x ′ i .
Let τ and τ ′ denote the vector of flow per edge for x and x ′ , respectively. By construction of x ′ , we get τ ′ e ≤ τ e for all e ∈ E because E(P k) ⊆ E(P j). As x is an admissible flow, then it follows that e∈E(Pi) τ ′ e ≤ 1, for all i = 1, . . . , m. Thus, the vector of flow x ′ is admissible. To conclude, if x is an optimal solution, then x ′ is an optimal solution such that x ′ j = 0.

⊓ ⊔

By Lemma 1, we only consider instances such that E(P k) ⊆ E(P j) and E(P j) ⊆ E(P k) for all j, k ∈ {1, . . . , m}, j = k.

Let us define the graph of intersection of the paths, denoted H, of an instance of the Maximum Flow under Delay Constraint problem. The set of nodes V (H) = {h 1 , . . . , h m } corresponds to the set of paths P = {P 1 , . . . , P m }. For i, j ∈ {1, . . . , m}, i = j, there is an edge {h i , h j } ∈ E(H) between two nodes h i ∈ V (H) and h j ∈ V (H) if, and only if, there exists e ∈ E such that e ∈ E(P i) ∩ E(P j), that is when P i and P j share at least one edge. The graph of intersection of the paths H of the instance depicted in Figure 1 is a path composed of three nodes. Without loss of generality, we assume that the graph H is a connected graph.

Contributions

• In Section 2, we analyze the quality of the solution given by the linear program for a variant of the Maximum Flow under Delay Constraint problem in which all the delay constraints must be satisfied even for connections that do not support flow. We prove a general bound for the ratio between the value of such a solution and the value of an optimal solution, and so we get a polynomial approximation algorithm. We deduce a polynomial L-approximation algorithm where L is the size of a longest path of P. We also prove a polynomial 2-approximation algorithm when the graph G is a path. • In Section 3, we prove a Polynomial Time Approximation Scheme when the graph of intersection of the paths H has bounded treewidth. To do that, we first developp an exact dynamic programming algorithm for a variant of the problem in which the possible amount of flow per connection is taken from a given set X. The Polynomial Time Approximation Scheme is based on the fact that the dynamic programming algorithm is polynomial when H has bounded treewidth and when X is a constant (that depends on the approximation ratio). • In Section 4, we show that the problem is NP-hard even if the graph G is a tree.

Approximation Algorithms

We first define a variant of the Maximum Flow under Delay Constraint problem, called Maximum Flow under Strong Delay Constraint problem, for which all the end to end delay constraints must be satisfied even for connections that do not support flow. This problem is polynomial since it reduces to solve the following linear program:

LP (P)    Max m i=1 x i m i=1 β i,j x i ≤ 1 j = 1, . . . , m x i ≥ 0 i = 1, . . . , m
Consider the example of Figure 1. One can observe that x = (1/4, 0, 1/2) is an optimal solution for this variant of the problem. Such a solution for the Maximum Flow under Strong Delay Constraint problem obtained by solving LP (P) is closed to the optimal solution x * for the Maximum Flow under Delay Constraint problem. Indeed, (x

* 1 + x * 2 + x * 3)/(x 1 + x 2 + x 3) = 10/9.
In this section, we analyze the ratio between the value of an optimal solution for the Maximum Flow under Strong Delay Constraint problem and the value of an optimal solution for the Maximum Flow under Delay Constraint problem. We then deduce some polynomial approximation algorithms based on the resolution of the linear program LP (P) for the Maximum Flow under Strong Delay Constraint problem. More precisely, we first prove a general polynomial approximation algorithm (Theorem 1). We then deduce a polynomial L-approximation algorithm where L = max i=1,...,m |E(P i)| is the size of a longest path (Corollary 1) and we finally prove a polynomial 2-approximation algorithm when the graph is a path (Corollary 2). We conclude the section by proving another polynomial 2-approximation algorithm when the graph is a path (Lemma 3). We conjecture that a generalization of this method could give a Polynomial Time Approximation Scheme when the graph is a path.

We prove in Theorem 1 a polynomial approximation algorithm based on the resolution of the linear program LP (P) for the Maximum Flow under Strong Delay Constraint problem. Let us first define some parameters and prove Lemma 2.

Definition 1. For all k = 1, . . . , m, let S * k ⊆ {1, . . . , m} \ {k} be a maximum cardinality set of indices such that for all i ∈ S * k , there exists e ∈ E(

P k) ∩ E(P i) such that for all j ∈ S * k \ {i}, e / ∈ E(P j). Let |S * | = max i=1,...,m |S * i |.
Lemma 2. Let I be any instance. Let x * be an optimal solution for the Maximum Flow under Delay Constraint problem and let x be an optimal solution for the Maximum Flow under Strong Delay Constraint problem. Then

m i=1 x i ≥ m i=1 x * i /|S * |. Proof. Recall that if x * k > 0, then e∈E(P k) τ * e ≤ 1. We first prove that if x * k = 0, then e∈E(P k) τ * e ≤ |S * k |. Let P k be a path such that x * k = 0. Consider a minimal (by inclusion) set of paths {P i : i ∈ S} supporting non-zero flow that covers all edges of P k supporting non-zero flow. By definition of S * k , |S| ≤ |S * k |.
Assign to each edge e ∈ E(P k) supporting non-zero flow, a path P i , i ∈ S such that e ∈ P i . For each i ∈ S, let E i be the set of edges assigned to the path When the graph G is a path, one can observe that |S * | ≤ 2. We deduce in Corollary 2 a polynomial 2-approximation algorithm for such class of instances.

P i . Since x * i > 0, e∈Ei τ * e ≤ 1,
Corollary 2. Let I be any instance and suppose that the graph is a path. Let x * be an optimal solution for the Maximum Flow under Delay Constraint problem and let x be an optimal solution for the Maximum Flow under Strong Delay Constraint problem. Then

m i=1 x i ≥ m i=1 x * i /2.
There exists a polynomial 2-approximation algorithm for the Maximum Flow under Delay Constraint problem when the graph is a path.

Note that we cannot find a similar result when the graph G is a tree. Indeed, |S * | may be arbitrarily large for this class of graphs. On the other hand, it gives a L-approximation algorithm for instances such that every paths between source-destination pair consist of at most L edges.

The rest of this section is devoted to prove the last point of Corollary 2 (polynomial 2approximation algorithm when the graph is a path) with another technique. We conjecture that a generalization could give a polynomial time (k + 1)/k-approximation algorithm (with k ≥ 1 a constant integer). A solution x of the Maximum Flow under Delay Constraint problem is said to be independent if its support {P k : x k > 0} is a family of edge-disjoint paths. In other words, x is independent if the set of vertices {h k : x k > 0} ⊂ V (H) forms an independent set of H. Recall that the graph H is the graph of intersection of the paths. We prove in Lemma 3 that a best independent solution has a value which is at least half the total flow of an optimal solution (the proof is given in Section 6). Lemma 3. Let I be any instance and suppose that the graph is a path. Let x * be an optimal solution and let x be a best indepedent solution for the Maximum Flow under Delay Constraint problem. Then

m i=1 x i ≥ 1 2 m i=1 x * i .
There exists a polynomial 2-approximation algorithm for the Maximum Flow under Delay Constraint problem when the graph is a path.

For all k = 1, . . . , m, the weight w k := 1/ e∈E(P k) α e of a node h k ∈ V (H) represents the maximum amount of flow on the path P k if the paths sharing an edge with P k do not carry any flow. Computing an optimal independent solution when G is a path reduces to the maximum weighted independent set on H and is therefore polynomial because H is an interval graph.

Note that we cannot find a similar result when the graph G is a tree. Indeed, a best independent solution may be arbitrarily far than an optimal solution for this class of graphs.

As mentionned before, we conjecture better approximations for paths generalizing this technique. Let K ≥ 1 be any constant integer. We construct the graph H K as follows. The set of vertices of H K are all the subsets of paths of size at most K such that any two paths of such a subset share at least one edge. There is an edge between two nodes u ∈ V (H K) and v ∈ V (H K) if, and only if, there is at least one edge that belongs to one path of the set of u and that belongs to one path of the set of v. The weight of a node u is the maximum total amount of flow that can be sent through the paths that belongs to the set of u if the paths (not in the set of u) sharing an edge with at least one path of the set of u do not carry any flow. The graph H K and the set of weights can be computed in polynomial time because K is constant. The idea is then to compute a maximum weighted independent set of H K . We conjecture that this procedure gives a ((K + 1)/K)-approximation algorithm when the graph G is a path. Note that K = 1 corresponds to the polynomial 2-approximation algorithm proved in Lemma 3.

Polynomial Time Approximation Scheme for some classes

We first define a variant of the problem, called Maximum Discrete Flow under Delay Constraint problem, as follows. The only change is that the possible amount of flow for all connections is taken among a finite set of non negative values containing zero. More formally, given a finite set X of non negative values containing zero, x i ∈ X for all i = 1, . . . , m. In other words, the Maximum Discrete Flow under Delay Constraint problem remains to solve:

   Max m i=1 x i m i=1 β i,j x i ≤ 1 j = 1, . . . , m x j > 0 x i ∈ X i = 1, . . . , m
Consider the instance described in Figure 1 with X = {0, 1/3, 2/3, 1}. One can observe that x = (1/3, 0, 1/3) is an optimal solution for this variant of the problem.

In this section, we prove an exact dynamic programming algorithm for the Maximum Discrete Flow under Delay Constraint problem (Lemma 4). We then deduce a Polynomial Time Approximation Scheme for the Maximum Flow under Delay Constraint problem when the graph of intersection of the paths H has bounded treewidth (Theorem 2). Lemma 4. Let X be a finite set of non negative values containing zero. There exists an exact O(m|X| tw(H)+1)-time complexity algorithm for the Maximum Discrete Flow under Delay Constraint problem where tw(H) is the treewidth of H.

Proof. Consider a tree decomposition T of H, with set of nodes V (T) = {Y 1 , . . . , Y n }, where each Y i is a subset of V (H), satisfying the following properties:

-

The union ∪ n i=1 Y i of all sets Y i equals V (H), that is each vertex h ∈ V (H) is contained in at least one node of T . -If Y i and Y j both contain a vertex h ∈ V (H), then all nodes Y k of T in the (unique) path
between Y i and Y j contain h as well. Equivalently, the tree nodes containing vertex h form a connected subtree of T . -For every edge {h, h ′ } ∈ E(H), there is a subset Y i that contains both h and h ′ , that is vertices are adjacent in H only when the corresponding subtrees have a node in common. We suppose that T is such that tw(H) = max i=1,...,n |Y i | -1. Let t = tw(H) + 1. Let r ∈ V (T) be the root (arbitrarily chosen) of the tree T . The set N (u) represents the children of u for all u ∈ V (T). Let d u = |N (u)|. The subtree T u is the connected component of T containing u when removing the edge {u, u ′ } where u ′ is the parent of u, for all u ∈ V (T) \ {r}. Recall that the set of nodes V (H) = {h 1 , . . . , h m } corresponds to the set of source destination pairs, and so corresponds to the set of paths P = {P 1 , . . . , P m }. Let us define P u = {P i : ∃v ∈ V (T u) :

h i ∈ v, h i / ∈ u ′ , i = 1, . . . , m} and let Q u = {P i : ∃v ∈ V (T u) : h i ∈ v, h i ∈ u ′ , i = 1, .
. . , m} where u ′ is the parent of u in T , for all u ∈ V (T). Note that the set P u ∪ Q u represents all the paths that correspond to nodes of subtree T u .

Let u ∈ V (T). Let {q 1 u , q 2 u , . . . , q

|X| |Qu| u } be the set of all possible vectors of flows for the set of paths Q u . For all i = 1, . . . , |X| |Qu| , let x i u be an optimal solution for the sub-problem induced by the set of paths P u ∪ Q u when the vector of flows for paths of Q u is q i u . Without loss of generality, we suppose that the vector q i u is admissible for all u ∈ V (T) and for all i = 1, . . . , |X| |Qu| . We aim at computing vectors x i u for all i = 1, . . . , |X| |Qu| and for all u ∈ V (T). As |Q u | ≤ t, then there are O(|X| t) vectors to compute for each u.

We proceed by induction. Consider any leaf u ∈ V (T). Then |P u ∪ Q u | ≤ t by construction of T . Thus, we compute x i u for all i = 1, . . . , |X| |Qu| by enumerating all the possible vectors for paths of Q u . This can be done in

O(|X| |Pu∪Qu|) = O(|X| t)-time.
Consider a node u ∈ V (T) such that u is not a leaf of T . Let N (u) = {u 1 , . . . , u du } be the set of children of u. Suppose we have computed x i uj for all j = 1, . . . , d u and for all i = 1, . . . , |X| |Qu j | . We now compute x i u for all i = 1, . . . , |X| |Qu| . In other words, we compute for all possible vectors of flows for paths of Q u , an optimal solution for the sub-problem induced by the set of paths Q u ∪P u . To do that, let R u = P u \∪ du j=1 P uj . We compute for all possible vectors of flows for paths of Q u ∪R u , an optimal solution for the sub-problem induced by the set of paths Q u ∪R u ∪ du j=1 P uj . Let {r 1 u , . . . , r |Qu∪Ru| u } be the set of all possible vectors of flow for Q u ∪R u . Note that |Q u ∪R u | ≤ t. By construction of T and by definition of P and Q, if a path P ∈ P u j ′ , for some j ′ ∈ {1, . . . , d u }, then P / ∈ P uj for all j ∈ {1, . . . , d u } \ {j ′ }. Thus, for all i = 1, . . . , |X| |Qu∪Ru| , we consider the vector of flow r i u and we compute an optimal solution for the sub-problem induced by the set of paths Q u ∪ R u ∪ P uj for all j = 1, . . . , d u . By previous remarks, that can be done independently for each j, and so such a computation can be done in

O(d u |X| t)-time because |Q u ∪ R u | ≤ t.
Finally, for all possible vectors of flows for paths of Q u , we keep an optimal solution for the sub-problem induced by the set of paths Q u ∪ P u . This can be done in O(|X| t)-time. Thus, we have computed x i u for all i = 1, . . . , |X| |Qu| . We now prove that, for all i = 1, . . . , |X| |Qu| , x i u represents an optimal vector for the subproblem induced by the set of paths P u ∪Q u when the vector of flow for paths of Q u is q i u . Suppose it is not the case and let i ∈ {1, . . . , |X| |Qu| } be such that x = x i u is not an optimal vector. Let x ′ be an optimal vector for the sub-problem induced by the set of paths P u ∪ Q u . Without loss of generality, the |P u | first indices correspond to flows for paths of P u . Furthermore, the | ∪ j=1,...,du P uj | first indices correspond to flows for paths of ∪ j=1,...,du P uj . By definition,

x k = x ′ k for all k ∈ {|P u | + 1, . . . , |P u | + |Q u |}.
Furthermore, as we have computed x u among all possible vectors of flows for paths of Q uj for all j ∈ {1, . . . , d u }, then we assume that x k = x ′ k for all k ∈ {| ∪ j=1,...,du P uj | + 1, . . . , |P u |}. Thus, there exists j ∈ {1, . . . , d u } such that the sum of the flows for the set of paths P uj ∪ Q uj with x ′ is strictly greater than for x. As P uj 1 ∩ P uj 2 = ∅ for all j 1 , j 2 ∈ {1, . . . , d u }, j 1 = j 2 , then it means that there exists k ∈ {1, . . . , |X| Qu j } such that x k uj is not optimal for the sub-problem induced by the set of paths P uj ∪ Q uj when the vector of flow for the paths of Q uj is q k uj . A contradiction with the induction hypothesis. Thus, for all i = 1, . . . , |X| |Qu| , x i u represents an optimal vector for the sub-problem induced by the set of paths P u ∪ Q u when the vector of flow for paths of Q u is q i u . Finally, we have computed x i u for all i = 1, . . . , |X| |Qu| and for all u ∈ V (T). As Q r = ∅, we deduce an optimal vector of flow choosing the unique vector Theorem 2. Let b, t ≥ 1 be any constant values. For any ε > 0, there is a polynomial (1 + ε)approximation algorithm for the Maximum Flow under Delay Constraint problem when tw(H) ≤ t and x max /x min ≤ b.

Proof. To prove Theorem 2, we show that any optimal solution x ε for an instance of the Maximum Discrete Flow under Delay Constraint problem (the set X will be described later) is such that

m i=1 x ε i ≥ (m i=1 x * i)/(1 + ε)
, where x * is an optimal solution for the Maximum Flow under Delay Constraint problem when x max /x min ≤ b and tw(H) ≤ t.

As tw(H) ≤ t, then there exists an independent set IS(H) of H such that |IS(H)| ≥ |V (H)|/(t + 1). Indeed H has degeneracy at most t, and then we construct IS(H) as follows: we add one node of degree at most t in IS(H), we remove the neigbhors of this node, and we repeat this process on the remaining graph (of degeneracy at most t). The number of steps is at least

V (H)/(t + 1). Let R be any constant such that R ≥ m/|IS(H)|. Recall that m = V (H). Let ε ′ be such that 0 < ε ′ < ε. Let X 0 = ∪ p i=0 {x max /(1 + ε ′) i } where p is such that x max /(1 + ε ′) p ≤ (ε -ε ′)x min /R and X = {0} ∪ X 0 ∪ {x min }. Thus, (1 + ε ′) p ≥ x max R/((ε -ε ′)
x min), and so p ≥ log 1+ε ′ (x max R/((εε ′)x min)). One can check that p is constant because x max /x min ≤ b, with b a constant, R is also a constant, and ε ′ only depends on ε (e.g. ε ′ = ε/2). Thus, |X| = O [START_REF] Ravindra | Network flows: theory, algorithms, and applications[END_REF].

By Lemma 4, we compute in polynomial time an optimal solution x ε for the Maximum Discrete Flow under Delay Constraint problem with X as set of possible flow values. Recall that t and |X| are constant.

Let us define f (x +) = m i=1 x i 1 xi≥xmax/(1+ε ′) p and f (x -) = m i=1 x i 1 xi<xmax/(1+ε ′) p for any vector x. We set f (x) = f (x +) + f (x -). Consider an optimal solution x * for the Maximum Flow under Delay Constraint problem. We get f (x *) < f (x * +) + mx max /(1 + ε ′) p . We construct an auxiliary vector x ′ from x * as follows. For all i = 1, . . . , m, if there exists j,

1 ≤ j ≤ p, such that x max /(1+ε ′) j ≤ x * i ≤ x max /(1+ε ′) j-1 , then set x ′ i = x max /(1+ε ′) j . For all i = 1, . . . , m, if x * i < x max /(1+ε ′) p , then set x ′ i = 0. We get f (x * +)/f (x ′) ≤ 1+ε ′ by construction of x ′ . As x ′ takes flow values in X, then f (x ε) ≥ f (x ′) because x ε is an optimal solution for the Maximum Discrete Flow under Delay Constraint problem. Thus, f (x * +)/f (x ε) ≤ 1 + ε ′ . We now prove that f (x *)/f (x ε) ≤ 1 + ε. By previous claims, it is sufficient to prove that f (x * +)/f (x ε) + (mx max)/((1 + ε ′) p f (x ε)) ≤ 1 + ε. First, recall that f (x * +)/f (x ε) ≤ 1 + ε ′ . It remains to prove that (x max m)/((1 + ε ′) p f (x ε)) ≤ ε -ε ′ .
As R ≥ m/|IS(H)| and x min ∈ X, then f (x ε) ≥ mx min /R. Indeed the polynomial algorithm described in Lemma 4 finds, at least, a set of m/R disjoint paths (connections) with amount of flow (at least) x min (other connections can be zero). The corresponding nodes forms an independent set of H. Recall that p is such that

x max /(1 + ε ′) p ≤ (ε -ε ′)x min /R, and so x min ≥ (x max R)/((1 + ε ′) p (ε -ε ′)). Thus, f (x ε) ≥ (x max m)((1 + ε ′) p (ε -ε ′)), and so (x max m)/((1 + ε ′) d f (x ε)) ≤ ε -ε ′ . We conclude that f (x *)/f (x ε) ≤ 1 + ε,
and so the polynomial time algorithm of Lemma 4 is a (1 + ε)-approximation algorithm for the Maximum Flow under Delay Constraint problem.

⊓ ⊔

Let us first define χ e = |{i : E(P i) ∩ e = ∅, i = 1, . . . , m}| for all e ∈ E, as the number of paths that contain edge e. Let χ G = max e∈E χ e be the maximum number of paths that share an edge. Let ∆ G be the maximum degree of G. We directly deduce a Polynomial Time Approximation Scheme when the graph G is a bounded degree tree, and x max /x min and χ G are bounded by constants.

Corollary 3. Let b, d, t ≥ 1 be any constant values. For any ε > 0, there is a polynomial (1 + ε)approximation algorithm for the Maximum Flow under Delay Constraint problem when the graph G = (V, E) is a tree, x max /x min ≤ b, ∆ G ≤ d, and χ G ≤ t.

We also deduce a Polynomial Time Approximation Scheme when the graph G is a path, and x max /x min and χ G are bounded by constants.

Corollary 4. Let b, t ≥ 1 be any constant values. For any ε > 0, there is a polynomial (1 + ε)approximation algorithm for the Maximum Flow under Delay Constraint problem when the graph G is a path, x max /x min ≤ b, and χ G ≤ t.

However, the complexity of the Maximum Flow under Delay Constraint problem remains open when the graph G is a path if χ G is not bounded. More precisely, we don't know if the problem is NP-hard and if there exists a polynomial approximation algorithm with approximation ratio less than 2.

To conclude this section, we observe that the previous results still hold with any end to end delay for connections. More precisely, for all i = 1, . . . , m, we require for path P i that, if x i > 0, then the end to end delay e∈Pi τ e is at most λ i . The problem is now: This new version may change the values of x max and x min but the dynamic programming algorithm of Lemma 4 for the Maximum Discrete Flow under Delay Constraint problem is unchanged. Thus, Lemma 4 and Theorem 2 are still correct replacing 1 by λ i for all i = 1, . . . , m assuming that x max /x min is bounded by a constant.

   Max m i=1 x i m i=1 β i,j x i ≤ λ j j = 1, . . . , m x j > 0 x i ≥ 0 i = 1, . . . , m s 1 r s n s 2 u 1 t 0 t u 0 n u 0 2 u 0 1 u n u 2 v 0 1 v n v 2 v 1 v 0 n v 0 2

Hardness result for trees

This section is devoted to prove that the Maximum Flow under Delay Constraint problem is NP-hard (Theorem 3). Recall that the problem has been proved NP-hard in [START_REF] Ben | Mathematical models of the delay constrained routing problem[END_REF] (for convex delay function) and the question has been let open when the graph is a tree. Indeed their proof involves a choice among two different paths for each connection, and so forces the graph G to have cycles.

Theorem 3. The Maximum Flow under Delay Constraint problem is NP-hard.

Our reduction uses Partition problem, a well known NP-hard problem [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]. Let n ≥ 2 and N = {1, . . . , n}. Let I = (p 1 , . . . , p n) such that n i=1 p i = 2M . The problem Partition consists in deciding whether there exists a subset S ⊂ N such that i∈S p i = M .

Let G = (V, E) be a tree with V = {s 1 , . . . , s n } ∪ {r, t, t

′ } ∪ {u 1 , . . . , u n } ∪ {u ′ 1 , . . . , u ′ n } ∪ {v 1 , . . . , v n } ∪ {v ′ 1 , . . . , v ′ n } and E = {r, t} ∪ {r, t ′ } ∪ n i=1 {s i , r} ∪ n i=1 {t, u i } ∪ n i=1 {t ′ , u ′ i } ∪ n i=1 {u i , v i } ∪ n i=1 {u ′ i , v ′ i }.
The graph G is depicted in Figure 2. In the following, we abuse the notation writing α u,v instead of α {u,v} for all e ∈ E. We denote by τ u,v the delay for crossing any edge {u, v} ∈ E. We set α u,v = 1 for all {u, v} ∈ E. Thus, τ u,v represents the amount of flow supported by {u, v}. We consider the capacity constraints τ u,v ≤ c u,v where c u,v represents the maximum amount of flow that can support any edge {u, v} ∈ E. For all i = 1, . . . , n, c si,r = p i , and c r,t = c r,t ′ = M . Other capacities are infinite (or sufficiently large). The source destination pairs are (s i , u i), (s i , u ′ i), (t, v i), (t ′ , v ′ i) for all i = 1, . . . , n. We denote by x u,v the amount of flow of any connection (u, v). We consider general delay constraints as described at the end of Section 3. We denote by λ u,v the maximum end to end delay for any connection (u, v). For all i = 1, . . . , n, λ si,ui = λ si,u ′ i = 2p i + M and λ t,vi = λ t ′ ,v ′ i = 2ε where 0 < ε < 1/n. Note that tw(H) ≥ n -1 = Ω(|V (H)|). Thus, the Polynomial Time Approximation Scheme described in Section 3 does not work for this class of instances.

Let P u,v be the unique path of the tree G between node u ∈ V and node v ∈ V . The Maximum Flow under Delay Constraint problem remains to solve:

                           Max n i=1 x si,ui + x si,u ′ i + x t,vi + x t ′ ,v ′ i e∈Ps i ,u i τ e ≤ 2p i + M i = 1, . . . , n x si,ui > 0 e∈P s i ,u ′ i τ e ≤ 2p i + M i = 1, . . . , n x si,u ′ i > 0 e∈Pt,v i τ e ≤ 2ε i = 1, . . . , n x t,vi > 0 e∈P t ′ ,v ′ i τ e ≤ 2ε i = 1, . . . , n x t ′ ,v ′ i > 0 τ si,r ≤ p i i = 1, . . . , n τ r,t , τ r,t ′ ≤ M x si,ui , x si,u ′ i , x t,vi , x t ′ ,v ′ i ≥ 0 i = 1, . . . , n
Finally, as the construction of the instance can be done in polynomial time, to prove Theorem 3, it suffices to prove Lemma 5.

Lemma 5. There exists an admissible vector of flow x such that n i=1 x si,ui + x si,u ′ i + x t,vi + x t ′ ,v ′ i ≥ 2M + nε if, and only if, there exists a solution for the instance I of Partition problem.

Proof. (⇐). Suppose there exists a solution for the instance I of Partition problem. Let S ⊂ N be such that i∈S p i = M . Let S ′ = N \ S. Note that i∈S ′ p i = M . We construct the vector of flow x as follows. For all i ∈ S, x si,ui := p i , x si,u ′ i := 0, x t,vi := 0, and x t ′ ,v ′ i := ε. For all i ∈ S ′ , x si,u ′ i := p i and x si,ui := 0, x t ′ ,v ′ i := 0, and x t,vi := ε. The total amount of flow is

n i=1 x si,ui + x si,u ′ i + x t,vi + x t ′ ,v ′ i = 2M + nε.
We now prove that x is an admissible solution. By construction, τ r,t = τ r,t ′ = M , and τ si,r = p i for all i = 1, . . . , n. Thus, the capacity constraints are satisfied. Furthermore, for all i ∈ S, τ t,ui = p i , and for all j ∈ S ′ , τ t ′ ,u ′ j = p j . Thus, for all i = 1, . . . , n, the total delay for connection (s i , u i) is 2p i + M and so the delay constraints are satisfied. For all i ∈ S, x t,vi = 0 and for all j ∈ S ′ , x t ′ ,v ′ j = 0, and so the delay constraints are not considered by definition of the problem. For all i ∈ S, x t ′ ,v ′ i = ε and for all j ∈ S ′ , x t,vj = ε, and so the delay constraints are satisfied because by construction τ t ′ ,u ′ i = ε and τ t,uj = ε. Recall that λ t ′ ,v ′ i = 2ε and λ t,vj = 2ε. Finally, x is an admissible flow such that n i=1 x si,ui + x si,u ′ i + x t,vi + x t ′ ,v ′ i = 2M + nε. (⇒). First, for any vector of flow x, then n i=1 x si,ui + x si,u ′ i ≤ 2M because c r,t = c r,t ′ = M . Suppose there does not exist a solution for the instance I of Partition problem. We prove that for any admissible vector of flow x, then

n i=1 x si,ui + x si,u ′ i + x t,vi + x t ′ ,v ′ i < 2M + nε. First assume that n i=1 x si,ui + x si,u ′ i = 2M
. Since there does not exist a solution for the instance I of Partition problem, then there exists an i ∈ N such that x si,ui = 0 and x si,u ′ i = 0. Without loss of generality, assume that i = 1 satisfies the previous property. Since n i=1 x si,ui + x si,u ′ i = 2M , then x s1,u1 +x s1,u ′ 1 = p 1 . Let x s1,u1 = µp i and x s1,u ′ 1 = (1-µ)p 1 with 0 < µ < 1. The delay constraint for connection (t, v 1) gives 2x t,v1 + x s1,u1 ≤ 2ε. Thus, it means that x t,v1 ≤ εµp 1 /2. The delay constraint for connection (t

′ , v ′ 1) gives x t ′ ,v ′ 1 ≤ ε -(1 -µ)p 1 /2. Thus, x t,v1 + x t ′ ,v ′ 1 ≤ 2ε -p 1 /2.
As the p i 's are positive integers and ε < 1/n with n ≥ 2, then p 1 /2 > ε and so

x t,v1 + x t ′ ,v ′ 1 < ε. For all i = 2, . . . , n, either x t,vi + x t ′ ,v ′ i < ε or x t,vi = ε and x t ′ ,v ′ i = 0 or x t,vi = 0 and x t ′ ,v ′ i = ε. Thus, n i=1 x t,vi + x t ′ ,v ′ i < nε, and so n i=1 x si,ui + x si,u ′ i + x t,vi + x t ′ ,v ′ i < 2M + nε. Assume that n i=1 x si,ui + x si,u ′ i < 2M . If x si,ui + x si,u ′ i > 0
, for all i = 1, . . . , n, the proof is similar to the previous case replacing p i by x si,ui + x si,u ′ i . If there exists an i ∈ N such that x si,ui + x si,u ′ i = 0, then n i=1 x si,ui + x si,u ′ i ≤ 2M -1 because the p i 's are positive integers. We prove the result even if x t,vi = x t ′ ,v ′ i = ε for all i = 1, . . . , n, that is when the delay constraints are all tights. Indeed, since ε < 1/n, we get

n i=1 x si,ui + x si,u ′ i + x t,vi + x t ′ ,v ′ i < 2M + nε. ⊓ ⊔

Future works

We now recall the questions we have asked throughout the paper and add some new questions. For which classes of instances, LP (P \ {P i }) < LP (P) implies the existence of an optimal solution such that x i > 0?

To conclude, we are investigating a problem in which we are allowed to reduce the delay for a subset of links in respect with a certain given budget. As for the Maximum Flow under Delay Constraint problem, we aim at finding a set of links to modify in order to maximize the sum of the flows respecting the budget given for these transformations.

Appendix

Proof. (of Lemma 3) Consider an optimal solution x * of an instance I and the instance I ′ obtained from I by removing all source-destination pairs that do not belong to the support of x * . Since instances I and I ′ have the same optimum and an independent solution for I ′ is also an independent solution for I, it suffices to prove the claim of lemma 3 for I ′ . For the instance I ′ , there is an optimal solution in which all delay constraints are active. This solution is therefore an optimal solution of the linear program LP (P *) where P * := {P k : x * k > 0} and its value is at most the value of any feasible dual solution y of DLP (P *). Let x I ′ be an optimal independent solution of I ′ , we will show that there exists a feasible solution y I ′ of DLP (P *) whose value is at most twice the value of x I ′ .

Let C be the set of maximal cliques of the interval graph H. Since H is perfect, the caracteristic vector z of maximum weighted independent set is an optimal solution of the following linear program LP Q(P *) :

(LP Q(P *))    Max k w k z k k:P k ∈C z k ≤ 1 ∀C ∈ C z k ≥ 0 ∀k.
Consider the dual (DLP Q(P *)) of this linear program :

(DLP Q(P *))    Min C t C C:P k ∈C t C ≥ w k ∀k t C ≥ 0 ∀C ∈ C.
Let t be an optimal solution of DLP Q(P *). The following algorithm computes from t, a feasible solution y of DLP (P *) whose value is at most twice the value of t. Let C ∈ C, we denote i(C) (resp. j(C)) the index of the leftmost (resp. rightmost) path that belong to the clique C.

1. For all i = 1, . . . , m do 2. y i := 0 3. For all C ∈ C do 4.

y i(C) := y i(C) + t C 5.

y j(C) := y j(C) + t C For all k = 1, . . . , m, if e ∈ P k the following inequality holds :

i:e∈Pi

y i ≥ C:P k ∈C t C ≥ w k .
Since t is a feasible solution of DLP Q(P *), the second inequality is trivially true. In order to verify the first inequality, note that if the path P k belongs to the clique C then e ∈ E(P k) implies that e ∈ E(P i(C)) or e ∈ E(P j(C)). Therefore, if a clique C contributes t C for the second sum then y i(C) or y j(C) contribubes t C for the first one. We conclude that, for all paths P k ∈ P * , This shows that y is a feasible solution of DLP (P *). By the definition of y, its value is at most twice the weight of a maximum weight stable set S of H. The independent solution corresponding to S is thus a 2-approximation for the instance I ′ , this concludes the proof of Lemma 3.

⊓ ⊔

Fig. 1 .

 1 Fig. 1. Instance of the Maximum Flow under Delay Constraint problem. The graph G = (V, E) is a path composed of seven nodes and αe = 1 for all e ∈ E. There are three source destination pairs: (s1, t1), (s2, t2), and (s3, t3). The three paths are represented above G.

Theorem 1 .

 1 that is the sum of the delays on the edges of E i is at most 1. There are |S| groups of edges, and thus e∈E(P k) τ * e ≤ |S| ≤ |S * k |, that is the total delays on the edges of P k is at most |S * k |. For all k ∈ {1, . . . , m} such that x * k = 0, then e∈E(P k) τ * e ≤ |S * k |. Consider the solution x ′ obtained by dividing all the flows of x * by |S * |. Formally, set x ′ i := x * i /|S * | for all i = 1, . . . , m. Recall that |S * | = max i=1,...,m |S * k |. By previous claims, x ′ is an admissible solution. By construction, m i=1 x ′ i = m i=1 x * i /|S * |. To conclude, one can observe that an optimal solution x of the Maximum Flow under Strong Delay Constraint problem obtained by solving the linear program LP (P) is such that m i=1 x i ≥ m i=1 x ′ i . Indeed all the end to end delay constraints for x ′ are satisfied even for connections that do not support flow, and so x ′ is an admissble solution for the Maximum Flow under Strong Delay Constraint problem. ⊓ ⊔ By Lemma 2, we deduce a polynomial |S * |-approximation algorithm. There exists a polynomial |S * |-approximation algorithm for the Maximum Flow under Delay Constraint problem. Corollary 1. Let I be any instance and let L = max i=1,...,m |E(P i)|. Let x * be an optimal solution for the Maximum Flow under Delay Constraint problem and let x be an optimal solution for the Maximum Flow under Strong Delay Constraint problem. Then m i=1 x i ≥ m i=1 x * i /L. There exists a polynomial L-approximation algorithm for the Maximum Flow under Delay Constraint problem.

x 1 r 1 r

 11 of the root of T . Thus x * = x is an optimal solution for the Maximum Discrete Flow under Delay Constraint problem. The complexity of the algorithm is O(|X| t u∈V (T) d u) = O(|E(T)||X| t) = O(m|X| tw(H)+1). ⊓ ⊔ Let x max = max i=1,...,m 1/ e∈E(Pi) α e and x min = min i=1,...,m 1/ e∈E(Pi) α e . We prove in Theorem 2 a Polynomial Time Approximation Scheme for the Maximum Flow under Delay Constraint problem when the graph H has bounded treewidth and x max /x min is bounded by a constant.

Fig. 2 .

 2 Fig. 2. Graph used in the proof of Theorem 3.

k α e w k = w k e∈P k α e = 1 .

 1

•

 What is the complexity of the Maximum Flow under Delay Constraint problem when the graph G is a path? A first interesting open question is to determine the complexity of the Maximum Flow under Delay Constraint problem when the graph G is a path such that all (connections) paths share an edge e ∈ E, that is when χ G = m = |P|.• Is there a polynomial approximation algorithm with approximation ratio less than 2 when the graph G is a path with χ G unbounded? To answer this question, an idea is to analyze the value of an maximum independent set of H K . What is the approximation ratio obtained by computing a best independent solution for H K ? • Is there an exact polynomial algorithm for the Maximum Flow under Delay Constraint problem when tw(H) is bounded? • Is there classes of instances with tw(H) unbounded that admit a Polynomial Time Approximation Scheme for the Maximum Flow under Delay Constraint problem? • Is the Maximum Flow under Delay Constraint problem in APX? • An interesting work is to develop polynomial reduction rules for the Maximum Flow under Delay Constraint problem. For instance, we may use information given by the solutions of the Maximum Flow under Strong Delay Constraint problem as follows. Consider any (connection) path P i ∈ P. For which classes of instances can we remove P i if LP (P \ {P i }) > LP (P)?