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Parallel computation of echelon forms∗

Jean-Guillaume Dumas†§, Thierry Gautier‡§

Clément Pernet§§ Ziad Sultan∗†¶

Abstract

We propose efficient parallel algorithms and implementations on shared
memory architectures of LU factorization over a finite field. Compared
to the corresponding numerical routines, we have identified three main
difficulties specific to linear algebra over finite fields. First, the arithmetic
complexity could be dominated by modular reductions. Therefore, it is
mandatory to delay as much as possible these reductions while mixing
fine-grain parallelizations of tiled iterative and recursive algorithms. Sec-
ond, fast linear algebra variants, e.g., using Strassen-Winograd algorithm,
never suffer from instability and can thus be widely used in cascade with
the classical algorithms. There, trade-offs are to be made between size
of blocks well suited to those fast variants or to load and communication
balancing. Third, many applications over finite fields require the rank
profile of the matrix (quite often rank deficient) rather than the solution
to a linear system. It is thus important to design parallel algorithms that
preserve and compute this rank profile. Moreover, as the rank profile is
only discovered during the algorithm, block size has then to be dynamic.
We propose and compare several block decomposition: tile iterative with
left-looking, right-looking and Crout variants, slab and tile recursive.

Experiments demonstrate that the tile recursive variant performs bet-
ter and matches the performance of reference numerical software when
no rank deficiency occur. Furthermore, even in the most heterogeneous
case, namely when all pivot blocks are rank deficient, we show that it is
possbile to maintain a high efficiency.
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1 Introduction

Triangular matrix factorization is a main building block in computational linear
algebra.

Driven by a large range of applications in computational sciences, paral-
lel numerical dense LU factorization has been intensively studied since several
decades which results in software of great maturity (e.g., LINPACK is used for
benchmarking the efficiency of the top 500 supercomputers [5]).

More recently, efficient sequential exact linear algebra routines were devel-
oped [6]. They are used in algebraic cryptanalysis, computational number the-
ory, or integer linear programming and they benefit from the experience in
numerical linear algebra. In particular, a key point there is to embed the finite
field elements in integers stored as floating point numbers, and then rely on the
efficiency of the floating point matrix multiplication dgemm of the BLAS. The
conversion back to the finite field, done by costly modular reductions, is delayed
as much as possible.

Hence a natural ingredient in the design of efficient dense linear algebra rou-
tines is the use of block algorithms that result in gathering arithmetic operations
in matrix-matrix multiplications. Those can take full advantage of vector in-
structions and has a high computation per memory access rate, allowing to fully
overlap the data accesses by computations and hence delivers peak performance
efficiency.

In order to exploit the power of multi-core and many-core architectures,
we now investigate the parallelization of the finite field linear algebra routines.
We report in this paper the conclusions of our experience in parallelizing exact
LU decomposition for shared memory parallel computers. We try to empha-
size which specificities of exact computation domains led us to use different
approaches than that of numerical linear algebra.

In short, we will illustrate that numerical and exact LU factorization mainly
differ in the following aspects:
• the pivoting strategies,

• the cost of the arithmetic (of scalars and matrices),

• the treatment of rank deficiencies.
Those have a direct impact on the shape and granularity of the block decom-
position of the matrix used in the computation.

Types of block algorithms. Several schemes are used to design block linear
algebra algorithms: the splitting can occur on one dimension only, producing
row or column slabs [12], or both dimensions, producing tiles [2]. Note that,
here, we denote by tiles a partition of the matrix into sub-matrices in the math-
ematical sense regardless what the underlying data storage is.

Algorithms processing blocks can be either iterative or recursive. Figure 1
summarizes some of the various existing block splitting obtained by combining
these two aspects. Most numerical dense Gaussian elimination algorithms, like
in [2], use tiled iterative block algorithms. In [4] the classic tiled iterative al-
gorithm is combined with a slab recursive one for the panel elimination. Over
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Figure 1: Main types of block splitting

exact domains, recursive algorithms are preferred to benefit from fast matrix
arithmetic (see below).

Slab recursive exact algorithms can be found in [11] and references therein
and [7] presents a tiled recursive algorithm.

The granularity is the block dimension (or the dimension of the smallest
blocks in recursive splittings). Matrices with dimensions below this threshold
are treated by a base-case variant (often referred to as the panel factorization).
It is an important parameter for optimizing efficiency: a finer grain allows more
flexibility in the scheduling when running numerous cores, but it also challenges
the efficiency of the scheduler and can increase the bus traffic.

The cost of the arithmetic. In numerical linear algebra, the cost of arith-
metic operations is more or less associative: with dimensions above a rather low
threshold (typically a few hundreds), sequential matrix multiplication of the
BLAS reaches the peak efficiency of the processor. Hence the granularity has
very little impact on the efficiency of a block algorithm run in sequential. On
the contrary, over a finite field, a small granularity can imply a larger number
of costly modular reductions, as we will show in Section 3.1. Moreover, numer-
ical stability is not an issue over a finite field, and asymptotically fast matrix
multiplication algorithms, like Winograd’s variant of Strassen algorithm [9, §12]
can be used on top of the BLAS. Their speed-up increases with matrix dimen-
sion. The cost of sequential matrix multiplication over finite field is therefore
not associative: a larger granularity delivers better sequential efficiency.

Pivoting strategies and rank deficiencies. In dense numerical linear al-
gebra, pivoting is used to ensure good numerical stability and good data local-
ity [10]. In the context of dense exact linear algebra, stability is no longer an
issue. Instead, only certain pivoting strategies will reveal the echelon form or,
equivalently, the rank profile of the matrix [11, 7]. This is a key invariant used
in many applications using exact Gaussian elimination, such as Gröbner basis
computations [8] and computational number theory [14].

Over exact domains, the rank deficiency of some blocks also leads to unpre-
dictable dimensions of the tiles or slabs, as will be illustrated in Section 4. This
makes the block splitting necessarily dynamic contrarily to the case of numerical
LU factorization where all panel blocks usually have full rank and the splitting
is done statically according to a granularity parameter.
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Consequently the design of a parallel exact matrix factorization necessarily
differs from the numerical algorithms as follows:
• granularity should be as large as possible, to reduce modular reductions
and benefit from fast matrix multiplication;

• algorithms should preferably be recursive, to group arithmetic operations
in matrix products as large as possible.

• block splitting and pivoting strategies must preserve and reveal the rank
profile of the matrix

It also implies several requirements on the parallel run-time being used:
• the block splitting has to be dynamically computed;

• the computing load for each task is not known in advance (some panel
blocks may have high rank deficiency), making the tasks very heteroge-
neous.

This motivated us to look into parallel execution runtimes using tasks with
work-stealing based scheduling.

All experiments have been conducted on a 32 cores Intel Xeon E5-4620
2.2Ghz (Sandy Bridge) with L3 cache(16384 KB). The numerical BLAS is AT-
LAS v3.11.4, LAPACK v3.4.2 and PLASMA v2.5.0. We used X-KAAPI-2.1
version with last git commit: xkaapi 2.1-30-g263c19c638788249. The gcc com-
piler version used is gcc 4.8.2 that supports OpenMP 3.1.

We introduce in Section 2 the algorithmic building blocks on which our al-
gorithms will rely and the parallel programming models and runtimes that we
used in our experiments. In order to handle each problem separately, we focus
in Section 3 on the simpler case where no rank deficiency occur. In particular
Section 3.1 presents detailed analysis of the number of modular reductions re-
quired by various block algorithms including the tiled and slab recursive, the
left-looking, right-looking and Crout variants of the tiled iterative algorithm.
Lastly Section 4 deals with elimination with rank deficiencies. We there present
and compare new slab iterative, tiled iterative and tiled recursive parallel algo-
rithms that preserve rank profiles. We then show that the latter can match state
of the art numerical routines, even when taking rank deficiencies into account.

2 Preliminaries

2.1 Auxiliary sequential routines

All block algorithms that we will describe rely on four type of operations that
we denote using the BLAS/LAPACK naming convention:

gemm: general matrix multiplication, computing C ← αA×B + βC,

trsm: solving upper/lower triang. syst. with matrix right/left h.s B ← BU−1.

laswp: permuting rows or columns by sequence of swaps.
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getrf: computing (P,L, U,Q), L and U stored in place of A, s.t. A = PLUQ.

A first prefix letter d or f is specifies if the routine works over double pre-
cision floating point numbers or finite field coefficients and an optional prefix
p stands for parallel implementation. Our implementations use the sequential
routines of the fflas-ffpack library1 [6]. There, the elements of a finite Z/pZ
for a prime p of size about 20 bits are integers stored in a double precision float-
ing point number. The sequential fgemm routine combines recursive steps of
Winograd’s algorithm calls to numerical BLAS dgemm and reductions modulo p
when necessary. The ftrsm and fgetrf routines use block recursive algorithms
to reduce most arithmetic operations to fgemm. More precisely fgetrf is either
done by a slab recursive algorithm [6] or a tile recursive algorithm [7].

2.2 Parallel programming models

We base our implementation on the task based parallel features of OpenMP
standard.

This is motivated by the use of recursive algorithms where tasks are manda-
tory. Now in tile iterative algorithms, loop with tasks happen to perform at
least as good as parallel loops.

libgomp is the GNU implementation of the OpenMP API for multi-platform
shared-memory parallel programming in C/C++ and Fortran.

Alternatively, we also used libkomp [1], an optimized version of libgomp,
based on the XKaapi runtime, that reduces the overhead of the OpenMP direc-
tives and handles more efficiently threads creation, synchronization and man-
agement. In the experiments of the next sections, we will compare efficiency of
the same code linked against each of these two libraries.

2.3 Parallel matrix multiplication

In the iterative block algorithms, all matrix product tasks are sequential, on
the contrary the recursive block algorithms must call parallel matrix products
pfgemm, which we describe here. Operation pfgemm is of the form C ← αA ×
B + βC.

In order to split the computation into independent tasks, only the row di-
mension of A and the column dimension of B only are split. The granularity
of the split can be chosen in two different ways: either as a fixed value, or by a
ratio of the input dimension (e.g. the total number of cores). We chose the sec-
ond option that maximizes the size of the blocks while ensuring a large enough
number tasks to for the computing ressources. All our experiments showed that
this option performs better than the first one.

When used as a subroutine in a parallel factorization, it will create more
tasks than the number of available cores, but this heuristic happen to be a good
compromise in terms of efficiency.

1http://linalg.org/projects/fflas-ffpack
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Figure 2 shows the computation time on 32 cores of various matrix multi-
plications: the numerical dgemm implementation of Plasma-Quark, the imple-
mentation of pfgemm of fflas-ffpack using OpenMP tasks, linked against the
libkomp library. This implementation is run over the finite field Z/131071Z or
over field of real double floating point numbers, with or without fast Strassen-
Winograd’s matrix product. One first notices that most routine perform very
similarly. More precisely, Plasma-Quark dgemm is faster on small matrices but
the effect of Strassen-Winograd’s algorithm makes pfgemm faster on larger ma-
trices, even on the finite field where additional modular reductions occur.
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Figure 2: Comparison of execution time exact vs numeric

In terms of speed-up, the pfgemm reaches a factor of approximately 27 (using
32 cores) whereas the numerical dgemm of Plasma-Quark reaches a factor of 29,
but this is mostly reflect the fact that dgemm has a less efficient sequential
reference timing since it does not use Strassen-Winograd’s algorithm.

Similarly, other basic routines used in the recursive block algorithms, such
as ftrsm (solving matrix triangular systems) and flaswp (permuting rows or
columns), have been parallelized by splitting a dimension into a constant number
of blocks (typically the number of cores).

3 Eliminations with no rank deficiency

In this section, we make the assumption that no rank deficiency occur during
the elimination of any of the diagonal block. This hypothesis is satisfied by
matrices with generic rank profile (i.e. having all their leading principal minor
non zero). This assumption allows us to focus on the problem of reducing the
modular reduction count.
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3.1 Modular reductions

When computing over finite field, it is of paramount importance to reduce
the number of modular reductions in the course of linear algebra algorithms.
The classical technique is to accumulate several multiplications before reducing,
namely replacing

∑

n

i=1(aibi mod p) with (
∑

n

i=1 aibi) while keeping the result
exact. If ai and bi are integers between 0 and p − 1 this is possible with inte-
ger or floating point units if the result does not overflow, or in other words if
n(p− 1)2 < 2mantissa, see, e.g., [6] for more details.

This induces a splitting of matrices in blocks of size the largest n∗ satisfying
the latter condition. Now the use of block algorithms in parallel, introduces a
second blocking parameter that interferes in the number of reductions. We will
therefore compare the number of modular reductions of three variants of the
tile iterative algorithm (left-looking, right-looking and Crout, see [3]), the slab
recursive algorithm of [6], and the tile recursive algorithm of [7]. For the sake
of simplicity, we will always assume that the block dimensions in the parallel
algorithms are always below n∗. In other words operations are done with full
delayed reduction for a single multiplication and any number of additions: op-
erations of the form

∑

aibi are reduced modulo p only once at the end of the
addition, but a · b · c requires two reductions.

For instance, with this model, the number of reductions required by a classic
multiplication of matrices of size m×k by k×n is simply: Rgemm(m, k, n) = mn.
From [7, Theorem 3], this extends also for triangular solving m×m to m× n:
with unit diagonal, Rutrsm(m,m, n) = mn (actually the computation of the
lowest row of the solution requires no modulo as it is just a division by 1, we
will therefore rather use Rutrsm(m,m, n) = (m − 1)n) and Rtrsm(m,m, n) =
2mn (with the previous refinement for Rutrsm(m,m, n), this also reduces to
Rtrsm(m,m, n) = (2m− 1)n).

Table 1 sketches the different shapes of the associated routine calls in the
main loop of each variant.

Left looking Crout Right looking

for i=1 to n/k do

utrsm ((i-1)k,(i-
1)k,k)

gemm (n-(i-1)k,(i-
1)k,k)

pluq (k,k)
trsm (k,k,n-ik)

for i=1 to n/k do

gemm (n-(i-1)k,(i-
1)k,k)

gemm (k,(i-1)k,n-ik)
pluq (k,k)
utrsm (k,k,n-ik)
trsm (k,k,n-ik)

for i=1 to n/k do

pluq (k,k)
utrsm (k,k,n-ik)
trsm (k,k,n-ik)
gemm (n-ik,k,n-ik)

Table 1: Main loops of the Left looking, Crout and Right looking tile iterative
block LU factorization (see [3])

Then the number of modular reductions required for these different LU fac-
torization strategies is given in Table 2.
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k
=

1
Iterative Right looking 1

3n
3 − 1

3n

Iterative Left Looking 3
2n

2 − 3
2n+ 1

Iterative Crout 3
2n

2 − 7
2n+ 3

k
≥

1

Tile Iterative Right looking 1
3kn

3 +
(

1− 1
k

)

n2 +
(

1
6k −

5
2 + 3

k

)

n

Tile Iterative Left looking
(

2− 1
2k

)

n2 +
(

− 5
2k − 1 + 2

k

)

n+ 2k2 − 2k + 1

Tile Iterative Crout
(

5
2 −

1
k

)

n2 +
(

−2k − 5
2 + 3

k

)

n+ k2

Tiled Recursive 2n2 − n log2 n− n

Slab Recursive (1 + 1
4 log2 n)n

2 − 1
2n log2 n− n

Table 2: Counting modular reductions in full rank block LU factorization of an
n×n matrix modulo p when np(p− 1) < 2mantissa, for a block size of k dividing
n.

The last two rows of the table corresponds to [7, Theorem 4] where Rutrsm

has been refined to (m − 1)n as mentioned above. The first three rows are
obtained by setting k = 1 in the following block versions. The next three rows
are obtained via the following analysis where the base case (i.e. the k × k
factorization) always uses the best unblocked version, that is the Crout variant
described above. Following Table 1, we thus have:

• The right looking variant performs n

k
such k × k base cases, pluq(k, k),

then, at iteration i, (n
k
−i)(utrsm(k, k, k)+trsm(k, k, k)), and (n

k
−i)2 gemm

(k,k,k), for a total of n

k
( 32n

2− 7
2n+3)+

∑

n

k

i=1(n−ik)
(

(3k − 2) + (n
k
− i)k

)

=
1
3kn

3 +
(

1− 1
k

)

n2 +
(

1
6k −

5
2 + 3

k

)

n.

• The Crout variant requires:

at each step, except the first one, to compute Rgemm(n−ik, ik, k) reductions
for the pivot and the elements below and Rgemm(k, ik, n− (i− 1)k);

at each step, to perform one base case for the pivot block, to solve unitary
triangular systems, to the left, below the pivot, using (n

k
− i)Rutrsm(k, k, k)

reductions and to solve triangular systems to the right, using (n
k
−i)Rtrsm(k, k, k)

reductions.

• Similarly, the Left looking variant requires Rgemm(n− ik, ik, k)+Rpluq(k)+
Rutrsm(ik, ik, k) +Rtrsm(k, k, n− ik) reductions in the main loop.

In table 3 we see that the left looking variant always performs less modular
reductions. Then the tiled recursive performs less modular reductions than the
Crout variant as soon as 2 ≤ k ≤ n

4 .
Finally the right looking variant is clearly costs more modular reductions.
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But the best algorithms here may not perform well in parallel, as will be
shown next.

k = 212 k = n

3 Recursive

Right Crout Left Right Crout Left Tile Slab

n=3000 3.02 2.10 2.05 2.97 2.15 2.10 2.16 2.26

n=5000 11.37 8.55 8.43 9.24 8.35 8.21 7.98 8.36

n=7000 29.06 22.19 21.82 22.56 22.02 21.73 20.81 21.66

Table 3: Timings (in seconds) of sequential LU factorization variants on one
core

3.2 Parallel experiments
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Figure 3: Parallel LU factorization on full rank matrices with modular opera-
tions

In Figure 3 we compare the tiled iterative variants with the tiled recursive
algorithm. The latter uses as a base case an iterative Crout algorithm too which
performs fewer modular operations,

The tiled recursive algorithm performs better than all other tiled iterative
versions. This can be explained by a finer and more adaptive granularity and a
better locality.

The left looking variant performs poorly for it uses an expensive sequential
trsm task. Although Crout and right-looking variant perform about the same
number of matrix products, those of an iteration of the right-looking variant are
independent, contrarily to those of the Crout variant, which explains a better
performance despite a larger number of modular reductions.
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Figure 4: Parallel LU factorization on full rank matrices without modular op-
erations

Figure 4 shows the performance without modular reductions, of the tiled re-
cursive parallel implementation on full rank matrices compared to Plasma-Quark.
The best block size for the latter library was determined by hand for each matrix
size. The two possible data-storage for Plasma-Quark are used: the collection
of tiles or the row-major data-storage. Our tiled recursive parallel PLUQ imple-
mentation without modular reductions behaves better than the Plasma-Quark

getrf tile. This is mainly due to the bi-dimensional cutting which allows for a
faster panel elimination, parallel trsm computations, more balanced gemm com-
putations and some use of Strassen-Winograd’s algorithm. This explains why
performance join again on more than 24 cores: the size of the sequential blocks
get below the threshold where this algorithm speeds up computations (typically
2400 on this machine).

4 Elimination with rank deficiencies

4.1 Pivoting strategies

We now consider the general case of matrices with arbitrary rank profile, that
can lead to rank deficiencies in the panel eliminations.

Algorithms computing the row rank profile (or equivalently the column ech-
elon form) used to share a common pivoting strategy:

to search for pivots in a row-major fashion and consider the next row only if
no non-zero pivot was found (see [11] and references therein). Such an iterative
algorithm can be translated into a slab recursive algorithm splitting the row
dimension in halves (as implemented in sequential in [6]) or into a slab iterative
algorithm.

More recently, we presented in [7] a more flexible pivoting strategy that re-
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sults in a tile recursive algorithm, cutting both dimensions simultaneously. As
a by product, both row and column rank profiles are also computed simultane-
ously.

A slab iterative algorithm. In the slab iterative algorithm shown in Fig-
ure 5, each panel factorization has to be run by a sequential algorithm. This
sequential task is costly and therefore imposes a choice of a fine granularity,
which, as we saw, on the other hand implies more modular reductions and a
lesser speed-up of Strassen-Winograd’s algorithm.

Figure 5: Slab iterative factorization of a matrix with rank deficiencies

Another difficulty is the fact that the starting column position of each panel
is determined by the rank of the blocks computed so far. It can only be de-
termined dynamically upon the execution. This implies in particular that no
data-storage by tiles, that fit the tiles of the algorithm is possible here. More-
over, the workload of each block operation may strongly vary, depending on the
rank of the corresponding slab. Such heterogeneous tasks lead us to opt for
work-stealing based runtimes instead of static thread management.

Tiled iterative elimination. In order to speed-up the panel computation,
we can split it into column tiles. Thanks to the pivoting strategy of [7], it is still
possible to recover the rank profiles afterwards. Now with this splitting, the
operations remain more local and updates can be parallelized. This approach
shares similarities with the recursive computation of the panel described in [4].
Figure 6 illustrates this tile iterative factorization obtained by the combination
of a row-slab iterative algorithm, and a column-slab iterative panel factorization.

Figure 6: Panel PLUQ factorization

This optimization used in the computation of the slab factorization improved
the computation speed by a factor of 2, to achieve a speed-up of 6.5 on 32 cores
with libkomp.

Tiled recursive elimination. Lastly, the tile recursive algorithm described
in [7] can be run in parallel using recursive tasks and the pfgemm, ftrsm and
flaswp routines. Contrarily to most recursive factorization algorithms, the
recursive splitting is done in four quadrants.
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It has the interesting feature that if the tile top-left tile is rank deficient,
then the elmination of the bottom-left and top-right tiles can be parallelized.

Figure 7 shows performance obtained for the tiled recursive and the tiled
iterative factorization. Both versions are tested using libgomp and libkomp

libraries. The input S16K is a 16000 × 16000 matrix with low rank deficiency
(rank is 15500). Linearly independant rows and columns of the generated matrix
are uniformly distributed on the dimension.
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Figure 7: Performance of tiled recursive and tiled iterative factorizations using
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The implementation with OpenMP of the tiled recursive LU maintained
high efficiency in the case of rank deficient matrices. It attained a speed-up
of 13.6 on 32 cores. Besides the fact that it benefits from Strassen-winograd
implementation, it is adapted to minimize memory accesses and optimize data
placement.

Using libkomp instead of libgomp library and numactl, for round and robin
interleave memory placement, that helps reducing dependency on bus speed, we
manage to obtain peak performance for our tiled recursive LU factorization.

5 Conclusion

We analyzed five different algorithms for the computation of Gaussian elimina-
tion over a finite field.

The granularity surely optimizes the parallelization of these algorithms but
at the cost of more modular operations. Algorithm optimizing modular reduc-
tions are unfortunately not the most efficient in parallel. The best compromise is
obtained with our recursive tiled algorithm that performs best in both aspects.

Perspective Our future work focuses on two main issues. First, the use of
specific allocators that can be used for a better mapping of data in memory and

12



reduce distant accesses. Second, parallel programming frameworks for multicore
processors [13] could be more effective than binding threads on each NUMA
node. Dataflow based dependencies, like when using OpenMP 4.0 directives,
can ensure more parallelism for recursive implementation using libkomp [1]
library.
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and Applied Algebra, 139(1–3):61–88, June 1999.

[9] J. v. Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, New
York, NY, USA, 1999.

[10] G. Golub and C. Van Loan. Matrix Computations. The Johns Hopkins University Press, third
edition, 1996.

[11] C.-P. Jeannerod, C. Pernet, and A. Storjohann. Rank-profile revealing Gaussian elimination
and the CUP matrix decomposition. J.Symb.Comp., 56:46–68, 2013.

[12] K. Klimkowski and R. A. van de Geijn. Anatomy of a parallel out-of-core dense linear solver.
In ICPP, volume 3, pages 29–33. CRC Press, aug 1995.

[13] J. Kurzak, H. Ltaief, J. Dongarra, and R. M. Badia. Scheduling dense linear algebra operations
on multicore processors. Concurrency and Computation: Practice and Experience, 22(1):15–
44, 2010.

[14] W. Stein. Modular forms, a computational approach. Graduate studies in mathematics. AMS,
2007. URL: http://wstein.org/books/modform/modform.

13

http://hal.inria.fr/hal-00809765
http://arxiv.org/abs/cs/0601133
http://wstein.org/books/modform/modform

	Introduction
	Preliminaries
	Auxiliary sequential routines
	Parallel programming models
	Parallel matrix multiplication

	Eliminations with no rank deficiency
	Modular reductions
	Parallel experiments

	Elimination with rank deficiencies
	Pivoting strategies

	Conclusion

