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Handling Ambiguous Effects in Action Learning

Boris Lesner and Bruno Zanuttini
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{boris.lesner,bruno.zanuttini}@unicaen.fr

Abstract. We study the problem of learning stochastic actions in propo-
sitional, factored environments, and precisely the problem of identifying
STRIPS-like effects from transitions in which they are ambiguous. We
give an unbiased, maximum likelihood approach, and show that maxi-
mally likely actions can be computed efficiently from observations. We
also discuss how this study can be used to extend an RL approach for
actions with independent effects to one for actions with correlated effects.
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1 Introduction

Learning how one’s actions affect the environment is a central issue in Artificial
Intelligence, and especially in Reinforcement Learning (RL) problems. This task
is far from being trivial because of many factors. In particular, actions may affect
the environment differently depending on the state where they are taken. They
may also be stochastic, that is, have different possible outcomes, each of which
occurs with some probability each time we take the action.

A third difficulty, which is our focus in this article, is that the effects of an
action are typically ambiguous in some states. Precisely, if some fact is true in the
state where we took the action and in the resulting state, then it is ambiguous
whether this fact was set to true by the action, or was simply unaffected by it
(and persisted true). This of course makes no difference in the starting state
in question, but may matter a lot if we want to generalize the corresponding
observation to other states, where the fact in question is not true.

To give a concrete example, assume that you want to learn the effects of the
action “play the National Lottery” by observing your neighbours. If one of them
suddenly has an expensive car parked in front of his house, then he must have won
(effect “become rich” occurred). On the other hand, assume another one always
has had an expensive car parked in front of his huge villa. Then you will see no
change when he wins, nor when he looses. Technically, for this neighbour (state)
both winning and losing (effects) provoke no change (self-transition). Then, this
ambiguity must be resolved for generalizing from a few “poor” neighbours and
a few “rich” neighbours to a generic player.

We address here this specific problem for environments and actions described
in factored form over propositional variables, with STRIPS-like effects. We pro-
vide an in-depth study of ambiguity and of maximum likelihood approaches to
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learning in the presence of ambiguous effects. Though the obvious motivation for
this work is RL, we place our study in a general learning context, where some
transitions between states are observed, from which the effects of the (unique)
stochastic action which provoked them must be learnt together with their prob-
abilities. In this setting, we propose a linear programming approach for comput-
ing the most likely effect distributions, and use it to propose a generalization of
SLF-Rmax [12] to deal with ambiguous effects.

Ambiguous effects are discussed in several works [13, in particular], and im-
plicitly dealt with in approaches to relational RL [5, 10, 11]. Still, to the best of
our knowledge they have never been investigated in depth. For instance, propo-
sitional actions are often learnt as dynamic bayesian networks (DBNs) which
assume independent effects on variables [6, 4, 12]. Then ambiguity is bypassed
by learning the effects on x independently in states satisfying x and x. But such
DBNs (without synchronic arcs) cannot represent effect distributions as simple
as {(x1x2, .5), (∅, .5)}, while STRIPS-like descriptions, as we study here, are fully
expressive (see the discussion by Boutilier et al. [1]).

Closest to ours is the work by Walsh et al. [13]. Our work can in fact be seen
as using their linear regression approach (for known effects) with all 3n possible
effects, but introducing new techniques for reducing the exponential number of
unknowns and dealing with ambiguity.

Section 2 introduces our formal setting. In Sections 3–5 we study the problem
of computing most likely actions given observed transitions. We give an appli-
cation to RL and conditional actions in Section 6, and conclude in Section 7.

2 Formal setting

We consider propositional environments, described through n Boolean variables
x1, . . . , xn. A state s is an assignment to x1, . . . , xn. There is a hidden stochastic
action a, which can be described as a probability distribution on a finite set
of effects (we identify the action and the distribution to each other). We write
{(pi, ei) | i = 1, . . . , ℓ} (with

∑

i pi = 1) for this distribution, meaning that each
time a is taken, exactly one of the effects ei occurs, as sampled i.i.d. according
to the pi’s. Effects are STRIPS-like, that is, each effect is a consistent term on
x1, . . . , xn. When a is taken in some state s and effect ei occurs, the resulting
state s′ is obtained from s by changing all affected variables to their value in ei.
We write s′ = apply(s, ei). For convenience, states and terms are also seen as
sets of literals, and 3X denotes the set of all terms/effects.

For instance, for n = 3, s = 000 and s′ = 010 are two states, and e1 = x1x2,
e2 = x3 are two effects. The distribution {(e1, .7), (e2, .2), (∅, .1)} defines an
action a. Each time a is taken in a state, e1 occurs (with probability .7), or
e2 occurs (.2), or nothing occurs (.1). If effect e1 occurs in state s above, the
resulting state is s′, while effects e2 and ∅ provoke a transition from s to itself.

Ambiguous Effects and Compact Representation. Ambiguity is a consequence of
the following straightforward result.
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Proposition 1. Let s, s′ be two states. Then the effects e ∈ 3X which satisfy
apply(s, e) = s′ are exactly those for which s′ \ s ⊆ e ⊆ s′ holds.

It follows that the effects which may have occurred when a transition from s to
s′ is observed, can be compactly represented, as the set interval [s′ \ s, s′]. As
an example, the effects which provoke a transition from s = 000 to s′ = 010
are x2, x1x2, x2x3, and x1x2x3. That is, we are sure that the (atomic) effect x2

occurred, but any other literal in s′ may have been set to true, or left true, by the
action. These effects are compactly represented by the set interval [x2, x1x2x3].

Set intervals obey the rule [e1, e2] ∩ [e3, e4] = [e1 ∪ e3, e2 ∩ e4]. For instance,
[x2, x1x2x3]∩ [∅, x1x2x3] is [x2, x2x3], and [x2, x1x2x3]∩ [x2x3, x1x2x3] is empty,
since x2x2x3 6⊆ x2x3 holds (here, because x2 and x2x3 are inconsistent together).

Sampled Effects and Induced Observations. We consider an agent which must
learn the effect distribution of a unique action a, from transitions provoked by
this action in the environment. Remember that (except in Section 6) we assume
a to be unconditional, i.e., to have the same effect distribution D in all states s.

For generality, we assume nothing about the states s in which transitions
are observed; what we only require is that the environment samples the effects
fairly to D. This setting arises naturally in many contexts. For instance, a robot
may train in the factory, so as to learn accurate models of its actuators, but the
situations s which it can experiment may be restricted by the facilities in the
factory. In an RL setting, the agent may lose control on the visited states if other
agents or exogenous events can intervene at any moment in the environment.

Formally, the examples sampled by the environment form a multiset of pairs
state/effect, of the form T = {(si, ei) | i = 1, . . . ,m}, and the learner sees the
corresponding multiset of transitions between states {(si, s

′
i) | i = 1, . . . ,m}

(with s′i = apply(si, ei)). For simplicity of presentation, we define the obser-
vations induced by T to be the multiset of intervals OT = {[s′i \ si, s

′
i] | i =

1, . . . ,m}, and assume that this is the only data available to the learner. That
this information is equivalent to the multiset of transitions is a consequence of
Proposition 1, together with the observation that si can be easily retrieved from
s′i \si and s′i. Importantly, observe that ei is always in the set interval [s′i \si, s

′
i].

Example 1. Let D = {(x1, .5), (x1x2, .3), (∅, .2)}, and let

T = {(01, x1), (00, x1), (00, ∅), (00, x1x2), (01, x1)}

in which, for instance, the first element corresponds to state s = 01 having been
chosen, and effect x1 having been sampled. The observations induced by T are

O = {[x1, x1x2], [x1, x1x2], [∅, x1x2], [x1, x1x2], [x1, x1x2]}

The frequency of an observation o = [s′ \ s, s′] in OT , written fo,OT
(or fo), is

the proportion of indices i such that [s′i \ si, s
′
i] is precisely o in OT . In Exam-

ple 1, f[x1,x1x2] is 1/5 + 1/5 = .4. Observe that this corresponds in fact to the
manifestation of two different effects (but this is hidden to the learner).
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3 Most Likely Actions

We now characterize the maximally likely effect distributions D (i.e., actions)
given observations O = {[s′i \ si, s

′
i] | i = 1, . . . ,m}. First recall from Bayes rule

that the likelihood of D given O satisfies Pr(D|O) = Pr(D)Pr(O|D)/Pr(O).
In particular, if all distributions D have the same prior likelihood Pr(D), the
most likely distribution D given O is the one which maximizes Pr(O|D).

Likelihood and Fairness. We first need a few straightforward lemmas. Write O
for a multiset of observations induced by states/effects in T , and D = {(pi, ei) |
i ∈ I}, D′ = {(p′j , e

′
j) | j ∈ J} for two effect distributions. Moreover, write ||D−

D′||1 for the L1-distance between D,D′, that is, ||D −D′||1 =
∑

e∈3X |pe − p′e|,
with pe = pi for e = ei in D and pe = 0 otherwise, and similarly for p′e. For
instance, the L1-distance from the distribution in Example 1 to the distribution
{(x1, .6), (∅, .4)} is (.6− .5) + (.3− 0) + (.4− .2) = 0.6.

Lemma 1. If for some o ∈ O, there is no i ∈ I with ei ∈ o, then Pr(O|D) is 0.

This follows from the fact that when a transition from s to s′ is observed, the
effect which provoked it must be in the interval [s′ \ s, s′].

Now write DT = {(e, pe)} for the distribution of effects in T = {(s′, e′)},
that is, pe is given by pe = |{(s′, e′) ∈ T | e′ = e}| / |T |.

Lemma 2. Pr(O|D) > Pr(O|D′) is equivalent to ||DT −D||1 < ||DT −D′||1.

This follows, e.g., from the following bound [14], which extends Chernoff’s bound
to multivalued random variables:

Pr(||DT −D||1 ≥ ǫ) ≤ (2ℓ − 2)e−mǫ2/2 (1)

where m is the number of samples observed (size of T ) and ℓ is the number
of effects (with nonzero probability) in D. Note that other distances could be
used. We use L1-distance because approximating the transition probabilities
T (·|s,D) in an MDP with respect to it provides guarantees on the resulting value
functions, but the infinite norm, for instance, gives similar results [7, “simulation
lemma”]).

These observations lead us to introduce the following definition.

Definition 1. Let D = {(pi, ei) | i ∈ I} be an effect distribution. A multiset of
observations O is said to be ǫ-fair to D if

1. for all intervals o ∈ O, there is an i ∈ I with pi 6= 0 and ei ∈ o, and
2. there is a multiset of states/effects T such that O is induced by T and the

distribution of effects in T is at L1-distance at most ǫ to D.

Hence (Lemmas 1–2) the effect distributions D to which O is 0-fair are perfectly
likely given O, and otherwise, the smaller ǫ, the more likely D given O.

Clearly enough, a multiset O is always 0-fair to at least one distribution D.
Such D can be built from one effect eo in each interval o ∈ O, with the frequency
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fo as its probability. However, there are in general many such “perfectly likely”
distributions. In fact, each possible choice of effects in the construction above
leads to a different one. Further, in some given observed interval it may be the
case that two different effects provoked the corresponding transitions, increasing
still more the number of candidate distributions. Still worse, the different most
likely distributions may be arbitrarily distant from each other (hence inducing
arbitrarily different planning problems, if learnt actions are used for planning).

Example 2. Let o1 = [x1, x1x2], o2 = [x2, x1x2], and O = {o1 × 5, o2 × 5} (o1, o2
observed 5 times each). Then O is 0-fair to D1 = {(x1, .5), (x2, .5)}, to D2 =
{(x1x2, 1)}, and to D3 = {(x1, .4), (x1x2, .3), (x2, .3)}. As to the last point, D3

indeed induces O if x1x2 is sampled once in s = 01 and twice in s = 10.
Now despite O is 0-fair to D1 and to D2, their L1-distance is maximal (2),

and so are the transition functions T (·|00, ·) which they induce in s = 00.

Summarizing, we have that (with high confidence) O is always ǫ-fair to the
hidden effect distribution D which indeed generated it, for some small ǫ. Never-
theless, O can also be ǫ-fair, for some small ǫ, to some distribution which is very
different from D. Another way to state this is that fairness gives a lower bound
on the distance to the real, hidden D. Anyway, this lower bound is a correct,
unbiased measure of likelihood (Lemma 2).

Computing fairness. If some additional constraints have to be satisfied (like
accounting for other observations at the same time), in general there will not be
any effect distribution to which the observations are 0-fair. Hence we investigate
how to compute in general how fair a given multiset of observations is to a given
effect distribution.

To that aim, we give an alternative definition of fairness. To understand the
construction, observe the following informal statements for a sufficiently large
multiset of observations O generated by a distribution D = {(pi, ei) | i ∈ I}:

– if ei induced o ∈ O, then the observed frequency of o should be close to pi,
– it is possible that some ei ∈ D with a sufficiently small pi has never been

observed, i.e., that O contains no interval o with ei ∈ o,
– every o ∈ O must be induced by some effect ei with pi 6= 0,
– if o1, o2 ∈ O intersect, it may be that only one ei ∈ D induced both (in

different states s), and then fo1 , fo2 should approximately sum up to pi,
– dually, if o ∈ O contains ei, ej , it may be that both participated in inducing

o, and then pi, pj should approximately sum up to fo.

Generalizing these observations, we can see that one effect may induce several
observed intervals, and dually that one interval may be induced by several effects.
We take these possibilities into account by introducing values which we call
contributions of effects to intervals, written ce,o, and reflecting how often, among
the times when e was sampled, it induced interval o.

We are now ready to characterize ǫ-fairness. The value to be minimized in
Proposition 2 is the L1-distance betweenD and the frequencies of the realizations
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of effects. A particular combination of ce,o’s indicates a particular hypothesis
about which effect provoked each observed transition, and how often.

Proposition 2. Let O be a multiset of observations and D = {(pi, ei) | i ∈ I}
be an effect distribution with ∀o ∈ O, ∃i ∈ I, ei ∈ o. Then O is ǫ-fair to D if and
only if the following inequality holds:

min

(

∑

e∈D

|pD(e)−
∑

o∈O

ce,o|

)

≤ ǫ

where the minimum is taken over all combinations of nonnegative values for
ce,o’s (for all effects e, observed intervals o) which satisfy the three conditions:

∀o ∈ O, e ∈ D if e /∈ o then ce,o = 0

∀o ∈ O
∑

e∈D

ce,o = fo

∀o ∈ O ∃e such that pe 6= 0 and ce,o 6= 0

Proposition 3 below shows that the minimum is indeed well-defined (as the
objective value of a linear program).

Example 3 (continued). The multiset O from Example 2 is 0-fair to D3 =
{(x1, .4), (x1x2, .3), (x2, .3)}, as witnessed by contributions cx1,o1 = .4, cx1x2,o1 =
.1, cx1x2,o2 = .2, cx2,o2 = .3. Now for D = {(x1x2, .9), (x1, .1)} we get 0.2-fairness
with cx1x2,o1 = cx1x2,o2 = .5, and for D = {x1, .45), (x2, .55)} we get 0.1-fairness.
Finally, O is not fair to D = {x1, 1)}, since no effect explains o2.

Linearity. Fairness provides an effective way to compute most likely distribu-
tions. To see this, consider the following linear program1 for given O and D:

Variables: ce,o (∀o ∈ O, e ∈ O)

Minimize:
∑

e∈3X |pe −
∑

o∈O ce,o|

Subject to: ce,o ≥ 0 (∀o ∈ O, e ∈ O)
∑

e∈o ce,o = fo (∀o ∈ O)

This program implements Proposition 2, but ignoring the last constraint ∀o ∈
O, ∃e ∈ 3X , pe 6= 0 and ce,o 6= 0 (this would be a strict inequality constraint).
Still, it can be shown that it correctly computes how fair O is to D.

Proposition 3. Assume for all o ∈ O there is an e ∈ o with pe > 0. Then the
optimal value of the program above is the minimal ǫ such that O is ǫ-fair to D.

We note that an arbitrary optimal solution (i.e., combination of ce,o’s) of the
program is not necessarily a witness of ǫ-fairness, in the sense that it may let
some observation o ∈ O be unexplained by any effect e with nonzero probability.
Nevertheless, from such a solution a correct witness can always be straightfor-
wardly retrieved (with the same, optimal value).

1 The objective is indeed linear, since it consists in minimizing the absolute values.
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Example 4 (continued). Let again O = {[x1, x1x2] × 5, [x2, x1x2] × 5}, and let
D = {(x1, 0), (x2, .25), (x1x2, .25), (x1, .5)}. Observe that the fairness of O to D
cannot be better than 1 (due to a .5-excess on effect x1). Hence the contributions
cx1,o1 = .5, cx2,o2 = .25, cx1x2,o2 = .25 are optimal. Nevertheless, they do not
respect the constraint that there is an effect e ∈ o1 with pe > 0 and ce,o1 > 0.
Still, an optimal solution respecting this constraint can be easily retrieved by
“redirecting” the contribution of x1 to o1 to the effect x1x2.

Clearly, this program is not practical, since it has exponentially many variables.
We will see in Section 5 how to reduce this number in practice.

4 Variance of Sets of Observations

We now turn to the more general question of how likely it is that several multisets
of observations O1, . . . , Oq are all induced by the same effect distribution D.
Naturally, we want to measure this by the radius of a ball centered at D and
containing all Oi’s. The smaller this radius, the more likely are all Oi’s induced
by D, and the smaller over all distributions D, the less the “variance” of Oi’s.
From the analysis in Section 3 it follows that fairness is the correct (unbiased)
measure for defining the radius of such balls. The center of a ball containing all
Oi’s and with minimal radius is known as the Chebyshev center of the Oi’s.

We have however taken care in our definition of fairness that any observed
interval is accounted for by at least one effect with nonzero probability. As an
unfortunate and rather surprising consequence, the center does not always exist.

Example 5. Let O1 = {[x1], [x2] × 2, [x3] × 2}, O2 = {[x2] × 4, [x4]}, and O3 =
{[x3]× 4, [x4]}. It can be shown that O2 and O3 cannot be both 0.8-fair to any
D, while for any ǫ > 0 there is a D to which all of O1, O2, O3 are (0.8 + ǫ)-fair.
Hence the center of O1, O2, O3 does not exist (it is the argmin of an open set).

Still, we define O1, . . . , Oq to be ǫ-variant (together) if there is an effect distribu-
tion D such that for all i = 1, . . . , q, Oi is ǫ-fair to D. Clearly, variance inherits
from fairness the property of being a correct, unbiased measure (of homogeneity),
and the property of underestimating the real (hidden) variance.

It is important to note that when restricted to two multisets of observations,
variance does not define a distance. Intuitively, this is simply because the witness
D12 for the variance of O1, O2 needs not be the same as the witness D23 for
O2, O3. In fact, the triangle inequality can even be made “very false”.

Example 6. Consider the multisets O1 = {[x1, x1x2]}, O2 = {[x2, x1x2]}, and
O3 = {[x2, x1x2]}. Then O1, O2 are 0-variant (using D = {(x1x2, 1)}), and so
are O2, O3 (using D = {(x2, 1)}). Nevertheless, because the intervals in O1 and
O3 are disjoint, for any distribution D the fairness of either O1 or O3 (or both)
to D is at least 1, hence O1, O3 are not ǫ-variant for any ǫ < 1.

The good news is that variance inherits the linear programming approach from
fairness. Indeed, consider the following linear program (built on top of the one
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for fairness) for computing the variance of O1, . . . , Oq, as well as a witness dis-
tribution D = {(pe, e) | e ∈ 3X}:

Variables: pe (∀e ∈ 3X)
cie,o (∀i = 1, . . . , q, o ∈ Oi, e ∈ o)

Minimize: maxi=1,...,q

∑

e∈3X |pe −
∑

o∈Oi
cie,o|

Subject to: pe ≥ 0 (∀e ∈ 3X)
cie,o ≥ 0 (∀i = 1, . . . , q, o ∈ Oi, e ∈ o)
∑

e∈3X pe = 1
∑

e∈o c
i
e,o = fo (∀i = 1, . . . , q, o ∈ Oi)

As Example 5 shows, the program may compute a (nonattained) infimum value,
but this is still sufficient for our application in Section 6.

Proposition 4. The optimal value σ of the above linear program satisfies σ ≤ ǫ
if and only if O1, . . . , Oq are (ǫ+ α)-variant for all α > 0.

5 Restriction to Intersections of Intervals

The linear programming formulations of fairness and variance which we gave
involve an exponential number of variables (enumerating all 3n effects). We now
show how to restrict this. The restriction will not give a polynomial bound on
the number of variables in general, but it proves useful in practice.

The basic idea is to identify to only one (arbitrary) effect all the effects in
some intersection of intervals o1 ∩ · · · ∩ oq (one per Oi).

Definition 2. Let O1, . . . , Oq be observations. A maximal intersecting family
(MIF) for O1, . . . , Oq is any maximal multiset of intervals M = {oi1 , . . . , oir}
satisfying (for all j, j′ 6= j): (1) ij 6= ij′ , (2) oij ∈ Oij , and (3) oi1∩· · ·∩oir 6= ∅.

A set of effects E ⊆ 3X is said to be sufficient for O1, . . . , Oq if for all MIFs
M = {oi1 , . . . , oir}, there is at least one effect e ∈ E with e ∈ oi1 ∩ · · · ∩ oir .

Example 7. Let o1 = [x1, x1x2], o
′
1 = [x2, x1x2], o2 = [∅, x1x2], o

′
2 = [x1x2]}, and

O1 = {o1, o
′
1}, O2 = {o2, o

′
2}. The MIFs for O1, O2 are {o1, o2} (with intersec-

tion [x1, x1x2]), {o
′
1, o2} (intersection [x2, x1x2]), and {o′2} (intersection [x1x2]).

Hence, for example, {x1, x2, x1x2} and {x1x2, x1x2} are sufficient sets of effects.

The proof of the following proposition (omitted) is simple though tedious.

Proposition 5. Let O1, . . . , Oq be multisets of observations, and E be a suffi-
cient set of effects for O1, . . . , Oq. The program for computing variance has the
same optimal value when effect variables pe’s range over e ∈ E (instead of 3X).

Given multisets O1, O2, a sufficient set of effects can be easily computed by
(1) intersecting all intervals in O1 with those in O2, yielding a set of intervals O12,
(2) retaining the⊂-minimal intervals in (O1∪O2∪O12)\{∅}, and (3) choosing one
effect in each remaining interval. For a greater number of intervals, Steps (1)–(2)
are applied recursively first. Such computation is very efficient in practice, and
indeed generates a small number of effects as compared to 3n.
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6 Application: Learning Conditions of Actions

We now show how the tools of Sections 3–5 can be applied to learning conditional
actions. Precisely, we consider a hidden action a, consisting of formulas c1, . . . , cℓ,
each associated with an effect distribution Di. Conditions ci are assumed to
partition the state space, so that when a is taken in s, an effect is sampled from
Di, where ci is the unique condition satisfied by s. Such actions are known as
Probabilistic STRIPS Operators (PSO [8]).

When c1, . . . , cℓ are unknown but a has independent effects on the variables,
SLF-Rmax [12] learns a DBN representation with KWIK guarantees [9], provided
a bound k on the number of variables used in c1 ∪ · · · ∪ cℓ is known a priori.

We also assume such a known bound k, and build on SLF-Rmax for address-
ing PSO’s. Note that using synchronic arcs, SLF-RMAX could in principle deal
with nonindependent (correlated) effects, but the bound k would then depend
also on an a priori bound on the amount of correlation (maximum size of an ef-
fect). The approach we propose does not suffer from this dependence, and hence
is more sample-efficient. The price we pay is that our approach is only heuristic.

Basic Principles. SLF-Rmax gathers statistics (observations) about the action
behavior in specific families of states (using Rmax-like exploration). Precisely,
for each set C of k variables and each term c on C, a multiset of observations Oc

is gathered in states satisfying c. For instance, for k = 2 and c = x1x3, O
c will

contain transitions observed only in states s satisfying x1 and x3. For technical
reasons (see below), statistics are also gathered on terms over 2k variables.

The full approach works by first learning the conditions c1, . . . , cℓ of a, then
learning the distribution Di for each of them using maximum likelihood. As
concerns conditions, define the following property, respective to a given measure
of homogeneity µ for multisets of observations (think of our notion of variance).

Definition 3. A term c over k variables is said to be an ǫ-likely condition for

action a (wrt µ) if µ(Oc∧c1 , . . . , Oc∧cK ) ≤ ǫ holds, where c1, . . . , cK enumerate
all
(

n−k
k

)

2k terms over k variables disjoint from c.

Example 8. Let n = 3 variables, k = 1 variable in the (hidden) conditions of a,
and assume the following transitions (s, s′) have been observed 10 times each:

(000, 000), (110, 111), (011, 000), (101, 101), (111, 111)

We have for instance Ox1x3 = {[x3, x1x2x3] × 10} and Ox1x3 = {[∅, x1x2x3] ×
10, [∅, x1x2x3]× 10}. The term x1 is an ǫ-likely condition because Ox1x2 , Ox1x2 ,
Ox1x3 , Ox1x3 are homogeneous, e.g., they are all fair to D = {(x3, 1)}. Con-
trastingly, x3 is not ǫ-likely because Ox2x3 = {[∅, x1x2x3] × 10} and Ox2x3 =
{[x3, x1x2x3]× 10} do not have even one likely effect in common.

Given enough observations for each 2k-term c, it turns out that with high prob-
ability, retaining ǫ-likely conditions (for small ǫ, as derived from Equation 1) is
correct. The argument is essentially as follows [12]:
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1. any correct condition c = ci is ǫ-likely; indeed, all O
c∧cj ’s are homogeneous

because by definition they are all induced by Di,
2. for any ǫ-likely c, by homogeneity Oc is close in particular to Oc∧ci for the

real condition ci, and since Oc∧ci is induced by Di, by the triangle inequality
the most likely explanations of Oc are close to the correct Di.

Handling Ambiguity. With ambiguous effects, we propose to use variance as the
measure µ in Definition 3. Because variance underestimates the radius of the L1-
ball centered at the real distribution (Section 4), we get a complete approach.

Proposition 6. With high confidence (as given by Equation 1), any real condi-
tion ci of a is an ǫ-likely condition of a with respect to variance.

However, because the soundness of SLF-Rmax (Observation 2 above) relies on
the triangle inequality, our approach is not sound in general, that is, a condition c
may be ǫ-likely while inducing an incorrect distribution of effects. Still, choosing
the candidate condition c with the smallest ǫ (that is, with the smallest L1-ball
centered at it) gives a promising heuristic. In particular, the worst cases where
two most likely explanations are very distant from one another are not likely to
be frequent in practice. We give some preliminary experimental results below.

Also observe that we could get a sound but incomplete approach by minimiz-
ing instead of maximizing the radius over all D’s in the definition of variance.
This however requires to solve a mixed integer instead of a linear program, and
anyway did not prove interesting in our early experiments.

Importantly, our approach inherits the sample complexity of SLF-Rmax. A
straightforward application of Equation 1 and an analysis parallel to the one of
SLF-Rmax [12] shows that we need a similar number of samples: essentially, for
each candidate 2k-term c ∧ cj (there are

(

n
2k

)

22k of them) we need the (polyno-

mial) number of observations given by Equation 1 for Oc∧cj to be fair to the
target distribution. Observe that 1/ǫ can be used as a default estimate of the
number of effects in the target distribution (ℓ in Equation 1). Overall, the sample
complexity is polynomial for a fixed bound k, just as for SLF-Rmax.

Preliminary Experiments. We ran some proof-of-concept experiments on two
512-state problems (n = 9 variables). These only aim at demonstrating that
though heuristic, our approach can work well in practice, in the sense that it
learns a good model with the expected sample complexity. Hence we depict here
the reward cumulated over time in an RL setting, averaged over 10 runs. For both
problems on which we report here, learning can be detected to have converged
at this point where the cumulated reward starts to increase continuously.

We first tested the Builder domain [3] (slightly modified by removing the
“wait” action, forcing the agent to act indefinitely). The number of variables in
the conditions is k = 2 for one action, 5 for another, and 1 for all others. Actions
modify up to 4 variables together and have up to 3 different effects.

Figure 1 (left) shows the behaviour of our approach (“PSO-Rmax”). The
behaviour of (unfactored) Rmax [2] is shown as a baseline; recall that Rmax
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Fig. 1. Cumulative rewards for Builder (left) and Stocktrading (right).

provably converges to optimal behaviour in a number of steps polynomial in
the number of states. Both algorithms were run with m = 10 in Equation 1
(in the corresponding equation for Rmax), as appeared to be most efficient. We
have not run SLF-Rmax here because the effects of actions on variables are not
independent (we leave extensions of SLF-Rmax to this setting for future work).

Each “step” on the x-axis corresponds to 100 observed transitions. As can be
seen, our algorithm efficiently exploits the structure and is very fast to converge
to a near-optimal policy (by exploring an average of 57 states only). In no run
have we observed behaviours keeping on deviating from the optimal one, as
could happen in theory since our algorithm is not guaranteed to be sound and
might learn an incorrect model. Inportantly, we also tested the behaviour of our
approach with 3 dummy variables added along with actions to flip them, thus
artificially extending the domain to 4096 states. As Figure 1 shows, this had
almost no consequence on the convergence of our approach.

We also ran some experiments on a 3 × 2 Stocktrading domain [12]. Here
the effects are independent, so that DBNs are a compact representation (k = 2
variables in conditions for SLF-Rmax) while PSOs are not (k = 6 and k = 7).
Experiments confirm that SLF-Rmax converges much faster than our approach.
Despite this, as Figure 1 (right) shows, our algorithm behaves similarily as Rmax,
which could be expected since considering all 2k-terms over 9 variables with
k = 6 or 7 amounts to exploiting no structure. Nevertheless, again our method
always converged to optimal behaviour despite its heuristic nature.

7 Conclusion

We have studied a maximum likelihood, unbiased approach to learning actions
from transitions in which effects are ambiguous. We have shown that the maxi-
mally likely actions could be computed by a linear program with exponentially
many variables, but that this number could be greatly reduced in pratice. More-
over, if a known, polynomial-size set of candidate effects is learnt or known in
advance, then this can be exploited directly in the program.

We have proposed an application of our study to RL, for hidden actions with
correlated effects, extending SLF-Rmax [12]. Our approach is complete but not
sound in general, but some proof-of-concept experiments suggest that it may
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work in pratice. Nevertheless, this application is mainly illustrative, and our
projects include using variance as a measure of information in techniques based
on induction of decision trees [4], which prove to be more powerful in practice.

Another interesting perspective is to study information criteria able to bias
the search for likely actions (e.g., MDL), and to integrate them efficiently in
our linear programming approach. Finally, an important perspective in an RL
context is to design exploration strategies able to help the agent disambiguate
or learn the set of effects before trying to learn their relative probabilities.

Acknowledgements. This work is supported by the French National Research
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5. Džeroski, S., De Raedt, L., Driessens, K.: Relational reinforcement learning. Ma-
chine Learning 43, 7–52 (2001)

6. Kearns, M., Koller, D.: Efficient reinforcement learning in factored MDPs. In:
Proc. 16th International Joint Conference on Artificial Intelligence (IJCAI 1999).
pp. 740–474. Morgan Kaufmann (1999)

7. Kearns, M., Singh, S.: Near-optimal reinforcement learning in polynomial time.
Machine Learning 49(2–3), 209–232 (2002)

8. Kushmerick, N., Hanks, S., Weld, D.S.: An algorithm for probabilistic planning.
Artificial Intelligence 76, 239–286 (1995)

9. Li, L., Littman, M.L., Walsh, T.J., Strehl, A.L.: Knows what it knows: a framework
for self-aware learning. Machine Learning 82, 399–443 (2011)

10. Pasula, H.M., Zettlemoyer, L.S., Kaelbling, L.P.: Learning symbolic models of
stochastic domains. J. Artificial Intelligence Research 29, 309–352 (2007)

11. Rodrigues, C., Gérard, P., Rouveirol, C., Soldano, H.: Incremental learning of re-
lational action rules. In: Proc. 9th International Conference on Machine Learning
and Applications (ICMLA 2010). pp. 451–458. IEEE Computer Society (2010)

12. Strehl, A.L., Diuk, C., Littman, M.L.: Efficient structure learning in factored-state
MDPs. In: Proc. 22nd AAAI Conference on Artificial Intelligence (AAAI 2007).
pp. 645–650. AAAI Press (2007)

13. Walsh, T.J., Szita, I., Diuk, C., Littman, M.L.: Exploring compact reinforcement-
learning representations with linear regression. In: Proc. 25th Conference on Un-
certainty in Artificial Intelligence (UAI 2009) (2009)

14. Weissman, T., Ordentlich, E., Seroussi, G., Verdu, S., Weinberger, M.J.: Inequal-
ities for the l1 deviation of the empirical distribution. Tech. Rep. HPL-2003-97,
Hewlett-Packard Company (2003)


