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Abstract

Modular curves like Xo(NN) and X;(N) appear very frequently in arithmetic geometry. While
their complex points are obtained as a quotient of the upper half plane by some subgroups of SL2(Z),
they allow for a more arithmetic description as a solution to a moduli problem. This description turns
out to be very useful in many applications. We wish to give such a moduli description for two other
modular curves, denoted here by Xusp(p) and X, (p) associated to non-split Cartan subgroups
and their normaliser in GL2(F,). These modular curves appear for instance in Serre’s problem of
classifying all possible Galois structures of p-torsion points on elliptic curves over number fields. We
give then a moduli-theoretic interpretation and a new proof of a result of Chen [Che98, Che00].

1 Introduction

Let p be an odd prime. Let Y (p) be the affine modular curve classifying elliptic curves with full level
p structure. The completed modular curve X (p) classifies generalised elliptic curves with full level p
structure. Those two curves admit integral models over the ring of integers of the cyclotomic field Q(¢,).
See [DR73] and [KM85]. The modular curve X (p) comes equipped with a natural action by GLa(TF,).
For any subgroup H of GLy(E,) the quotient X (p)/H defines an algebraic curve X3 over Q(¢,)t ™).
Hence the points on Xy, over an algebraically closed field k of characteristic different from p are H-orbits
of k-points of X (p). However in some interesting cases, there is a nice description of a moduli problem
for X4 too.

As an example, we explain the case when H is the Borel subgroup B = {(3 I)} in GLo(I,). First,
the points in Y (p)(k) are k-isomorphism classes of pairs (E7 (P, Q)) where E/k is an elliptic curve and
(P, Q) form a basis of E[p]. For a fixed FE, all the pairs (P’,Q’) in the B-orbit of (P, Q) are such that
P’ is in the subgroup C generated by P. Hence the k-points on the quotient curve Y3 can be identified
with k-isomorphism classes of pairs (E,C) with E again an elliptic curve defined over k and C a cyclic
subgroup of order p in E[p]. The latter description is now independent of the initial choice of the Borel
subgroup B in GL2(F,) and only uses the geometry of E. The curve Xp is usually denoted by Xo(p).

Another example is the quotient by the split Cartan subgroup which consists of diagonal matrices in
GLx(F,). The corresponding curve is denoted here by Xy, (p) and it parametrises k-isomorphism classes
(E7 (4, B)) of generalised elliptic curves E endowed with two distinct cyclic subgroups A and B of order
p in E. For its normaliser S, we find the curve Xg = Xs';(p) which classifies generalised elliptic curves
with an unordered pair {A, B} of cyclic subgroups A and B of order p. All these cases are easy to
describe because the subgroups H can be defined as the stabiliser of some object under a natural action
of GL(E[p]).

In view of Serre’s problem to classify the possible Galois module structure of the p-torsion of an
elliptic curve over a number field, there are two further modular curves of importance. The aim of this
paper is to give a good moduli description for those, namely when H is a non-split Cartan subgroup or a
normaliser of a non-split Cartan subgroup in GL2(F,). We will denote the corresponding modular curves
by Xusp(p) and X (p) respectively. See the start of Section 2 for detailed definitions. These curves
have been studied for instance by Ligozat [Lig77], Halberstadt [Hal98], Chen [Che98, Che00], Merel and
Darmon [Mer99, DM97] and Baran [Barl10].

In our description, the modular curve X (p) will classify elliptic curves endowed with a level structure

nsp
that we call a necklace. Roughly speaking, a necklace is a regular (p+ 1)-gon whose corners, called pearls,



are all cyclic subgroups of order p in E and such that there is an element in PGL(E[p]) that turns this
necklace by one pearl. This will not depend on the choice of a non-split Cartan subgroup.

In Section 2, we will define these necklaces in detail and we will give an alternative and more geometric
description using the cross-ratio in IE”(E [p]) The following Section 3 shows how classical results about
the geometry of X,¢,(p) can be proven using this moduli interpretation. For instance, we can count the
number of elliptic points, describe the cusps and the degeneracy maps. In Section 4, we reprove a result
by Chen. He shows [Che98, Che00] that there is an isogeny between the Jacobian of X[ (p) and the
product of the Jacobians of Xo(p) and X (p). The proof of this theorem is not entirely new, however
we believe that it gives a better geometric vision of the maps involved and the representation-theoretic
proof. We conclude the paper with some numerical data related to Chen’s Theorem.

Since the prime p is fixed throughout the paper, we will now omit it from the notations and only write
Xnsp and X;{Sp. It is to note that there should be no real difficulty in generalising our moduli description
to composite levels N. With view on the problem of Serre to classify the Galois structure of p-torsion
subgroups of elliptic curves over QQ, prime levels are maybe the most interesting.

Notations

The following is a list of modular curves that appear in this paper and the notations we frequently use.
The definitions will be given later. See also Sections 3.1 and 4.1 for degeneracy maps and correspondences
between them.

Symbol  Description of H < GLa(F,) Level structure
X(p)  Full level structure, H = {1} Basis (P, Q) of E[p)
X4 Scalar matrices A Distinct triple (A4, B, C) in P(E[p])
Xo A Borel subgroup B Subgroup C € P(E[p])
Xop A split Cartan Distinct pair (4, B) in P(E[p))
Xt Normaliser of a split Cartan S Non-ordered pair {A, B} C P(E[p))
Xnsp A non-split Cartan Oriented necklace v
XL, Normaliser of a non-split Cartan ' Necklace v

Matrices in GL(E,) will be written as (). Instead the coset of matrices in PGL(E,) will be repres-
ented by matrices of the form [ﬁ }

2 The moduli problem of necklaces

2.1 Non-split Cartan subgroups and their modular curves

We refer to [Ser97] for definitions and results about non-split Cartan subgroups and Dixon’s classification
of maximal subgroups of GLy(F,) and just briefly recall some facts. The group GL2(IF,) acts on the right
on PY(F,2) by (z : y)(2¢Y) = (ax + cy : bx + dy). Any non-split Cartan subgroup of GLy(F,) can be
defined as the stabiliser H, of (1 : «) in P*(E,2) \ P!(F,) for a choice of a € F,2 \ F,. We see that H,, has
order p? — 1 as the action of GLy(F,) is transitive on P! (F,2) \ P!(F,).

Alternatively, we can consider the basis (1,a) of F,2 as a F,-vector space. Then we claim that H,
is equal to the image of the map i4: IFPX2 — GLy(F,) sending § to the matrix which represents the

multiplication by § on Fy written in basis (1,)." Indeed, let § = z +ya € F; with 2,y € F,. If
X? —tX +n is the minimal polynomial of @ over [F,, then

= (2 )

and so (1: a)ia(f) = (x+ya: —ny+ (z+ty)a) = (6 : fa) = (1 : a). So the image of i, is contained in
‘H, and they are equal because they are of the same size.

1The multiplication of matrices in GLo (Fp) on the two-dimensional vector space happens from the left here.



Given a choice of a non-split Cartan subgroup H, we define the modular curve X, as the quotient
X7¢. Note that the quotient does not depend on the choice of H as these subgroups are all conjugate.
However the description of points on Xy, as H-orbits do.

The normaliser N of a non-split Cartan subgroup H in GL2(F,) contains H with index 2. It can be
viewed as adding the image under i, of the conjugation map in Gal(F,2/F,) on Fpﬁ. The corresponding
quotient X will be denoted by Xf .

2.2 Necklaces

Let v be a multiplicative generator of IFPXQ. For any 2-dimensional F,-vector space V, we define C,
to be the conjugacy class in PGL(V) of all elements h which have a representative in GL(V') whose
characteristic polynomial is equal to the minimal polynomial of v. In other words, all representatives of
h € C, have an eigenvalue in F* - 7. If 7 is the conjugate of v over F,, then C5 = C,. If a basis of V' is
chosen then C, consist of all classes of matrices io(y) as o runs through F,2 \ F,. Note that the class of
ia(¥) = ia(y) = N(y)"Lia(y)~! is equal to the inverse of class of i, (7). In particular, in any non-split
Cartan subgroup in PGL(V'), there are exactly two generators h and h~! that belong to C,. As v varies,
we obtain the %ga(p + 1) conjugacy classes of elements of order p + 1.
Let k be an algebraically closed field of characteristic 0 or different from

p and let E/k be an elliptic curve. We know that there exists p + 1 cyclic C/ Cl\a
subgroups of order p in E[p]. We will consider lists (Cy,C1,...,C,) of / 0 2
those cyclic subgroups and will say that two such lists are equivalent if we \
can obtain one from the other by a cyclic permutation; so (Co,Ch1,...,Cp)

and (C1,Cs, ..., Cp, Cp) are equivalent.

Definition. An equivalence class (Co, C1,...,Cp) is called an oriented necklace of E if there exists an
element h € C, C PGL(E[p]) such that h(C;) = C;4q for alli =0,...,p— 1.

If h is such an element, then we must also have h(C,) = Cy as h is of order p + 1. Note also that
if (Co,C4,...,Cp) is an oriented necklace with a certain h € Cy, then so is (Cp, Cp—_1,...,Co) because
htec,.

Let us consider the dependence on +; so to be more precise, we will call it now an oriented ~y-necklace.

Lemma 1. Let v and v be two generators of IFpé. There is a canonical bijection between oriented -
necklaces and oriented ~'-necklaces.

Proof. Since F;z is cyclic, there exists an integer k € [0,p? — 1] such that 4/ = v and such that k is
coprime to p + 1. In particular C,/ is the set of all k¥ with h € C,. So the requested bijection is given by

{oriented ~-necklaces} — {oriented ~'-necklaces}
(C(), Cl, ey Cp) (g (Co, Ck, Cgk, e )

with the index taken modulo p + 1. O

As a consequence, we may now fix a choice of v for the rest of the paper.

In a picture, we arrange the subgroups Cy, ..., Cp like pearls on a necklace that can be turned around
the neck using the automorphism A of P(E[p]). If we allow the necklace to be worn in both directions,
we get the notion of a necklace without orientation:

Definition. Let w denote the involution defined by
’LU(C(), C’l, e ,Op) = (Cp, Cp—h ceey Co)

which changes the orientation of an oriented necklace. A necklace is a w-orbit of oriented necklaces

{v, w(v)}.



Lemma 2. Fiz a generator vy of prz. Let Cy, Cy, and Cy be three distinct cyclic subgroups of order p in
E[p]. Then there exists a unique element h € C in PGL(E[p]) such that h(Cy) = Ci and h(Cy) = Cs.

Proof. Choose generators Py and P, in Cy and C; respectively and consider them as a basis of E[p].
Write t and n for the trace and the norm of 4. Our class of matrices must contain a matrix of the form
(9¥) for some z and y in F* if we want h(Cp) = Cy and tr(h) = t. As y varies the points y Py +tP; form
an affine line and hence there is a unique y € F* such that yPy +tP; belongs to Cs. Finally, we have no
choice but to set z = ny~! if we also want det(h) = n. O

This lemma implies that for any triple (Cy, C1,C2) of distinct cyclic subgroups of E[p], there is a
unique oriented necklace of the form (Cp,Cy,Ca,...). We will denote it by Cy — C7; — Ca. Similarly
there is a unique necklace with consecutive pearls Cy, C7, Cy, which we denote by Cy — C; — Cs.

There is a natural action of PGL(E[p]) on the set of oriented necklaces by setting g - (Co,...Cp) =
(9(Co), ..., 9(Cp)) for g in PGL(E[p]). If h € Cy is such that h(C;) = Cy41 then ghg™" € C, can be used
to show that (g(Ch),...,g(C})) is indeed an oriented necklace. Since the action of PGL(E[p]) on P(Ep])
is simply 3-transitive, Lemma 2 implies that the action of PGL(E[p]) is transitive on oriented necklaces.
By definition, for every oriented necklace v, there exists h € C, fixing it. Therefore, the group generated
by h, which is a non-split Cartan subgroup in PGL(E[p]) will belong to the stabiliser of v. It is clear
that this is equal to the stabiliser of v. We have shown:

Corollary 3. Let G = PGL(E|[p]). The set of oriented y-necklaces is isomorphic as a G-set to G/H
where H is any non-split Cartan group in G. Similarly, the set of y-necklaces is G-isomorphic to G/ N
for the normaliser of a non-split Cartan group N in G. In particular, there are exactly p(p — 1) oriented
necklaces and p(p — 1)/2 necklaces.

2.3 Moduli description

Let H be a non-split Cartan subgroup in G = GL2(F,) and write A/ for its normaliser. Let k be an
algebraically closed field of characteristic different from p. The moduli space Y (p)(k) consists of k-
isomorphism classes of pairs (E, (P, Q)) where E is an elliptic curve over k and (P, Q) is an F,-basis of
E[p]. The group GL(F,) acts on a pair on the right as usual (E, (P,Q))-(%4) = (E, (aP+cQ,bP+dQ)).
A point in Yy (k) is an orbit under this action by the non-split Cartan subgroup H. For a given elliptic
curve E/k, the H-orbits of triples is a G-set isomorphic to G/H. Corollary 3 has shown us that the set
of oriented necklaces on FE is also isomorphic to G/H. Hence we have:

Proposition 4. Let H be a non-split Cartan subgroup in GL3(F,). There is a bijection between the points
in Yy (k) and the set of k-isomorphism classes of pairs (E,v) composed of an elliptic curve E/k together

with an oriented necklace v in E. Similarly Y (k) consists of pairs (E,v) where v is a necklace in E.

We will from now on informally say that Yn‘*s‘p and Yy, are coarse moduli spaces for the moduli problem
of elliptic curves endowed with a necklace and an oriented necklaces respectively. In order to make this
absolutely precise, we would have to define necklaces for elliptic curves over arbitrary schemes and that
is very cumbersome to do. There is a similar problem for the split Cartan subgroup, too. However, later

in Section 3.3, we give the description of k-rational points for fields k& which are not algebraically closed.

2.4 The cross-ratio

Let A, B, C be three distinct points in P(E[p]) and D € IP’(E [p]) Recall that the cross-ratio of A, B, C, D
is defined by [A, B;C,D] = f(D) where f : P(E[p]) — P'(F,) is the unique isomorphism such that
f(A) = (1:0), f(B) = (0:1)and f(C) = (1: 1). After a choice of basis of E[p] identifying P(E[p])
with PY(E,), we get

A-C B-D

[4,B;C, D)= 5—= " —p-

S



The choice of basis does not matter as the cross-ratio is PGL(E[p])-invariant. If v = (Co, C,...,Cp) is
an oriented necklace, then [Cy, Cy; Co, Cs] = [C;, Cit1; Cita, Cits] for all 0 < i < p with the index taken
modulo p + 1. Hence we can attach a cross-ratio to each necklace. As described above, the action of
PGL(E[p]) on oriented necklaces is transitive and hence this cross-ratio [Co, Cy; Ca, Cs] is the same for
all oriented ~y-necklaces.

Proposition 5. Let v be a generator of FPXZ of trace t and norm n. Set &, = t2/(t> —n). Then a list
(Co,Ch,...,Cp) of all distinct cyclic subgroups of order p in E represents a y-necklace if and only if
[Ci, Ciy1; Ciga, Ciys) = &, for all 0 < i < p with the index taken modulo p + 1.

This provides a new possibility of defining necklaces by-passing completely the use of the automorph-
ism group of E[p], but only relying on the projective geometry of P(E[p]).

Proof. We only need to compute the cross-ratio for one necklace. We take the basis such that h = [(1) ]
is in C,. The necklace now contains the consecutive pearls (1:0), (0: 1), (—n : ¢) and (—nt : —n + t?)
from which we obtain the above cross-ratio &,. O

Since to each triple (Cy, C1, Cs) there is a unique C5 such that [Cy, C1; Ca, Cs] = &, we have a second
proof of Lemma 2.

2.5 Relation to other descriptions

We recall a different description of the H,-orbits of points in X (p) where a is a choice in F, \ F,.
See [Mer99]. Let E/k be an elliptic curve. Choose a basis Py, Py of E[p] and identify E[p] with F,> via
Py — 1 and Pi — «a. Any basis (P,Q) of E[p] is equal to (P, P1)g for some g € GLo(,). Consider
the GL5(F,)-equivariant map which sends (P, P1) to (1 : a) € P*(E,2) \ P*(F,). Since the action of H,
is now just the multiplication on Fy2, it induces a well defined GLy(IF,)-equivariant map from the set of
Ha-orbits of basis (P, Q) to P*(F,) \ P*(F,). This is a GLy(IF,)-equivariant bijection.

This leads now to a moduli problem description of X,,. Each point in Yy, (k) with & an algebraically
closed field of characteristic different from p is a k-isomorphism class of (E,€) where E/k is an elliptic
curve and € is an element in P(E[p]®F,2 ) \P(E[p]). The group PGL(E|[p]) acts on the left on P(E[p]®F,:)
by its action on E[p].

We will now give an explicit PGL (E[p])—equivariant bijection between the set of oriented ~-necklaces
of E and P(E[p] ® F,2) \ P(E[p]). Write n and t for the norm and trace of the fixed element v in Fe.
Consider the map

{v-necklaces} — P(E[p] ®F,2) (1)
(00701,02,...) — <P®(—’Y)+Q®1>

where (P, Q) is a basis of E[p| such that Cyp = (P), C; = (Q) and Cy = (—nP + tQ). Note that such a
basis exists because neither n nor ¢ could be zero when + is a multiplicative generator of F,2. We have
to show that this map is well-defined. Let h be a generator in the stabiliser of v which belongs to C,. In

the basis (P, Q) this element h is represented by the matrix [(1) *t”]. Now

h(P@(*’Y)JrQ@l) :Q®(f’y)+(—nP+tQ)®1:(tf'y)o<P®(77)+Q®1)

as (t—~)(—v) = 7* —ty = —n. This shows that the line in P(E[p] ® F,2) does not depend on the choices
made in the construction. It also is evident from this that the stabiliser of v is equal to the stabiliser of
the image. From the construction we see that the map is PGL (E [p])—equivariant. Since the actions are
transitive, it follows that it is surjective and hence bijective.

Since we have no geometric object linked to E which can be thought of directly as an element in
Elp] ® E,2, we believe that the moduli problem of necklaces has its advantages.

While finalising this article, we learnt of yet another moduli interpretation given by Kohen and Pacetti

in [KP14]: Fix a choice of a quadratic non-residue e modulo p. They represent each point in Y;gp(/%) by
a k-isomorphism class of (E, ¢) where E/k is an elliptic curve and ¢ € GL(E[p]) is an element such that

¢? is the multiplication by e. See Proposition 1.1 and Remark 1.3 in [KP14]. The following defines a



PGL (E [p])—equivariant bijection between the set of such endomorphisms ¢ and the set of necklaces on E.
The endomorphism ¢ defines an element of order two in PGL(E[p]) without fixed point; so it belongs to a
unique non-split Cartan subgroup H whose normaliser is the stabiliser of a necklace v. Conversely, every
stabiliser of a necklace contains a unique element in PGL(E[p]) that lifts to an element ¢ € GL(E[p])
with ¢? = €.

3 Describing the geometry and arithmetic with necklaces

3.1 Degeneracy maps

Let A be the group of scalars in GL2(F,) and consider the associated modular curve X 4. Because
the group PGLy(F,) acts sharply 3-transitive on P!(F,), the curve X 4 represents the moduli problem
associating to each elliptic curve F a triple of distinct cyclic subgroups (Cy, C1, Cs) of order p in E, which
is also called a projective frame in P(E[p]).

The map 7m4: X(p) — X4 can be chosen to be the following. Let n and ¢ be the norm and trace of
our fixed generator v in 2. To each basis (P, Q) of the p-torsion of an elliptic curve E, we associate the
triple ((P),(Q),(—nP +tQ)). From the fact that ¢ # 0, it is clear that this gives a map X (p) — Xa.
Next we describe the map mpsp: X4 — Xygp. We have a natural choice to send the triple (Co, Cy, C2) to
the unique oriented necklace Cy — C7 — Cs given by Lemma 2. Similarly, we will send it to the necklace
Co — Cy — O to define the map 7, : X4 — X, .

The advantage of our choices is that m,s, © m4 provides an explicit bijection between the set of
orbits of isomorphism classes (F, (P, Q)) under a particular non-split Cartan subgroup My and the set
of isomorphism classes (E, v) of elliptic curves endowed with an oriented necklace. Let Hy be the non-
split Cartan subgroup in GL3(IF,) generated by the matrix hg = (9 ") = i,(7), which is an element
in our chosen class C, for V = Fp2. Let E be an elliptic curve and (P, Q) a basis of E[p]. Denote by
h € PGL(E[p]) the element of order p+1 defining the necklace v = mpgp0m4(P, Q). Then, by construction

Ofﬂ'A,
ﬂ-A((PaQ) . hO) =h- ﬂ-A(PaQ)

This insures that the map which sends an orbit (E, (P, Q)) Ho to (E, ) where v = mysp 0 ma (P, Q) is well
defined and it gives the expected bijection.

Under the map (1) in Section 2.5, identifying necklaces with elements in P(E[p] ® F,2) \ P(E[p]),
the degeneracy map above can also be described as sending the basis (P, Q) of E[p] to the projective
line (P ® (—v) +Q ® 1) in Efp] ® F,2. This provides an explicit bijection between the set of orbits of
isomorphism classes (E,(P,Q)) under Hy and the set of isomorphism classes (E,€) of elliptic curves
endowed with an element € in P(E[p] ® F,2) \ P(E[p]).

We will see later in Section 4.7 another naturally defined degeneracy map ﬁIJ{Sp: X4 — X+

nsp*

3.2 Cusps

The following proposition, quoted (but not proved) in [Ser97] Appendix A.5, can be proved using neck-
laces:

Proposition 6. The modular curve X,s, has p —1 cusps, each ramified of degree p over the cusp 0o in

X(1).

Proof. In order to determine the structure of the cusps, we use the Tate curve E, over Q((¢)). Formally,
one can deduce the proposition using Theorem 10.9.1 in [KM85] from the fact that a non-split Cartan
subgroup of PGLy(F,) acts transitively on P!(F,) and that it contains no non-trivial element from any
Borel subgroup. In particular, the formal completion of X4, along the cusps is the formal spectrum of
Q(¢Q)[], where a? = g and ( is a p-th root of unity.

However, we can also view it on the necklaces of E,. The Tate curve has a distinguished cyclic
subgroup p, of order p. Any oriented necklace v can be turned in such a way that Cy = p,,. The two
following pearls C; and C, have each a generator which is a p-th root of ¢, say a¢’ and a¢?, respectively,



where 0 < i # j < p. From the action of the inertia group of the extension Q((¢))[c, (] over Q((q)), we see
that all the p necklaces with a given ¢ — j € F* meet at the same cusp in the special fibre at (9). O

The cusps are not defined over Q but over the cyclotomic field Q(up) only, forming one orbit under
the action of the Galois group, despite the fact that X, is defined over Q. See Appendix A.5 in [Ser97].
As a consequence there are p — 1 choices of embeddings X,sp < Jac(Xpsp), all defined over Q(u,,) only
and none of them is a canonical choice.

With the same proof we show that X has (p —1)/2 cusps defined over the maximal real subfield of
Q(pp)-

3.3 Galois action

Let k be a field of characteristic different from p and write Gy for its absolute Galois group. For any
o in Gy and point x € Yy, (k), represented by the pair (E,v), we define o(z) in the obvious way as
the k-isomorphism class of the pair (E‘i, a(n)). Here a((Co, Ci,... )) is the necklace (U(Co), a(Ch),.. )

Write Y;sp(k) for the elements in Yyqp (k) fixed by Gy,

Proposition 7. Let @ € Yy, (k). Then there exists a pair (E,v) representing x such that E is defined
over k. If j(E) & {0,1728} then the oriented necklace v is also defined over k, in the sense that o(v) = v
for all o € Gy In particular, the image of the residual Galois representation py(E): G, — GL(E[p]) has
its image in a non-split Cartan subgroup.

Proof. Let (E, v) be arepresentation of z. So E? is k-isomorphic to E. Asusual o (j(E)) = j(E°) = j(E),
shows that j(E) € k and hence we may assume that F is defined over k.

For every o € G, there is an automorphism ¥, € Auty(E) such that ¥, (v) = o(v). If j(E) ¢ {0,1728}
then there are no additional automorphisms besides [+£1]. Therefore they all act by scalars on E[p] and
thus they act trivially on P(E[p]). It follows that b = o(v). So the image of p,(E) lands in the stabiliser
of v, which is a non-split Cartan subgroup. O

If v is defined over k then there exists a cyclic extension L/k of degree dividing p + 1 such that all
cyclic subgroups C of E[p| are defined over L.

The analogous statement holds for ;7 (k): Every point in Y;f (k) can be represented by a pair (E, v)
with F being defined over k. If j(E) & {0, 1728}, then the necklace v has also to be defined over k and the
residual Galois representation takes values in the normaliser of a non-split Cartan subgroup of GL (E [p])

The fibres in Y;s, and ersp above the points j = 0 or j = 1728, contain ramified points and elliptic
points. We will discuss these later in detail in Section 3.5. A ramified point x in one of those fibres
can still be represented by (E,v) with E defined over Q. However we will show now that the field of
definition of x is not equal to the field of definition of v if p > 3: In both cases, the curve FE has complex
multiplication and by a general result (see Corollary 5.20 in Rubin’s part in [CGRR99)]), the image of the
Galois representation p: Gg — GL (E[p]) contains the image of all the automorphisms of E. Since z is
ramified, there is an automorphism g such that g(v) # v. Hence there is an element o € Gg that sends
v to g(v). Now o does not fix v, but it fixes x, which is also represented by (E, g(u)).

3.4 A lemma on antipodal pearls and cross-ratios

Let E an elliptic curve over an algebraically closed field k of characteristic different J—
from p. The following definition and lemma will be used in many places later on.

Definition. Let v = (Cy,C1, ..., C,) be a necklace in E. Two pearls C; and C;

are called antipodal in v if i = j + p%l (mod p + 1). In other words if they are 474
diametrically opposed when we represent the necklace as a regular (p + 1)-gon.

If A and B are antipodal in v, we write A «» B € v.



Lemma 8. Let A, B, C, D be four distinct cyclic subgroups of order p in an elliptic curve E. There are
(p — 1)/2 necklaces in which A <> B. If the cross-ratio [A, B;C, D] is a square in F)*, then there is no
necklace v such that A<> B € v and C «» D € v. If instead [A, B; C, D] is a non-square in [, then there
is exactly one necklace v such that A<> B € v and C < D € v.

Proof. We may choose a basis of E[p] in such a way that A= (1:0), B=(0:1) and C =(1:1). Then
D = (d:1) for some d € F) \ {1}. Now [A, B;C, D] = d.

If d is a non-square, then the matrix g = [{ ¢] is an element of order two without a fixed point in
P! (E,). Hence it belongs to a unique non-split Cartan subgroup H. Then the necklace v whose stabiliser
is the normaliser of H is a necklace such that A <> B € v and C «» D € v as g(A) = B and g(C) = D.

Conversely, if we have such a necklace v for A, B, C, D, then the unique element of order 2 which
preserves the orientation on v, must send A to B and C to D. Hence it is of the form g = [{ ¢]. However
if it has no fixed points in P1(F,), then d has to be a non-square in Fx.

Finally, we have to count how many necklaces have A <+ B € v. By the above proof, this is the same
as to count how many matrices g = [9 ¢] belong to a non-split Cartan subgroup. That is ”2;1 as there
are that many non-squares d in F . O

3.5 Elliptic points

We proceed to count elliptic points using our moduli description. Our results in Propositions 9 and 12
below agree with the more general calculations by Baran in Proposition 7.10 in [Bar10]. Assume for this
that p > 3.

Consider the canonical coverings Xy,s, — X (1) and X, — X(1). An elliptic point on Xy, or
Xr'fsp is a point in the fibre of a point in X (1) represented by an elliptic curve F with Aut(E) # {£1}.
Hence, an elliptic point on X, can be represented by a pair (E,v) such that there is an automorphism
on E that induces a non-trivial element g € PGL(E[p]) which fixes v. Consider the involution w on Xy
which reverses the orientation of the oriented necklaces. An elliptic point on X;rsp can be viewed as a pair
(E,{v,wv}) with an automorphism g € PGL(E[p]) and an oriented necklace v such that either g(v) = v
or g(v) = w(v). In the latter case, we say that v and its necklace {v,w(v)} is flipped by g.

First note that if (£, ) is a elliptic point then j(E) = 1728 and g is of order two or j(E) = 0 and g is
of order three. These are elliptic curves with complex multiplication and E[p] becomes a free End(F)/p-
module of rank 1. So if g is of order 2 and p = 3 (mod 4) or if g is of order 3 and p = 2 (mod 3), then
End(E)/p = F,» and hence g belongs to a unique non-split Cartan subgroup of PGL (E [p]) Instead, if g
is of order 2 and p = 1 (mod 4) or if g is of order 3 and p = 1 (mod 3) then End(E)/p = F, & F, and

therefore g belongs to a unique split Cartan subgroup as it will have exactly two fixed points.

3.5.1 Fixed oriented necklaces

Let (E,v) be an elliptic point on X,,s, with the oriented necklace v fixed by ¢g. Then g is in the non-split
Cartan subgroup stabilising v. Hence by the above, p = 3 (mod 4) if ¢g has order 2 and p = 2 (mod 3)
if g has order 3. Conversely, if these congruence conditions are satisfied then g is in a unique non-split
Cartan subgroup which is the stabiliser of exactly two oriented necklaces, namely v and wv. This gives
the following result:

Proposition 9. For r =2 and 3, let e, be the number of elliptic points in Xysp, with g of order r. Then

(-1) {o ifp=1 (mod 4), (—3) {o ifp=1 (mod3),
ea=1—(—) = : and e3=1—(—) = :
D 2 ifp=3 (mod4), p 2 ifp=2 (mod 3).

In the cases where e, = 2 the two corresponding oriented necklaces are in the same w-orbit.



3.5.2 Flipped necklaces
Let (E,v) be an elliptic point on X, where the necklace v = {uv, wu} is flipped by g. If g were of order

— — — nsp . . . .. .
3, we would have v = ¢(t) = w(v). Hence g is of order 2. The involution g is in a split Cartan subgroup

if p=1 (mod 4) and in a non-split Cartan subgroup if p = 3 (mod 4).

Lemma 10. Suppose that p = 1 (mod 4) and let A, A" denote the two fized points of g in P(E[p]). A
necklace v is flipped by g if and only if A and A" are antipodal in v. Consequently, there are % necklaces

Jlipped by g.

Proof. Let v = (Cy,C4,Cs,...,C,) be a flipped oriented necklace
with Cp = A. From ¢(v) = w(v), we get g(Cx) = Cpy1-y for all k,
where the indices are taken modulo p+ 1. It follows that if A’ = C},
then A" = g(A") = Cpy1-k, 50 k = (p+1)/2 and A and A’ are
antipodals in v = {v,wv}. Moreover from g(Cx) = Cpi1_k, We see
that g will act on v, represented as a regular (p 4+ 1)-gon, as the
reflection through the axis passing through A and A’.

Conversely, let v be a necklace in which A <> A’. Let B «» B’ be
two other antipodal pearls in v. Let h be the element of order 2 in
the normaliser of the non-split Cartan subgroup stabilising v. As it 4(B)
exchanges antipodal pairs in v, we have h(A4) = A" and h(B) = B'.

Since hgh™! is also an involution that fixes A and A’, it follows that hgh™! = g as there is a unique
involution fixing two given points. Therefore hg(B) = gh(B) = g(B’) which implies that g(B)<>g(B’) € v.

As g sends antipodal pairs in v to antipodal pairs in g(v), we also have A «» A" and g(B) «> g(B’) in
g(v). Hence, by Lemma 8, either g(v) = 0 or g(v) = wd where {v,wt} = v. The first case is excluded
because g does not belong to a non-split Cartan subgroup if p =1 (mod 4).

The end of the proof follows from the fact that there are (p — 1)/2 necklaces such that A and A’ are
antipodal, again by Lemma 8. O

Lemma 11. Suppose that p = 3 (mod 4). Let A € P(E[p]) Consider the map sending a necklace v to
the pearl antipodal to A in v. This is a bijection between necklaces v flipped by g and the set of pearls
B ¢ {A,g(A)} such that [A, B;g(A),g(B)] is a non-square in F,.

Proof. Let v be a necklace flipped by g. As above, from g(v) = w(b)
we get g(Ck) = Cptr1—i for all k and one can see that, since p = 3
(mod 4), g will act on v as a reflection through an axis that does not
pass through a corner of the regular (p+1)-gon. Let B be antipodal
to Ain v. So B # A. If B were equal to g(A), then A and B would
be on the line orthogonal to the axis of reflection of g. But this
would imply that p+1 =2 (mod 4), and hence B # g(A). Finally,
since g flips v, we see that g(A) <> g(B) € v. By Lemma 8, it follows
that [A, B; g(A),g(B)] is a non-square modulo p. The same lemma
also shows that our map v — B is injective.

Conversely, suppose that B & {4, g(A)} is such that the cross-
ratio [A, B;g(4), g(B)] is a non-square modulo p. Since A, B, g(A)
and g(B) are all distinct, Lemma 8 applies to show that there is a
necklace v with A «<» B and g(A) «» g(B). Now g(v) has also g(A) «+ g(B) and A «<» B. The same lemma
now shows that g(bv) = v. If the orientation of v were fixed rather than flipped, then g(A) would be B.
Hence our map is surjective, too. O

Proposition 12. Forr =2 or 3, let e be the number of elliptic points with g of order r in X\, . Then

nsp-*

+ _
5 =

e

p+1_(—1):{1’51 ifp=1 (mod 4),

2 P % ifp=3 (mod4),



and

e+11<_3>{0 ifp=1 (mod 3),
b2 I dfp=2 (mod3).

Proof. The number of elliptic points for X;rsp is the sum of the number of fixed and the number of flipped
necklaces. In Proposition 9 we counted the fixed ones. We have already counted the flipped necklaces for
p=1 (mod 4) in Lemma 10. Now suppose p = 3 (mod 4) and let A € P(E[p]). By Lemma 11, we must
count how many pearls B there are such that B ¢ {4,g(A)} and [A, B; g(A),g(B)] is a non-square in
F,.

Let us choose a basis of E[p] such that A = (1 : 0) and g(A) = (0 : 1). Let b € F such that

B = (1:b). Then g = [97'] and g(B) = (=b : 1). Hence [A, B;g(A),g(B)] = 1+ b* So we have

to count the number of b € F;* such that 1+ b2 is a non-square. One finds that there are L;1 such b

by counting the cases when 1 + b? is a square using that there are p 4+ 1 points on a projective conic
2,12 _ 2

a®+b° =c°. O

3.6 Genus

From the above, we can now proceed to compute the genus of our modular curves. Of course, we find
the well-known formulae, as for instance in Appendix A.5 to [Ser97], [Barl0] or [Che98]. The reader can
also find tables for the genus of Xy, and X%, for small primes p in [Bar10].

The Riemann-Hurwitz formula applied to the modular curve X3 associated to a subgroup of finite
index H of GL2(F,) and with the canonical morphism X3 — X (1) of degree d, gives the following formula

for the genus g(Xy) of Xy:

d es €3  eso
Xp) =142 _2_9_ oo
9 X =1+t -3

where e, is the number of elliptic points in X g of order r and e, is the number of cusps.
With the results of Sections 3.5 and 3.2, a straightforward computation gives the following.

Proposition 13. The genera of Xy, and X;rsp are

1 1 -3

X)) = — (2 — 11 B I s
9(Xmp) = 75 (p e +3(p)+ (p>)

1 1 -3
X+t )= — (p2—1 )14 22)).
9(Xnsp) = 31 (p Op+23+6(p)+ (p>>

With the same method, one can compute the genus of other modular curves, for instance Xq and XSJ;.
The classical results (see for instance [Shi94] and [Che98]) for their genus are

g(X3) = i (p2 —8p+11 —4(‘5’)) and g(Xo) = % (p—6—3(_p1> —4(‘5’)) .

Then one can verify easily the relation noticed by Birch following Chen’s calculation of genus and con-
firmed by Chen’s isogeny

and

9(Xnsp) +9(Xo) = g(X3). (2)

3.7 Hecke operators

Let ¢ be any prime distinct from p. Denote by X&fnsp(f,p) = Xo(0) xx(1) Xifp(p). We recall how
the Hecke correspondence Ty is defined through the following two natural degeneracy maps p and
P X hep (6, p) — X, (p). The modular curve X, . (£, p) parametrises isomorphism classes (E, (f,v))
of elliptic curves E endowed with an ¢-isogeny f: E — E’ and a necklace v. Let p be the map obtained by
forgetting the f-structure and p’ the map which sends (E, (f,v)) to (E’, f(v)). The image f(v), defined

as (f(Co), f(Ch),..., f(Cp)) when v = (Cy,...,Cp), is indeed a necklace on E’ = f(E) since £ # p.

10



The correspondence Ty on X is now defined as p* o pl,. It induces an endomorphism on Pic(X )

by Picard functoriality. On the divisor (z) with the point z in Xntp represented by (E,v), it is defined as
Ti(z) = Z (E', f(v))
fi E—E
deg f=¢

where the sum runs over all isogenies f from F of degree ¢.

We will now verify that this moduli-theoretic description of T via these correspondences coincide
with the Hecke operators defined by double coset.

Let us denote by N a normaliser of a non-split Cartan in GLy(F,), by I' the congruence subgroup of
matrices in SLg(Z) with image in A" modulo p, and by A the set of integral matrices whose determinant
is positive and coprime to p and which reduce to a matrix in A" modulo p. Then T} as a double coset is
defined by I'al for any a € A of determinant £. Since such an element « reduces modulo £ to a non-zero
matrix of determinant 0, there exist v and 4/ in T such that ya~y' is of the form ( ) %) with integers a,
b, ¢, and d. (Note that we can impose conditions modulo p on 7, because p and ¢ are coprime.) In
other words, Tal contains an element of the form §(}9) with 8 € Ty(¢), so we may now suppose that
a=06(49), with 8 € To(£).

We will then prove that T Na™!Ta = ' NT°(¢), where we denote by I'°(¢) the matrices in SLa(Z)
with right upper entry equal to 0 modulo ¢: Since 3 € SLy(Z), we have 37!I'8 C SL2(Z), hence
(3 2)71/6’*1F6 (§9) are matrices of the form (%, %) and this shows the first inclusion. Conversely, if
v € I'NTY(¢), since a and + belong to C' modulo p, the product aya~? also belongs to it, so aya~t € T.

Similarly, one can show that I'Nal'a™! = T'NTy(¢). Now, from the fact that T Na~Ta =T NT%(Y)
or 'Nala™ = I'NTy(¢), we deduce in a classical manner, as explained for instance in Section 6.3
in [DS05] taking I'; = I'y =T, that the double coset description of Ty coincide with the moduli-theoretic
description we gave above. Compare with Theorem 1.11 in [KP14] for a different proof.

3.8 A pairing
Given two necklaces v and tw in E, we set
(0, 10) = #{{A,B} ‘ AssBcoand A B e m}.

It is the number of antipodal pearls that v and 1o have in common. We can extend it linearly to € Zo

regarded as an abelian group with an action by PGL (E [p])

all v

Proposition 14. The pairing (-,-) is a positive non-degenerate symmetric PGL (E[p}) -equivariant bilinear
form on @, Zv. We have (v,v) = L and (v,10) € {0,1} for all necklaces v # o.

First, we note that we are left to prove that the pairing is positive, takes value 0 or 1 on distinct
necklaces, and is non-degenerate. In this section, we only give the proof of the two first facts. The proof
of non-degeneracy will be given in Section 4.5 and numerical examples are in Section 5. We will see that
this pairing gives a more conceptual understanding of the eigenvalues computed by Chen [Che00] in his
table 2.

Proof. The statement that (v,w) € {0,1} for v # rv is a direct consequence of Lemma 8: If (b, 10) > 2,
then there are four distinct A, B, C, D with both A «+ B and C <+ D in v and tv, contradicting the
lemma.

Let w = > ay, b be an element in @ Zv. We have

<u,u>zzu:§m:anam<n,m>: Z Z Z Ay Ay = Z( Z an)2>0,

{A,B} b with 1w with {A,B} v with
A« B€cv A=+ Bew A<sBe€v

where Y {A,B} is the sum running over all unordered pairs of distinct cyclic subgroups of E[p]. Hence
the pairing is positive. The non-degeneracy of the pairing will be shown in Section 4.5. O

11



4 Chen’s isogeny

4.1 Definitions and statement
In [Che98], Chen proved that Jac(X;,,) = Jac(X{ (p?))"¢". Edixhoven and de Smit [dSE00, Edi96] found

nsp
a different and rather elegant proof. Finally Chen gave in [Che00] an explicit description of his morphism

Jac(X ) — Jac(X,5,) x Jac(Xo).

With our new moduli description this morphism can be described yet in another manner. Let k be an
algebraically closed field of characteristic different from p. In Section 3.6, we have given the definitions
of the modular curves Xy and XSJB. The points in X;g(l;:) can be represented as k-isomorphism classes of
the form (E,{A, B}) where {A, B} is a unordered pair of distinct cyclic subgroups of order p in E. Let
y = (E,{A, B}) be a point in X3, We define ¢(y) on the divisor (y) to be the sum of (E,v) where v
runs over all necklaces in which the pearls A and B are antipodal. This extends linearly to a map on the
Jacobians.

Further we define the maps v, pu, and A in the diagram on the right as follows. If y is the point
(E,{A, B}) as above, then x(y) is the sum of the points (E, A) and (F, B) in Xo. If z = (E, A) with A a
cyclic subgroup of order p in F is a point on Xy, then we set ¢(z) equal to the sum of (E7 {4, B}) where
B runs through all cyclic subgroups of order p in E distinct from A. Finally if z = (E,b) is a point on
Xyp for some necklace v, then A(z) is the sum of all (E, {A, B}) where A and B run through all pairs of
antipodal pearls in the necklace v. All these three correspondences extend linearly to the corresponding
Jacobians. As explained in Section 4.7, those correspondences comes from degeneracy maps (where we
replace 7 by 7 which will be defined in Section 4.7).

To recapitulate, we list in Figure 1 the definitions for future reference next to a diagram involving all
relevant maps.

X(p)
(B, A) = Y (E,{A B})
B with
X4 B#A
) p(E,{A,B}) = (E, A) + (E, B)
™ a8 p(B{AB}) = > (E,v)
P ® nxithB
Xo i ﬁﬁ?Xs—;;ﬁﬁ L :?Xr—rsp 03 A
" A AE,0)= > (BE{AB})
ﬁ/ {A,B} with
Jo P it AesBCu
X(1) =Pt

Figure 1: The various maps in Chen’s theorem

We proceed to reprove Chen’s result. Even if we believe that our proof is simpler and conceptually
better visualised than the original proof in [Che00], we have to emphasise that it is mostly a reformulation
or translation of Chen’s proof into our new language. The crucial argument at the end is the same.

Theorem 15 (Chen-Edixhoven). There are two complezes of abelian varieties over Q

0 ——> Jac(X) —> Jac(XJ) — Jac(X5,) —>0

0<~— Jac(Xo) -~ JaC(Xs-;) 5 JaC(XrTsp> 0

whose cohomologies are finite groups.
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We could also reformulate the theorem by saying that

Jac(Xo) @ Jac(X.5,) # Jac(XJ)
ude

are isogenies defined over Q; however they are not dual to each other.

4.2 The easier part of the proof

Lemma 16. The two sequences in Theorem 15 are complezes and pov = [p— 1] on the Jacobian of Xj.

Proof. Let x = (E, A) be a point in Xy. Then

povl@) =o( Y (BAABY) =Y > (B

B#A B#A v>A«B

where the last sum runs over all necklaces v in which A and B are antipodal. Now A will appear in each
necklace once and for each necklace there is a unique B which is antipodal to A in v. Hence @ o ¢(z) is
equal to the sum over all possible necklaces of E. But

po(z) = (E.0)=jiy(E)

b

is the pullback of a divisor (E) on X(1) by the natural projection jif : Xt — X(1). Since X (1) = P!

nsp
has trivial Jacobian, we find ¢ o1 = 0 on the Jacobians. This proof was already noted by Merel on
page 189 in [Mer99].
Next, for a point z = (E,v) in X[, we have

porz) = n(3 Y (BAABY) = 5 (B 4) + (B, B)) = Y (B, 4) = s (B)
A A A

where B in the sums denotes the unique pearl which is antipodal to A in v and where jo: Xo — X (1).
Hence o A = 0 on the Jacobians.
Finally, we obtain

wow(e) = u( D (BAABY) = 3 ((B,4) + (B, B))

B#A B#A

=(p—1)-(B,A)+) (E,B)=(p—1) -z +j3(E)
B

and hence p o1 = [p — 1] on the Jacobian of Xj. O

Corollary 17. The kernel ker C Jac(Xo)[p — 1] and the cokernel coker(p) = 0 are finite.

4.3 Making use of antipodal pearls

We deduce from the earlier Lemma 8 the following result:

Corollary 18. For every (E,{A, B}) € X}, we have

sp’

-1
{C,D} with
[A,B;C,D]g0]

with the sum running over all {C,D} disjoint from {A, B} such that the cross-ratio [A,B;C, D] is a
non-square in F*.

13



Proof. Since

/\OQD(Ea{AaB}): Z Z (E7{07D})
b with {C,D} with
A«>BEY  CewwDewp

we are asked to count how many necklaces have both {A, B} and {C, D} as antipodal pairs in common.
If the four pearls are distinct, Lemma 8 gives the answer. If A = B, but C # D, then there are no such
v and if {A, B} = {C, D}, then we have to count how many necklaces have A «+ B € v, this is 1;2;1 by
Lemma 8 again. O

We now define yet another map «: Jac(Xs‘;) — Jac(Xs*};). For a point y = (E,{A, B}), we define
« to be the sum running over all unordered pairs such that ; =
(E, {A,B}) be th > {C,D} ing 11 dered pairs {C, D} h that [A, B; C, D]
—1.

Lemma 19. We have

-1
aoa(E A, B}) = o= (BE{ABY)+ > (EAC.D})
S pen

where the second sum runs over all unordered pairs {C, D} such that the cross-ratio [A, B;C, D] is a
square in F°.

Proof. By definition, we have

aoa(E{A,B})= > > {¢,D}.
{X,Y} with  {C,D} with
[4,B;X,Y]=—1 [X,Y;C,D]=—1
Given {C, D}, we wish to determine how many {X,Y} exist with [A,B;X,Y] = [X,Y;C,D] = —1.
Assume first that A, B, C, D are all distinct. It follows that X and Y are distinct from any of the four.
Then we choose a basis such that A = (1:0), B=(0:1) and C = (1:1). We write D = (d : 1),
X =(r:1)and Y = (y:1). The two equations give

r—1 y—d

-1=[X,Y;C,D| = .
Xviep)=T— tg

They simplify to z = —y and 2? = d = [A, B;C, D]. Hence if [A, B;C, D] is a non-square in F,, then
there are no {X,Y} and if it is a square then there is exactly one pair {X,Y}.

Finally, suppose they are not all distinct, say C = A. If D # B, then there can not be any {X,Y}.
If {A,B} = {C, D}, then all pairs {X,Y} with [A4, B; X, Y] = —1 will contribute to the sum, and there
are £ ;1 such pairs. O

Proposition 20. Let jg,: XS‘; — X (1) be the natural projection. The relation
(Yow+aoatyon) (B {A,BY) =p- (B.{A,B)) + i, (F) 3)

holds for all (E,{A, B}) € X,

Proof. This is just the combination of Corollary 18, Lemma 19, the equality

wOM(Ev{A’B}) =2 (E’{A7B}) + Z ((E’ {A,C}) + (E’ {B,C})),

C#A,B

and counting how often (E,{A, B}) appears on both sides. O
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4.4 Representation theoretic argument

The main argument in [Edi96, dSE00] that an isogeny must exist between the Jacobians, and even some
information about its degree, is directly deduced from the Brauer relation between certain permutation
representation. Denote by B, S, and A a Borel subgroup, a normaliser of a split Cartan subgroup and
a normaliser of a non-split Cartan subgroup of a group G isomorphic to PGL2(I,), respectively. Then
(see [Edi96, dSE00])

Q[G/S] @ Q[G/G] = Q[G/N] e Q[G/B].

We fix an elliptic curve E over an algebraically closed field of characteristic different from p. Write
G = PGL(E[p]). We consider the Q[G]-modules U = @, Q (E, v), which is isomorphic to Q[G/N], and
V=@5Q (E,{A, B}) = Q|[G/S]. The equation (3) is a relation between Q[G]-endomorphisms of V:
Aop+aoa+ipou = [p|+j, where we still denote by 1, ¢, a, A, u the morphisms induced on Q[G]-modules
and where j: V — V sends (E, {A, B}) to the sum over all (E,{C,D}).

From the fact that the middle line (for 7”) in table 2.2 in [Edi96] only contains 0 and 1, we see that
V ® C decomposes into a sum of distinct irreducible C[G]-modules. We denote by xw the character and
ew = 1/|G] - >_ g xw(9) g~ ! the idempotent associated to such an irreducible C[G]-submodule W of
V. For f a Q[G]-endomorphism of V', Schur’s Lemma implies that f|y is the multiplication by a scalar
ew(f) € C. Let K be the cyclotomic field Q(¢p—1,{p+1). A look at the character table (for instance
table 2.1 in [Edi96]) of G = PGLy(IF,) shows that all values of characters are contained in K. Since
ew (f) =1/dim(W) - tr(ew o f), we see that cy (f) belongs to Q(yw) C K.

We will now consider these scaling factors for the Q[G]-endomorphisms in equation (3). Let W be an
irreducible complex representation which appears in the decomposition of V' ® C but not in the image of
YpeC: @, C(E,A) —» V®C. Then cyw (popn) = 0. By the Brauer relation, since @ 4, Q (£, A) = Q[G/B],
the representation W also appears in the decomposition of U ® C. Then similarly ¢y (j) = 0. Hence the
equation (3) gives

cw(No ) =cew([p]) — ew (o) =p — cw(a)?
However, since cy (a) € K, it can not be equal to &,/p. This shows that cy (Ao @) # 0 for all irreducible
W which do not appear in the image of ).

Therefore the map ¢ is a G-isomorphism from V/im into the non-trivial part of U. Moreover, the
map @ o A: U — U has the same scalar factors ey (@ o \) = e (Ao ) # 0 and on the trivial part it is
the scalar multiplication by (p? — 1)/4 # 0. It follows that ¢ o X is a G-automorphism of U.

4.5 End of proof of Proposition 14
We compute
por=o( X AB)= ¥ Y w=Y(mwnmw
{A,B} with {A,B} with 1 with o

A«>Beb A«>Bep A«>Bew

We deduce from the above representation theoretic input that the pairing in Section 3.8 is non-degenerate.

This concludes the proof of Proposition 14. It is to note that the non-degeneracy of the pairing is
equivalent to the difficult part of the proof of Chen’s isogeny in Theorem 15. It would be nice to find a
purely combinatorial proof of the non-degeneracy of this pairing.

4.6 End of proof of Theorem 15

In Section 4.4, we have shown that the map ¢ o A\: @ Z (E,v) — @, Z(F,v) has finite kernel and
cokernel. In other words the map

po: Div(X.L ) — Div(X,)

nsp nsp

has finite kernel and cokernel in each fibre. Since the size of them is independent of the fibre, the above
map has kernel and cokernel of finite exponent. Now consider the induced map

@oX: Jac(Xf ) — Jac(X )

nsp
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on the Jacobian. If [D] is a divisor class in Jac(X}f,), then there is a multiple [m.D] which is in the image
of ¢ o A\. Therefore the map o A has finite cokernel on the Jacobians. Comparing the dimensions it
follows that it has finite kernel, too. This implies that ¢ has finite cokernel and A has finite kernel in the
sequences in Theorem 15.

To conclude we have to verify that the sequences have finite cohomology in the middle term. This
can be deduced from counting the dimension together with all the known parts of the theorem: We know
from (2) in Section 3.6 that the dimension of Jac(X() is equal to the sum of the dimensions of Jac(Xo)
and Jac(X,f,). Since ¢ has finite cokernel, its kernel has now the same dimension as Jac(Xp), which
is also the dimension of the image of 1. Because the sequence is a complex, we have imy C ker ¢ and
the quotient is finite because they have the same dimension. The argument for the second sequence is

similar. This concludes the proof of Theorem 15.

4.7 Relation to Chen’s computations

To relate our proof to the previous proof in [Che00], we need first to establish a translation. The first
difference is that we work with PGL2(F,) rather than with GL2(F,), but that does not make any real
difference.

Fix an elliptic curve E over an algebraically closed field of characteristic different from p. Let us fix
two distinct subgroups Ag and By in E. Further we choose a necklace vy in which Ag is antipodal to
By. Let B be the stabiliser of Ap in G = PGL (E[p})7 which is a Borel subgroup, let S be the stabiliser of
{Ay, By}, which is the normaliser of a split Cartan subgroup, and let A" be the stabiliser of vy, which is
the normaliser of a non-split Cartan. Then we define three G-isomorphisms

1 Q[¢/B] — EB@A tp 1 QIG/S] — P Q{A, B}, ey :Q[G/N] — @@n

{A.B}

by 1o(B) = Ao, tsp(S) = {Ao, Bo} and tnsp(N) = vg. The importance of the exact choices here is that
N NS contains 4 elements. Had we taken “adjacent” rather than “antipodal” pearls in the necklace, we
would only have 2 elements. Compare with remarque 3 in [dSE00].

Recall from [Che00] that for each double coset HgH’ for some subgroups H and H' of G and g €
G, there is a G-morphism ©(HgH'): Q[G/H] — Q[G/H'] sending H to the sum Y, sH' such that
Useq sH' = HgH' is a disjoint union.

Lemma 21. We have

¥ = 15p00(BLS)oryt,  p=1000(S1B)or, @ =tnspoO(SIN)ory!, and A= 1g500N1S)os

nsp

Further we have oo = 15, 0 ©(SgS) 013!t with g = [1 4]

Proof. We only illustrate the first equality as the proof is very similar for all of the first four equalities.
The map O(B1S) sends B = 15 ' (Ag) to the sum of sS where s runs over a system § of representatives of
B/(BNS). The quotient group is the group of elements in G fixing Ay modulo the subgroup of elements
also fixing By. So
0 O(B1S)(B) =Y {Aq¢,sBo}.
seEQ
Since B acts transitively on P(E[p]) \ {Ao}, each {4, B} with B # Ay will appear exactly once in this
sum. Hence
tsp 0 O(BLS)(B) = 3 {Ao, B} = (o).
B#Ao
To prove the last equality, note that with Cy = gAo and Dy = gBy, we get [Ag, Bo; Co, Do] = —1 and
gSg~1! is the stabiliser in G of {Cy, Do}. So the quotient S/(S N gSg~!) is the group of elements fixing
{Ag, Bp} modulo elements also fixing {Cy, Do}. It follows that

Lsp © 6(898)(5) - Z Sg{AOaBO} - Z{SCOaSDO}

seQ seQ
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where Q' is a system of representatives of /(S N gSg~1!). This is exactly the sum of all {C, D} with
[Ao, Bo; C, D] = —1, because the action of S on the set of pairs {C, D} is transitive and for s € Q, we
have [A(), Bo; SCO, SD()] = [SA(), SB(); SCO, SD()} = [Ao, Bo; Co, Do] = —].. D

Now it is clear that equation (3) is exactly what Chen proves in Proposition 8.6 and Proposition 8.7.
His proof is a computation in double coset operators. He then goes on to give formulae for the values
of ew (A o ) in terms of character sums. However, his final argument that they are non-zero can be
shortened as we did in Section 4.4 without making the values more explicit.

Finally, we wish to point out that Chen also describes the maps using the degeneracy morphisms. See
his Theorem 2 in [Che00]. For instance, let consider the usual degeneracy morphisms my : X4 — X
defined by (F, (A, B,C)) — (E, A) and 7, : X4 — X, defined by (E, (4, B,C) — (E,{A,B}), it is
easy to see from our definitions that

(p=1)-¢=(n3)so(m)”  and  (p—1)-p=(m).o ()"

hold as maps on divisors. To explain ¢ and A\, we have to replace ﬂrfsp by another degeneracy map. Let

€ be a non-square in F,. We define ﬁr‘fsp: X4 — Xr‘fsp by sending (E, (A, B, C)) to the following necklace
v in E. First there exist a unique D distinct from A, B, and C such that [A, B;C, D] = e. Then, by
Lemma 8 there is a unique v such that A <+ B € v and C <+ D € v. It is also this lemma which shows

that this map is PGL(E[p])-equivariant.
Lemma 22. We have

4= (7t )eo(rh)* and 4-X=(rl)uo (7).

Proof. Let A and B be two distinct cyclic subgroups of order p of some elliptic curve E. By definition,
we have

(Fip)e o () (B {A,BY) = Y 7l (E.(ABC)+ > L, (E (B AD))
C¢{A,B} D¢{A,B}

=2 > #l,(E (A BX))
X¢{A,B}

since [A, B;C, D] = [B, A; D, C] for all C,D. Each necklace in this sum will have A and B as antipodal
pearls. Let v be a necklace with A «» B € v. We wish to determine how often v appears in the above
sum, that is to say how many X ¢ {A, B} are there such that v = 7~r;fsp (E, (A,B,X)). In other words,
we wish to count the X such that [A, B; X, X'] = ¢ where X’ is the antipodal pearl to X in v. We can
choose a basis of E[p| such that A = (1:0), B = (0:1) and the subgroups X ¢ {A,B} are X = (1 : a)
for some a € . The involution in the stabiliser of v is then represented by a matrix g = [9d] with
d non-square and the antipodal pearl to X in v is X’ = (da : 1). It follows that [4, B; X, X'] = da®.
Since ¢ and d are non-squares, the equation da? = ¢ has two solutions in . Hence there are two pearls
X & {A, B} such that v = 7}, (E, (A, B, X)) and consequently
(fip)s o (7)) (B, {A,B}) =4 ) v
A“ﬂété’u

The second equality follows from an analogous argument. O

5 Examples

We add some numerical examples for small primes, mainly on the eigenvalues of the pairing in Section 3.8.
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5.1 Necklaces for p =5

There is a unique conjugacy class C, in PGLy(F5). We have t = 1 and n = 2. We spell out the 10
necklaces below by giving them as a list of all points in P*(F5):

((), 1,2,4,00,3), (0, 1,3, oo,2,4), (07 1,4,2,3,00), (O, 1,00,3,4, 2), (0,2, 1, 00,4, 3),
(0,3,1,2,00,4), (0,3,2,1,4,00), (0,2,3,4,1,00), (0,2,00,1,3,4), (0,4,1,3,2,00).
It is now easy to read off the pairing (-, -) defined in Section 3.8. Let v be the first necklace in the list. Of
course, we have (v,0) = 3. On the one hand, we have (v,t0) = 0 for tv being any of the necklaces from

the second to the seventh and, on the other hand, (v, 1) =1 when w is any of the last three necklaces.
The resulting matrix ({0, w)), w is non-singular. Its eigenvalues are 6, four times 1, and five times 4.

5.2 Necklaces for p =7
For p = 7, we have two choices for 7. We take t = 1 and n = 3, here.

(0,00,2,3,5,1,4,6), (0,6,3,5,00,2,4,1), (0,00,3,1,4,5,6,2), (0,00,1,5,6,4,2,3),
(0,3,00,2,5,4,6,1), (0,3,4,5,1,6,00,2), (0,2,1,4,00,3,6,5), (0,2,3,00,5,6,1,4),
(0,5,4,00,2,1,6,3), (0,5,00,1,6,2,3,4), (0,3,5,6,00,1,2,4), (0,5,1,2,3,6,4,00),
(0,3,1,00,4,2,5,6), (0,1,00,3,4,6,2,5), (0,00,5,4,2,6,3,1), (0,2,4,3,6,00,5,1),
(0,6,2,00,1,4,3,5), (0,4,00,5,2,3,1,6), (0,00,6,2,1,3,5,4), (0,4,6,00,3,5,2,1),

(0,6,00,4,3,1,5,2).

i

Again the pairing is degenerate with eigenvalues 12, six times 4 +2+/2, six times 4 — 2v/2, and eight times
3.

5.3 Larger primes

We list the characteristic polynomial of the matrix ({v, 1)), n for the next few primes.

p  char. polynomial of (-, -)

11 (X —-30)-(X—-2)10. (X -8)20.(X2-10X +5)12

13 (X —42)- (X2 -19X2+83X —1)12. (X —12)1 . (X —4)*7

17 (X-72)- (X — 1)16 (X3 —27X%+195X —361)'0 - (X —16)'7
(X —8)18. (X2 -16X +32)'8

19 (X —90) (X — 18)18 (X4 —32X3+304 X% 768 X +256)'®
(X —3)%0 - (X®-33X?%+315X —867)%°

These values for the eigenvalues cy (¢ o A) coincide with Chen’s computation in his table 2 in [Che00].
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