BandClust: An Unsupervised Band Reduction Method for Hyperspectral Remote Sensing
Résumé
We address the problem of unsupervised band reduction in hyperspectral remote sensing imagery. We propose the use of an information theoretic criterion to automatically separate the sensor's spectral range into disjoint subbands without ground truth knowledge. Our approach, named BandClust, preserves the physical sense of the spectral data and automatically provides relevant spectral subbands, i.e., of maximal informational complementarity. Experiments using real hyperspectral images are conducted to compare BandClust with four other unsupervised approaches. The comparison of the selected dimensionality reduction methods is performed via supervised classification using support vector machines and shows the potential of the proposed approach.