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ABSTRACT

The use of satellite Sea Surface Temperature (SST) fields
to retrieve zonal and meridional surface currents (U,V) is
now a widespread idea. Since the classical approach involves
temporal differencing of SST fields, we investigate in this
paper the extent to which mesoscale ocean dynamics may
be decomposed into a superposition of dynamical modes,
characterized by different linear relationships between sur-
face currents and temperature fields. Based on a completely
observation-driven approach, we propose a latent class regres-
sion model from local satellite surface currents and patches of
SST measurements. Applied to the highly dynamical Agulhas
region, we demonstrate and discuss the geophysical relevance
of the proposed mixture model to achieve a spatio-temporal
segmentation and tracking of the ocean surface dynamical
modes. Moreover, we show the accuracy of the proposed
model to predict mesoscale surface currents from SST single
maps.

Index Terms— Observation-driven model, Patch-based
model, Latent class regression, Surface dynamical mode seg-
mentation, Sea surface current

1. INTRODUCTION

Since the last two decades, satellite microwave sensors have
been providing an important source of spatial and temporal
information of Sea Surface Temperature (SST). By con-
trast, satellite altimeters provide very sparse measurements
of zonal and meridional surface currents (U,V) and therefore
mesoscale structures with horizontal scales of 50 km to few
hundred kilometers. The classical approach to fill in missing
data in the altimetrer data relies on a temporal differencing of
SST fields as in the maximum cross-correlation technique or
alternate strategies (see e.g. [1], [2], [3]). Alternatively, recent
studies (cf. [4], [5], [6], [7], [8]) rationalize and demonstrate
that fields of SST can become, to some assumptions, an active
tracer coupled to the dynamics leading to strong correlations
with surface current fields. This is known as the Surface
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Quasi-Geostrophic (SQG) theory given in Eq. (1). Within
this theoretical framework, a linear transfer function shall
be identified between (U,V) and SST gradient fields. This
strongly advocates for observation-driven studies to explore
and characterize the local relationships between SST and sur-
face currents from satellite-based routine observations. Yet,
as illustrated in Fig. 1, a single linear transfer function cannot
be expected to solely govern the whole mesoscale dynamics
in a particular ocean region. As revealed, an overall spatial
correlation exists, but this relationship clearly varies spatially
and temporally. For instance, in the warmer SST frontal zone
(top of the image), SST gradients correspond to large surface
currents. In the colder frontal area (bottom of the image),
large SST gradients do not reflect in large surface currents.
We may also point out that within the clearly detected eddy
(top-left of the image), significant velocities are associated
with weak SST gradients.
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Fig. 1. Surface currents and associated temperature gradient
norms derived from satellite measurements within the Agul-
has current the 1st of January, 2004.

Within an observation-driven framework, the key state-
ment of the proposed approach is to regard the local dynamics
as a mixture of different dynamical modes, i.e., local dynam-



ics are stated as the superimposition of a finite set of linear
transfer functions. In this paper, we propose to investigate
such a model to (i) develop a probabilistic learning-based set-
ting for the inference of such mixture models, (ii) achieve
a spatio-temporal segmentation of the identified dynamical
modes from satellite SST and surface currents observations,
(iii) evaluate the extent to which such mixture models are geo-
physically relevant to characterize the upper ocean dynamics
over active ocean regions, and to (iv) analyze their relevance
for the estimations of mesoscale surface currents from SST
fields.

Hereafter we consider the Agulhas region as our case-
study region and the paper is organized as follows. Section
2 presents the proposed probabilistic learning-based model.
In Section 3, the application to satellite observations is evalu-
ated. We further discuss and summarize the key results of our
investigations in Section 4.

2. METHODS

2.1. Patch-based approach

As mentionned above, the SQG model has been shown in re-
cent studies to match the observed 3D dynamics of the ocean
surface layer (cf. [7]). In the SQG model, these dynamics are
fully governed by the surface dynamics and the temperature
becomes an active tracer which is intrinsically linked to the
surface current (cf. [9]) as follows:

(U,V) = γ∇⊥∆
−1/2SST (1)

where γ is a positive scalar, ∇⊥ is the orthogonal gradient
and ∆−1/2 is the fractional Laplacian operator with dimension
−1/2 (cf. [10]). This equation states that the surface current
is a linear transform of spatial derivatives of the SST. The pa-
rameter γ relates to a normalization constraint. Though this
parameter is generally assumed to be locally constant, it may
not be the case for an entire region as illustrated in Fig. 1.
These considerations lead us to hypothesize that surface cur-
rents may locally relate to SST derivatives according to a fi-
nite set of K transfer functions such as

(U,V) = Fk (SST) (2)

where Fk characterizes the kth mode of local interaction be-
tween the SST and the surface currents. In the SQG setting
expressed in Eq. (1), it may be noticed that, given finite-
difference approximations of these derivatives, the transfer
function numerically resorts the local convolution of the SST
by a linear filter. Therefore we assume that each dynamical
mode Fk is parameterized by a linear filter. Using a matri-
cial formulation, Eq. (2) is rewritten as a patch-based linear
regression such as

Yi = HkXi (3)

where Yi encoded as a 2-dimensional vector given by the sur-
face current (U,V) at spatio-temporal location i and Xi is the

vectorized version of the local SST centered in i (cf. Fig. 2).
The p × 2 regression coefficient matrix Hk associated with
dynamical mode k is corresponding to Fk in Eq. (2). Here,
p = (2h + 1)2 defines the size of the local SST neighbor-
hood around i and h is set according to the Rossby radius of
the study region, which states the mean size of the mesoscale
ocean structures like eddies. In our study region, the Agulhas
current, it approximately corresponds to 200 km, i.e. h = 4
for the spatial resolution of the data in this study.
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Fig. 2. Sketch of sea surface temperature patches (contour
plot), noted as X, and the corresponding zonal and meridional
currents (quiver) noted Y at the central position.

2.2. Latent class regression model

Our objective is to identify K different hidden surface dynam-
ical modes from a joint set of SST patches (p-dimensional
vector X) and zonal and meridional surface currents (2-
dimensional vector Y). In this paper, we assume that the
conditional likelihood of Y given X resorts to a mixture of
Normal distributions such as

p (Y|X,θ) =
K∑

k=1

λkNk (Y;Xβk,Σk) (4)

where Nk represents a multivariate Gaussian probability
density function with mean Xβk and covariance Σk, and
λk is the prior probability of mode k. To simplify the no-
tations, we store the overall parameters of model (4) in
θ = (λ1, . . . , λK ,β1, . . . ,βK ,Σ1, . . . ,ΣK). In the liter-
ature, this model is referred to as a “latent class regression”
or “clusterwise regression” (cf. [11]). By construction, it
imposes that 0 ≤ λk ≤ 1,

∑K
k=1 λk = 1 and Σk is positive

defined. To learn model parameters θ, we resort to a clas-
sical maximum likelihood criterion and use an iterative EM
procedure (cf. [12]).



2.3. Segmentation maps and current predictions

We exploit the inferred model with parameters θ̂ to perform
a spatio-temporal segmentation of the underlying dynamical
modes. More precisely, for any spatial location s and time
t, using the Bayes’ theorem, we evaluate the posterior likeli-
hood that the dynamical mode is of type k such as

π̂k(s, t) =
λ̂kNk

(
Y(s, t);X(s, t)β̂k, Σ̂k

)
∑K

l=1 λ̂lNl

(
Y(s, t);X(s, t)β̂l, Σ̂l

) , ∀k. (5)

Then, the pixel at location s and time t is assigned to the
most likely dynamical mode. The estimation of the surface
current at the spatial location s and time t is given by the
fuzzy regression

Ŷ(s, t) =

K∑
k=1

π̂k(s, t)X(s, t)β̂k. (6)

3. RESULTS

3.1. Remote sensing data

As surface current data (U,V), we use the daily delayed time
Maps of Absolute Dynamic Topography (MADT) produced
by Collecte Localisation Satellites (CLS) available online at
http://www.aviso.oceanobs.com/. This information combines
the signal of several altimeters onto a 1/3 degree Mercator
projection grid. We use the 2004 data since four altimeters
were available (Jason-1, Envisat or ERS-2, Topex/Poseidon
and GFO). As SST data, we use optimally interpolated mi-
crowave SSTs provided by Remote Sensing System (RSS)
available online at http://www.ssmi.com/. It combines the
signal of three microwave radiometers (TMI, AMSR-E and
WindSAT) which are robust to the presence of clouds. The
spatial resolution is 1/4× 1/4 degrees and the temporal reso-
lution is the same as the MADT data, i.e. daily. We bilinearly
interpolate the MADT data onto the SST grid. We focus
on the Agulhas region between longitudes 5◦E to 65◦E and
latitudes 30◦S to 48◦S.

To fit the latent class regression model and learn the model
parameters θ according to the EM procedure, we build a set
of joint SST patches {Xi}i∈{1,...,n} and surface current data
{Yi}i∈{1,...,n}, which refer to randomly selected space-time
positions in the considered time series of sea surface observa-
tions. Overall we typically consider a sample with n = 105

observations to balance between the representativeness of the
training set and the computational complexity of the EM esti-
mation.

3.2. Segmentation of ocean surface dynamics

In this study, as a trade-off between the likelihood and the
complexity of the model, we consider K = 4 hidden sur-

face dynamical modes, i.e. four different linear transfer func-
tions as in Eq. (2). Then, given the estimated model pa-
rameters θ̂, we determine from Eq. (5) the posterior like-
lihood π̂k of each spatio-temporal location (s, t) to be as-
signed to any dynamical model k. This leads to dynamical
modes which are spatio-temporally well-segmented as illus-
trated in Fig. 3. The animations of the time series of these
daily maps in the Agulhas current over 2004 are available
here: http://tandeo.wordpress.com/communications/articles/.
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Fig. 3. Segmentation of hidden surface dynamical modes
given satellite SST and surface current (U,V) data, the 1st of
January, 2004 within the Agulhas current. We use the colors
red, green, cyan and blue to respectively distinguish the first,
second, third and fourth dynamical modes.

These maps highlight clear spatio-temporal clusters that
can be interpreted from a geophysical perspective in terms of
different dynamical modes. The first dynamical mode (red)
characterizes very strong current magnitude and warm wa-
ters. It is primarily associated with the main Agulhas current
that flows down the East coast of Africa through the Agul-
has ridge. This mode also involves mesoscale eddies, the so-
called warm core Agulhas rings. An example is visible near
the location 37◦S, 32◦E in Fig. 3. It corresponds to the eddy
identified in the upper left corner of Fig. 1 with strong surface
currents and low temperature gradients. The second cluster
(green) mainly relates to the eastward Agulhas return current
that hits a part of the South Atlantic current. It creates a sub-
tropical front varying from 36◦S to 44◦S with strong eastward
currents and middle-range SST gradients as observed in the
upper part of Fig. 1. This cluster share some agreement with
the SQG theory. The third (cyan) and fourth (blue) modes cor-
respond to weaker surface currents. The third mode is charac-
terized by mid-temperatures and westward currents whereas
the fourth one involves colder temperatures and eastward cur-
rents. Let us stress that the third cluster involves large SST
gradients but weak surface currents such as identified in the
lower-part of Fig. 1.

3.3. Surface current predictions

We further investigate the geophysical consistency of the
identified dynamical modes from the analysis of the surface
currents predicted by the fitted latent class regression model



in Eq. (6). In Fig. 4, we report a comparison to the MADT
data, considered as a true surface current references. Overall,
a good agreement is obtained between the true surface cur-
rents and the predictions of the proposed model. The global
correlation coefficient is 0.76, and can locally be very large
as illustrated in Fig. 4(c), corresponding to the zone depicted
in Fig. 1. As found in Fig. 3 this zone involves the four
dynamical modes. The mixture model enables us to retrieve
both the large warm eddy (upper left) associated with weak
SST gradients, the relatively large surface currents along the
large warmer SST gradients (upper part), as well as the rather
weak currents along the large but colder SST front (lower part
of the zone).

By contrast, if we conceal the information of the hidden
dynamical modes and learn other classical models with the
same n = 105 training data, the resulting surface currents are
not consistent. For example, when we fit a linear model as in
Fig. 4(d), i.e. corresponding to K = 1 in our proposed model,
the single linear transfer function results in underestimating
the surface currents within the warm eddy (upper left) and
overestimating the currents of the colder frontal zone (lower
part). We also consider a classical nonlinear approach such
as the weighted 10-nearest neighbor regression in Fig. 4(e).
This last model is not able to follow the warm eddy (top-left)
and the estimated surface currents globally display disconti-
nuities.

4. CONCLUSION

In this paper, we propose an observation-driven framework
to spatially and temporally discriminate hidden dynamical
modes at the surface of the Ocean. We rely on a latent class
regression model. This probabilistic setting resorts to locally
model the distribution of the sea surface currents (U,V) con-
ditionally to the SST as a Gaussian mixture of hidden linear
transfer functions. The statistical parameters of the model are
estimated using a maximum likelihood approach. We applied
the proposed methodology to the 2004 daily 1/4 × 1/4 de-
grees satellite image series of microwave SSTs and surface
currents. The reported results retrieved a relevant spatio-
temporal decomposition of ocean surface dynamical modes
in the Agulhas region according to four dynamical modes: (i)
the main Agulhas current and warm core rings characterized
by strong currents and hot temperatures, (ii) the return Agul-
has current with lower temperatures and currents but where
the SST is dynamically coupled as in the SQG theory, (iii)
local fronts regions where strong SST gradients do not seem
to affect the current velocities, and (iv) a weaker dynamical
mode.

Given a set of identified ocean surface dynamical modes,
we show that the latent class regression model is able to make
relevant predictions of sea surface currents. In particular, the
four-latent class regression overcomes the results given by a
linear model or classical nonlinear approaches corresponding
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Fig. 4. Sea surface temperature with the associated true
MADT or estimated surface currents (U,V) using a linear
regression, a four-latent class regression and a weighted k-
nearest neighbor regression within the Agulhas region the 1st

of January, 2004.

to situations where we conceal the dynamical modes. This
result confirms the fact that a spatio-temporal tracking of the
hidden surface dynamical modes is essential to retrieve accu-
rate surface currents given single SST fields. The latent class
model presented in this paper constitutes a serious strategy to
fill the gaps of satellite surface currents using abundant mi-
crowave SST data.
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