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Abstract

The Advanced Very High Resolution Radiometer (AVHRR) instrument on-board
the METOP satellite is designed to provide very accurate measurements of Sea Sur-
face Temperature (SST). In this work, using one year of METOP-AVHRR data and a
geostatistical approach, we characterize the spatial anisotropy and non-stationarity
of the SST variability using oriented ellipsoids. The method is also able to sepa-
rate the true SST variability from the artificial error introduced by the METOP-
AVHRR sensor. These spatial parameters are then used for producing variability
atlases (available on-line) over the whole ocean.
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1 Introduction

Sea Surface Temperature (SST) is a key geophysical variable for many ap-
plications (see e.g. Donlon et al. (2002) and reference therein). For instance,
global-scale, complete and realistic SST fields are key input data in the Ocean
General Circulation Models (OGCMs). One may also cite the use of SST
data to track, characterize and reconstruct mesoscale dynamics (cf. Klein et
al. (2009); Isern et al. (2006); Tandeo et al. (2013)). In this respect, satellite
sensing data provide invaluable global-scale data with relatively high spatial
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and temporal resolutions. Such data are however vulnerable to various at-
mospheric contaminations (e.g., cloud cover, aerosols, heavy rains, etc...) and
they may present large missing data rates. Therefore, spatial and temporal
interpolation techniques are necessary to reconstruct the hidden information
(see e.g. Reynolds et al. (2007)). Understanding and modeling of mesoscale
SST variability appears crucial to provide interpolation priors.

The temporal variability of the SST has been investigated for short time scales
from in situ data (cf. Wainer et al. (2003)) and from remote sensing sources (cf.
Tandeo et al. (2011)) but, its spatial variability, especially spatial anisotropy
and non-stationarity, remains poorly explored. Whereas regional studies ad-
dressed the isotropic spatial variability of the SST, (e.g. Gohin and Langlois
(1993) in the bay of Biscay), evidences for local spatial anisotropies have been
reported for SST fields in some studies (e.g. Park and Chung (1999) in the Sea
of Japan) as well as for other geophysical variables such as ocean colour (cf.
Doney et al. (2003)). However, to our knowledge, no study has explored thor-
oughly at a global-scale these mesoscale spatial SST variabilities. This study
relies on geostatistic tools to address these issues from the analysis of the Ad-
vanced Very High Resolution Radiometer (AVHRR) instrument on-board the
METOP-A satellite (cf. Le Borgne et al. (2007); O&SI SAF (2013)). Using
compact parametric model of the spatial covariance of the SST fields and the
associated model fitting scheme, we produce observation-based atlases of the
mesoscale spatial variability of the SST for the global Ocean, in terms of local
anisotropy, spatial scales and residual variances. These atlases provide new
insights on global and regional mesoscale ocean dynamics and new priors for
missing data interpolation.

This paper is organized as follows. The METOP-AVHRR SST data and the
geostatistical methodology are introduced in Section 2. We discuss the results
obtained in the Malvinas current and the global Ocean in Section 3. Section
4 further discusses our key contributions and prospects for future work.

2 Method

2.1 METOP-AVHRR data

METOP-A satellite has a high resolution coverage of the world Ocean. The
data are delivered in satellite projection at full resolution and remapped onto a
regular 0.05◦×0.05◦ global grid every 12 hours (see O&SI SAF (2013) for more
details). METOP-AVHRR is one of the most efficient SST data source due to
the high quality measurements and the number of observations (cf. Le Borgne
et al. (2007)). In this study, we only use night-time data to avoid the vari-
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ability due to the diurnal cycle, good-quality pixel data corresponding to best
proximity confidence levels (flags 4 and 5). We considered the year 2008 and
the global Ocean. The resulting METOP SST fields are clearly non-stationary
with important seasonal components. The non-stationary components have
complex features and we could not find any appropriate parametric model to
describe them. To remove these components, we used the daily 0.25◦ resolu-
tion Optimal Interpolation Version 2 (OIV2) analysis provided by the National
Climatic Data Center (NCDC). This analysis is derived from different satellite
sources independent of METOP data (cf. Reynolds et al. (2007)). We assume
that they provide a good estimate of the low-variations of the SST conditions.
In this paper, our work is focused on the SST anomaly given by the difference
between the METOP and the corresponding OIV2 fields. This anomaly char-
acterizes the mesoscale (horizontal scales of 50 km to few hundred kilometers)
non-stationary spatial variability of the SST. An example of SST anomaly
field in the Malvinas current is given in Fig. 1. The white pixels correspond to
flagged data due to the proximity to clouds. The use of the OIV2 fields instead
of a spatial filter version of the METOP-AVHRR SSTs is motivated by the
following reasons. Firstly, due to the important cloud coverage in certain re-
gions, it is often impossible to generate realistic spatially smoothed SST fields
from METOP-AVHRR. Secondly, to be consistent with a previous analysis of
the temporal variability of the SST anomalies (cf. Tandeo et al. (2011)), we
decided to use the same year 2008 and the same reference fields (i.e., OIV2
fields).

2.2 Anisotropic semivariogram model

To spatially interpolate a missing SST anomaly at a specific location s noted
as Z(s), we need to characterize the local variability of the neighborhood.
Thus, we define the semivariogram function γ between two locations s1 and
s2 (separated by a distance ∆) as

2γ(∆)=V ar (Z(s1)− Z(s2))

=V ar (Z(s1)) + V ar (Z(s2))

−2Cov (Z(s1), Z(s2)) (1)

The process {Z} is said to be second-order stationary if the mean is the same at
each location and if its spatial covariance only depends on the spatial distance
∆ between s1 and s2 such as

Cov (Z(s1), Z(s2)) = C (∆) (2)

where C is the spatial covariance function. According to the previous state-
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Fig. 1. Example of a SST anomaly field in the Malvinas current the 1st of Jan-
uary, 2008. The anomaly is computed from the difference between the high spatial
resolution METOP data and the low spatial resolution OIV2 data.

ments (1), (2) and knowing that V ar (Z(si)) = C (0) for any spatial location
si, we obtain

γ(∆) = C(0)− C(∆). (3)

To account for spatial anisotropy, i.e. the existence of principal directions of
variations, the spatial lag ∆ (in kilometers) is decomposed according to a zonal
component ∆x and a meridional ∆y one such as ∆2 = ∆2

x + ∆2
y. A classical

empirical estimation of the semivariogram (cf. Cressie (1993)) is given by

γ̂(∆x,∆y) =

∑
(si,sj) (Z(si)− Z(sj))

2

2n
(4)

where n denotes all pairs of points (si, sj), for which the longitude and latitude
spatial distance equal ∆x and ∆y.

The semivariogram measures the local spatial variabilities of the process {Z}
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as a function of the zonal and meridional distances, ∆x and ∆y. Then, we
fit a positive-definite parametric model (e.g. exponential, Gaussian, spheri-
cal, power or Matérn models) to the empirical semivariogram γ̂. In our case,
according to previous analyses (not shown in this paper) and to reduce the
number of parameters, we decided to use an anisotropic exponential model
given by

γ(∆x,∆y) = σ2
0 + σ2

(
1− exp

(
− ∆

L(θ)

))
(5)

where (∆, θ) refers to the polar representation of (∆x,∆y). This model involves
two variance parameters: the nugget σ2

0 which represents low spatial variations
(typically instrumental uncertainties) and the sill σ2 (such as σ2 > σ2

0) which
accounts for the stationary variance of the process. The graphical represen-
tation of the theoretical semivariogram (5) is given by an ellipse as shown
in Fig. 2. This ellipse is parameterized according to the length of the minor
and major axes, respectively denoted by Lmin and Lmax and its orientation
φ ∈ (0, π) defined as the angle of the major axis with respect to the North.
Given these ellipse parameters, distance L(θ) in Eq. (5) is defined as

L(θ) =
LminLmax√

L2
max cos

2(θ − φ) + L2
min sin

2(θ − φ)
(6)

with Lmin ≤ L(θ) ≤ Lmax for any angular value θ. Physically, the orientation
φ defines the preferred direction of variation, Lmin/Lmax the strength of the
anisotropy. Besides Lmax relates to the correlation range along the preferred
direction of variation.

To fit the parameters of the spatial covariance, we minimize the difference
between the empirical semivariogram estimates (4) and the theoretical semi-
variogram (5) using the weighted least squares criterion and a Gauss-Newton
algorithm. This iterative procedure is initialized as follows. The minor and
major ranges Lmin and Lmax are chosen as the Rossby radius. Then, φ, σ2

0

and σ2 are respectively initialized as the main orientation, the minimum and
maximum values of the empirical semivariogram computed in Eq. (4).

3 Results

The estimated parameters σ2
0 (nugget), σ2 (sill), φ (anisotropic angle), Lmin

(minimum range) and Lmax (maximum range) are discussed in this section.
They are computed for a 1◦ × 1◦ grid over the global Ocean. Locally, we can
suppose that the spatial variability is second-order stationary. The computa-
tion of the empirical semivariograms proceeds as follows. For a given 1◦ × 1◦

area, we first compute daily empirical semivariograms: we sort all locations
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Fig. 2. 2008 cumulated empirical semivariogram (colors) of the SST anomaly and
corresponding fitted anisotropic exponential model (contours) given in Eq. (5) in a
1◦ × 1◦ region around 42 ◦S and 55 ◦W in the Malvinas current off Argentina. The
exponential anisotropic variability is represented as an ellipsoid with a minor range
Lmin and a major range Lmax in the direction φ.

within the considered area and retrieve the combinations of pairs in all the
zonal and meridional directions such as described in Eq. (4). In a second step,
the daily semivariograms are cumulated into a mean semivariogram over the
year 2008. The mean is computed as a weighted version of the daily semivari-
ograms where we account for the actual number of pairs of points separated by
∆x and ∆y. As stated in Section 2, we fit to each empirical model a paramet-
ric exponential and anisotropic model given by Eq. (5) using a Gauss-Newton
optimization and the weighted least squares criterion.

An example of empirical semivariogram is reported in Fig. 2 for a 1◦ × 1◦ in
the Malvinas current, off the Argentinian coasts. The empirical semivariogram
is clearly anisotropic. This region involves a strong current which results in
a low spatial SST variability along this direction. The corresponding fitted
exponential semivariogram is illustrated as the contour plot. It might be noted
that due to a larger number of pairs of points, the estimation of the empirical
semivariogram is typically better for small spatial distance. The estimated
model parameters in this particular region are given in Table 1.

We map in Fig. 3 the fitted model parameters for the Malvinas current. The
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Table 1
Estimated parameters of the anisotropic exponential semivariogram model of the
SST anomaly in the 1◦ × 1◦ region of the Malvinas current considered in Fig. 2,
around 42 ◦S and 55 ◦W.

Parameter Value

Nugget σ2
0 0.01 K2

Sill σ2 0.36 K2

Minor range Lmin 20 km

Major range Lmax 47 km

Anisotropic angle φ 152◦

estimated anisotropic spatial variability is represented by ellipses (the same
representation was adopted in Morrow et al. (1994)). Each ellipse is char-
acterized by its minor range Lmin, major range Lmax and the angle of its
anisotropy direction φ. In addition, we report the stationary variability σ2 as
a color field. The visualization of the nugget effect will be reported only at the
global scale in Fig. 4(c). The detailed analysis of the reported results for the
Malvinas current clearly stress the spatial non-stationarity of the SST vari-
ability, both in terms of spatial correlation lengths and in terms of anisotropy
factor. Especially, SST variability is greater near the Mar del Plata mouth and
the estimated anisotropic angles φ are highly correlated to the mean annual
currents velocities derived from the mean dynamic topography represented by
arrows.

In the global Ocean, we plot the spatial distribution of the parameters in
Fig. 4. From these maps, we retrieve relevant patterns regarding the spatial
variability of SST and the quality of the METOP-AVHRR data in the global
Ocean. First, in Fig. 4(a), the estimated stationary variance σ2 of the SST
anomaly highlights regions with strong surface currents depicting strong SST
variabilities (from 1 to 1.5) such as the Malvinas, Kuroshio, Gulf Stream or
Agulhas currents. In addition, we identify important upwelling systems (for
instance, the Peruvian or Benguela systems) with strong winds yielding to
important mixing of the upper ocean layer. By contrast, the mean variance
in the rest of the global Ocean is about 0.1. Regarding the analysis of the
anisotropy factor 0 <= Lmin/Lmax <= 1 given in Fig. 4(b), the reported results
also clearly discriminates different ocean regions. The lower anisotropic factor,
the greater the spatial anisotropy of the local SST variability. Conversely,
anisotropic factors closer to 1 refers to almost isotropic situations. Highly
dynamic regions appear as specific regions discriminated by their anisotropic
spatial SST variabilities. As illustrated for the Malvinas region, the preferred
direction relates to the mean surface currents. The Inter Tropical Convergence
Zone (ITCZ) also depict intermediate mean anisotropy factors (between 0.4
and 0.6). By contrast, in other areas such as in the Northern Atlantic Ocean,
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Fig. 3. Ellipse-based representation of the parametric semivariogram model given in
Eq. (5) of the local 1◦ × 1◦ variability of the SST anomaly in the Malvinas current.
The minor and major of the ellipse depicts both the spatial correlation lengths
Lmin and Lmax. We report the sill σ2 as a color field and the quivers refer to the
mean geostrophic currents issues from the mean dynamic topography. The black dot
corresponds to the locations of the anisotropic spatial semivariogram given in Fig.
2.

we observe high levels of isotropy (more than 0.8), which indicate that a
preferred direction of variation of the SST does not exist. In Fig. 4(c), we
report the estimated map of the spatial nugget σ2

0 parameters. The nugget
parameter corresponds to the variance of the errors of measurement of the
METOP-AVHRR sensor. Previous studies evaluated these variance levels from
a comparison between the METOP-AVHRR SSTs and in situ drifting-buoy
measurements (cf. Le Borgne et al. (2007)). Unfortunately, the number of
buoys is very limited and estimates over a whole ocean cannot be determined.
Here, the proposed approach only relies on remote sensing data, such that
we can derive a synoptic view, at the ocean-scale, of the spatial distribution
of this measurement uncertainties. The main sources of contamination of the
METOP-AVHRR data documented in the literature are the Saharan dust
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(cf. Foltz and McPhaden (2008)), the water vapor in tropical regions such as
the Indonesia waters and the Pacific Ocean (West of Colombia and Ecuador)
as well as ice or cloud contamination at high latitudes. Such atmospheric
processes or contaminations can produce regional biases between the METOP
SST data and the OIV2 SST analysis. These biases have synoptic scales from
500 to 1500 km and can be considered as constant in 1◦×1◦ boxes. Therefore,
they do not affect the estimation of the semivariogram which represent the
second order variability of the SST anomaly. However, a very local variability
in the METOP-AVHRR SSTs measurements, known as the nugget effect, may
be observed. The spatial extent of this nugget effect is clearly mapped in Fig.
4(c). Other regions such as the Gulf Stream and Agulhas currents also depict
strong nugget effects highly correlated with the stationary variance σ2. These
strong nuggets may be due to sub-mesoscale physical structures at the surface
of the ocean that cannot be resolved by the spatial resolution of the METOP-
AVHRR sensor. These results are also consistent with our previous temporal
analysis of the METOP-AVHRR data (cf. Tandeo et al. (2011)), where the
nugget effect was estimated in the Atlantic ocean. The anisotropic parameters
are available at an interpolated 1◦ × 1◦ spatial resolution as supplementary
material and online at: ftp://ftp.ifremer.fr/ifremer/cersat/products/
gridded/sst-anisotropic-covariances/.

4 Conclusion

In this paper, we have presented a geostatistic method to characterize the
non-stationarity of the spatial variability of the SST at mesoscale from 2008
METOP-AVHRR data. We chose an exponential model with an anisotropic
parameterization to take into account the differences of the SST spatial vari-
ability along the directions. Five parameters were estimated in the global
Ocean. They are available online as supplementary material. Among them, we
find the stationary variance, the anisotropy parameters and the measurement
error variance of the METOP-AVHRR SST data.

Among the key issues to be considered in future works, we plan to perform spa-
tiotemporal interpolation of METOP-AVHRR data to provide realistic SST
maps. Especially, we plan to use the statistical parameters of the temporal
variability computed in Tandeo et al. (2011) and the spatial anisotropic pa-
rameters given in this paper. In this context, the anisotropic shape of the
spatial variances might be an alternative to the classical isotropic assump-
tions in (i) the coastal and mouth regions, (ii) the front of SSTs and (iii) the
strong surface currents.

Future work may also address the use of the full METOP-AVHRR archive to
produce robust SST spatial variability parameters and to study their corre-
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(a)

(b)

(c)

Fig. 4. Estimated parameters of the SST spatial variability in the global Ocean: (a)
the sill parameter or the stationary variance σ2, (b) the anisotropic ratio Lmin/Lmax

and (c) the nugget effect or variance measurement error σ2
0. These maps correspond

to the fit of the parametric exponential and anisotropic semivariogram model given
in Eq. (5) from the 2008 SST METOP-AVHRR data in 1◦×1◦ areas over the global
Ocean.
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sponding seasonal variations, especially over the major ocean current systems.
The estimation of the parameters could be refined by introducing more flex-
ible parametric models for the calculation of the theoretical semivariogram.
For instance, one can use the Matérn (using a modified Bessel function, cf.
Stein (1999), p. 31) or the powered-exponential functions (see discussion in
Diggle and Ribeiro (2007), Section 3.4.2). The exponential and the Gaus-
sian semivariograms are particular cases of these two functions. These models
may be interpreted in term of stochastic operators, which might offer addi-
tional interpretations of the estimated parameters with respect to local advec-
tion/diffusion properties.
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