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INTEGRAL REPRESENTATIONS OF THE DERIVATIVES IN 7#(b)
SPACES

EMMANUEL FRICAIN, JAVAD MASHREGHI

ABSTRACT. In this survey, we provide integral representations for the boundary values
of derivatives of functions in the de Branges-Rovnyak spaces H(b), where b is in the
unit ball of H*. To achieve this goal, we need to study several properties of Blaschke
products which are interesting in their own right.

1. INTRODUCTION

Let HP(D), 0 < p < oo, denote the classical Hardy space of analytic functions on the
unit disc D = {z € C : |z| < 1}. As usual, we also treat HP(DD) as a closed subspace of
LP(T,m), where T = 0D and m is the normalized arc length measure on T. Let b be in
the unit ball of H°°(D). Then the canonical factorization of b is b = BF', where

H an] an =2 , (z € D),

a, 1 —a,z

is the Blaschke product with zeros a,, € D satisfying the Blaschke condition
D (1= an]) < o0,
n

v is a constant of modulus one, and F' is of the form

ro—ew (- [$F2a0), e

T(—%
where do = —log |b| dm + dp and dy is a positive singular measure on T. In the definition
of B, we assume that |a,|/a, = 1 whenever a,, = 0.

In this paper, we study some aspects of the de Branges—Rovnyak spaces

H(b) = (Id — T,T;) "/ H*(D).

Here T, denotes the Toeplitz operator defined on H?(D) by T,(f) = Py (¢f), where Py
is the (Riesz) orthogonal projection of L?(T) onto H?(ID). In general, H(b) is not closed
with respect to the norm of H?(D). However, it is a Hilbert space when equipped with
the inner product

((Id — TyTy) % £, (Id — TyT3) %9 )y = (f, g)a,
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2 EMMANUEL FRICAIN, JAVAD MASHREGHI

where f and g are chosen so that
f,9 Lker (Id — T,T3)"/2.

As a very special case, if [b] = 1 a.e. on T, or equivalently when b is an inner function
for the unit disc, then I'd — 71375 is an orthogonal projection and the #(b) norm coincides
with the H2(D) norm. In this case, H(b) becomes a closed (ordinary) subspace of H2(D),
which coincides with the shift-coinvariant subspace Kj := H?(D) © bH?*(D).

These spaces (and more precisely their general vector-valued version) appeared first
in L. de Branges and J. Rovnyak [10, 11] as universal model spaces for Hilbert space
contractions. In particular, this model says that if T is a contraction on a Hilbert space
‘H such that I —TT* and I — T*T are of rank one and that

17" fllw = [[fll#,  (n=1) = f =0,

then there exists a function b which is an extreme point of the closed unit ball of H* such
that 7' is unitarily equivalent to the restriction of the backward shift operator on H(b).
Despite the operator model theory for Hilbert space contractions and in particular the
invariant subspace problem, the motivation of de Branges—Rovnyak for the study of these
spaces seems to be the quantum scattering theory. The connection with this topic had to
do with using the machinery of Hilbert spaces of analytic functions to set up a formalism
for the study of the perturbation theory of self-adjoint operators, an important subject
in wave—operator approach to scattering theory. Since the work of de Branges—Rovnyak,
one discovered that H(b) spaces have an important role to play in numerous questions of
complex analysis and function theory. In particular, the notion of complementary space of
a Hilbert space contractively contained into another, which is hidden in the definition of
H(b) space we give here, is one of the key notion involved in the solution of the Bieberbach
conjecture given by de Branges [9]. Sarason also pointed out a connection with the problem
of rigid functions or equivalently exposed points of the unit ball of H'(D). See [27, 28].
They also play an important role in operator theory. Sarason [25, 29] used #(b) spaces in
his study of the kernel of Toeplitz operators. Jury in [19] found a nice proof of the classical
result which says that any composition operator is bounded on H? and his proof is only
based on the reproducing kernel theory and particularly those of H(b) spaces. Finally,
let us mention the theory of linear systems for which 7 (b) spaces represent a useful tool
and a natural framework. See for instance the survey of D. Alpay [3] and the recent work
of Ball-Bolotnikov [4] in this direction. For further information on the internal and still
mysterious structure of these spaces, see [16, 26]. Let us mention for instance the natural
question of multipliers of H(b) spaces which is far from being understood despite numerous
work from Davis, Lotto, McCarthy, Sarason, Suarez [12, 20, 21, 22, 23, 32].

In the case where b is an inner function, H. Helson [18] studied the problem of analytic
continuation across the boundary for functions in Kp. Then, still when b is an inner
function, P. Ahern and D. Clark [1, 2] characterized those points of the boundary at
which every function f € Kj and all its derivatives up to order n have a radial limit.
Recently, we gave an extension of the preceding results of Helson and of Ahern—Clark to
H(b) spaces [6, 14, 15].
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Deriving the representation formulas for higher derivatives requires a lot of background
on function theory. As a matter of fact, sometimes even tracing the right result to apply
is not that easy. Moreover, in certain cases, one needs to combine two results in different
papers to get the required conclusion. These facts made us to write this survey. On one
hand, the results about boundary behaviour of Blaschke product are interesting in their
own right. We gave them with concrete proofs. On the other hand, we use them to obtain
our representation formulas for the derivatives of functions in #(b) spaces.

2. PRELIMINARIES

We first recall some basic well-known facts concerning reproducing kernels in #(b). For
any w € D, the linear functional f — f(w) is bounded on H?(D) and thus, by Riesz’
theorem, it is induced by a unique element k,, of H?(ID). On the other hand, by Cauchy’s
formula, we have

1 f(ew) 2
= — ———dY H*(D D
fw) =5 [ e G a0 em*m).weD)
and thus k,, is the so called cauchy kernel
1
w i E—— D).
ky(z) Tz (z € D)

Now, since H(b) is contained contractively in H?(DD), the restriction to H (D) of the eval-
uation functional at w € D is a bounded linear functional on H(ID). Hence, relative to

the inner product in H(b), it is induced by a vector k2 in H(b). In other words, for all
f € H(b), we have

Fw) = (f, ko).
But if f = (Id — T,T3)'/% f1 € H(b), we have

(f, Id — TyT5)kw)p = (f1, (Id — Tng)l/kab = (f kuw)2 = f(w),
which implies that
kb = (Id — TyT5) k.

Finally, using the well known result T3k, = b(w)k,,, we obtain

_ 1 —b(w)b(z)

kf”(z) 1 —-wz

, (z € D).

We know that #H(b) is invariant under the backward shift operator S* and, in the
following, we use extensively the contraction X, = X = S*|H(b). Its adjoint satisfies the
important formula

(2.1) X*h = Sh— (h, 5*b), b,

for all h € H(b). See [11, Theorem 13] for the original proof and [26, pages 11-12] for
another proof.

A point w € D is said to be regular (for b) if either w € D and b(w) # 0, or w € T and b
admits an analytic continuation across a neighbourhood V,, = {z : |z — w| < €} of w with
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|b| =1 on V,, NT. The spectrum of b, denoted by o (b), is then defined as the complement
in D of all regular points of b.
For f € H%(D), we have
f e H(b) < Tyf € H(b).
Moreover, if fi, fo € H(b), then

(2.2) (fr. f2)o = (f1, fo)o + (Tpfr, Ty f2)p

See Lotto—Sarason [22, Lemma 2.2].

We also mention an integral representation for functions in H(b) [26, page 16]. Let
p(¢) =1—1b(¢)? a.e. on T, and let L?(p) stand for the usual Hilbert space of measurable
functions f : T — C with || f]|, < oo, where

12 = /T 0 dm.

For each w € D, the Cauchy kernel k,, belongs to L?(p). Hence, we define H?(p) to be the
span in L?(p) of the functions k,, (w € D). If ¢ is a function in L?(p), then ¢p is in L?(T),
being the product of gp'/? € L? (T) and the bounded function p'/2. Finally, we define the
operator C,, : L%(p) — H?*(D) by

Cy(q) = P+ (qp).

Then C, is a partial isometry from L?(p) onto H(b) whose initial space equals to H?(p)
and it is an isometry if and only if b is an extreme point of the unit ball of H*°(D). Recall
that by a well-known result of de Leeuw and W. Rudin, b is an extreme point of the closed
unit ball of H°°(D) if and only if log(1 — [b|) & L'(T).

3. DERIVATIVES OF BLASCHKE PRODUCTS

Let (an)n>1 be a Blaschke sequence in D, and let B be the corresponding Blaschke
product. Fix a point ¢ on the boundary T. If ¢ is not an accumulation point of the
sequence (an)n>1, then B is actually analytic at this point and hence, in particular, for
any value of j > 0, both limits

lim BY)(r¢) and hm BY(R¢)

r—1—

exist and are equal. What is more interesting is that ¢ might be an accumulation point
of the sequence (ay)n>1 and yet some of the above properties still hold.

The case N = 0 and N = 1 of the following result is due to Frostman [17]. This is in
fact the most crucial case. Frostman result was generalized by Cargo [7]. Then the most
general version was obtained by Ahern and Clark [1, 2].

Theorem 3.1 (Frostman-Cargo-Ahern-Clark). Let (an)n>1 be a Blaschke sequence in
D, and let B be the corresponding Blaschke product. Assume that for an integer N > 0
and a point ¢ € T we have

1- n
(3.1) Z e a|C|LN|+1 < A.
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Then the following hold.
(i) For each 0 < j < N, both limits

BY(() = lir{l_ BY(r¢) and lim BY)(R¢)

R—1+

exist and are equal.
(ii) There is a constant C = C(N, A) such that the estimation

|BI(r¢)| < C
uniformly holds for r € [0,1] and 0 < j < N.

Proof. The essential case is N = 0. The rest follows by induction.

Case N = 0: Our strategy is to show that, under the proposed condition, |B(r()| and
arg B(r() have both finite limits as r tends to 17. For the simplicity of notations, without
loss of generality, assume that ¢ = 1.

In the course of proof, we repeatedly use the inequalities

1—aur|>1—7r and |1 —@ur|> 3|1 —anl,
for r € (0,1), which are elementary to establish. As the first application, note that

NV 2 9N 2 _
I i N T A G O e )
|1 —@pr| (1 =7)|1 = ay| |1 — ay|

Therefore, the Weierstrass M-test shows that the series

Z (1= —an]?)
|1 —a,r|?
n>1

converges uniformly in r € [0,1], and thus

i 3 00 lan)

r—1— 1 |1 —an’l“|2
But, we have
2
B 2 — ‘CLn B T"
B = T oe
n>1
(-t )1 - |an|2>>
oete] |1 —a,r|?
(1=r*)(1 = |an]?)
> 1-— ,
- nz>:1 11— @y,r|?

and this estimation enables us to deduce

NV 2
liminf [B(r)]> > 1~ lim Y (=) =leal) _
>1

r—1- r—1- ‘1 — EnTP
nz
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Since |B(z)| < 1, we conclude that
lim |B(r)| =

r—1-

To deal with the argument, write

Uy ap—1 1 |an\2—1+1—7"6n_ 1 < 1—|an|2)

lan| 1 —a,r a lan| 1—a,r - |an| 1—a,r

Ty, Qp — T 1 1-— |an\2
arg | — =ar - —" ).
& lan| 1 —a,r & 1—a,r

and, for large enough n for which the combination (1 — |a,|)/(|1 — ay|) is small, we have

2 12 _
ate (1__ 1 — [an| )’ VS el L PR S 1

|1 —a,r| — 1 —ay,|

Thus

ar B(r):Zar I—M
8 8 1—a,r

converges absolutely and uniformly on [0, 1], which proves that lim,_ ;- arg B(r) exists.

The preceding two discussions together show that L = lim,_,;- B(r) exists and has
modulus one, i.e |L| = 1. The estimation in part (i) trivially holds with C' = 1. Finally,
the Blaschke product satisfies the functional equation

B(z)B(1/z) = 1.
Therefore,

lim B(R) = ! L 1
R limp- BA/R)  lm,_,- B(r) L
This argument also shows that if € > 0 is such that [1 — €, 1) is free from the zeros of B,
then B is actually continuous on [1 —&,1 +¢].
Case N > 1: Fix 1 < j < N, and suppose that the result holds for 0,1,...,5— 1. Using
the formula of B and taking the logarithmic derivative of both sides gives us

/( _anQ
(3.2) B():Z( (1 —lan]?)

B(s) ~ 2 (s = an)(1—an2)’
Thus
(3.3) =Y Bu(z 1:52&
where -
(3.9 Ba(z) = ZOMZEn2) sy
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is the subproduct formed with all zeros except a,. Now, we use the formula for B’ and
take the derivative of both sides j — 1 times. Leibnitz’s formula tells us

’ i1 . ’ (1 — |a,|?
B(J)(z) = Z <] k 1) ZBv(zJ_l_k)(z) (& +(i)l Zilz)kl2 | )

k=0 n>1

Note that on the right side we have BT(LZ), where ¢ runs between 0 and j — 1. Hence, the
induction hypothesis applies. To deal with the other term, we consider » < 1 and R > 1
separately.

If » < 1, then

' (k+ Dlap(1 = |an]?)
(1 —@pr)kt+2

(k+ D! — |an|?)
T (I —an)/2fH2
2(k+ 1)1 — |an|)

<
T (1= an) /21N
1 — |an|)
— 9oN+2 1 !(7".
(k+ ) ‘1_an’N+1

But, for R > 1, we have
(k+ Dlag(1 —lan?)| _ (k+ 11— |an|)

(1 — @ R)++2 = R — g [F2
(1 — |an|)
< M — 7
— |1 _ an‘N—H’

where M is a constant. This is because the condition (3.1) ensures that any Stolz domain
anchored at ¢ can only contain a finite number of the zeros a,,. Take any of these domains
anchored at ¢ = 1, e.g. the one with opening /2 or more explicitly the domain |Sz| <
1 — Rz. Then, for a,’s which are not in this domain but are close to { = 1, say at a
distance at most 1, we have

R —a,| <[1- an|/\@‘

Thus,
(k+ DL —an?) _ 202k + DI~ |an])
|R—1 _ an|k+2 - ‘1 _ an|k+2
2(N+1)/2N!(1 _ |an|2)
- |1 _ an|N+1

The other points rest at a uniform positive distance from ¢ = 1.
Based on the above discussion and the induction hypothesis, if 6 > 0 is such that
[1 —6,1) is free from the zeros of B, then all the series

1k (B4 Dlag (1 — |an]?) :
ZBSIJ )(Z) (1—6 Z)k+2 ) (0§k§]_1)7
n>1 n
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are uniformly and absolutely convergent for z € [1 — 6,1 + ¢]. Hence, BY)(2) is also a
continuous function on this interval, which can be equally stated as in the theorem based
on the right and left limits at ¢ = 1.

Appealing to the induction hypothesis, assume that the estimation in part (ii) holds
for derivatives up to order j — 1. Then the above calculation for r < 1 shows that

j-1 ,. N+2
@) (y Jg—1 (G-1-k)(, 2975 (k + D1 — anl)
|1BY)(r)] < k:0< f ) > " |B ()]

= ‘1_an|N+1

(S0 )ar)en

k=0

Hence, with a bigger constant the result holds for the derivative of order j. We choose the
largest constant corresponding to the derivative of order N as the constant C'. O

The mere usefulness of the estimation in part (i4) Theorem 3.1 is that the constant C
does not depend on the distribution of zeros. It just depend on the upper bound A and
the integer N. Hence, it is equally valid for all the subproducts of B.

Theorem 3.1 is also valid if ( € D. As a matter of fact, the proof is simpler in this case,
since part () is trivial. Hence, we can say that if ¢ € D and

Z g <4
then there is a constant C' = C(NV, A) such that the estimation
1BY(r¢)| < C
uniformly holds for r € [0,1] and 0 < j < N.

Corollary 3.2. Let (an)n>1 be a Blaschke sequence in D, and let B be the corresponding
Blaschke product. Let ( € T be such that

Proof. That B has derivative in the sense of Carathéodory at { is a direct consequence
of Theorem 3.1. To obtain the formula for |B’(¢)|, we use (3.3). Note that our condition
implies that the subproducts B,, have radial limits at (. Hence, we can let r — 1 in

ZB ~Jauf?)
1 —anr()?
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to obtain
o

’an| )
By(¢
=2 1 O
The upper bound

(L= lanl*) | _ 41 — |an])
(1 _anrg)g |C_a‘2 ’
allows the passage of limit inside the sum. But, according to (3.4), we have

B(C)<1 — ang)
By(¢) = 22— dnb) >1).
=25 s
Plugging back this in the formula for B’({) gives
1 — |an|?
zh% ¢

By taking the absolute values of both sides the result follows. ([l

0<r<l),

4. HIGHER DERIVATIVES OF b

Let b be an element in the closed unit ball of H*. According to the canonical factor-
ization theorem, b can be decomposed as

(4.1) b(z) = B(2)S(2)0(z),  (z € D),

where
s =TT (2222
and c
+z
S(z) = exp <— By da(()>
and

002) = exp ([ -2 10g o) am(c)).

We can also extend the function b outside the unit disk by the identity (4.1) and the
formulas provided for B, S and O. The extended function is analytic for |z| > 1, z # 1/a,.
At 1/a@, it has a pole of the same order as a,, as a zero of B. We denote this function
also by b and it is easily verified that it satisfies the functional identity

(4.2) b(z)b(1/z) = 1.
One should be careful in dealing with function b inside and outside the unit disc. For
example, if
b(z) = 32", (2] < 1),
it is natural to use the same nice formula for |z| > 1. However, the functional equation
(4.2) says that
b(z) = 22", (lz] > 1).
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Hence, b and its derivatives up to order n show a different behaviour if we approach a
point (o € T from with D or from outside. In Theorem 4.1 below, we show that under
certain circumstances, this can be avoided.

For our application in this section, we can merge S(z) and O(z) and write

(1.3 o) = B)SC)
where
(4.4 1o =ew (- [ 2 au0).

and p is the positive measure du(¢) = —log |b(¢)| dm(¢) + do(¢). Now, Leibnitz’s formula
says

b (2 ZB (2).

For the derivatives of B on a ray, we already established Theorem 3.1. However, a similar
result holds for function f, and thus similar statements actually hold for b, i.e. for any
function in the closed unit ball of H*°.

A special case of the following result and for N = 0 is in [?] without proof. The general
version was mentioned in [1, 2], again without proof.

Theorem 4.1. Let b be a in the closed unit ball of H*> with the decomposition (4.1).
Assume that, for an integer N > 0 and a point (5 € T, we have

L~ lan| do (C) Ol A
9 E:Ko—aw“l [ [, g g dmic) < 4
Then the following hold.

(i) For each 0 < j < N, both limits
b9 (¢o) = Tim b9 (r¢y)  and lim b9 (RC)

R—1t

exist and are equal.
(ii) There is a constant C = C(N, A) such that the estimation

b9 (r¢o)| < €
uniformly holds for r € [0,1] and 0 < 7 < N.
Proof. As discussed before theorem, it is enough to establish the result just for the function
f = SO given by (4.4). The proof has the same flavor as the proof of Theorem 3.1. We

first do the case is N = 0, and then the rest follows by induction.
Case N = 0: We show that, under the condition (4.5), which now translates as

du(Q)
(4.6) /T ¢ =

|f(rép)| and arg f(r{p) have both finite limits as r tends to 17. For the simplicity of
notations, without loss of generality, assume that {y = 1.
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A simple computation shows that

f@)zem><Aﬁé::;@d@)fmp(iA;g?ngu@iy

Therefore, we have explicit formulas for |f(r)| and arg f(r).
The assumption (4.6) implies that there is no Dirac mass at (o = 1, i.e. u({1}) = 0.
Therefore,

1— 2
lim ——— =0
r—1- ’C—T|2

for p-almost every ¢ € T. Moreover, we have the upper bound estimation

1—7? 2

(TR
which holds uniformly for all values of the parameter r € (0,1). The condition (4.6)
means that the function on the right-hand side belongs to L' (). Hence, by the dominated
convergence theorem, we get

1—r?
lim —=d, =0.
r—1=JT |C — ’r‘|2 H(C)
In return, this observation implies

lim |f(r)] = 1.

r—1-
In a similar manner,
Cx Cx
LSO S
P JC= P T - P
for p-almost all ( € T. We also have the upper bound estimation
r[S(Q)] 2
< : ¢eT),
[T
which holds uniformly for all values of the parameter r € (0,1). Finally, again by the
dominated convergence theorem, we see that the limit

: r3(¢) _ [ S(@©)
hm/T d,u(C)—/ dp(¢)

r-1- Jr [¢ = rf? T | — 12
exists and is a finite real number. In return, this implies

lim arg f(r)
r—1-

also exists and is a finite real number. Therefore, L := lim,_,;- f(r) exists and, moreover,
|L| = 1.
Put L =lim,_,;- f(r). By (4.2), the function f satisfies the functional equation

f(2)f(1/z) = 1.

Therefore,
1 1 1
= =1L.

lim f(R) A

R—1+ - limp_1+ f(1/R) N lim, ;- f(r)
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This argument also shows that f is actually bounded on [0, +00). The estimation in part
(44) trivially holds with C' = 1.

Case N > 1: Fix 1 < 5 < N, and suppose that the result holds for 0,1,...,5 — 1. The
condition (4.5) is rewritten as

d
(4.7) /1r|1—u<(|€3“ < A

Using the formula of f and taking the derivative of both sides gives us

(45) 16 = ([ (o aut0) fo)

Now, take the derivative of both sides 7 — 1 times. Leibnitz’s formula tells us

j—1 o '
(49) f) =3 < / M du<<>> FIR).

k=0
On the right side we have f where ¢ runs between 0 and j — 1. Hence, the induction

hypothesis applies. To deal with the other term, note that for z = r < 1 and also

z= R > 1, we have
1 2
< ,  (CeT).
¢ =z 7 [¢—1

Thus, for all z € (0,00) \ {1} and all k with0 <k <j—-1< N —1,
k‘—I—l )¢ 2(k +1)!
— Z k+2 - |(C _ 1)/2|k+2
2N
= N+1
(¢ —=1)/2]
oN+2 |

(4.10) = cogvm e

Therefore, by (4.7), (4.10) and the dominated convergence theorem,

—2(k+1!C (O:/deu(@-

li _—
ririli T (C - Z)k+2
Note that we again implicitly used the fact p({1}) = 0. Thus, by induction hypothesis

and (4.9), part (i) follows. Moreover, again by the induction hypothesis, assume that the
estimation in part (4¢) holds for derivatives up to order j — 1. Then, by (4.9) and (4.10),

Jj—1 B
19 ()| 3 (/T 2(k +1)!I¢

2N+2 N G=1-k) N+2

Hence, with a bigger constant the result holds for the derivative of order j. We choose the
largest constant corresponding to the derivative of order N as the constant C'. g

IN

dmo) IR )
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We highlight one property that explicitly mentioned in the proof of Theorem 3.1 for
Blaschle products, but it also holds for an arbitrary . Under the hypothesis of Theorem
4.1, there is a & > 0 (which depends on b) such that bU)(z), for 0 < j < N, is a continuous
function on the ray [(1 — §)Cp, (1 + 0)Co].

Corollary 4.2. Let b be a in the closed unit ball of H* with the decomposition (4.1). Let
Co € T be such that

21— ay| do(¢) 2”|log|b H
2 i apt L] ol e <o

Then b has derivative in the sense of Carathéodory at {y and

. Wl | [ 2d0(Q) 2l
Fco)l Zrc—anw /Ir|Co—C|2+/o G—cp O

Proof. As we did in (4.3), write b = Bf. Corollary 3.2 treats the Blaschke product B and
gives a formula (the first term appearing in |0/({y)| above). Hence, since on the boundary
1b'| = |B'| 4 | f'|, we just need to study f and prove that |f’(y)| is precisely the remaining
two terms in the formula for |b'({p)|.

That f has derivative in the sense of Carathéodory at (y is a direct consequence of
Theorem 4.1. To obtain the formula for |f/({y)|, we use (4.8), i.e

roa = ( [ (C_‘igo)Qdu(o) 7).

Now, r — 1 to obtain

7 = ([ e ©)) 1),

The upper bound

1 2
< , CeT,0<r<1).
1€ = 1ol ™ 1€ = ¢ol ( )
allows the passage of limit inside the integral. Now, note that
—2¢ 2¢ 20

(C=¢0)? (=) —C0)C €=l

Hence, we rewrite the formula for f/({y) as

F(6o) = ( / |<—2¢o|2d““)> Gl (@)

By taking the absolute values of both sides the result follows. O
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5. APPROXIMATION BY BLASCHKE PRODUCTS

According to (4.3), and arbitrary element of the closed unit ball of H*® may be decom-
posed as b = Bf, where B is a Blaschke product and f is a nonvanishing function given
by (4.4). Generally speaking, since B is given by a product of some simple fraction of the
form (az + b)/(cz + d), it is easy to handle and study its properties. That is why in this
section we explore the possibility to approximate f by some Blaschke products. This will
enable us to establish certain properties for the family of Blaschke products first, and then
extend them to the whole closed unit ball of H*.

Given a Blaschke product B with zeros (a,)n>1, we define the measure op on D by

oo

o5 =3 (1~ [an]) 60

n=1
where 4y, is the Dirac measure anchored at the point z. We consider op as an element of
M(D), the space of finite complex Borel measures on D. This space is the dual of C(D).
Hence, we equip it with the weak-star topology. Since C(DD) is separable, this topology is
first countable on M(ID). More specifically, this means that each measure has a countable
local basis. Naively speaking, this implies that we just need to consider sequences of
measures to study the properties of this topology.

In the following, we assume that the Blaschke products are normalized so that B(0) > 0.

Theorem 5.1 (Ahern-Clark [1]). Let f be given by (4.4), and let (By)n>1 be a sequence
of Blaschke products. Then B, converges uniformly to f on compact subsets of D if and
only if op, — p in the weak-star topology of M(D).

Proof. Assume that op, — p in the weak-star topology of M(D), and denote the zeros of
By, by (anm)m>1. Since p is supported on T the zeros of B, must tend to T. In fact, fix
any r < 1 and consider a continuous positive function ¢ which is identically 1 on |z| < r,
and identically 0 on |z| > (1 +r)/2. In between, it has a continuous transition from 1 to
0. Since op, — p in the weak-star topology, we have

/¢d03n—>/cpdu:0.
D D

/ wdop,
|z|<r

= Z (1= lanml)

|anm|<r
> (1—r)x Card{m : |apm| <7}
Therefore, for each r < 1, there is an N = N(r) such that
(5.1) |anm| >, (n>N,m>1).
We now further explore our assumption to show that
(5.2) B,(0) — f(0).

But,

v

/SDdUBn
D
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Since op, — w in the weak-star topology, we have

/daBn —>/d,u.
D D

By (4.4), f(0) is a positive real number and

/d,u = —log f(0).
D

But, the left side is

o0

/DdJBn = 51— Janml)

m=1

which is not precisely — log B,,(0). The actual formula is

o
—log B,,(0) = — Z log |anm|-
m=1

However, thanks to (5.1), this difference can be handled. It is elementary to verify that
0<t—1-logt<(1—1)? (1/2 <t <1).
Hence, for n > N(r),
(1 = lanm|) < =log|anm| < (1 +7)(1 = |anm|), — (m=1).
Summing over m gives

(5.3) /DdaBn < —log B,(0) < (1 —l—r)/Ddan, (n> N(r)).

Let n — oo to deduce that
—log f(0) < liminf — log B,,(0) < limsup — log B,,(0) < —(1 + ) log f(0).
n—00 n—o0

Now, let » — 1 to conclude that
lim log B, (0) = log f(0).
n—o0

The next step is to show that B, actually uniformly converges to f on any compact
subset of D. In the language of op,, the formula (3.2) is rewritten as

Bi(2) _ a+ih
Bn(z) /D o000 -Co) " B, (€)-

In the first glance, it seems that the function

S )

(z =1 =¢2)

is not continuous on D and thus we cannot appeal to the weak-star convergence. However,
we fix a compact set |z| < r and, as we saw above, after a finite number of indices the
support of op, is in |z| > (1 + r)/2. Hence, we can multiply the above function by a
transient function which is 1 on |z| > (14 )/2 and 0 on |z| < 1. This operation, on one
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hand, will not change the value of integrals and, on the other hand, will create a genuine
continuous function on D. Therefore, we can surely say

Al 11 1)
Lo e s H/z - o)

/T =r C‘fi)Q d(C),

which translates as

(5.4) AN

as n — oo.
Since (By)n>1 is uniformly bounded by 1 on D, it is a normal family. Let g be any
pointwise limit of a subsequence of (By,),>1. Then, by (5.2) and (5.4), we must have

!/ /
FE)_FQ (o)
) f(2)
Thus, g = f, which means that the whole sequence converges uniformly to f on compact
sets.

To prove the other way around, assume that B,, converges uniformly to f on compact
sets. Thus, B,(0) — f(0) and since f has no zeros on D, for each r, (5.1) must hold.
Hence, if we let n — oo in (5.3), we obtain

limsup/daBn < —log f(0) < (1+7) hmlnf/do'Bn.
D

n—oo n—oo ﬁ

Let »r — 1 to deduce that
/daBn — —log f(0).
D

Hence, (05, )n>1 is a bounded sequence in M(D), and any weak-star limit of this sequence
must be a positive measure supported on T. But, the sequence has just one weak-star
limit, i.e. p. This is because if v is any weak-star limit of the sequence, the first part of
proof shows that a subsequence of B,, converges to f,, where f, is given by (4.4) (with
u replaced by v). Therefore, f, = f on D and, using the uniqueness theorem for Fourier
coeflicients of measures, we conclude that v = p. O

To establish our next approximation theorem, we need a result of Frostman which by
itself interesting and has numerous other applications. Let © be an inner function and,
for each w € D, define

w—0(z)
1-wO(z)
The function ©,, is called a Frostman shift of ©. It is easy to verify that ©,, is an inner

function for each w € D. However, a lot more is true. Define the exceptional set of © to
be

Ou(z) =

£(©)={weD: 0O, is not a Blaschke product }.

Frostman showed that £(u) is a very small set.
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Lemma 5.2 (Frostman [17]). Let © be a non-constant inner function, and let 0 < p < 1.
Define
E)(©) ={(eT:0, is not a Blaschke product }.

Then £,(©) has one dimensional Lebesque measure zero.
Among numerous applications of Lemma 5.2, we single out the one which states that
Blaschke products are uniformly dense in the family of inner functions. A variation of the

technic used in the proof of the following result will be exploited in establishing Theorem
5.4.

Corollary 5.3 (Frostman [17]). Let © be an inner function, and let € > 0. Then there is
a Blaschke product B such that
H@ — BHoo <e.

Proof. We have

O(z) + Ou(z) =0(2) + =

Thus,
2|w
C] S < .

’ (Z> + w(Z)’ -1 "LU’
On one hand, this shows that —©,, — © in the H*°-norm as w — 0 and, on the other hand,
Lemma 5.2 ensures that there are numerous choices of w for which —©,, is a Blaschke
product. O

In the following result, we again use M(D), equipped with the weak-star topology.
We remind that it is first countable, i.e. each point has a countable local basis of open
neighborhood.

Theorem 5.4 (Ahern-Clark [1]). Let A € D, let N > 1, and let p be a positive measure

on T such that J
[ <
T |1 — (]

Then there is a sequence of Blaschke products (By)n>1 such that op, — p in the weak-star
topology of M(D) and, moreover,
— 1- |anm|2 2du(¢)
Z T-a_ N NIV
’1_)‘anm| T [1 = A(]
as n — oo.

Proof. First, note that the growth restriction on p implies that p cannot have a Dirac
mass at 1/X. Our strategy is to prove the theorem for discrete measures with finitely
many Dirac masses and then appeal to a limiting argument to extend it for the general
case.

Assume that o = adyy, where a > 0. Construct f according to the recipe (4.4), i.e

£(2) = exp (-ﬁfj)
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By Lemma 5.2, the function

Bl e 1O

is a Blaschke product for values of ¢ through a sequence which tend to zero and avoids
the exceptional set of f. The unimodular constant

L fO) ¢ |1-ef()
1£(0) —¢[ 1—cf(0)
is added to ensure B.(0) > 0. The precise value of 7. is not used below. We just need to
know that 7. — 1 as ¢ — 0. The formula for B, implies
2|c|
T
Thus, B, converges uniformly to f on D (even uniform convergence on compact sets is

enough for us). Therefore, by Theorem 5.1, o, tends to p in the weak-star topology. The
zeros of B, are

£ (2) = Be(2)| < [1 =] + (z € D).

{z:f(z)=c} = {acm =
which clearly cluster at 1 as ¢ — 0. In this case, A # 1, and thus the function

1+ ]
STy

a+logc+ i2rma
- m ey,
—a + log ¢+ i2mma

can be considered as a continuous function on D when we deal with measures x4 and op,
(at least for small values of ¢). Hence,

14| 14|
/11—A<|N —>/\1—A<|N #le)-
But,
1+ | 1 Jaem|”
@|1—5\4|N Z |1—)\acm|N
and ‘ ‘
1+1¢
STy /|1—A<!N du(<).

Therefore, the result follows.

If o consists of a finite sum of Dirac masses, the result still holds by induction. Now,
we turn to the general situation. Assume that p is an arbitrary positive Borel measure on
T, fulfilling the above mentioned growth restriction. Put

du(z
dr(z) = \I—H(j\z)]N

Again note that p cannot have a Dirac mass at 1/)\, and this property persists for all
measures considered below. The family of discrete measures with finite number of Dirac
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masses is dense in M (D). Hence, there is a sequence 7,, of such measures such that 7, — 7
in the weak-star topology of M (D). Therefore, for each f € C(D

/f 1 = Xz|N dra(2) —>/f )1 = 2|V dr(z) /f )dp(z

This means that o, — u in the weak-star topology of M(D), where o, is the discrete
measure

don(z) = |1 = Az|N dr(2), (n>1).
We appeal to the first part and find a Blaschke product B,, such that op, is close enough
to o, in the weak-star topology and also

1+ |z] / 2 1
——d — | ————do, < —.
L don )~ [ s i) <
The result thus follows. Our choice of B,, also implies that op, — p in the weak-star
topology of M(D). O

6. REPRODUCING KERNELS FOR DERIVATIVES

Let H be a reproducing kernel of functions which are analytic on the domain 2. The
kernels of evaluation at point z € © form a two parameter family of functions k7(w),
where z and w run through Q and k,(w)* is analytic with respect to w and conjugate
analytic with respect to z. The essential property of k7{(2) is

(6.1) F) = (LY, (feH, zeq).
If we successively take the derivative of f with respect to z, we see that the evaluation
functional f — f("(z) is given by

(6.2) fM(2) = (f, 0"k 02", (FeEM).

But, we need to show that 0"k /0z" € H and also taking the derivative operator inside
the inner product is legitimate. We verify this for n = 1. For higher derivative, a similar
argument works.

For simplicity, write k. for k7*. Put 6 = (1 — |z|)/2. Then, for each f € H and each A
with 0 < |A] < §, we have

<f kz+A_kz> ‘_‘f(z—i_A
) A H_

where Cf is the maximum of f’ on the disk with center z and radius 6. Therefore, by the
uniform boundedness principle, there is a constant C' such that

ki — ks
A

Let g € H be a weak limit of this fraction as A — 0. Then, on one hand, for each f € H

we have _h A

<0, (0<]|Al< ).
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On the other hand,

00 = (o) = i (AR )

A—0 A ’
_ kzra(Q) — k2(C) _ %
= i A -0z (©)-

In short, g = 0k, /0z.
In the light of relation (6.2), we define the notation

(6.3) K, = omkltjoz",

i.e. the kernel of evaluation functional of the n-th derivative at z € Q. The relation (6.2)
is rewritten as

(6.4) F" ) = (FR) . (FEH).
In the above formula, if we replace f by k:‘n, we obtain
(6.5) (k2D (2) = K2 5,

H

There are some other formulas for k77, and each has its merits and useful in the applica-

tions. We treat some of them below. For the space H(b), instead of k%&b) we will write
k‘gn. Our first formula for k‘lz’m is based on the operator Xj.

Lemma 6.1. We have
kS, =nl(I — 2X7) "D X kD,
Proof. For each w,z € D,
1 1
(I —wS)ky)(2) = ky(z) — w(Sky)(z) = 1 —w =1=ko(z).

— z —
— Wz 1—wz

Hence, (I — wS)ky = ko. But, for each w € D, the operator I — wS is invertible. Thus,
ko = (I —wS) ko

and, for each f € H?(D), we have

flw) = (I —wS ) fko)o,  (weD).
Thus, if f € H(b), we can write

fw) = (I —wXy) " f,ko)2,  (weD).
But, k% = (I — TyT};)ko and

(I = wXp)™ f, ko2 = (I = wXp) ™' f, (I = TyTy ko).

Hence,

Fw) ={(I —wXp) ' fkg)y = (f,(I —@X;)"'kG)p,  (w D).
Since the last relation is valid for every function f € H(b), we conclude that (I —wX;) 1k}
is precisely the reproducing kernel k:fu. Changing w to z, we obtain

K = (I —zX5) "k,
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Hence, using the definition (6.3), we get

i

oz"

- (PR

= Il —zX;)" X ED

b —
kz,n -

The formula for k2 = klz’ﬂ is

_ 1 —b(z) b(w)

kl;(w) 1-zw

, (z,w € D).

Using Leibnitz’ rule, by straightforward computations, we obtain

97" (1—zw)n

(6.6) k2 (w)

where hgm is the function

n

(6.7) hlz”n(w) = nlw" — b(w) Z <;l> b@) (2)(n — w7 (1 — zw)?.

j=0
Lemma 6.2. Let zp € D with b(z9) # 0. Then
hgo,n(l/éo) = (hgo,n)/(l/go) == (hgo,n)(n)(l/zo) =0.

Proof. The functional equation (4.2) shows that b is analytic in a neighborhood of the
point 1/Zzy. (If b(zp) = 0, then b has pole at 1/Zy of the same order as the order of b at
20.) Therefore, the formula for k:lz’o (w) shows that this kernel is a meromorphic function
on |w| > 1 with poles as described above and a possible pole at 1/z;. However, again by
(4.2), we have b(20)b(1/zp) = 1 and thus the pole is removable. In short, w — kY (w) is
analytic at 1/Zp. Therefore, the same is true for the application w — kgo (w). Respecting
this property, the representation (6.6) implies that hgoyn must have a zero of order n + 1
at 1 / 20- ]

B

zZ,mn

We finish this section by studying k where B is a Blaschke product formed with

zeros (ap)p>1. It is easy to see that

i—1
(6.8) hy(z) = (H ak_z) )

1—ayz 1—a;z
k=1 k J

is an orthonormal basis for Kp = H(B). Sometimes, we will write

(6.9) h(2) = (1 — a2 B1E) sy

1—-a;z

where B; is the finite product formed with the first j zeros.
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Lemma 6.3. Let B be a Blaschke product with zeros (an)n>1. Let z € D. Then

o0

kP, =S nl () hy.

Jj=1

The series converges in H?(D)-norm.

Proof. Since (hj);>1 forms an orthonormal basis for Kp, there are coefficients ¢;, j > 1,

such that
oo
B
kz,n = Z Cj hj’
=1

where the series converges in H?(D)-norm. Moreover, thanks to orthonormality, cj is given
by
¢ = <k£n7hj>2'
But, the formula 6.2 immediately implies ¢; = hgn)(z). O
For a Blaschke product Xp = S*|Kp and k:(])g = Ppl. Thus, X; = PpS = Mp is the
compressed shift on Kp. Therefore, by Lemma 6.1, we have

(6.10) kB, =nl(I — zMp)""TVMEPs1.
Lemma 6.4. Let zp € D, and N > 0. Let B be a Blaschke product with zeros (an)p>1.
Assume that there are functions f,g € H*(D) such that
N = (122" f(2) + B(2)g(2), (2 D).
Then we have Ppf = /-cfé’N/N!.
Proof. We write the above equation for f and g as
SN1 = (1 - 2S5V f + By.
Since Mp is the compression of S, if we apply Pp to both sides, we obtain
ME Pgl = (1 —zMg)N ' Pgf.

Thus,
Ppf= (1 — ZoMB)_N_lM“gPBI
and the result follows from (6.10). O

7. AN INTERPOLATION PROBLEM

There is a close relation between the existence of derivatives of elements of H(b) at the
boundary and the containment of X;V k§ to the range of (I — CoX; )Nt This is fully
explored in Theorem 8.2. But, to reach that general result, we need to pave the road by
studying some special cases. We start doing this by considering Blaschke products. First,
a technical lemma.

Lemma 7.1. Let S, (Sp)n>1 € L(H) with the following properties:
(i) Each Sy, is invertible.
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(i) S is injective.
(iii) Sy, — S in the norm topology.
(iv) There is a constant M such that
IS, Sl <M, (n2>1).

Lety € H. Then (S, 'y)n>1 is a bounded sequence in H if and only if y € R(S). Moreover,
if this holds, we actually have S; 'y — S~y in the weak topology.

Proof. Assume that (S;,'y),>1 is a bounded sequence in H. Hence, it has at least one weak
limit point in H. Let x € H be a weak limit point of the sequence. Since S,, — S in the
norm topology, we surely have (at least for a subsequence) S,S, 'y — Sz. Therefore,
y = Sz, i.e. y € R(S). But, since S is injective, the above argument shows that the
sequence has precisely one weak point (if 2’ is another weak limit point, we would have
y = Sz = Sz’). In other words, the whole sequence tends weakly to x.

To prove the other (easy) direction, assume that y € R(S), i.e. y = Sz for some z € H.
Then

1S3yl < 155 Sl < IS S |zl < M, (0> 1).
O

The following corollary is a realization of the preceding lemma. The assumption are
adjusted to fit our application in the study of derivatives of H(b) functions.

Corollary 7.2. Let T, € L(H), ¢, € T and Mg, €D, forn > 1 and 1 < k < p, with the
following properties:

(i) Each Ty is a contraction.
(i) Each I — (T is one to one.
(iii) Ty Ty = Ty Ty fO?" k, K e {1, . ,p}.
() For each k, Ay, tends nontangentially to  as n — oc.

Let y € H. Then the sequence

((I M) (T - ApﬁnTp)—1y>

n>1

is uniformly bounded if and only if y belongs to the range of the operator (I —(iTh) ... (I —
GpIp), in which case,

(I =T o (T = 2pnTp) y — (I =T (T =Ty
in the weak topology.
Proof. We apply Lemma 7.1 with
Sp =T —=XT1) ... (1= XnTp)

and
S=U—-¢GTy)...(I—-¢Ty).
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The only nontrivial property is the boundedness of S, 'S. Since T} are commuting, it is
enough to verify that the sequence

(I = NenTh) (I — G T
( )

n>1

is bounded. But,
(I = X Ti) ™ (I = G |

1T+ (Mg — G) (I = NenTh) ™ Tk
1+ A — Gl 11 = Mg T) 7|
1

<
< T g — Gl (L= [Aenl)”
< 1+ M.
The last estimation holds since Ay, tends nontangentially to (;. The result thus follows.
O
As a matter of fact, we even need a special case of Corollary 7.2 in which 71 = --- =T,

Corollary 7.3. Let T € L(H) be a contraction, ( € T and (Ay)n>1 C D, with the following
properties:

(i) I — (T is one to one.
(ii) A tends nontangentially to ¢ as n — oo.

Let y € H. Then the sequence
<(I - )\nT)_py>
n>1

is uniformly bounded if and only if y belongs to the range of the operator (I — (T)P, in
which case,

(L = MT) Py — (I =¢T)7"
in the weak topology.

Now we are ready to establish the connection between the existence of boundary deriva-
tives in Kp and an interpolation problem.

Theorem 7.4. Let ( € T, and let N > 0. Let B be a Blaschke product with zeros (apn)n>1

such that

— lan|

S i <4
Then there are functions f,g € H2( ) such that
N = (1= f(2) + B(2)g(2),  (z€D),
with
||f||2 < C)

where C = C(N, A) is a constant.
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Proof. According to Lemma 6.3,

zN_Zh

Hence,

(7.1) k2, )1% = Z h ()2

7j=1
We rewrite the formula in (6.8) for h; as
B ‘,1(2)
hy(e) = (1=l T =
Hence, by Leibnitz’s formula,
N _
N N N—k k!(—a )k
B = = laP S (3BT s
k=1 J
Therefore, by Theorem 3.1 and denoting the constant C (N, A) of this theorem by C,

™) N o/N k!
, < (1 — o |2)1/2 oK
Ol < (=)D <k>cyl—ajrg|k+1

k=1

N k+1
28Tkl
< c-laP S () e
k=1 J
N
2N+1k"
< O —la)2 Y7 )1—(1 L&

=1

k <
N (1 — |aj|?)'/?
N
) (2 HCZ’“'(k ) e

I
[N

Considering (7.1), we conclude

(7.2) kG NI < 24C2,  (0<r<1).

The next step is to appeal to the formula (6.10) and Corollary 7.3. Since o,(Mp) C D,
the operator I — (Mp is injective. Hence, with T = Mg, p = N +1 and y = MgPBl,
we see that Mgpgl belongs to the range of (I — (Mpg)N*!. This means that there is a
function f € H?(ID) such that

MY Pp1 = (1 —CMp)NTLf.
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Since Mp is the compressed shift, we can rewrite the preceding identity as
Pp(zN) = Pg((1 - )N Thf).

Hence, 2V — (1—-C2)N+1f L Kp, or equivalently 2V — (1 —C2)V*!f € BH?(D). Therefore,
there is g € H?(ID) such that

N —(1-C)N T = By,
Finally, Corollary 7.3 also says that
f=-CMg) N tMYPgl = lim (1 — rCMp) N1 MY Pl
r—
Hence, by (6.10)
_ = —N—13,N _ 1 1. 1B
f=U-(¢Mp) Mp Ppl = 57 lim k¢ v,
and, by (7.2), the latter is uniformly bounded by a constant. O

The above result was referees as an interpolation problem since the equation

= (1-C2)f(2) + B(2)g(2)
has a solution if and only if the is a function f € H?(ID) such that

flen) = (1—;@% (n>1).
Since

= 2

; (1—51# 1 — |an|?) < oo,

if (an)n>1 was an interpolation sequence, then the function f trivially exists. The surpris-
ing feature of Theorem 7.4 is that it ensures a solution, even with an additional growth
restriction, always exists.

Theorem 7.4, in a sense, is reversible. Indeed, this is the version that we need in the
proof of Theorem 8.2.

Theorem 7.5. Let N > 0. Let B be a Blaschke product with zeros (an)n>1. Assume that
there are functions f,g € H*(D) such that

A= (1-202)"f(2) + B(2)g(2),  (2€D),
with
1\ /2
Iflle <C and <1 - 202) <lzo| <1,
where C > 1 is a constant. Then there is a constant A = A(N,C) such that

— |an|
Z \l—a 20|2N+2 =4
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Proof. Since we appeal to induction, the function f and g that appear in the N-th step
will be denoted by fy and gn. Note that, by Lemma 6.4,

B
kzo,N

NI

(7.3) Ppfn =
Case N = 0: By Lemma 6.3, the

k'g) = Z hj(Zo) hj.
j=1

Hence, by (7.3), our condition ||fol|2 < C translates as
o0
> Ihi(z0)? < C2.
j=1

We use (6.9), to reqrite this estimation as

(7.4) > IBji(z0) |
j=1

o |12
1 — |a;| <
1 — G 20’2 -

(o

We just need to get rid of |Bj_1(20)|? to establish the result. To do so, just note that since
Bj is a subproduct of B, we have

_1-BiG0)B(2).

Pp,kB (2) = kx (2)

iz 1—2zyz
Hence,
1- |B‘(Zo)‘2 B B B.
ST — kY eo) = IR < [P < O

The restriction 1 —1/2C? < |2|? < 1 now implies |B;(20)|?> > 1/2. Therefore, from (7.4),
we conclude

This settles the case N = 0.
Case N > 1: Assume that the result holds for NV — 1. Our assumption is that there are
functions fy, gy € H?(D) such that

(7.5) N =(1- 22" fn(z) + Bl2)gn(2), (2 €D),
with ||fx]le < C. Write
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Plugging (7.5) gives
N =(1-22)"fva(z) + B(z)gyv-1(2),  (z€D),

where

fa(e) =N (Z ()t 1) (1 22)n(2)

k=1
Hence,
Ifn-1llz < 1+2NFC

This means that all required conditions are fulfilled and we can apply the induction for
N — 1. Thus, there is a constant A such that

|an|
(7.6) ZH_G N < A.

Theorem 3.1 now ensures that Bj(k)(zo), 0 <k <2N —1, exist and are uniformly bounded
by a constant A’, where B; is any subproduct of B.
If we take N times the derivative of both sides in (6.9), we obtain

N _ — Q. N—k
WO = -l Y (V) SERCREE e

k=0

We rewrite this as

Ni(-a;)"
(= las*)"/2 Bja(2) = 3NH
™) i oW = R)l(a)™
(17) M) - (1 o) kZ( )8 e
As we saw above, for 1 <k < N,
N Bk (20) (N — k)!(—&j)ka A'N!
k)1 (1 - a, Z)N—k+1 = |l-aj 2o| N —k+1
A'N12N
- |1 — G Zo’N.
Thus, the right side of (7.7) is majorized by
1—|a;*)!/2

() A’NN'QN(—
|h] (Z)|+ : fl—ajZO‘N ’

The left side of (7.7) is minorized by

Nt (1= ay*)'/?
ONHT |1 — G 2N +1
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for zeros |aj| > 1/2. Hence, for such j, we have
(1- |aj|2)l/2 N+1;. (V) I nTo2N+1 (1— |a-|2)1/2
- <2 h ANV 91 7
Toay it =2l T=a; 2

Hence, by Minkowski’s inequality, Lemmas 6.3 and 6.4, and (7.6),

1/2
Z 1— |a]?
. 2N+2
g1/ 11 8 %0
- 1/2 - 1/2

< oN+1 Z |h(-N)(Z())|2 + A/N22N+1 Z 1— o)
> . J et ‘1 _ dj Zo|2N
szMW%NMA%m”“
< 2NFINI|Pgfn|| + A/ AN22NH
< oNHINIC + A/ AN22NHL,

For zeros with |a;| < 1/2, we have

Z ’ajfz <4 Z |a]| < 4A.
|1—a 20)2V+2 — |1—a]20\2N -
laj|<1/2 laj|<1/2

Hence, the result follows. O

8. DERIVATIVES OF H(b) FUNCTIONS

There is a close connection between the analytic continuation of b across a subarc of
T on one hand, and the analytic continuation of all function of #(b) across the same
subarc on the other hand. In this section, we treat a similar result. While we are studying
the derivative of elements in H(b), we are content with the existence of nontangential
boundary values.

We begin with a simple lemma which is a simple exercise from calculus and is interesting
in its own rights. We do not it in such a generality since in our application even the
derivative of order n 4+ m + 1 exists at all points. However, the proof for the general case
is essentially the same.

Lemma 8.1. Let I be an open interval, and let a,b € I. Suppose that the function
h : I — C satisfies the following properties:

(i) h has n+m continuous derivatives on the I.
(ii) R s continuous and bounded on I\ {a}.
(iii) h(b) = ' (b) = --- = h(»~D(b) = 0.

Put

k(z) = —2_ (zel).



30 EMMANUEL FRICAIN, JAVAD MASHREGHI

Then k is m + 1 times differentiable on I and, moreover,

EmH ( / / RN (b oty -t (a0 — b)) w(t) dty - - - dty,

where v(t) = " - - - th" is some monomial.

Proof. Since h(b) = 0, the fundamental theorem of calculus says

1
hz) = /(]di(h(b-i-tl(m—b)))dtl
1
= (x—b)/o W (b+ti(z — b)) dty.

Applying the same result to the function x — b’/ (b +ti1(x — b)) gives

1
W (b+t(z — b)) = ti(z — b) / B! (b+ tuts(x — b)) da.
0
Therefore,

1 1
h(z) = (z — b)2/0 /0 t1 B (b+ tita(z — b)) dtydts.

Continuing this process n times gives

/ / M2ty B (bt by (2 — b)) dty - dty,

Write m(t) = t7 1572 t, .
Since h has n + m continuous derivatives on the I, and A"+t ig continuous and
bounded on I \ {a}, the function k£ has m + 1 continuous derivatives on the I and

(m41) L 2w
1 1
= // o(t) WD (b gty oty (= b)) dty - - dty,
0 0

where v(t) = ¢yt gmAZmdd O

The following result gives a criterion for the existence of the derivatives for functions of
H(b) and it generalizes the Ahern-Clark result.

Theorem 8.2 (Fricain—-Mashreghi [14]). Let b be a point in the unit ball of H> (D) with
the canonical factorization (4.1), let (o € T and let N be a nonnegative integer. Then the
following are equivalent.

(i) For every f € H(b), the functions f(2), f'(2), ..., fN)(2) have finite limits as z tends

radially to (p.

(ii) For every f € H(b), the function |f™N)(2)| remains bounded as z tends radially to Co.
(111) Hk:;NHb is bounded on the ray z € [0, (p].

(iv) X;iNkS belongs to the range of (I — (o X;)NTL.
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(v) We have
it g it g g ni0) <o

Proof. (i) = (¢i): This is trivial.

(i) = (iii): In the light of representation (6.4), this implication follows from the
principle of uniform boundedness.

(#i1) = (iv): By Lemma 6.1,

(8.1) K v = NI — z2X;) WXV D,

Since 0, (X;) C D, the operator I —(y X} is injective. By assumption, (I—EX,;“)*(NH)X;:NkS
is uniformly bounded for any sequence z, € D tending radially to (5. Now, we apply Corol-
lary 73 with T = X, p=N+1land y = XZN/{IO’ to conclude that X;Nk:g belongs to the
range of (I — (o X; )Nt

(iv) = (i): Using once more Corollary 7.3, we see that

(L zx7) VI XNRE — (- Gx) NG VRS

in the weak topology, for any sequence z, € D tending radially to (. But, (8.1) says that
the left side is precisely klz’n ~- Hence, in the light of (6.4), for every function f in #H(b),
The N-th derivative f(™)(z) has a finite limit as z tends radially to Co.

The rest is by induction. We have

N

vk N *
I—(I—=Gxp)V==> <k>(—C0)kka
k=1
Multiply both sides by X:(N_l)kg to get
N N Y (N k
*(N—1 Tk *(N—1 *(k—1 *
X0 = (-G - Y () et g
k=1

Hence, X ; (N_l)k'g belongs to the range of (I —EXZT )¥. The above argument applies with
N replaced by N — 1. We continue this process N times. Therefore, for every function f
in H(b), f9)(2), 0 < j < N, has a finite limit as z tends radially to (.
(v) = (¢i7): Without loss of generality we assume that (y = 1. By Theorem 4.1, the

condition (v) implies that

lim b9 (r) and  lim bY)(R)

r—1-— R—1+
exist and are equal for 0 < 7 < 2N + 1. Moreover, since b can have only a finite number of
real zeros, we can take § > 0 such that the interval [1 —4, 1) is free of zeros of b. Therefore,

b has 2N + 1 continuous bounded derivatives on [1 — §,1 + d]. Now, fix r in the interval
(1-4,1).
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We remind that by (6.6) and (6.7), k2 y(x) = h% y(2)/(1 — ra)V !, where

N
hZN(a:) = N1z — b(z) Z <]j> b (r)(N — NN (1 — ra).

J=0

Hence, hf? ~ has 2N + 1 continuous bounded derivatives on (1 — 6,1 + ). Moreover, by
Lemma 6.2, we have

W n(L/r) = (B N) (1)) = -+ = (B2 ,) N (1/r) = 0.
We now apply Lemma 8.1 with I = (1—-4§,14+0),a=1,b=1/r,n=N+1, m= N, and
h = hfq,N. Note that
h(z) hlr)yN(l‘) —(
(x—bn  (z—1/r)N+L

Thus, lemma says that (— )N+1(k§’VT)(N) (x) is equal to

1
/ /hb (2N+1< Tty tN+1($—T)>U(t)dt1---dtN+1'

Since there is an M such that
’(hﬁ,N)(2N+1)(S)’ SM? (1_5<8< 1+5)7

=)V kR ().

we deduce that
(K )M (@) < MaN71 (1-d<az<1).

T

In particular, (kff,N)(N) (r) is bounded as r — 17. But, according to (6.5),

K2 w5 = (B2 3) Y (2).

Thus, kaZ’NHb remains bounded as r — 1.
(1i1) = (v): Again, without loss of generality, assume that {, = 1. Fix r € (0,1).
Considering the canonical factorization of b, since b is in the unit ball of H*°, we have

1 — |an|? dp(¢) [log [b(OI]
Z 11— apr[2N+2 /T i CRNAE T e — (PN dm(() < oo

For simplicity of formulas, denote the left side by A,. According to Theorem 5.4, there is
a sequence (Bj);>1 of Blaschke products, with zeros (a;i)r>1, converging uniformly to b
on compact subsets of D and such that

1-— ]a]k|
Z L rag 2V — A

as j — oo. Hence, the formulas (6.6) and (6.7) show that k‘ij tends to kfu, n uniformly
on compact subsets of D. In particular, we must have

lim (k)™ (w) = (kh, )™ (w).

j—)
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In the light of (6.5), we rewrite this identity as

lim ||k, %y ll2 = (1%, o
j—o0

The assumption (iii) implies that there is a C' > 0 such that
Ikl < C, (0<r<1).
Therefore, there is an index j,. such that
Il <C+1, 0 (=),
The formulas (6.6) and (6.7) also show that
(1 —r2)N 7L (2) = N12N — By(2)g5(2),

where g; € H?*(D). Hence, it follows from Theorem 7.5 that there is a constant A =
A(C,N) (independent of r) such that

‘ajk‘ C
Z |1—m L2N+2 < 4, (7= Jr),

Letting 7 — oo, we obtain A, < A for all » € (0,1). Finally, we let r — 1~ to get the
desired condition (v). O

We also mention that Sarason has obtained another criterion in terms of the Clark
measure o) associated with b.

Theorem 8.3 (Sarason, [26]). Let (o be a point of T and let £ be a nonnegative integer.
The following conditions are equivalent.

(i) Fach function in H(b) and all its derivatives up to order { have nontangential
limits at (p.
(ii) There is a point A € T such that

(8.2) / |6i0 - C0‘72£72 da)\(eie) < +00.
T

(iii) The last inequality holds for all X € T \ {b({o)}-
(iv) There is a point A € T such that py has a point mass at (y and

/ e — ¢o| 72 doy(e?) < .
T\{z0}

Recently, Bolotnikov and Kheifets [5] gave a third criterion (in some sense more alge-
braic) in terms of the Schwarz-Pick matrix. Recall that if b is a function in the unit ball
of H*, then the matrix P} (z), which will be refered to as to a Schwarz-Pick matrix and
defined by

1 0 1—b(2)2]"

P = |
(2) [i!j!@zlf)zﬂ T2 Jiz0’
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is positive semidefinite for every £ > 0 and z € D. We extend this notion to boundary
points as follows: given a point (y € T, the boundary Schwarz-Pick matrix is

Py(G) = lim Py(z)  (£=0),
<

provided this non tangential limit exists.

Theorem 8.4. Let b be a point in the unit ball of H*, let (o € T and let £ be a nonnegative
integer. Assume that the boundary Schwarz-Pick matrix PZ((O) exists. Then each function
in H(b) and all its derivatives up to order ¢ have nontangential limits at (p.

Further it is shown in [5] that the boundary Schwarz-Pick matrix PY((y) exists if and
only if
(8.3) lim dp(z) < 400,
Z*)CO
<
where .y )
1 0% 1—|b(2)]
d =
0e2) = 2 ot 1 [
We should mention that it is not clear to show direct connections between conditions (8.2),
(8.3) and condition (v) of Theorem 8.2.

9. PASSAGE TO THE UPPER HALF PLANE C_

Let C, denote the upper half plane in the complex plane and let H?(C,) denote the
usual Hardy space consisting of analytic functions f on C, which satisfy the growth
restriction

1/2
Il =sup ([ 15+ iR ar) " <o,
y>0 R
For each function f € H?(C,) and for almost all zo € R,
F*(z0) = lim f(zo + it)
t—0t

exists. Moreover, we have f* € L?(R) and Ff* = 0 on (—00,0), where F is the Fourier—
Plancherel transformation, and || f*||2 = || f||2-

A particularly interesting class of subspaces of H?(C ) is the H(b) classes of the upper
half plane. The definitions are similar to those for the open unit disc. However, for the
sake of completeness, we mention them below. We also mention some facts without proof.

For ¢ € L*(R), let T}, stand for the Toeplitz operator defined on H%(C) by

To(f) = Pi(ef),  (f € HX(Cy)),

where Py is the orthogonal projection of L?(R) onto H?(C,). Then, for b € H*, with
|b]|oc < 1, the de Branges—Rovnyak space H(b) consists of those H?(C,) functions which
are in the range of the operator (I — T,T3)'/2. As before, H(b) is a Hilbert space when
equipped with the inner product

(I =TTy f, (I = TyT5) 2 g)s = (f, 9)2,
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where f,g € H?(Cy) © ker (I —T,T;)"/2. For each w € C,, the function
1 —b(w)b
B = P HE ey,

2 Z—W

is the reproducing kernel of H(b), that is

(9.1) Fw) = (f.k0)s,  (f € H(D)).
In particular, with f = k2 (2), we obtain
(9.2 K2 = k) = = L2 gy,

o 23w

Let p(t) = 1—|b(t)|, t € R, and let L?(p) stand for the usual Hilbert space of measurable
functions f : R — C with || f||, < oo, where

12 = /R PO Ro(t) d.

For each w € C,, the Cauchy kernel k,, belongs to L?(p). Hence, we define H?(p) to be
the span in L?(p) of the functions k,, (w € C,). If g is a function in L?(p), then gp is
in L?(R), being the product of gp'/? € L?*(R) and the bounded function p'/2. Thus, we
define the operator C, : L?(p) — H*(C,) by

Co(g) = Py (gp)-

Then C, is a partial isometry from L?(p) onto H(b) whose initial space equals to H?(p)
and it is an isometry if and only if b is an extreme point of the unit ball of H*>*(C}.).
Write k% = ky, — b(w)bk,,. Since Tyky, = b(w)ky,, we obtain

m (k;w - P+(’b|2kw))
mp-i- ((1 - ‘b‘Q)kw)

= b(w)Py (pkw)

(9.3) = B(w) (k).

Tikb, =

In Section 8, we have studied the boundary behavior of the derivatives of functions in
H(b) spaces of the open unit disc D. We mention some parts of Theorems 4.1 and 8.2,
modified for the upper half plane C,, that are needed below.

Theorem 9.1. Let b be in the unit ball of H*(C,.) and let b = BI,Oy be its canonical
factorization, where
— H ik e
Z— Zk

k
is a Blaschke product, the singular inner function I, is given by

(%) = exp (iaz - ;/R (Zl_t + t?j—l> d,u(t)>

B(z

~—
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with a positive singular measure p and a > 0, and Oy is the outer function

1 1 t
— —_ _— _— 1 .
Op(2) = exp <7T/R<z—t + t2+1> og]b(t)]dt>
Put

SN du(t) !log\b H
9.4 Sn(x) = +/ +
84 D=2 T ko e e

R

Then, for x € R and for n > 0, the following hold.
(1) If Spy1(z) < 00, then the limits
b (z) = lim b9 (z + it), (0<j<n),
t—0t

exist.
(ii) For every function f € H(b), the limits

fOz) = lim fOz+it), (0<j<n),
t—0+
exist if and only if Sopio(x) < co.
Theorem 9.1 suggests to define
E,(b) ={zx e R: S,(z) < oo}.

The upper half plane version of Corollary 4.2 says that, in € E2(b), then the modulus
of the angular derivative of b at a point x is given by

a1 [ dul) [ [ 1og [b(1)]]
. b/ = 1 dt.
(6:5) Wl =at X /R|xt|2+w e TP

10. INTEGRAL REPRESENTATIONS FOR DERIVATIVES

In this section, our goal is to prove an integral representation for the derivatives of
elements of H(b). we start by finding such a formula at a point w in the upper half plane.
Since w is away from the boundary, the representation is easy to establish. In order to
get an integral representation for the nth derivative of f at point w for functions in the
de-Branges-Rovnyak spaces, we need to introduce the following kernels

|
n! - P
(10.1) kb o (2) = o fzz oy . (zeCy),
and
" pp)
W)y _ gy

(10.2) KO () = — ' . (teR).
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For n = 0, we see that kZ},O = kY and ki, o = b(w)ky. As a matter of fact, (10.1) is the
upper half plane version of (6.6), and we have

f(n) (w) = <f, kz;,n>b7 (f € H(b))
In the following lemma, we obtain a more friendly representation for f(™ (w).

Lemma 10.1. Let b be a point in the unit ball of H*(Cy.), let f € H(b) and let g € H?(p)
be such that Ty f = Cy(g). Then, for all w € Cy and for any integer n > 0, we have
k'lL)u,n € H(b) and kb, € H%(p) and

. d kb (1) dt.
(10.3) w) = [ FOR O+ [ o) E) i
Proof. According to (9.1), we have

Fw) = (f ko = (f. k)2 + (Tof, ik

Hence, by (9.3),
fw) = (f ko2 + b(w)(Cyl9), Colku))s.

o
Since C, is a partial isometry from L%(p) onto H(b), with initial space equals to H?(p),
we conclude that

F(w) = (f. k)2 +b(w){g, ku)p = (f k)2 + (pg, k).
We rewrite this identity as

f(w) = <f7 kfy,(J)Q + <pg7 kﬁ;,0>2?

which is precisely the representation (10.3) for n = 0.
Now straightforward computations show that

kb b q okl
gor e M B
Since k:z)p € H(b) and k,, € H 2(p), as we justified similarly in Section 6, we have

kY, € H(b) and kf,, € H?(p), n > 0. The representation (10.3) follows now by induction
and by differentiating under the integral sign. O

k;P

The next step is to show that (10.3) is still valid at the boundary points zy which
satisfy Sonq2(x0) < 0o. To do so, we need the boundary analogues of the kernels (10.1)
and (10.2). In fact, both formulas make sense if we simply replace w by xy and assume
that Sy,41(z9) < co. However, we see that, under the stronger condition Sa,2(z¢) < 00,

kzgo ., is actually the kernel function in #(b) for the functional of the n-th derivative at x.

Lemma 10.2. Let b be a point in the unit ball of H*(C4), let n > 0, and let zy € R.
Assume that xo satisfies the condition Sopi2(2o) < co. Then k%, € H(b) and, for every
function f € H(b), we have

(10.4) F™ (o) = (f. K2, ).
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Proof. According to Theorem 9.1, the condition Sa,12(xg) < 0o guarantees that, for every
function f € H(b), f™(w) tends to f(™(xg), as w tends radially to zo. Therefore, an
application of the uniform boundedness principle shows that the functional f — (™ (z)
is bounded on H(b). Hence, by Riesz’ theorem, there exists ¢z, € H(b) such that

F(x0) = (f, @uom)s,  (f € HD)).
Now, the formula
FP(w) = (f, k)6, (f €HD)),

implies that k:fjm tends weakly to ¢, n, as w tends radially to z¢. Thus, for z € C,, we
can write

Paon(2) = (o k'lz7>b
: b b
= tl_lgi <kx0+it,n7 kz>b
b
= tl_l>r(§£L kx0+it,n(z)
Ll 1-bE) S PO (; — zg + it)P
= lim ——
t—0+  2mi (z — zg +at)nt!
B nl 1=0(2)>20 b<p)p(!x0) (z—z0)” 1
= Tom o — a0 = Fonl2)
Hence, kS ,, € H(b) and, for every function f € H(b), (10.4) holds. O

The next result gives a (standard) Taylor formula at a point on the boundary.

Lemma 10.3. Let h be a holomorphic function in the upper-half plane C,., let n > 0, and
let zo € R. Assume that h™ has a radial limit at zo. Then h, k', ..., K" Y have radial
limits at xg and

np) (g
) = 3 ko), ey,

!
= P

with lim e(xzg + it) = 0.
t—0t
Proof. The proof is by induction.

Case n = 0: This is trivial.

Case n > 1: Assumes that the property is true for n — 1. Applying the induction
hypothesis to g = I/, we see that g = I/, ¢’ = h?, ..., g1 = (" have a radial limit at
zo and

o AP+ ()

W(w) = =" (w — 20)” + (w — 20)" a1 (w),

p=0 P!

with lim e;(xo +it) = 0.
t—0+
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Since k' has a radial limit at xo, we can define h(xy) by

h(zo) = h(zo + it) — / W () du.
[:Co,:co-i—it}
By Cauchy’s theorem, h(zg) is well-defined and its value does not depend on ¢. However,
this freedom in choosing ¢t shows that h(zg) = }/ir% h(zo + it). Then another application of
—

Cauchy’s theorem reveals that we can even write

h(w) = h(xo) —I—/ b (w) du,
for all w € C4. The path I'y, is from x¢ to w. To have the uniform continuity of h on the
path, we assume that in the beginning I',, is a vertical segment starting at xo (the hight
of segment is not important), and then it goes to w via a rectifiable path in C;. Hence,
we have

n—1
pp+1)
ﬂ(u —x0)? + (u — xg)"flsl(u) du

hw) = hao)+ | )

p=0 P
" p®)
= ﬂ(w —x0)" + / (u = 20)" o1 (u) du.
=0 v
The natural choice for ¢ is
1 n—1
) = gy o (@, weCy)

Thus,

e(zo + it) = (Z,tl)n / (i) e (g +is) ds.

Therefore, based on the induction hypothesis on €1, we have

1 t
le(zo +it)| < m 8”71|61(JUQ +is)|ds
s=0
1 t
< n / le1(xzo + is)|ds — 0
s=0
ast— 0. 0

If xq satisfies the condition Say,42(70) < 0o we also have k%, ,, € L?(p). Indeed, according
to (10.2), it suffices to prove that (t — x9)™/ € L%(p), for 1 < j < n+ 1. Since p < 1,
it is enough to verify this fact in a neighborhood of z¢, say I, = [zo — 1,20 + 1]. But
according to the condition Sa,12(zp) < 00, we have

o 2
[ B0y [ osbOl g [ LSO
I I I

P P | oo [t — o?"H?
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Theorem 10.4 (Fricain-Mashreghi [15]). Let b be a point in the unit ball of H>*(C..), let
n >0, let f € H(b), and let g € H*(p) be such that Tyf = C,(g). Then, for every point
xo € R satisfying the condition Sap42(x¢) < 0o, we have

(10.5) £ () = /R FORE (@) dt + /R o(0)p(0) R (1) .

Proof. Recall that the condition Sa,12(zp) < 0o guarantees that b(j)(mo) exists for 0 <
j < 2n+ 1. Moreover, Lemma 10.2 implies that k‘gmp € H(b), for 0 < p < n.
Put

n @) (z
b(z) = Yono Pl (2 — wo)P

g (2) = (2 — o)1 ) (z € Cq).
Let us verify that hy, , satisfies
n
_ p(n—p) Enm
(10.6) haon = QMPZO mkxmp'
To simplify a little bit the next computations, we put a, := %, 0 < p <n. According

to (10.1), we have

2mi Y anp "”04"( )
p=0 P
- Y _gai(z —x) — 1
= Z an_p <b(z) J (Z — )p+1
p=0 0
1 = e P ;
T (z—a)" ! > an—p(z — x0) b(2) Y (= —ap) — 1
_pio 7=0
1 | n P A
= ezt | YD anptj(z —x0) P | =Y ai(z - )"
L p=0j=0 k=0
Therefore, we see that (10.6) is equivalent to
n o p
(107 DO anplj(z —wo) P = 1.
p=0 j=0

But, putting j = ¢ — n + p, we obtain

n p

n
Z Z an—pa;(2 — x)" P = Z An—p@i—ntp | (2 — 370)6

p=0 j=0 (=0 \p=n—/{

3

n l

= Z ar_qq | (2 — 20)".

=0 \ q=0
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Consequently, (10.7) is equivalent to

(10.8) lag|* = |b(z0)|* =1  (forl = 0),
and
¢
(10.9) Y apgag=0  (1<L<n).
q=0

To establish (10.8) and (10.8), put

n

p(2)=1-b(x) Y TGz —a0),  (z€Cy).
p=0

Then ¢ is holomorphic in C; and ¢ and its derivatives up to order 2n + 1 have radial
limits at xg. An application of Lemma 10.3 shows that we can write

n o) (g
o) = > E I o (2 = o)),
p=0 ’

as z tends radially to z9. Assume that there exists p € {0,...,n} such that p® (zq) # 0
and put

po =min{0 < p < n: P (zq) # 0}.
Hence, as t — 07,

o |90(p0)(x0)|tpgf(n+l)

b .
|kx0,n(x0 + Zt)| o po!

)

which implies that lim,_,q+ |k5, (20 +it)| = co. This is a contradiction with the fact that

k?co,n belongs to #H(b) and has a finite radial limit at x¢. Therefore, we necessarily have

QO(p)(CL'()) = 07 0< b <n. BUt7

p(x0) = 1 = b(wo)b(xo) = 1 — |b(x0)|?,
and if we use Leibnitz rule to compute the derivative of ¢, for 1 < ¢ < n, we get

4

l
14
0O (zg) = — Z@,(p)p!bw_p) (z9) = —1! Z@ag_p.
p=0

p=0

Thus, we established (10.9) and (10.8), which in return proves (10.6). According to
Lemma 10.2, (10.6) implies hg, ., € H(b).
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Now, for almost all ¢t € R, we have

B(E) KL (1)
B0~ BOP T @t — wo)?

o (t — o)™+
_ _L! (1— \b(t)|2)2220@(t — )P B nl b(t) — ZZ:O“TJ@ — zo)P
- 2mi (t — o) t1 2mi (t — x0)"H1
n!
— (O () — 2 h (D).
POk 1)~ e T
Since hgym € H(b) C H?(C4.), we get that Py (bkb ) = Py (pkf,,), which can be written
as Tykb, = Cpkbyn. It follows from Lemma 10.2 that

F™ (o) = (£, k2 )
<f7 x0n>2+<be7Tb xon>
wo, >2+<gvkmo, >P

/f P ﬁ+4mmw%www,

which proves the relation (10.5).
U

If b is inner, then it is clear that the second integral in (10.5) is zero and we obtain the
easier formula

(10.10) ™ (w / £(t)

We now provide a variation of Theorem 10.4 which is more suitable for obtaining
Bernstein-type inequalities. To do so, we need the new kernel

o () (=P be (o) bP(E
(10.11) R2 () = b(z0) 20 (p+é)_( ZO;nH( 0) U¥( )7 ’

e R),

20,1

which is well-defined for all zgp € C,. It also makes sense whenever zy = xy € E1(b). We
highlight that b is the p-power of b and should not be mistaken with the p-th derivative.

Corollary 10.5 (Baranov-Fricain-Mashreghi [6]). Let b be in the unit ball of H>*(C.),

let z9 € C1 U Eapi2(b), and let n > 0. Then (/-cf,;o)”“ € H?*(C,) and 8£2,,, € L*(p).
Moreover, for every function f € H(b), we have

(10.12) 1(z0) 2m(/fﬁnﬂ@ﬁ+/<mm%mwﬁ)

where g € H*(p) is such that Trf = Chg.
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Proof. Step 1: To show that the first integral in (10.12) is well-defined, we show that
(T € HEC).
Let a, = bP)(29)/p!. Fix 0 < j < n. Then we rewrite (10.1) as

- j _
I () = A MEE) s

j! (Z — zo)] o (Z — Zo)j+1—p.
Hence, multiplying by (1 — b(z0)b(z))? and rearranging the terms, we obtain

(K () = (1—6(20)6(2))j< zmkz’;o,](z))

]I

j .
(10.13) + 0(2) > @i (1 = b(20)b(2)) " (K, (2))".

Since zg € C1 U Eap42(b), according to Lemmas 10.1 and 10.2, the functions kgg and
kb . (1 < j < n) belong to H(b). Hence, using the recurrence relation (10.13) and that

20,J

1 — b(20)b(z) € H*(C.), we see immediately by induction that (k% )"™ € H?(C,.).

Step 2: To show that the second integral in (10.12) is well-defined, we show that &%, ,, €
L*(p).
We have = (t — Zg)~ ("D (t), with

2n+1

(R n ()] < (t e R).

’t _ zO|n+1 ’

Hence, it is sufficient to prove that (t — z9)~ ("D € L?(p). If zy € C., this fact is trivial
and if 29 € Eop42(b), the inequality 1 —z < |log x|, x € [0, 1], implies

p(t) / 1— |b(t)? / | log [b()|
— _dt < — 7 dt <2 - dt
/R|t—zO|2n+2 S Je b=zt WS g @S

which is the required result.

Step 3: It remains to prove that (10.12) holds.
Let v be any element of H2(C,). According to (10.5), we have

f(n) (ZO) = <f7 zo n>2 + <pgv kzo n)
= <f7 20,1 bw>2+<bf7 >2+<pg7kzo n>

But we have T3f = C,g, which means that bf — pg L H*(C,). Since ¢y € H*(Cy), it
follows that (bf, )2 = (pg,1))o. Hence, the identity

(10.14) F™ (20) = (f, kY, — bb)a + (pg, K, o + ¥)a
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holds for each ¢ € H?(Cy). A very specific 1 gives us the required representation. To
find the appropriate ¥ note that, on one hand, we have

2R, ) — (R (1)

L b0 STt~ 0 — (1~ b))
(t _ 70)n+1
L OB, Syl — )
AN S H
= b)),

where

Mﬂ_ng&WHﬁHmew@w*_z;wm—%w
- (t — z)t1 (t — 7))+t
On the other hand, we easily see that

27

= Fan(8) +0(t)
S (S (M) (b(z0) P (b(2))P

(t—?o)”+1
S (=0)P (M (B(20))P (b(2))P
_ i Sl L%QQS»(U):Q%“)

Therefore, (10.12) follows immediately from (10.14).
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