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INTEGRAL REPRESENTATIONS OF THE DERIVATIVES IN H(b)

SPACES

EMMANUEL FRICAIN, JAVAD MASHREGHI

Abstract. In this survey, we provide integral representations for the boundary values
of derivatives of functions in the de Branges–Rovnyak spaces H(b), where b is in the
unit ball of H∞. To achieve this goal, we need to study several properties of Blaschke
products which are interesting in their own right.

1. Introduction

Let Hp(D), 0 < p ≤ ∞, denote the classical Hardy space of analytic functions on the
unit disc D = {z ∈ C : |z| < 1}. As usual, we also treat Hp(D) as a closed subspace of
Lp(T,m), where T = ∂D and m is the normalized arc length measure on T. Let b be in
the unit ball of H∞(D). Then the canonical factorization of b is b = BF , where

B(z) = γ
∏
n

|an|
an

an − z
1− anz

, (z ∈ D),

is the Blaschke product with zeros an ∈ D satisfying the Blaschke condition∑
n

(1− |an|) <∞,

γ is a constant of modulus one, and F is of the form

F (z) = exp

(
−
∫
T

ζ + z

ζ − z
dσ(ζ)

)
, (z ∈ D),

where dσ = − log |b| dm+ dµ and dµ is a positive singular measure on T. In the definition
of B, we assume that |an|/an = 1 whenever an = 0.

In this paper, we study some aspects of the de Branges–Rovnyak spaces

H(b) = (Id− TbTb)
1/2H2(D).

Here Tϕ denotes the Toeplitz operator defined on H2(D) by Tϕ(f) = P+(ϕf), where P+

is the (Riesz) orthogonal projection of L2(T) onto H2(D). In general, H(b) is not closed
with respect to the norm of H2(D). However, it is a Hilbert space when equipped with
the inner product

〈 (Id− TbTb)
1/2f, (Id− TbTb)

1/2g 〉b = 〈f, g〉2,
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2 EMMANUEL FRICAIN, JAVAD MASHREGHI

where f and g are chosen so that

f, g⊥ ker (Id− TbTb)
1/2.

As a very special case, if |b| = 1 a.e. on T, or equivalently when b is an inner function
for the unit disc, then Id− TbTb is an orthogonal projection and the H(b) norm coincides

with the H2(D) norm. In this case, H(b) becomes a closed (ordinary) subspace of H2(D),
which coincides with the shift-coinvariant subspace Kb := H2(D)	 bH2(D).

These spaces (and more precisely their general vector-valued version) appeared first
in L. de Branges and J. Rovnyak [10, 11] as universal model spaces for Hilbert space
contractions. In particular, this model says that if T is a contraction on a Hilbert space
H such that I − TT ∗ and I − T ∗T are of rank one and that

‖Tnf‖H = ‖f‖H, (n ≥ 1) =⇒ f = 0,

then there exists a function b which is an extreme point of the closed unit ball of H∞ such
that T is unitarily equivalent to the restriction of the backward shift operator on H(b).
Despite the operator model theory for Hilbert space contractions and in particular the
invariant subspace problem, the motivation of de Branges–Rovnyak for the study of these
spaces seems to be the quantum scattering theory. The connection with this topic had to
do with using the machinery of Hilbert spaces of analytic functions to set up a formalism
for the study of the perturbation theory of self–adjoint operators, an important subject
in wave–operator approach to scattering theory. Since the work of de Branges–Rovnyak,
one discovered that H(b) spaces have an important role to play in numerous questions of
complex analysis and function theory. In particular, the notion of complementary space of
a Hilbert space contractively contained into another, which is hidden in the definition of
H(b) space we give here, is one of the key notion involved in the solution of the Bieberbach
conjecture given by de Branges [9]. Sarason also pointed out a connection with the problem
of rigid functions or equivalently exposed points of the unit ball of H1(D). See [27, 28].
They also play an important role in operator theory. Sarason [25, 29] used H(b) spaces in
his study of the kernel of Toeplitz operators. Jury in [19] found a nice proof of the classical
result which says that any composition operator is bounded on H2 and his proof is only
based on the reproducing kernel theory and particularly those of H(b) spaces. Finally,
let us mention the theory of linear systems for which H(b) spaces represent a useful tool
and a natural framework. See for instance the survey of D. Alpay [3] and the recent work
of Ball–Bolotnikov [4] in this direction. For further information on the internal and still
mysterious structure of these spaces, see [16, 26]. Let us mention for instance the natural
question of multipliers of H(b) spaces which is far from being understood despite numerous
work from Davis, Lotto, McCarthy, Sarason, Suarez [12, 20, 21, 22, 23, 32].

In the case where b is an inner function, H. Helson [18] studied the problem of analytic
continuation across the boundary for functions in Kb. Then, still when b is an inner
function, P. Ahern and D. Clark [1, 2] characterized those points of the boundary at
which every function f ∈ Kb and all its derivatives up to order n have a radial limit.
Recently, we gave an extension of the preceding results of Helson and of Ahern–Clark to
H(b) spaces [6, 14, 15].
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Deriving the representation formulas for higher derivatives requires a lot of background
on function theory. As a matter of fact, sometimes even tracing the right result to apply
is not that easy. Moreover, in certain cases, one needs to combine two results in different
papers to get the required conclusion. These facts made us to write this survey. On one
hand, the results about boundary behaviour of Blaschke product are interesting in their
own right. We gave them with concrete proofs. On the other hand, we use them to obtain
our representation formulas for the derivatives of functions in H(b) spaces.

2. Preliminaries

We first recall some basic well-known facts concerning reproducing kernels in H(b). For
any w ∈ D, the linear functional f 7−→ f(w) is bounded on H2(D) and thus, by Riesz’
theorem, it is induced by a unique element kw of H2(D). On the other hand, by Cauchy’s
formula, we have

f(w) =
1

2π

∫ 2π

0

f(eiϑ)

1− we−iϑ
dϑ, (f ∈ H2(D), w ∈ D),

and thus kw is the so called cauchy kernel

kw(z) =
1

1− wz
, (z ∈ D).

Now, since H(b) is contained contractively in H2(D), the restriction to H(D) of the eval-
uation functional at w ∈ D is a bounded linear functional on H(D). Hence, relative to
the inner product in H(b), it is induced by a vector kbw in H(b). In other words, for all
f ∈ H(b), we have

f(w) = 〈f, kbw〉b.
But if f = (Id− TbTb)

1/2f1 ∈ H(b), we have

〈f, (Id− TbTb)kw〉b = 〈f1, (Id− TbTb)
1/2kw〉2 = 〈f, kw〉2 = f(w),

which implies that

kbw = (Id− TbTb)kw.
Finally, using the well known result Tbkw = b(w)kw, we obtain

kbw(z) =
1− b(w)b(z)

1− wz
, (z ∈ D).

We know that H(b) is invariant under the backward shift operator S∗ and, in the
following, we use extensively the contraction Xb = X = S∗|H(b). Its adjoint satisfies the
important formula

X∗h = Sh− 〈h, S∗b〉b b,(2.1)

for all h ∈ H(b). See [11, Theorem 13] for the original proof and [26, pages 11-12] for
another proof.

A point w ∈ D is said to be regular (for b) if either w ∈ D and b(w) 6= 0, or w ∈ T and b
admits an analytic continuation across a neighbourhood Vw = {z : |z −w| < ε} of w with
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|b| = 1 on Vw ∩T. The spectrum of b, denoted by σ(b), is then defined as the complement
in D of all regular points of b.

For f ∈ H2(D), we have

f ∈ H(b)⇐⇒ Tbf ∈ H(b).

Moreover, if f1, f2 ∈ H(b), then

〈f1, f2〉b = 〈f1, f2〉2 + 〈Tbf1, Tbf2〉b.(2.2)

See Lotto–Sarason [22, Lemma 2.2].
We also mention an integral representation for functions in H(b) [26, page 16]. Let

ρ(ζ) = 1− |b(ζ)|2 a.e. on T, and let L2(ρ) stand for the usual Hilbert space of measurable
functions f : T→ C with ‖f‖ρ <∞, where

‖f‖2ρ =

∫
T
|f |2ρ dm.

For each w ∈ D, the Cauchy kernel kw belongs to L2(ρ). Hence, we define H2(ρ) to be the
span in L2(ρ) of the functions kw (w ∈ D). If q is a function in L2(ρ), then qρ is in L2(T),

being the product of qρ1/2 ∈ L2(T) and the bounded function ρ1/2. Finally, we define the
operator Cρ : L2(ρ) −→ H2(D) by

Cρ(q) = P+(qρ).

Then Cρ is a partial isometry from L2(ρ) onto H(b) whose initial space equals to H2(ρ)
and it is an isometry if and only if b is an extreme point of the unit ball of H∞(D). Recall
that by a well–known result of de Leeuw and W. Rudin, b is an extreme point of the closed
unit ball of H∞(D) if and only if log(1− |b|) 6∈ L1(T).

3. Derivatives of Blaschke products

Let (an)n≥1 be a Blaschke sequence in D, and let B be the corresponding Blaschke
product. Fix a point ζ on the boundary T. If ζ is not an accumulation point of the
sequence (an)n≥1, then B is actually analytic at this point and hence, in particular, for
any value of j ≥ 0, both limits

lim
r→1−

B(j)(rζ) and lim
R→1+

B(j)(Rζ)

exist and are equal. What is more interesting is that ζ might be an accumulation point
of the sequence (an)n≥1 and yet some of the above properties still hold.

The case N = 0 and N = 1 of the following result is due to Frostman [17]. This is in
fact the most crucial case. Frostman result was generalized by Cargo [7]. Then the most
general version was obtained by Ahern and Clark [1, 2].

Theorem 3.1 (Frostman–Cargo–Ahern–Clark). Let (an)n≥1 be a Blaschke sequence in
D, and let B be the corresponding Blaschke product. Assume that for an integer N ≥ 0
and a point ζ ∈ T we have

(3.1)

∞∑
n=1

1− |an|
|ζ − an|N+1

≤ A.
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Then the following hold.

(i) For each 0 ≤ j ≤ N , both limits

B(j)(ζ) := lim
r→1−

B(j)(rζ) and lim
R→1+

B(j)(Rζ)

exist and are equal.
(ii) There is a constant C = C(N,A) such that the estimation

|B(j)(rζ)| ≤ C

uniformly holds for r ∈ [0, 1] and 0 ≤ j ≤ N .

Proof. The essential case is N = 0. The rest follows by induction.
Case N = 0: Our strategy is to show that, under the proposed condition, |B(rζ)| and

argB(rζ) have both finite limits as r tends to 1−. For the simplicity of notations, without
loss of generality, assume that ζ = 1.

In the course of proof, we repeatedly use the inequalities

|1− anr| > 1− r and |1− anr| > 1
2 |1− an|,

for r ∈ (0, 1), which are elementary to establish. As the first application, note that

(1− r2)(1− |an|2)

|1− anr|2
≤ 2

(1− r2)(1− |an|2)

(1− r)|1− an|
≤ 8

1− |an|
|1− an|

.

Therefore, the Weierstrass M-test shows that the series∑
n≥1

(1− r2)(1− |an|2)

|1− anr|2

converges uniformly in r ∈ [0, 1], and thus

lim
r→1−

∑
n≥1

(1− r2)(1− |an|2)

|1− anr|2
= 0.

But, we have

|B(r)|2 =
∏
n≥1

|an − r|2

|1− anr|2

=
∏
n≥1

(
1− (1− r2)(1− |an|2)

|1− anr|2

)

≥ 1−
∑
n≥1

(1− r2)(1− |an|2)

|1− anr|2
,

and this estimation enables us to deduce

lim inf
r→1−

|B(r)|2 ≥ 1− lim
r→1−

∑
n≥1

(1− r2)(1− |an|2)

|1− anr|2
= 1.
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Since |B(z)| < 1, we conclude that

lim
r→1−

|B(r)| = 1.

To deal with the argument, write

an
|an|

an − r
1− anr

=
1

|an|
|an|2 − 1 + 1− ran

1− anr
=

1

|an|

(
1− 1− |an|2

1− anr

)
.

Thus

arg

(
an
|an|

an − r
1− anr

)
= arg

(
1− 1− |an|2

1− anr

)
.

and, for large enough n for which the combination (1− |an|)/(|1− an|) is small, we have∣∣∣∣arg

(
1− 1− |an|2

1− anr

)∣∣∣∣ ≤M 1− |an|2

|1− anr|
≤ 4M

1− |an|
|1− an|

,

where M is a positive constant. Thus the series

argB(r) =
∑
n≥1

arg

(
1− 1− |an|2

1− anr

)
converges absolutely and uniformly on [0, 1], which proves that limr→1− argB(r) exists.

The preceding two discussions together show that L = limr→1− B(r) exists and has
modulus one, i.e |L| = 1. The estimation in part (ii) trivially holds with C = 1. Finally,
the Blaschke product satisfies the functional equation

B(z)B(1/z̄) = 1.

Therefore,

lim
R→1+

B(R) =
1

limR→1+ B(1/R)
=

1

limr→1− B(r)
=

1

L
= L.

This argument also shows that if ε > 0 is such that [1− ε, 1) is free from the zeros of B,
then B is actually continuous on [1− ε, 1 + ε].

Case N ≥ 1: Fix 1 ≤ j ≤ N , and suppose that the result holds for 0, 1, . . . , j−1. Using
the formula of B and taking the logarithmic derivative of both sides gives us

(3.2)
B′(z)

B(z)
=
∑
n≥1

(1− |an|2)

(z − an)(1− anz)
.

Thus,

(3.3) B′(z) =
∑
n≥1

Bn(z)
(1− |an|2)

(1− anz)2
,

where

(3.4) Bn(z) =
B(z)(1− anz)

(z − an)
, (n ≥ 1),
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is the subproduct formed with all zeros except an. Now, we use the formula for B′ and
take the derivative of both sides j − 1 times. Leibnitz’s formula tells us

B(j)(z) =

j−1∑
k=0

(
j − 1

k

)∑
n≥1

B(j−1−k)
n (z)

(k + 1)!ākn(1− |an|2)

(1− anz)k+2
.

Note that on the right side we have B
(`)
n , where ` runs between 0 and j − 1. Hence, the

induction hypothesis applies. To deal with the other term, we consider r < 1 and R > 1
separately.

If r < 1, then ∣∣∣∣(k + 1)!ākn(1− |an|2)

(1− anr)k+2

∣∣∣∣ ≤ (k + 1)!(1− |an|2)

|(1− an)/2|k+2

≤ 2(k + 1)!(1− |an|)
|(1− an)/2|N+1

= 2N+2(k + 1)!
(1− |an|)
|1− an|N+1

.

But, for R > 1, we have∣∣∣∣(k + 1)!ākn(1− |an|2)

(1− anR)k+2

∣∣∣∣ ≤ (k + 1)!(1− |an|2)

|R−1 − an|k+2

≤ M
(1− |an|)
|1− an|N+1

,

where M is a constant. This is because the condition (3.1) ensures that any Stolz domain
anchored at ζ can only contain a finite number of the zeros an. Take any of these domains
anchored at ζ = 1, e.g. the one with opening π/2 or more explicitly the domain |=z| ≤
1 − <z. Then, for an’s which are not in this domain but are close to ζ = 1, say at a
distance at most 1, we have

|R−1 − an| ≤ |1− an|/
√

2.

Thus,

(k + 1)!(1− |an|2)

|R−1 − an|k+2
≤ 2(k+2)/2(k + 1)!(1− |an|2)

|1− an|k+2

≤ 2(N+1)/2N !(1− |an|2)

|1− an|N+1
.

The other points rest at a uniform positive distance from ζ = 1.
Based on the above discussion and the induction hypothesis, if δ > 0 is such that

[1− δ, 1) is free from the zeros of B, then all the series∑
n≥1

B(j−1−k)
n (z)

(k + 1)!ākn(1− |an|2)

(1− anz)k+2
, (0 ≤ k ≤ j − 1),
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are uniformly and absolutely convergent for z ∈ [1 − δ, 1 + δ]. Hence, B(j)(z) is also a
continuous function on this interval, which can be equally stated as in the theorem based
on the right and left limits at ζ = 1.

Appealing to the induction hypothesis, assume that the estimation in part (ii) holds
for derivatives up to order j − 1. Then the above calculation for r < 1 shows that

|B(j)(r)| ≤
j−1∑
k=0

(
j − 1

k

)∑
n≥1

|B(j−1−k)
n (r)| 2

N+2(k + 1)!(1− |an|)
|1− an|N+1

≤

(
j−1∑
k=0

(
j − 1

k

)
2N+2(k + 1)!

)
CA.

Hence, with a bigger constant the result holds for the derivative of order j. We choose the
largest constant corresponding to the derivative of order N as the constant C. �

The mere usefulness of the estimation in part (ii) Theorem 3.1 is that the constant C
does not depend on the distribution of zeros. It just depend on the upper bound A and
the integer N . Hence, it is equally valid for all the subproducts of B.

Theorem 3.1 is also valid if ζ ∈ D. As a matter of fact, the proof is simpler in this case,
since part (i) is trivial. Hence, we can say that if ζ ∈ D and

∞∑
n=1

1− |an|
|1− ānζ|N+1

≤ A,

then there is a constant C = C(N,A) such that the estimation

|B(j)(rζ)| ≤ C

uniformly holds for r ∈ [0, 1] and 0 ≤ j ≤ N .

Corollary 3.2. Let (an)n≥1 be a Blaschke sequence in D, and let B be the corresponding
Blaschke product. Let ζ ∈ T be such that

∞∑
n=1

1− |an|
|ζ − an|2

<∞.

Then B has derivative in the sense of Carathéodory at ζ and

|B′(ζ)| =
∞∑
n=1

1− |an|2

|ζ − an|2
.

Proof. That B has derivative in the sense of Carathéodory at ζ is a direct consequence
of Theorem 3.1. To obtain the formula for |B′(ζ)|, we use (3.3). Note that our condition
implies that the subproducts Bn have radial limits at ζ. Hence, we can let r → 1 in

B′(rζ) =

∞∑
n=1

Bn(rζ)
(1− |an|2)

(1− anrζ)2
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to obtain

B′(ζ) =

∞∑
n=1

Bn(ζ)
(1− |an|2)

(1− anζ)2
.

The upper bound ∣∣∣∣ (1− |an|2)

(1− anrζ)2

∣∣∣∣ ≤ 4(1− |an|)
|ζ − a|2

, (0 < r < 1),

allows the passage of limit inside the sum. But, according to (3.4), we have

Bn(ζ) =
B(ζ)(1− anζ)

(ζ − an)
, (n ≥ 1).

Plugging back this in the formula for B′(ζ) gives

B′(ζ) = ζ̄B(ζ)

∞∑
n=1

1− |an|2

|an − ζ|2
.

By taking the absolute values of both sides the result follows. �

4. Higher derivatives of b

Let b be an element in the closed unit ball of H∞. According to the canonical factor-
ization theorem, b can be decomposed as

(4.1) b(z) = B(z)S(z)O(z), (z ∈ D),

where

B(z) = γ
∏
n

(
|an|
an

an − z
1− anz

)
and

S(z) = exp

(
−
∫
T

ζ + z

ζ − z
dσ(ζ)

)
and

O(z) = exp

(∫
T

ζ + z

ζ − z
log |b(ζ)| dm(ζ)

)
.

We can also extend the function b outside the unit disk by the identity (4.1) and the
formulas provided for B, S and O. The extended function is analytic for |z| > 1, z 6= 1/an.
At 1/an it has a pole of the same order as an, as a zero of B. We denote this function
also by b and it is easily verified that it satisfies the functional identity

b(z) b(1/z) = 1.(4.2)

One should be careful in dealing with function b inside and outside the unit disc. For
example, if

b(z) = 1
2z
n, (|z| < 1),

it is natural to use the same nice formula for |z| > 1. However, the functional equation
(4.2) says that

b(z) = 2zn, (|z| > 1).
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Hence, b and its derivatives up to order n show a different behaviour if we approach a
point ζ0 ∈ T from with D or from outside. In Theorem 4.1 below, we show that under
certain circumstances, this can be avoided.

For our application in this section, we can merge S(z) and O(z) and write

(4.3) b(z) = B(z)f(z)

where

(4.4) f(z) = exp

(
−
∫
T

ζ + z

ζ − z
dµ(ζ)

)
,

and µ is the positive measure dµ(ζ) = − log |b(ζ)| dm(ζ) + dσ(ζ). Now, Leibnitz’s formula
says

b(j)(z) =

j∑
k=0

B(k)(z)f (j−k)(z).

For the derivatives of B on a ray, we already established Theorem 3.1. However, a similar
result holds for function f , and thus similar statements actually hold for b, i.e. for any
function in the closed unit ball of H∞.

A special case of the following result and for N = 0 is in [?] without proof. The general
version was mentioned in [1, 2], again without proof.

Theorem 4.1. Let b be a in the closed unit ball of H∞ with the decomposition (4.1).
Assume that, for an integer N ≥ 0 and a point ζ0 ∈ T, we have

(4.5)

∞∑
n=1

1− |an|
|ζ0 − an|N+1

+

∫
T

dσ(ζ)

|ζ0 − ζ|N+1
+

∫ 2π

0

∣∣ log |b(ζ)|
∣∣

|ζ0 − ζ|N+1
dm(ζ) ≤ A.

Then the following hold.

(i) For each 0 ≤ j ≤ N , both limits

b(j)(ζ0) := lim
r→1−

b(j)(rζ0) and lim
R→1+

b(j)(Rζ)

exist and are equal.
(ii) There is a constant C = C(N,A) such that the estimation

|b(j)(rζ0)| ≤ C
uniformly holds for r ∈ [0, 1] and 0 ≤ j ≤ N .

Proof. As discussed before theorem, it is enough to establish the result just for the function
f = SO given by (4.4). The proof has the same flavor as the proof of Theorem 3.1. We
first do the case is N = 0, and then the rest follows by induction.

Case N = 0: We show that, under the condition (4.5), which now translates as

(4.6)

∫
T

dµ(ζ)

|ζ0 − ζ|
≤ A,

|f(rζ0)| and arg f(rζ0) have both finite limits as r tends to 1−. For the simplicity of
notations, without loss of generality, assume that ζ0 = 1.



INTEGRAL REPRESENTATION 11

A simple computation shows that

f(r) = exp

(
−
∫
T

1− r2

|ζ − r|2
dµ(ζ)

)
exp

(
−i
∫
T

r=(ζ)

|ζ − r|2
dµ(ζ)

)
.

Therefore, we have explicit formulas for |f(r)| and arg f(r).
The assumption (4.6) implies that there is no Dirac mass at ζ0 = 1, i.e. µ({1}) = 0.

Therefore,

lim
r→1−

1− r2

|ζ − r|2
= 0

for µ-almost every ζ ∈ T. Moreover, we have the upper bound estimation

1− r2

|ζ − r|2
≤ 2

|1− ζ|
, (ζ ∈ T),

which holds uniformly for all values of the parameter r ∈ (0, 1). The condition (4.6)
means that the function on the right-hand side belongs to L1(µ). Hence, by the dominated
convergence theorem, we get

lim
r→1−

∫
T

1− r2

|ζ − r|2
dµ(ζ) = 0.

In return, this observation implies

lim
r→1−

|f(r)| = 1.

In a similar manner,

lim
r→1−

r=(ζ)

|ζ − r|2
=
=(ζ)

|1− ζ|2
for µ-almost all ζ ∈ T. We also have the upper bound estimation

r|=(ζ)|
|ζ − r|2

6
2

|1− ζ|
, (ζ ∈ T),

which holds uniformly for all values of the parameter r ∈ (0, 1). Finally, again by the
dominated convergence theorem, we see that the limit

lim
r→1−

∫
T

r=(ζ)

|ζ − r|2
dµ(ζ) =

∫
T

=(ζ)

|ζ − 1|2
dµ(ζ)

exists and is a finite real number. In return, this implies

lim
r→1−

arg f(r)

also exists and is a finite real number. Therefore, L := limr→1− f(r) exists and, moreover,
|L| = 1.

Put L = limr→1− f(r). By (4.2), the function f satisfies the functional equation

f(z) f(1/z̄) = 1.

Therefore,

lim
R→1+

f(R) =
1

limR→1+ f(1/R)
=

1

limr→1− f(r)
=

1

L
= L.
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This argument also shows that f is actually bounded on [0,+∞). The estimation in part
(ii) trivially holds with C = 1.

Case N ≥ 1: Fix 1 ≤ j ≤ N , and suppose that the result holds for 0, 1, . . . , j − 1. The
condition (4.5) is rewritten as

(4.7)

∫
T

dµ(ζ)

|1− ζ|N+1
≤ A.

Using the formula of f and taking the derivative of both sides gives us

(4.8) f ′(z) =

(∫
T

−2ζ

(ζ − z)2
dµ(ζ)

)
f(z).

Now, take the derivative of both sides j − 1 times. Leibnitz’s formula tells us

(4.9) f (j)(z) =

j−1∑
k=0

(∫
T

−2(k + 1)!ζ

(ζ − z)k+2
dµ(ζ)

)
f (j−1−k)(z).

On the right side we have f (`), where ` runs between 0 and j − 1. Hence, the induction
hypothesis applies. To deal with the other term, note that for z = r < 1 and also
z = R > 1, we have

1

|ζ − z|
≤ 2

|ζ − 1|
, (ζ ∈ T).

Thus, for all z ∈ (0,∞) \ {1} and all k with 0 ≤ k ≤ j − 1 ≤ N − 1,∣∣∣∣−2(k + 1)!ζ

(ζ − z)k+2

∣∣∣∣ ≤ 2(k + 1)!

|(ζ − 1)/2|k+2

≤ 2N !

|(ζ − 1)/2|N+1

=
2N+2N !

|ζ − 1|N+1
, (ζ ∈ T).(4.10)

Therefore, by (4.7), (4.10) and the dominated convergence theorem,

lim
r→1±

∫
T

−2(k + 1)!ζ

(ζ − z)k+2
dµ(ζ) =

∫
T

−2(k + 1)!ζ

(ζ − 1)k+2
dµ(ζ).

Note that we again implicitly used the fact µ({1}) = 0. Thus, by induction hypothesis
and (4.9), part (i) follows. Moreover, again by the induction hypothesis, assume that the
estimation in part (ii) holds for derivatives up to order j − 1. Then, by (4.9) and (4.10),

|f (j)(r)| ≤
j−1∑
k=0

(∫
T

∣∣∣∣−2(k + 1)!ζ

(ζ − r)k+2

∣∣∣∣ dµ(ζ)

)
|f (j−1−k)(r)|

≤
(∫

T

2N+2N !

|ζ − 1|N+1
dµ(ζ)

) j−1∑
k=0

|f (j−1−k)(r)| ≤ j2N+2N !AC.

Hence, with a bigger constant the result holds for the derivative of order j. We choose the
largest constant corresponding to the derivative of order N as the constant C. �
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We highlight one property that explicitly mentioned in the proof of Theorem 3.1 for
Blaschle products, but it also holds for an arbitrary b. Under the hypothesis of Theorem
4.1, there is a δ > 0 (which depends on b) such that b(j)(z), for 0 ≤ j ≤ N , is a continuous
function on the ray [(1− δ)ζ0, (1 + δ)ζ0].

Corollary 4.2. Let b be a in the closed unit ball of H∞ with the decomposition (4.1). Let
ζ0 ∈ T be such that

∞∑
n=1

1− |an|
|ζ0 − an|2

+

∫
T

dσ(ζ)

|ζ0 − ζ|2
+

∫ 2π

0

∣∣ log |b(ζ)|
∣∣

|ζ0 − ζ|2
dm(ζ) <∞.

Then b has derivative in the sense of Carathéodory at ζ0 and

|b′(ζ0)| =
∞∑
n=1

1− |an|2

|ζ0 − an|2
+

∫
T

2dσ(ζ)

|ζ0 − ζ|2
+

∫ 2π

0

2
∣∣ log |b(ζ)|

∣∣
|ζ0 − ζ|2

dm(ζ).

Proof. As we did in (4.3), write b = Bf . Corollary 3.2 treats the Blaschke product B and
gives a formula (the first term appearing in |b′(ζ0)| above). Hence, since on the boundary
|b′| = |B′|+ |f ′|, we just need to study f and prove that |f ′(ζ0)| is precisely the remaining
two terms in the formula for |b′(ζ0)|.

That f has derivative in the sense of Carathéodory at ζ0 is a direct consequence of
Theorem 4.1. To obtain the formula for |f ′(ζ0)|, we use (4.8), i.e.

f ′(rζ0) =

(∫
T

−2ζ

(ζ − rζ0)2
dµ(ζ)

)
f(rζ0).

Now, r → 1 to obtain

f ′(ζ0) =

(∫
T

−2ζ

(ζ − ζ0)2
dµ(ζ)

)
f(ζ0).

The upper bound

1

|ζ − rζ0|
≤ 2

|ζ − ζ0|
, (ζ ∈ T, 0 < r < 1).

allows the passage of limit inside the integral. Now, note that

−2ζ

(ζ − ζ0)2
=

2ζ

(ζ − ζ0)(ζ̄ − ζ̄0)ζζ0
=

2ζ̄0

|ζ − ζ0|2
.

Hence, we rewrite the formula for f ′(ζ0) as

f ′(ζ0) =

(∫
T

2

|ζ − ζ0|2
dµ(ζ)

)
ζ̄0f(ζ0).

By taking the absolute values of both sides the result follows. �
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5. Approximation by Blaschke products

According to (4.3), and arbitrary element of the closed unit ball of H∞ may be decom-
posed as b = Bf , where B is a Blaschke product and f is a nonvanishing function given
by (4.4). Generally speaking, since B is given by a product of some simple fraction of the
form (az + b)/(cz + d), it is easy to handle and study its properties. That is why in this
section we explore the possibility to approximate f by some Blaschke products. This will
enable us to establish certain properties for the family of Blaschke products first, and then
extend them to the whole closed unit ball of H∞.

Given a Blaschke product B with zeros (an)n≥1, we define the measure σB on D by

σB =
∞∑
n=1

(1− |an|) δ{an},

where δ{z} is the Dirac measure anchored at the point z. We consider σB as an element of

M(D), the space of finite complex Borel measures on D. This space is the dual of C(D).
Hence, we equip it with the weak-star topology. Since C(D) is separable, this topology is
first countable onM(D). More specifically, this means that each measure has a countable
local basis. Naively speaking, this implies that we just need to consider sequences of
measures to study the properties of this topology.

In the following, we assume that the Blaschke products are normalized so that B(0) > 0.

Theorem 5.1 (Ahern-Clark [1]). Let f be given by (4.4), and let (Bn)n≥1 be a sequence
of Blaschke products. Then Bn converges uniformly to f on compact subsets of D if and
only if σBn → µ in the weak-star topology of M(D).

Proof. Assume that σBn → µ in the weak-star topology ofM(D), and denote the zeros of
Bn by (anm)m≥1. Since µ is supported on T the zeros of Bn must tend to T. In fact, fix
any r < 1 and consider a continuous positive function ϕ which is identically 1 on |z| ≤ r,
and identically 0 on |z| > (1 + r)/2. In between, it has a continuous transition from 1 to
0. Since σBn → µ in the weak-star topology, we have∫

D
ϕdσBn −→

∫
D
ϕdµ = 0.

But, ∫
D
ϕdσBn ≥

∫
|z|≤r

ϕdσBn

=
∑
|anm|≤r

(1− |anm|)

≥ (1− r)× Card{m : |anm| ≤ r}.
Therefore, for each r < 1, there is an N = N(r) such that

(5.1) |anm| > r, (n ≥ N, m ≥ 1).

We now further explore our assumption to show that

(5.2) Bn(0) −→ f(0).
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Since σBn → µ in the weak-star topology, we have∫
D
dσBn −→

∫
D
dµ.

By (4.4), f(0) is a positive real number and∫
D
dµ = − log f(0).

But, the left side is ∫
D
dσBn =

∞∑
m=1

(1− |anm|)

which is not precisely − logBn(0). The actual formula is

− logBn(0) = −
∞∑
m=1

log |anm|.

However, thanks to (5.1), this difference can be handled. It is elementary to verify that

0 ≤ t− 1− log t ≤ (1− t)2, (1/2 ≤ t ≤ 1).

Hence, for n ≥ N(r),

(1− |anm|) ≤ − log |anm| ≤ (1 + r)(1− |anm|), (m ≥ 1).

Summing over m gives

(5.3)

∫
D
dσBn ≤ − logBn(0) ≤ (1 + r)

∫
D
dσBn , (n ≥ N(r)).

Let n→∞ to deduce that

− log f(0) ≤ lim inf
n→∞

− logBn(0) ≤ lim sup
n→∞

− logBn(0) ≤ −(1 + r) log f(0).

Now, let r → 1 to conclude that

lim
n→∞

logBn(0) = log f(0).

The next step is to show that Bn actually uniformly converges to f on any compact
subset of D. In the language of σBn , the formula (3.2) is rewritten as

B′n(z)

Bn(z)
=

∫
D

(1 + |ζ|)
(z − ζ)(1− ζ̄z)

dσBn(ζ).

In the first glance, it seems that the function

ζ 7−→ (1 + |ζ|)
(z − ζ)(1− ζ̄z)

is not continuous on D and thus we cannot appeal to the weak-star convergence. However,
we fix a compact set |z| ≤ r and, as we saw above, after a finite number of indices the
support of σBn is in |z| > (1 + r)/2. Hence, we can multiply the above function by a
transient function which is 1 on |z| ≥ (1 + r)/2 and 0 on |z| ≤ 1. This operation, on one
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hand, will not change the value of integrals and, on the other hand, will create a genuine
continuous function on D. Therefore, we can surely say∫

D

(1 + |ζ|)
(z − ζ)(1− ζ̄z)

dσBn(ζ) −→
∫
D

(1 + |ζ|)
(z − ζ)(1− ζ̄z)

dµ(ζ)

=

∫
T

−2ζ

(ζ − z)2
dµ(ζ),

which translates as

(5.4)
B′n(z)

Bn(z)
−→ f ′(z)

f(z)

as n→∞.
Since (Bn)n≥1 is uniformly bounded by 1 on D, it is a normal family. Let g be any

pointwise limit of a subsequence of (Bn)n≥1. Then, by (5.2) and (5.4), we must have

g(0) = f(0) and
f ′(z)

f(z)
=
f ′(z)

f(z)
, (z ∈ D).

Thus, g = f , which means that the whole sequence converges uniformly to f on compact
sets.

To prove the other way around, assume that Bn converges uniformly to f on compact
sets. Thus, Bn(0) → f(0) and since f has no zeros on D, for each r, (5.1) must hold.
Hence, if we let n→∞ in (5.3), we obtain

lim sup
n→∞

∫
D
dσBn ≤ − log f(0) ≤ (1 + r) lim inf

n→∞

∫
D
dσBn .

Let r → 1 to deduce that ∫
D
dσBn −→ − log f(0).

Hence, (σBn)n≥1 is a bounded sequence inM(D), and any weak-star limit of this sequence
must be a positive measure supported on T. But, the sequence has just one weak-star
limit, i.e. µ. This is because if ν is any weak-star limit of the sequence, the first part of
proof shows that a subsequence of Bn converges to fν , where fν is given by (4.4) (with
µ replaced by ν). Therefore, fν = f on D and, using the uniqueness theorem for Fourier
coefficients of measures, we conclude that ν = µ. �

To establish our next approximation theorem, we need a result of Frostman which by
itself interesting and has numerous other applications. Let Θ be an inner function and,
for each w ∈ D, define

Θw(z) =
w −Θ(z)

1− wΘ(z)
.

The function Θw is called a Frostman shift of Θ. It is easy to verify that Θw is an inner
function for each w ∈ D. However, a lot more is true. Define the exceptional set of Θ to
be

E(Θ) = {w ∈ D : Θw is not a Blaschke product }.
Frostman showed that E(u) is a very small set.
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Lemma 5.2 (Frostman [17]). Let Θ be a non-constant inner function, and let 0 < ρ < 1.
Define

Eρ(Θ) = { ζ ∈ T : Θρζ is not a Blaschke product }.
Then Eρ(Θ) has one dimensional Lebesgue measure zero.

Among numerous applications of Lemma 5.2, we single out the one which states that
Blaschke products are uniformly dense in the family of inner functions. A variation of the
technic used in the proof of the following result will be exploited in establishing Theorem
5.4.

Corollary 5.3 (Frostman [17]). Let Θ be an inner function, and let ε > 0. Then there is
a Blaschke product B such that

‖Θ−B‖∞ < ε.

Proof. We have

Θ(z) + Θw(z) = Θ(z) +
w −Θ(z)

1− wΘ(z)
=
w − w̄Θ2(z)

1− wΘ(z)
.

Thus,

|Θ(z) + Θw(z)| ≤ 2|w|
1− |w|

.

On one hand, this shows that −Θw → Θ in the H∞-norm as w → 0 and, on the other hand,
Lemma 5.2 ensures that there are numerous choices of w for which −Θw is a Blaschke
product. �

In the following result, we again use M(D), equipped with the weak-star topology.
We remind that it is first countable, i.e. each point has a countable local basis of open
neighborhood.

Theorem 5.4 (Ahern-Clark [1]). Let λ ∈ D, let N ≥ 1, and let µ be a positive measure
on T such that ∫

T

dµ(ζ)

|1− λ̄ζ|N
<∞.

Then there is a sequence of Blaschke products (Bn)n≥1 such that σBn → µ in the weak-star

topology of M(D) and, moreover,
∞∑
m=1

1− |anm|2

|1− λ̄anm|N
−→

∫
T

2dµ(ζ)

|1− λ̄ζ|N

as n→∞.

Proof. First, note that the growth restriction on µ implies that µ cannot have a Dirac
mass at 1/λ̄. Our strategy is to prove the theorem for discrete measures with finitely
many Dirac masses and then appeal to a limiting argument to extend it for the general
case.

Assume that σ = αδ{1}, where α > 0. Construct f according to the recipe (4.4), i.e.

f(z) = exp

(
−α1 + z

1− z

)
.
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By Lemma 5.2, the function

Bc(z) = γc
f(z)− c
1− c̄f(z)

is a Blaschke product for values of c through a sequence which tend to zero and avoids
the exceptional set of f . The unimodular constant

γc =
f(0)− c̄
|f(0)− c|

|1− c̄f(0)|
1− cf(0)

is added to ensure Bc(0) > 0. The precise value of γc is not used below. We just need to
know that γc → 1 as c→ 0. The formula for Bc implies

|f(z)−Bc(z)| ≤ |1− γc|+
2|c|

1− |c|
, (z ∈ D).

Thus, Bc converges uniformly to f on D (even uniform convergence on compact sets is
enough for us). Therefore, by Theorem 5.1, σBc tends to µ in the weak-star topology. The
zeros of Bc are

{z : f(z) = c} =

{
acm =

α+ log c+ i2πmα

−α+ log c+ i2πmα
: m ∈ Z

}
,

which clearly cluster at 1 as c→ 0. In this case, λ 6= 1, and thus the function

ζ 7−→ 1 + |ζ|
|1− λ̄ζ|N

can be considered as a continuous function on D when we deal with measures µ and σBc

(at least for small values of c). Hence,∫
D

1 + |ζ|
|1− λ̄ζ|N

dσBc(ζ) −→
∫
D

1 + |ζ|
|1− λ̄ζ|N

dµ(ζ).

But, ∫
D

1 + |ζ|
|1− λ̄ζ|N

dσBc(ζ) =
∞∑
m=1

1− |acm|2

|1− λ̄acm|N

and ∫
D

1 + |ζ|
|1− λ̄ζ|N

dµ(ζ) =

∫
T

2

|1− λ̄ζ|N
dµ(ζ).

Therefore, the result follows.
If µ consists of a finite sum of Dirac masses, the result still holds by induction. Now,

we turn to the general situation. Assume that µ is an arbitrary positive Borel measure on
T, fulfilling the above mentioned growth restriction. Put

dτ(z) =
dµ(z)

|1− λ̄z|N
.

Again note that µ cannot have a Dirac mass at 1/λ̄, and this property persists for all
measures considered below. The family of discrete measures with finite number of Dirac
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masses is dense inM(D). Hence, there is a sequence τn of such measures such that τn → τ
in the weak-star topology of M(D). Therefore, for each f ∈ C(D),∫

D
f(z)|1− λ̄z|N dτn(z) −→

∫
D
f(z)|1− λ̄z|N dτ(z) =

∫
D
f(z)dµ(z).

This means that σn → µ in the weak-star topology of M(D), where σn is the discrete
measure

dσn(z) = |1− λ̄z|N dτn(z), (n ≥ 1).

We appeal to the first part and find a Blaschke product Bn such that σBn is close enough
to σn in the weak-star topology and also∣∣∣∣∫

D

1 + |z|
|1− λ̄z|N

dσBn(z)−
∫
T

2

|1− λ̄ζ|N
dσn(ζ)

∣∣∣∣ < 1

n
.

The result thus follows. Our choice of Bn also implies that σBn → µ in the weak-star
topology of M(D). �

6. Reproducing kernels for derivatives

Let H be a reproducing kernel of functions which are analytic on the domain Ω. The
kernels of evaluation at point z ∈ Ω form a two parameter family of functions kHz (w),
where z and w run through Ω and kz(w)H is analytic with respect to w and conjugate
analytic with respect to z. The essential property of kHz (z) is

(6.1) f(z) =
〈
f, kHz

〉
H, (f ∈ H, z ∈ Ω).

If we successively take the derivative of f with respect to z, we see that the evaluation
functional f 7−→ f (n)(z) is given by

(6.2) f (n)(z) =
〈
f, ∂nkHz /∂z̄

n
〉
H, (f ∈ H).

But, we need to show that ∂nkHz /∂z̄
n ∈ H and also taking the derivative operator inside

the inner product is legitimate. We verify this for n = 1. For higher derivative, a similar
argument works.

For simplicity, write kz for kHz . Put δ = (1− |z|)/2. Then, for each f ∈ H and each ∆
with 0 < |∆| < δ, we have∣∣∣∣〈f, kz+∆ − kz

∆̄

〉
H

∣∣∣∣ =

∣∣∣∣f(z + ∆)− f(z)

∆

∣∣∣∣ =

∣∣∣∣ 1

∆

∫ z+∆

z
f ′(ζ) dζ

∣∣∣∣ ≤ Cf ,
where Cf is the maximum of f ′ on the disk with center z and radius δ. Therefore, by the
uniform boundedness principle, there is a constant C such that∥∥∥∥kz+∆ − kz

∆̄

∥∥∥∥ ≤ C, (0 < |∆| < δ).

Let g ∈ H be a weak limit of this fraction as ∆→ 0. Then, on one hand, for each f ∈ H
we have

〈f, g〉 = lim
∆→0

〈
f,
kz+∆ − kz

∆̄

〉
= lim

∆→0

f(z + ∆)− f(z)

∆
= f ′(z).
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On the other hand,

g(ζ) = 〈g, kζ〉 = lim
∆→0

〈
kz+∆ − kz

∆̄
, kζ

〉
= lim

∆→0

kz+∆(ζ)− kz(ζ)

∆̄
=
∂kz
∂z̄

(ζ).

In short, g = ∂kz/∂z̄.
In the light of relation (6.2), we define the notation

(6.3) kHz,n = ∂nkHz /∂z̄
n,

i.e. the kernel of evaluation functional of the n-th derivative at z ∈ Ω. The relation (6.2)
is rewritten as

(6.4) f (n)(z) =
〈
f, kHz,n

〉
H, (f ∈ H).

In the above formula, if we replace f by kHz,n, we obtain

(6.5) (kHz,n)(n)(z) = ‖kHz,n‖2H.

There are some other formulas for kHz,n and each has its merits and useful in the applica-

tions. We treat some of them below. For the space H(b), instead of k
H(b)
z,n we will write

kbz,n. Our first formula for kbz,n is based on the operator Xb.

Lemma 6.1. We have
kbz,n = n!(I − z̄X∗b )−(n+1)X∗b

nkb0.

Proof. For each w, z ∈ D,

((I − w̄S)kw)(z) = kw(z)− w̄(Skw)(z) =
1

1− w̄z
− w̄z 1

1− w̄z
= 1 = k0(z).

Hence, (I − w̄S)kw = k0. But, for each w ∈ D, the operator I − w̄S is invertible. Thus,

kw = (I − w̄S)−1k0

and, for each f ∈ H2(D), we have

f(w) = 〈(I − wS∗)−1f, k0〉2, (w ∈ D).

Thus, if f ∈ H(b), we can write

f(w) = 〈(I − wXb)
−1f, k0〉2, (w ∈ D).

But, kb0 = (I − TbTb̄)k0 and

〈(I − wXb)
−1f, k0〉2 = 〈(I − wXb)

−1f, (I − TbT ∗b )k0〉b.
Hence,

f(w) = 〈(I − wXb)
−1f, kb0〉b = 〈f, (I − w̄X∗b )−1kb0〉b, (w ∈ D).

Since the last relation is valid for every function f ∈ H(b), we conclude that (I−w̄X∗b )−1kb0
is precisely the reproducing kernel kbw. Changing w to z, we obtain

kbz = (I − z̄X∗b )−1kb0.
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Hence, using the definition (6.3), we get

kbz,n =
∂nkbz
∂zn

=
∂n

∂zn

(
(I − z̄X∗b )−1kb0

)
= n!(I − z̄X∗b )−(n+1)X∗b

nkb0.

�

The formula for kbz = kbz,0 is

kbz(w) =
1− b(z) b(w)

1− z̄ w
, (z, w ∈ D).

Using Leibnitz’ rule, by straightforward computations, we obtain

(6.6) kbz,n(w) =
∂nkbz(w)

∂zn
=

hbz,n(w)

(1− zw)n+1
,

where hbz,n is the function

(6.7) hbz,n(w) = n!wn − b(w)
n∑
j=0

(
n

j

)
b(j)(z)(n− j)!wn−j(1− zw)j .

Lemma 6.2. Let z0 ∈ D with b(z0) 6= 0. Then

hbz0,n(1/z̄0) = (hbz0,n)′(1/z̄0) = · · · = (hbz0,n)(n)(1/z̄0) = 0.

Proof. The functional equation (4.2) shows that b is analytic in a neighborhood of the
point 1/z̄0. (If b(z0) = 0, then b has pole at 1/z̄0 of the same order as the order of b at
z0.) Therefore, the formula for kbz0(w) shows that this kernel is a meromorphic function
on |w| > 1 with poles as described above and a possible pole at 1/z̄0. However, again by

(4.2), we have b(z0)b(1/z̄0) = 1 and thus the pole is removable. In short, w 7−→ kbz0(w) is

analytic at 1/z̄0. Therefore, the same is true for the application w 7−→ kbz0(w). Respecting

this property, the representation (6.6) implies that hbz0,n must have a zero of order n + 1
at 1/z̄0. �

We finish this section by studying kBz,n, where B is a Blaschke product formed with
zeros (an)n≥1. It is easy to see that

(6.8) hj(z) =

(
j−1∏
k=1

ak − z
1− āk z

)
(1− |aj |2)1/2

1− āj z
, (j ≥ 1),

is an orthonormal basis for KB = H(B). Sometimes, we will write

(6.9) hj(z) = (1− |aj |2)1/2 Bj−1(z)

1− āj z
, (j ≥ 1),

where Bj is the finite product formed with the first j zeros.
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Lemma 6.3. Let B be a Blaschke product with zeros (an)n≥1. Let z ∈ D. Then

kBz,n =
∞∑
j=1

h
(n)
j (z)hj .

The series converges in H2(D)-norm.

Proof. Since (hj)j≥1 forms an orthonormal basis for KB, there are coefficients cj , j ≥ 1,
such that

kBz,n =

∞∑
j=1

cj hj ,

where the series converges in H2(D)-norm. Moreover, thanks to orthonormality, cj is given
by

cj = 〈kBz,n, hj〉2.

But, the formula 6.2 immediately implies c̄j = h
(n)
j (z). �

For a Blaschke product XB = S∗|KB and kB0 = PB1. Thus, X∗B = PBS = MB is the
compressed shift on KB. Therefore, by Lemma 6.1, we have

(6.10) kBz,n = n!(I − z̄MB)−(n+1)Mn
BPB1.

Lemma 6.4. Let z0 ∈ D, and N ≥ 0. Let B be a Blaschke product with zeros (an)n≥1.
Assume that there are functions f, g ∈ H2(D) such that

zN = (1− z̄0z)
N+1f(z) +B(z)g(z), (z ∈ D).

Then we have PBf = kBz0,N/N !.

Proof. We write the above equation for f and g as

SN1 = (1− z̄0S)N+1f +Bg.

Since MB is the compression of S, if we apply PB to both sides, we obtain

MN
B PB1 = (1− z̄0MB)N+1PBf.

Thus,
PBf = (1− z̄0MB)−N−1MN

B PB1

and the result follows from (6.10). �

7. An interpolation problem

There is a close relation between the existence of derivatives of elements of H(b) at the
boundary and the containment of X∗Nb kb0 to the range of (I − ζ0X

∗
b )N+1. This is fully

explored in Theorem 8.2. But, to reach that general result, we need to pave the road by
studying some special cases. We start doing this by considering Blaschke products. First,
a technical lemma.

Lemma 7.1. Let S, (Sn)n≥1 ∈ L(H) with the following properties:

(i) Each Sn is invertible.
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(ii) S is injective.
(iii) Sn −→ S in the norm topology.
(iv) There is a constant M such that

‖S−1
n S‖ ≤M, (n ≥ 1).

Let y ∈ H. Then (S−1
n y)n≥1 is a bounded sequence in H if and only if y ∈ R(S). Moreover,

if this holds, we actually have S−1
n y −→ S−1y in the weak topology.

Proof. Assume that (S−1
n y)n≥1 is a bounded sequence inH. Hence, it has at least one weak

limit point in H. Let x ∈ H be a weak limit point of the sequence. Since Sn −→ S in the
norm topology, we surely have (at least for a subsequence) SnS

−1
n y −→ Sx. Therefore,

y = Sx, i.e. y ∈ R(S). But, since S is injective, the above argument shows that the
sequence has precisely one weak point (if x′ is another weak limit point, we would have
y = Sx = Sx′). In other words, the whole sequence tends weakly to x.

To prove the other (easy) direction, assume that y ∈ R(S), i.e. y = Sx for some x ∈ H.
Then

‖S−1
n y‖ ≤ ‖S−1

n Sx‖ ≤ ‖S−1
n S‖ ‖x‖ ≤M‖x‖, (n ≥ 1).

�

The following corollary is a realization of the preceding lemma. The assumption are
adjusted to fit our application in the study of derivatives of H(b) functions.

Corollary 7.2. Let Tk ∈ L(H), ζk ∈ T and λk,n ∈ D, for n ≥ 1 and 1 ≤ k ≤ p, with the
following properties:

(i) Each Tk is a contraction.
(ii) Each I − ζkTk is one to one.

(iii) TkTk′ = Tk′Tk for k, k′ ∈ {1, . . . , p}.
(iv) For each k, λk,n tends nontangentially to ζk as n→∞.

Let y ∈ H. Then the sequence(
(I − λ1,nT1)−1 . . . (I − λp,nTp)−1y

)
n≥1

is uniformly bounded if and only if y belongs to the range of the operator (I−ζ1T1) . . . (I−
ζpTp), in which case,

(I − λ1,nT1)−1 . . . (I − λp,nTp)−1y −→ (I − ζ1T1)−1 . . . (I − ζpTp)−1y

in the weak topology.

Proof. We apply Lemma 7.1 with

Sn = (I − λ1,nT1) . . . (I − λp,nTp)

and

S = (I − ζ1T1) . . . (I − ζpTp).
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The only nontrivial property is the boundedness of S−1
n S. Since Tk are commuting, it is

enough to verify that the sequence(
(I − λk,nTk)−1(I − ζkTk)

)
n≥1

is bounded. But,

‖(I − λk,nTk)−1(I − ζkTk)‖ = ‖I + (λk,n − ζk)(I − λk,nTk)−1Tk‖
≤ 1 + |λk,n − ζk| ‖(I − λk,nTk)−1‖
≤ 1 + |λk,n − ζk| (1− |λk,n|)−1

≤ 1 +Mk.

The last estimation holds since λk,n tends nontangentially to ζk. The result thus follows.
�

As a matter of fact, we even need a special case of Corollary 7.2 in which T1 = · · · = Tp.

Corollary 7.3. Let T ∈ L(H) be a contraction, ζ ∈ T and (λn)n≥1 ⊂ D, with the following
properties:

(i) I − ζT is one to one.
(ii) λn tends nontangentially to ζ as n→∞.

Let y ∈ H. Then the sequence (
(I − λnT )−py

)
n≥1

is uniformly bounded if and only if y belongs to the range of the operator (I − ζT )p, in
which case,

(I − λnT )−py −→ (I − ζT )−py

in the weak topology.

Now we are ready to establish the connection between the existence of boundary deriva-
tives in KB and an interpolation problem.

Theorem 7.4. Let ζ ∈ T, and let N ≥ 0. Let B be a Blaschke product with zeros (an)n≥1

such that
∞∑
n=1

1− |an|
|ζ − an|2N+2

≤ A.

Then there are functions f, g ∈ H2(D) such that

zN = (1− ζ̄z)N+1f(z) +B(z)g(z), (z ∈ D),

with

‖f‖2 ≤ C,
where C = C(N,A) is a constant.
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Proof. According to Lemma 6.3,

kBz,N =

∞∑
j=1

h
(N)
j (z)hj .

Hence,

(7.1) ‖kBz,n‖2 =
∞∑
j=1

|h(n)
j (z)|2.

We rewrite the formula in (6.8) for hj as

hj(z) = (1− |aj |2)1/2 Bj−1(z)

1− āj z
.

Hence, by Leibnitz’s formula,

h
(N)
j (z) = (1− |aj |2)1/2

N∑
k=1

(
N

k

)
B

(N−k)
j−1 (z)

k!(−āj)k

(1− āj z)k+1
.

Therefore, by Theorem 3.1 and denoting the constant C(N,A) of this theorem by C,

|h(N)
j (rζ)| ≤ (1− |aj |2)1/2

N∑
k=1

(
N

k

)
C

k!

|1− āj rζ|k+1

≤ C(1− |aj |2)1/2
N∑
k=1

(
N

k

)
2k+1k!

|1− āj ζ|k+1

≤ C(1− |aj |2)1/2
N∑
k=1

(
N

k

)
2N+1k!

|1− āj ζ|N+1

=

(
2N+1C

N∑
k=1

k!

(
N

k

))
(1− |aj |2)1/2

|ζ − aj |N+1
.

= C ′
(1− |aj |2)1/2

|ζ − aj |N+1
.

Considering (7.1), we conclude

(7.2) ‖kBrζ,N‖2 ≤ 2AC
′2, (0 < r < 1).

The next step is to appeal to the formula (6.10) and Corollary 7.3. Since σp(MB) ⊂ D,

the operator I − ζMB is injective. Hence, with T = MB, p = N + 1 and y = MN
B PB1,

we see that MN
B PB1 belongs to the range of (I − ζMB)N+1. This means that there is a

function f ∈ H2(D) such that

MN
B PB1 = (I − ζMB)N+1f.
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Since MB is the compressed shift, we can rewrite the preceding identity as

PB(zN ) = PB
(
(1− ζz)N+1f

)
.

Hence, zN−(1−ζz)N+1f ⊥ KB, or equivalently zN−(1−ζz)N+1f ∈ BH2(D). Therefore,
there is g ∈ H2(D) such that

zN − (1− ζz)N+1f = Bg.

Finally, Corollary 7.3 also says that

f = (I − ζMB)−N−1MN
B PB1 = lim

r→1
(I − rζMB)−N−1MN

B PB1.

Hence, by (6.10)

f = (I − ζMB)−N−1MN
B PB1 = 1

N ! lim
r→1

kBrζ,N ,

and, by (7.2), the latter is uniformly bounded by a constant. �

The above result was referees as an interpolation problem since the equation

zn = (1− ζ̄z)f(z) +B(z)g(z)

has a solution if and only if the is a function f ∈ H2(D) such that

f(an) =
an

(1− ζ̄an)N+1
, (n ≥ 1).

Since
∞∑
n=1

∣∣∣∣ an
(1− ζ̄an)N+1

∣∣∣∣2 (1− |an|2) <∞,

if (an)n≥1 was an interpolation sequence, then the function f trivially exists. The surpris-
ing feature of Theorem 7.4 is that it ensures a solution, even with an additional growth
restriction, always exists.

Theorem 7.4, in a sense, is reversible. Indeed, this is the version that we need in the
proof of Theorem 8.2.

Theorem 7.5. Let N ≥ 0. Let B be a Blaschke product with zeros (an)n≥1. Assume that
there are functions f, g ∈ H2(D) such that

zN = (1− z̄0z)
N+1f(z) +B(z)g(z), (z ∈ D),

with

‖f‖2 ≤ C and

(
1− 1

2C2

)1/2

≤ |z0| < 1,

where C > 1 is a constant. Then there is a constant A = A(N,C) such that

∞∑
n=1

1− |an|
|1− ānz0|2N+2

≤ A.
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Proof. Since we appeal to induction, the function f and g that appear in the N -th step
will be denoted by fN and gN . Note that, by Lemma 6.4,

(7.3) PBfN =
kBz0,N
N !

.

Case N = 0: By Lemma 6.3, the

kBz0 =
∞∑
j=1

hj(z0)hj .

Hence, by (7.3), our condition ‖f0‖2 ≤ C translates as
∞∑
j=1

|hj(z0)|2 ≤ C2.

We use (6.9), to reqrite this estimation as

(7.4)

∞∑
j=1

|Bj−1(z0)|2 1− |aj |2

|1− āj z0|2
≤ C2.

We just need to get rid of |Bj−1(z0)|2 to establish the result. To do so, just note that since
Bj is a subproduct of B, we have

PBjk
B
z0(z) = k

Bj
z0 (z) =

1−Bj(z0)Bj(z)

1− z̄0z
.

Hence,
1− |Bj(z0)|2

1− |z0|2
= k

Bj
z0 (z0) = ‖kBj

z0 ‖2 ≤ ‖k
Bj
z ‖2 ≤ C2.

The restriction 1− 1/2C2 ≤ |z0|2 < 1 now implies |Bj(z0)|2 ≥ 1/2. Therefore, from (7.4),
we conclude

∞∑
j=1

1− |aj |2

|1− āj z0|2
≤ 2C2.

This settles the case N = 0.
Case N ≥ 1: Assume that the result holds for N − 1. Our assumption is that there are

functions fN , gN ∈ H2(D) such that

(7.5) zN = (1− z̄0z)
N+1fN (z) +B(z)gN (z), (z ∈ D),

with ‖fN‖2 ≤ C. Write

1− (1− z̄0z)
N = −

N∑
k=1

(
N

k

)
(−z̄0)kzk.

Multiply by zN−1 to get

zN−1 = (1− z̄0z)
NzN−1 −

(
N∑
k=1

(
N

k

)
(−z̄0)kzk−1

)
zN .
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Plugging (7.5) gives

zN−1 = (1− z̄0z)
NfN−1(z) +B(z)gN−1(z), (z ∈ D),

where

fN−1(z) = zN−1 −

(
N∑
k=1

(
N

k

)
(−z̄0)kzk−1

)
(1− z̄0z)fN (z).

Hence,

‖fN−1‖2 ≤ 1 + 2N+1C.

This means that all required conditions are fulfilled and we can apply the induction for
N − 1. Thus, there is a constant A such that

(7.6)

∞∑
n=1

1− |an|
|1− ānz0|2N

≤ A.

Theorem 3.1 now ensures that B
(k)
j (z0), 0 ≤ k ≤ 2N −1, exist and are uniformly bounded

by a constant A′, where Bj is any subproduct of B.
If we take N times the derivative of both sides in (6.9), we obtain

h
(N)
j (z) = (1− |aj |2)1/2

N∑
k=0

(
N

k

)
B

(k)
j−1(z)

(N − k)!(−āj)N−k

(1− āj z)N−k+1
, (j ≥ 1).

We rewrite this as

(1− |aj |2)1/2Bj−1(z)
N !(−āj)N

(1− āj z)N+1

= h
(N)
j (z)− (1− |aj |2)

1
2

N∑
k=1

(
N

k

)
B

(k)
j−1(z)

(N − k)!(−āj)N−k

(1− āj z)N−k+1
.(7.7)

As we saw above, for 1 ≤ k ≤ N ,∣∣∣∣(Nk
)
B

(k)
j−1(z0)

(N − k)!(−āj)N−k

(1− āj z)N−k+1

∣∣∣∣ ≤ A′N !

|1− āj z0|N−k+1

≤ A′N !2N

|1− āj z0|N
.

Thus, the right side of (7.7) is majorized by

|h(N)
j (z)|+A′NN !2N

(1− |aj |2)1/2

|1− āj z0|N
.

The left side of (7.7) is minorized by

N !

2N+1

(1− |aj |2)1/2

|1− āj z0|N+1
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for zeros |aj | ≥ 1/2. Hence, for such j, we have

(1− |aj |2)1/2

|1− āj z0|N+1
≤ 2N+1|h(N)

j (z0)|+A′N22N+1 (1− |aj |2)1/2

|1− āj z0|N
.

Hence, by Minkowski’s inequality, Lemmas 6.3 and 6.4, and (7.6), ∑
|aj |≥1/2

1− |aj |2

|1− āj z0|2N+2

1/2

≤ 2N+1

 ∞∑
j=1

|h(N)
j (z0)|2

1/2

+A′N22N+1

 ∞∑
j=1

1− |aj |2

|1− āj z0|2N

1/2

≤ 2N+1‖kBz0,N‖+A′AN22N+1

≤ 2N+1N !‖PBfN‖+A′AN22N+1

≤ 2N+1N !C +A′AN22N+1.

For zeros with |aj | < 1/2, we have∑
|aj |<1/2

1− |aj |2

|1− āj z0|2N+2
≤ 4

∑
|aj |<1/2

1− |aj |2

|1− āj z0|2N
≤ 4A.

Hence, the result follows. �

8. Derivatives of H(b) functions

There is a close connection between the analytic continuation of b across a subarc of
T on one hand, and the analytic continuation of all function of H(b) across the same
subarc on the other hand. In this section, we treat a similar result. While we are studying
the derivative of elements in H(b), we are content with the existence of nontangential
boundary values.

We begin with a simple lemma which is a simple exercise from calculus and is interesting
in its own rights. We do not it in such a generality since in our application even the
derivative of order n+m+ 1 exists at all points. However, the proof for the general case
is essentially the same.

Lemma 8.1. Let I be an open interval, and let a, b ∈ I. Suppose that the function
h : I −→ C satisfies the following properties:

(i) h has n+m continuous derivatives on the I.

(ii) h(n+m+1) is continuous and bounded on I \ {a}.
(iii) h(b) = h′(b) = · · · = h(n−1)(b) = 0.

Put

k(x) =
h(x)

(x− b)n
, (x ∈ I).
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Then k is m+ 1 times differentiable on I and, moreover,

k(m+1)(x) =

∫ 1

0
· · ·
∫ 1

0
h(m+n+1)

(
b+ t1 · · · tn(x− b)

)
v(t) dt1 · · · dtn,

where v(t) = tp11 · · · t
pn
n is some monomial.

Proof. Since h(b) = 0, the fundamental theorem of calculus says

h(x) =

∫ 1

0

d

dt1

(
h
(
b+ t1(x− b)

))
dt1

= (x− b)
∫ 1

0
h′
(
b+ t1(x− b)

)
dt1.

Applying the same result to the function x 7−→ h′
(
b+ t1(x− b)

)
gives

h′
(
b+ t1(x− b)

)
= t1(x− b)

∫ 1

0
h′′
(
b+ t1t2(x− b)

)
dt2.

Therefore,

h(x) = (x− b)2

∫ 1

0

∫ 1

0
t1 h
′′(b+ t1t2(x− b)

)
dt1dt2.

Continuing this process n times gives

k(x) =

∫ 1

0
· · ·
∫ 1

0
tn−1
1 tn−2

2 · · · tn−1 h
(n)
(
b+ t1 · · · tn(x− b)

)
dt1 · · · dtn.

Write m(t) = tn−1
1 tn−2

2 · · · tn−1.

Since h has n + m continuous derivatives on the I, and h(n+m+1) is continuous and
bounded on I \ {a}, the function k has m+ 1 continuous derivatives on the I and

k(m+1)(x) =

∫ 1

0
· · ·
∫ 1

0
m(t)

∂m+1

∂xm+1
h(n)

(
b+ t1 · · · tn(x− b)

)
dt1 · · · dtn

=

∫ 1

0
· · ·
∫ 1

0
v(t)h(m+n+1)

(
b+ t1 · · · tn(x− b)

)
dt1 · · · dtn,

where v(t) = tm+n
1 tm+n−1

2 · · · tm+2
n−1 t

m+1
n . �

The following result gives a criterion for the existence of the derivatives for functions of
H(b) and it generalizes the Ahern-Clark result.

Theorem 8.2 (Fricain–Mashreghi [14]). Let b be a point in the unit ball of H∞(D) with
the canonical factorization (4.1), let ζ0 ∈ T and let N be a nonnegative integer. Then the
following are equivalent.

(i) For every f ∈ H(b), the functions f(z), f ′(z), . . . , f (N)(z) have finite limits as z tends
radially to ζ0.

(ii) For every f ∈ H(b), the function |f (N)(z)| remains bounded as z tends radially to ζ0.
(iii) ‖kbz,N‖b is bounded on the ray z ∈ [0, ζ0].

(iv) X∗Nb kb0 belongs to the range of (I − ζ0X
∗
b )N+1.
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(v) We have∑
n

1− |an|2

|ζ0 − an|2N+2
+

∫
T

dµ(ζ)

|ζ0 − ζ|2N+2
+

∫
T

∣∣ log |b(ζ)|
∣∣

|ζ0 − ζ|2N+2
dm(ζ) <∞.

Proof. (i) =⇒ (ii): This is trivial.
(ii) =⇒ (iii): In the light of representation (6.4), this implication follows from the

principle of uniform boundedness.
(iii) =⇒ (iv): By Lemma 6.1,

kbz,N = N !(I − z̄X∗b )−(N+1)X∗Nb kb0.(8.1)

Since σp(X
∗
b ) ⊂ D, the operator I−ζ0X

∗
b is injective. By assumption, (I−znX∗b )−(N+1)X∗Nb kb0

is uniformly bounded for any sequence zn ∈ D tending radially to ζ0. Now, we apply Corol-
lary 7.3 with T = X∗b , p = N + 1 and y = X∗Nb kb0 to conclude that X∗Nb kb0 belongs to the

range of (I − ζ0X
∗
b )N+1.

(iv) =⇒ (i): Using once more Corollary 7.3, we see that

(I − znX∗b )−(N+1)X∗Nb kb0 −→ (I − ζ0X
∗
b )−(N+1)X∗b

Nkb0

in the weak topology, for any sequence zn ∈ D tending radially to ζ. But, (8.1) says that
the left side is precisely kbzn,N . Hence, in the light of (6.4), for every function f in H(b),

The N -th derivative f (N)(z) has a finite limit as z tends radially to ζ0.
The rest is by induction. We have

I − (I − ζ0X
∗
b )N = −

N∑
k=1

(
N

k

)
(−ζ0)kX∗kb .

Multiply both sides by X
∗(N−1)
b kb0 to get

X
∗(N−1)
b kb0 = (I − ζ0X

∗
b )NX

∗(N−1)
b kb0 −

N∑
k=1

(
N

k

)
(−ζ0)kX

∗(k−1)
b X∗Nb kb0.

Hence, X
∗(N−1)
b kb0 belongs to the range of (I − ζ0X

∗
b )N . The above argument applies with

N replaced by N − 1. We continue this process N times. Therefore, for every function f
in H(b), f (j)(z), 0 ≤ j ≤ N , has a finite limit as z tends radially to ζ0.

(v) =⇒ (iii): Without loss of generality we assume that ζ0 = 1. By Theorem 4.1, the
condition (v) implies that

lim
r→1−

b(j)(r) and lim
R→1+

b(j)(R)

exist and are equal for 0 ≤ j ≤ 2N + 1. Moreover, since b can have only a finite number of
real zeros, we can take δ > 0 such that the interval [1−δ, 1) is free of zeros of b. Therefore,
b has 2N + 1 continuous bounded derivatives on [1 − δ, 1 + δ]. Now, fix r in the interval
(1− δ, 1).
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We remind that by (6.6) and (6.7), kbr,N (x) = hbr,N (x)/(1− rx)N+1, where

hbr,N (x) = N !xN − b(x)
N∑
j=0

(
N

j

)
b(j)(r)(N − j)!xN−j(1− rx)j .

Hence, hbr,N has 2N + 1 continuous bounded derivatives on (1 − δ, 1 + δ). Moreover, by
Lemma 6.2, we have

hbr,N (1/r) = (hbr,N )′(1/r) = · · · = (hbr,n)(N)(1/r) = 0.

We now apply Lemma 8.1 with I = (1− δ, 1 + δ), a = 1, b = 1/r, n = N + 1, m = N , and
h = hbr,N . Note that

h(x)

(x− b)n
=

hbr,N (x)

(x− 1/r)N+1
= (−r)N+1kbN,r(x).

Thus, lemma says that (−r)N+1(kbN,r)
(N)(x) is equal to∫ 1

0
. . .

∫ 1

0
(hbr,N )(2N+1)

(
1

r
+ t1 · · · tN+1(x− 1

r
)

)
v(t) dt1 . . . dtN+1.

Since there is an M such that

|(hbr,N )(2N+1)(s)| ≤M, (1− δ < s < 1 + δ),

we deduce that

|(kbr,N )(N)(x)| ≤Mδ−N−1, (1− δ < x < 1).

In particular, (kbr,N )(N)(r) is bounded as r → 1−. But, according to (6.5),

‖kbz,N‖2b = (kbz,N )(N)(z).

Thus, ‖kbr,N‖b remains bounded as r → 1−.

(iii) =⇒ (v): Again, without loss of generality, assume that ζ0 = 1. Fix r ∈ (0, 1).
Considering the canonical factorization of b, since b is in the unit ball of H∞, we have∑

n

1− |an|2

|1− anr|2N+2
+

∫
T

dµ(ζ)

|r − ζ|2N+2
+

∫
T

∣∣ log |b(ζ)|
∣∣

|r − ζ|2N+2
dm(ζ) <∞.

For simplicity of formulas, denote the left side by ∆r. According to Theorem 5.4, there is
a sequence (Bj)j≥1 of Blaschke products, with zeros (ajk)k≥1, converging uniformly to b
on compact subsets of D and such that

∞∑
k=1

1− |ajk|2

|1− rajk|2N+2
−→ ∆r

as j → ∞. Hence, the formulas (6.6) and (6.7) show that k
Bj

w,N tends to kbw,N uniformly
on compact subsets of D. In particular, we must have

lim
j→∞

(k
Bj

w,N )(N)(w) = (kbw,N )(N)(w).
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In the light of (6.5), we rewrite this identity as

lim
j→∞

‖kBj

w,N‖2 = ‖kbw,N‖b.

The assumption (iii) implies that there is a C > 0 such that

‖kbr,N‖b ≤ C, (0 < r < 1).

Therefore, there is an index jr such that

‖kBj

r,N‖2 ≤ C + 1, (j ≥ jr).

The formulas (6.6) and (6.7) also show that

(1− rz)N+1k
Bj

r,N (z) = N !zN −Bj(z)gj(z),

where gj ∈ H2(D). Hence, it follows from Theorem 7.5 that there is a constant A =
A(C,N) (independent of r) such that∑

k

1− |ajk|2

|1− rajk|2N+2
≤ A, (j ≥ jr),

Letting j → ∞, we obtain ∆r ≤ A for all r ∈ (0, 1). Finally, we let r → 1− to get the
desired condition (v). �

We also mention that Sarason has obtained another criterion in terms of the Clark
measure σλ associated with b.

Theorem 8.3 (Sarason, [26]). Let ζ0 be a point of T and let ` be a nonnegative integer.
The following conditions are equivalent.

(i) Each function in H(b) and all its derivatives up to order ` have nontangential
limits at ζ0.

(ii) There is a point λ ∈ T such that

(8.2)

∫
T
|eiθ − ζ0|−2`−2 dσλ(eiθ) < +∞.

(iii) The last inequality holds for all λ ∈ T \ {b(ζ0)}.
(iv) There is a point λ ∈ T such that µλ has a point mass at ζ0 and∫

T\{z0}
|eiθ − ζ0|−2` dσλ(eiθ) <∞.

Recently, Bolotnikov and Kheifets [5] gave a third criterion (in some sense more alge-
braic) in terms of the Schwarz-Pick matrix. Recall that if b is a function in the unit ball
of H∞, then the matrix Pω

` (z), which will be refered to as to a Schwarz-Pick matrix and
defined by

Pb
`(z) :=

[
1

i!j!

∂i+j

∂zi∂z̄j
1− |b(z)|2

1− |z|2

]`
i,j=0

,
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is positive semidefinite for every ` ≥ 0 and z ∈ D. We extend this notion to boundary
points as follows: given a point ζ0 ∈ T, the boundary Schwarz-Pick matrix is

Pb
`(ζ0) = lim

z−→ζ0
^

Pb
`(z) (` ≥ 0),

provided this non tangential limit exists.

Theorem 8.4. Let b be a point in the unit ball of H∞, let ζ0 ∈ T and let ` be a nonnegative
integer. Assume that the boundary Schwarz-Pick matrix Pb

`(ζ0) exists. Then each function
in H(b) and all its derivatives up to order ` have nontangential limits at ζ0.

Further it is shown in [5] that the boundary Schwarz-Pick matrix Pb
`(ζ0) exists if and

only if

(8.3) lim
z−→ζ0
^

db,`(z) < +∞,

where

db,`(z) :=
1

(`!)2

∂2`

∂z`∂z̄`
1− |b(z)|2

1− |z|2
.

We should mention that it is not clear to show direct connections between conditions (8.2),
(8.3) and condition (v) of Theorem 8.2.

9. Passage to the upper half plane C+

Let C+ denote the upper half plane in the complex plane and let H2(C+) denote the
usual Hardy space consisting of analytic functions f on C+ which satisfy the growth
restriction

‖f‖2 = sup
y>0

(∫
R
|f(x+ iy)|2 dx

)1/2

<∞.

For each function f ∈ H2(C+) and for almost all x0 ∈ R,

f∗(x0) = lim
t→0+

f(x0 + it)

exists. Moreover, we have f∗ ∈ L2(R) and Ff∗ = 0 on (−∞, 0), where F is the Fourier–
Plancherel transformation, and ‖f∗‖2 = ‖f‖2.

A particularly interesting class of subspaces of H2(C+) is the H(b) classes of the upper
half plane. The definitions are similar to those for the open unit disc. However, for the
sake of completeness, we mention them below. We also mention some facts without proof.

For ϕ ∈ L∞(R), let Tϕ stand for the Toeplitz operator defined on H2(C+) by

Tϕ(f) = P+(ϕf), (f ∈ H2(C+)),

where P+ is the orthogonal projection of L2(R) onto H2(C+). Then, for b ∈ H∞, with
‖b‖∞ ≤ 1, the de Branges–Rovnyak space H(b) consists of those H2(C+) functions which

are in the range of the operator (I − TbTb̄)1/2. As before, H(b) is a Hilbert space when
equipped with the inner product

〈(I − TbTb̄)1/2f, (I − TbTb̄)1/2g〉b = 〈f, g〉2,
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where f, g ∈ H2(C+)	 ker (I − TϕTb̄)1/2. For each w ∈ C+, the function

kbw(z) =
i

2π

1− b(w)b(z)

z − w
, (z ∈ C+),

is the reproducing kernel of H(b), that is

(9.1) f(w) = 〈f, kbw〉b, (f ∈ H(b)).

In particular, with f = kbw(z), we obtain

(9.2) ‖kbw‖2b = kbw(w) =
1

2π

1− |b(w)|2

2=w
, (f ∈ H(b)).

Let ρ(t) = 1−|b(t)|2, t ∈ R, and let L2(ρ) stand for the usual Hilbert space of measurable
functions f : R −→ C with ‖f‖ρ <∞, where

‖f‖2ρ =

∫
R
|f(t)|2ρ(t) dt.

For each w ∈ C+, the Cauchy kernel kw belongs to L2(ρ). Hence, we define H2(ρ) to be
the span in L2(ρ) of the functions kw (w ∈ C+). If g is a function in L2(ρ), then gρ is

in L2(R), being the product of gρ1/2 ∈ L2(R) and the bounded function ρ1/2. Thus, we
define the operator Cρ : L2(ρ) −→ H2(C+) by

Cρ(g) = P+(gρ).

Then Cρ is a partial isometry from L2(ρ) onto H(b̄) whose initial space equals to H2(ρ)
and it is an isometry if and only if b is an extreme point of the unit ball of H∞(C+).

Write kbw = kw − b(w)bkw. Since Tb̄kw = b(w)kw, we obtain

Tb̄k
b
w = b(w)

(
kw − P+(|b|2kw)

)
= b(w)P+

(
(1− |b|2)kw

)
= b(w)P+ (ρkw)

= b(w)Cρ(kw).(9.3)

In Section 8, we have studied the boundary behavior of the derivatives of functions in
H(b) spaces of the open unit disc D. We mention some parts of Theorems 4.1 and 8.2,
modified for the upper half plane C+, that are needed below.

Theorem 9.1. Let b be in the unit ball of H∞(C+) and let b = BIµOb be its canonical
factorization, where

B(z) =
∏
k

eiαk
z − zk
z − z̄k

is a Blaschke product, the singular inner function Iµ is given by

Iµ(z) = exp

(
iaz − i

π

∫
R

(
1

z − t
+

t

t2 + 1

)
dµ(t)

)
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with a positive singular measure µ and a ≥ 0, and Ob is the outer function

Ob(z) = exp

(
i

π

∫
R

(
1

z − t
+

t

t2 + 1

)
log |b(t)| dt

)
.

Put

Sn(x) =
∞∑
k=1

=zk
|x− zk|n

+

∫
R

dµ(t)

|x− t|n
+

∫
R

∣∣ log |b(t)|
∣∣

|x− t|n
dt.(9.4)

Then, for x ∈ R and for n ≥ 0, the following hold.

(i) If Sn+1(x) <∞, then the limits

b(j)(x) = lim
t→0+

b(j)(x+ it), (0 ≤ j ≤ n),

exist.
(ii) For every function f ∈ H(b), the limits

f (j)(x) = lim
t→0+

f (j)(x+ it), (0 ≤ j ≤ n),

exist if and only if S2n+2(x) <∞.

Theorem 9.1 suggests to define

En(b) = {x ∈ R : Sn(x) <∞}.

The upper half plane version of Corollary 4.2 says that, in x ∈ E2(b), then the modulus
of the angular derivative of b at a point x is given by

(9.5) |b′(x)| = a+
∑
k

2=zk
|x− zk|2

+
1

π

∫
R

dµ(t)

|x− t|2
+

1

π

∫
R

∣∣ log |b(t)|
∣∣

|x− t|2
dt.

10. Integral representations for derivatives

In this section, our goal is to prove an integral representation for the derivatives of
elements of H(b). we start by finding such a formula at a point w in the upper half plane.
Since w is away from the boundary, the representation is easy to establish. In order to
get an integral representation for the nth derivative of f at point w for functions in the
de-Branges-Rovnyak spaces, we need to introduce the following kernels

(10.1) kbw,n(z) = − n!

2πi
·

1− b(z)
n∑
p=0

b(p)(w)

p!
(z − w̄)p

(z − w̄)n+1
, (z ∈ C+),

and

(10.2) kρw,n(t) = − n!

2πi
·

n∑
p=0

b(p)(w)

p!
(t− w̄)p

(t− w̄)n+1
, (t ∈ R).
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For n = 0, we see that kbw,0 = kbw and kρw,0 = b(w)kw. As a matter of fact, (10.1) is the

upper half plane version of (6.6), and we have

f (n)(w) = 〈f, kbw,n〉b, (f ∈ H(b)).

In the following lemma, we obtain a more friendly representation for f (n)(w).

Lemma 10.1. Let b be a point in the unit ball of H∞(C+), let f ∈ H(b) and let g ∈ H2(ρ)
be such that Tbf = Cρ(g). Then, for all w ∈ C+ and for any integer n ≥ 0, we have

kbw,n ∈ H(b) and kρw,n ∈ H2(ρ) and

f (n)(w) =

∫
R
f(t)kbw,n(t) dt+

∫
R
g(t)ρ(t)kρw,n(t) dt.(10.3)

Proof. According to (9.1), we have

f(w) = 〈f, kbw〉b = 〈f, kbw〉2 + 〈Tb̄f, Tb̄kbw〉b̄.

Hence, by (9.3),

f(w) = 〈f, kbw〉2 + b(w)〈Cρ(g), Cρ(kw)〉b̄.
Since Cρ is a partial isometry from L2(ρ) onto H(b̄), with initial space equals to H2(ρ),
we conclude that

f(w) = 〈f, kbw〉2 + b(w)〈g, kw〉ρ = 〈f, kbw〉2 + 〈ρg, kρw〉2.

We rewrite this identity as

f(w) = 〈f, kbw,0〉2 + 〈ρg, kρw,0〉2,

which is precisely the representation (10.3) for n = 0.
Now straightforward computations show that

∂nkbw,0
∂w̄n

= kbw,n and
∂nkρw,0
∂w̄n

= kρw,n.

Since kbw,0 ∈ H(b) and kρw,0 ∈ H2(ρ), as we justified similarly in Section 6, we have

kbw,n ∈ H(b) and kρw,n ∈ H2(ρ), n ≥ 0. The representation (10.3) follows now by induction
and by differentiating under the integral sign. �

The next step is to show that (10.3) is still valid at the boundary points x0 which
satisfy S2n+2(x0) < ∞. To do so, we need the boundary analogues of the kernels (10.1)
and (10.2). In fact, both formulas make sense if we simply replace w by x0 and assume
that Sn+1(x0) < ∞. However, we see that, under the stronger condition S2n+2(x0) < ∞,
kbx0,n is actually the kernel function in H(b) for the functional of the n-th derivative at x0.

Lemma 10.2. Let b be a point in the unit ball of H∞(C+), let n ≥ 0, and let x0 ∈ R.
Assume that x0 satisfies the condition S2n+2(x0) <∞. Then kbx0,n ∈ H(b) and, for every
function f ∈ H(b), we have

(10.4) f (n)(x0) = 〈f, kbx0,n〉b.
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Proof. According to Theorem 9.1, the condition S2n+2(x0) <∞ guarantees that, for every

function f ∈ H(b), f (n)(w) tends to f (n)(x0), as w tends radially to x0. Therefore, an

application of the uniform boundedness principle shows that the functional f 7−→ f (n)(x0)
is bounded on H(b). Hence, by Riesz’ theorem, there exists ϕx0,n ∈ H(b) such that

f (n)(x0) = 〈f, ϕx0,n〉b, (f ∈ H(b)).

Now, the formula

f (n)(w) = 〈f, kbw,n〉b, (f ∈ H(b)),

implies that kbw,n tends weakly to ϕx0,n, as w tends radially to x0. Thus, for z ∈ C+, we
can write

ϕx0,n(z) = 〈ϕx0,n, kbz〉b
= lim

t→0+
〈kbx0+it,n, k

b
z〉b

= lim
t→0+

kbx0+it,n(z)

= lim
t→0+

− n!

2πi

1− b(z)
∑n

p=0
b(p)(x0+it)

p! (z − x0 + it)p

(z − x0 + it)n+1

= − n!

2πi

1− b(z)
∑n

p=0
b(p)(x0)

p! (z − x0)p

(z − x0)n+1
= kbx0,n(z).

Hence, kbx0,n ∈ H(b) and, for every function f ∈ H(b), (10.4) holds. �

The next result gives a (standard) Taylor formula at a point on the boundary.

Lemma 10.3. Let h be a holomorphic function in the upper-half plane C+, let n ≥ 0, and
let x0 ∈ R. Assume that h(n) has a radial limit at x0. Then h, h′, . . . , h(n−1) have radial
limits at x0 and

h(w) =
n∑
p=0

h(p)(x0)

p!
(w − x0)p + (w − x0)nε(w), (w ∈ C+),

with lim
t→0+

ε(x0 + it) = 0.

Proof. The proof is by induction.
Case n = 0: This is trivial.
Case n ≥ 1: Assumes that the property is true for n − 1. Applying the induction

hypothesis to g = h′, we see that g = h′, g′ = h(2), . . . , g(n−1) = h(n) have a radial limit at
x0 and

h′(w) =
n−1∑
p=0

h(p+1)(x0)

p!
(w − x0)p + (w − x0)n−1ε1(w),

with lim
t→0+

ε1(x0 + it) = 0.
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Since h′ has a radial limit at x0, we can define h(x0) by

h(x0) = h(x0 + it)−
∫

[x0,x0+it]
h′(u) du.

By Cauchy’s theorem, h(x0) is well-defined and its value does not depend on t. However,
this freedom in choosing t shows that h(x0) = lim

t→0
h(x0 + it). Then another application of

Cauchy’s theorem reveals that we can even write

h(w) = h(x0) +

∫
Γw

h′(u) du,

for all w ∈ C+. The path Γw is from x0 to w. To have the uniform continuity of h on the
path, we assume that in the beginning Γw is a vertical segment starting at x0 (the hight
of segment is not important), and then it goes to w via a rectifiable path in C+. Hence,
we have

h(w) = h(x0) +

∫
Γw

n−1∑
p=0

h(p+1)(x0)

p!
(u− x0)p + (u− x0)n−1ε1(u)

 du

=
n∑
p=0

h(p)(x0)

p!
(w − x0)p +

∫
Γw

(u− x0)n−1ε1(u) du.

The natural choice for ε is

ε(w) =
1

(w − x0)n

∫
Γw

(u− x0)n−1ε1(u) du, (w ∈ C+).

Thus,

ε(x0 + it) =
1

(it)n

∫ t

s=0
(is)n−1ε1(x0 + is) ds.

Therefore, based on the induction hypothesis on ε1, we have

|ε(x0 + it)| ≤ 1

tn

∫ t

s=0
sn−1|ε1(x0 + is)| ds

≤ 1

t

∫ t

s=0
|ε1(x0 + is)| ds −→ 0

as t→ 0+. �

If x0 satisfies the condition S2n+2(x0) <∞ we also have kρx0,n ∈ L2(ρ). Indeed, according
to (10.2), it suffices to prove that (t − x0)−j ∈ L2(ρ), for 1 ≤ j ≤ n + 1. Since ρ ≤ 1,
it is enough to verify this fact in a neighborhood of x0, say Ix0 = [x0 − 1, x0 + 1]. But
according to the condition S2n+2(x0) <∞, we have∫

Ix0

1− |b(t)|2

|t− x0|2j
dt ≤ 2

∫
Ix0

| log |b(t)||
|t− x0|2j

dt ≤ 2

∫
Ix0

| log |b(t)||
|t− x0|2n+2

dt <∞.
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Theorem 10.4 (Fricain–Mashreghi [15]). Let b be a point in the unit ball of H∞(C+), let
n ≥ 0, let f ∈ H(b), and let g ∈ H2(ρ) be such that Tbf = Cρ(g). Then, for every point
x0 ∈ R satisfying the condition S2n+2(x0) <∞, we have

(10.5) f (n)(x0) =

∫
R
f(t)kbx0,n(t) dt+

∫
R
g(t)ρ(t)kρx0,n(t) dt.

Proof. Recall that the condition S2n+2(x0) < ∞ guarantees that b(j)(x0) exists for 0 ≤
j ≤ 2n+ 1. Moreover, Lemma 10.2 implies that kbx0,p ∈ H(b), for 0 ≤ p ≤ n.

Put

hx0,n(z) =
b(z)−

∑n
p=0

b(p)(x0)
p! (z − x0)p

(z − x0)n+1
, (z ∈ C+).

Let us verify that hx0,n satisfies

(10.6) hx0,n = 2πi

n∑
p=0

b(n−p)(x0)

(n− p)!p!
kbx0,p.

To simplify a little bit the next computations, we put ap := b(p)(x0)
p! , 0 ≤ p ≤ n. According

to (10.1), we have

2πi
n∑
p=0

an−p
kbx0,p(z)

p!

=
n∑
p=0

an−p

(
b(z)

∑p
j=0 aj(z − x0)j − 1

(z − x0)p+1

)

=
1

(z − x0)n+1

 n∑
p=0

an−p(z − x0)n−p

b(z) p∑
j=0

aj(z − x0)j − 1


=

1

(z − x0)n+1

b(z)
 n∑
p=0

p∑
j=0

an−paj(z − x0)n−p+j

− n∑
k=0

ak(z − x0)k

 .
Therefore, we see that (10.6) is equivalent to

(10.7)
n∑
p=0

p∑
j=0

an−paj(z − x0)n−p+j = 1.

But, putting j = `− n+ p, we obtain

n∑
p=0

p∑
j=0

an−paj(z − x0)n−p+j =

n∑
`=0

 n∑
p=n−`

an−pa`−n+p

 (z − x0)`

=
n∑
`=0

∑̀
q=0

a`−qaq

 (z − x0)`.
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Consequently, (10.7) is equivalent to

(10.8) |a0|2 = |b(x0)|2 = 1 (for` = 0),

and

(10.9)
∑̀
q=0

a`−qaq = 0, (1 ≤ ` ≤ n).

To establish (10.8) and (10.8), put

ϕ(z) = 1− b(z)
n∑
p=0

ap(z − x0)p, (z ∈ C+).

Then ϕ is holomorphic in C+ and ϕ and its derivatives up to order 2n + 1 have radial
limits at x0. An application of Lemma 10.3 shows that we can write

ϕ(z) =

n∑
p=0

ϕ(p)(x0)

p!
(z − x0)p + o((z − x0)n),

as z tends radially to x0. Assume that there exists p ∈ {0, . . . , n} such that ϕ(p)(x0) 6= 0
and put

p0 = min{0 ≤ p ≤ n : ϕ(p)(x0) 6= 0}.

Hence, as t→ 0+,

|kbx0,n(x0 + it)| ∼ 1

2π

|ϕ(p0)(x0)|
p0!

tp0−(n+1),

which implies that limt→0+ |kbx0,n(x0 + it)| =∞. This is a contradiction with the fact that

kbx0,n belongs to H(b) and has a finite radial limit at x0. Therefore, we necessarily have

ϕ(p)(x0) = 0, 0 ≤ p ≤ n. But,

ϕ(x0) = 1− b(x0)b(x0) = 1− |b(x0)|2,

and if we use Leibnitz rule to compute the derivative of ϕ, for 1 ≤ ` ≤ n, we get

ϕ(`)(x0) = −
∑̀
p=0

ap

(
`

p

)
p!b(`−p)(x0) = −`!

∑̀
p=0

apa`−p.

Thus, we established (10.9) and (10.8), which in return proves (10.6). According to
Lemma 10.2, (10.6) implies hx0,n ∈ H(b).
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Now, for almost all t ∈ R, we have

b(t) kbx0,n(t)

= − n!

2πi
·
b(t)− |b(t)|2

∑n
p=0 ap(t− x0)p

(t− x0)n+1

= − n!

2πi
· (1− |b(t)|2)

∑n
p=0 ap(t− x0)p

(t− x0)n+1
− n!

2πi
·
b(t)−

∑n
p=0 ap(t− x0)p

(t− x0)n+1

= ρ(t)kρx0,n(t)− n!

2πi
· hx0,n(t).

Since hx0,n ∈ H(b) ⊂ H2(C+), we get that P+(b̄kbx0,n) = P+(ρkρx0,n), which can be written

as Tb̄k
b
x0,n = Cρk

ρ
x0,n. It follows from Lemma 10.2 that

f (n)(x0) = 〈f, kbx0,n〉b
= 〈f, kbx0,n〉2 + 〈Tb̄f, Tb̄kbx0,n〉b̄
= 〈f, kbx0,n〉2 + 〈g, kρx0,n〉ρ

=

∫
R
f(t)kbx0,n(t) dt+

∫
R
g(t)ρ(t)kρx0,n(t) dt,

which proves the relation (10.5).
�

If b is inner, then it is clear that the second integral in (10.5) is zero and we obtain the
easier formula

f (n)(w) =

∫
R
f(t) kbw,n(t) dt.(10.10)

We now provide a variation of Theorem 10.4 which is more suitable for obtaining
Bernstein-type inequalities. To do so, we need the new kernel

(10.11) Kρz0,n(t) = b(z0)

∑n
p=0

(
n+1
p+1

)
(−1)p bp(z0) bp(t)

(t− z0)n+1
, (t ∈ R),

which is well-defined for all z0 ∈ C+. It also makes sense whenever z0 = x0 ∈ E1(b). We
highlight that bp is the p-power of b and should not be mistaken with the p-th derivative.

Corollary 10.5 (Baranov–Fricain–Mashreghi [6]). Let b be in the unit ball of H∞(C+),

let z0 ∈ C+ ∪ E2n+2(b), and let n ≥ 0. Then (kbz0)
n+1 ∈ H2(C+) and Kρz0,n ∈ L2(ρ).

Moreover, for every function f ∈ H(b), we have

(10.12) f (n)(z0)=
n!

2πi

(∫
R
f(t)(kbz0)n+1(t) dt+

∫
R
g(t)ρ(t)Kρz0,n(t) dt

)
,

where g ∈ H2(ρ) is such that Tbf = Cρg.
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Proof. Step 1: To show that the first integral in (10.12) is well-defined, we show that
(kbz0)n+1 ∈ H2(C+).

Let ap = b(p)(z0)/p!. Fix 0 ≤ j ≤ n. Then we rewrite (10.1) as

−2πi

j!
kbz0,j(z) =

1− b(z0)b(z)

(z − z0)j+1
− b(z)

j∑
p=1

ap
(z − z0)j+1−p .

Hence, multiplying by (1− b(z0)b(z))j and rearranging the terms, we obtain(
kbz0(z)

)j+1
=

(
1− b(z0)b(z)

)j (−2πi

j!
kbz0,j(z)

)
+ b(z)

j∑
p=1

aj+1−p
(
1− b(z0)b(z)

)j−p(
kbz0(z)

)p
.(10.13)

Since z0 ∈ C+ ∪ E2n+2(b), according to Lemmas 10.1 and 10.2, the functions kbz0 and

kbz0,j (1 ≤ j ≤ n) belong to H(b). Hence, using the recurrence relation (10.13) and that

1− b(z0)b(z) ∈ H∞(C+), we see immediately by induction that (kbz0)n+1 ∈ H2(C+).

Step 2: To show that the second integral in (10.12) is well-defined, we show that Kρz0,n ∈
L2(ρ).

We have = (t− z0)−(n+1)ϕ(t), with

|Kρz0,n(t)| ≤ 2n+1

|t− z0|n+1
, (t ∈ R).

Hence, it is sufficient to prove that (t − z0)−(n+1) ∈ L2(ρ). If z0 ∈ C+, this fact is trivial
and if z0 ∈ E2n+2(b), the inequality 1− x ≤ | log x|, x ∈ [0, 1], implies∫

R

ρ(t)

|t− z0|2n+2
dt ≤

∫
R

1− |b(t)|2

|t− z0|2n+2
dt ≤ 2

∫
R

∣∣ log |b(t)|
∣∣

|t− z0|2n+2
dt <∞,

which is the required result.

Step 3: It remains to prove that (10.12) holds.
Let ψ be any element of H2(C+). According to (10.5), we have

f (n)(z0) = 〈f, kbz0,n〉2 + 〈ρg, kρz0,n〉2
= 〈f, kbz0,n − bψ〉2 + 〈b̄f, ψ〉2 + 〈ρg, kρz0,n〉2.

But we have Tbf = Cρg, which means that bf − ρg ⊥ H2(C+). Since ψ ∈ H2(C+), it

follows that 〈bf, ψ〉2 = 〈ρg, ψ〉2. Hence, the identity

(10.14) f (n)(z0) = 〈f, kbz0,n − bψ〉2 + 〈ρg, kρz0,n + ψ〉2
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holds for each ψ ∈ H2(C+). A very specific ψ gives us the required representation. To
find the appropriate ψ note that, on one hand, we have

−2πi

n!
kbz0,n(t)− (kbz0)n+1(t)

=
1− b(t)

∑n
p=0 ap(t− z0)p − (1− b(z0)b(t))n+1

(t− z0)n+1

=
1− (1− b(z0)b(t))n+1

(t− z0)n+1
− b(t)

∑n
p=0 ap(t− z0)p

(t− z0)n+1

= b(t)ψ(t),

where

ψ(t) =

∑n+1
p=1 (−1)p+1

(
n+1
p

)
(b(z0))p(b(t))p−1

(t− z0)n+1
−
∑n

p=0 ap(t− z0)p

(t− z0)n+1
.

On the other hand, we easily see that

−2πi

n!
kρz0,n(t) + ψ(t)

=

∑n+1
p=1 (−1)p+1

(
n+1
p

)
(b(z0))p(b(t))p−1

(t− z0)n+1

= b(z0)

∑n
p=0(−1)p

(
n+1
p+1

)
(b(z0))p(b(t))p

(t− z0)n+1
= Kρz0,n(t).

Therefore, (10.12) follows immediately from (10.14).
�

References

[1] P.R. Ahern, D.N. Clark, Radial limits and invariant subspaces, Amer. J. Math. 92 (1970), 332–342.
[2] P.R. Ahern, D.N. Clark, Radial nth derivatives of Blaschke products, Math. Scand. 28 (1971), 189–201.
[3] D. Alpay, Algorithme de Schur, espaces à noyau reproduisant et théorie des systèmes, Panoramas et
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