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On an extremal problem of Garcia and Ross

I. Chalendar∗, E. Fricain† and D. Timotin‡

Abstract

We show the equivalence of two extremal problems on Hardy spaces, thus answering

a question posed by Garcia and Ross. The proof uses a slight generalization of complex

symmetric operators.
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1 Introduction

In [4] Garcia and Ross discuss a nonlinear extremal problem for functions in the Hardy space

and its relation to a well studied linear extremal problem. Specifically, let D = {z ∈ C : |z| <

1} be the unit disc in the complex plane and T = {z ∈ C : |z| = 1} the unit circle. For p > 0,

let Hp denote the classical Hardy space on D (identified, as usual, with a closed subspace

of Lp = Lp(T)). For fixed ψ ∈ L∞, the following nonlinear extremal problem is considered

in [4]:

Γ(ψ) := sup
f∈H2

‖f‖2=1

∣
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∫

T

ψ(z)f(z)2 dz
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∣

∣

. (1)

This is closely related to the well known classical linear extremal problem

Λ(ψ) := sup
F∈H1

‖F‖1=1
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ψ(z)F (z) dz
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; (2)
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it is noted in [4] that we always have Γ(ψ) ≤ Λ(ψ), and it is proved that in some particular

cases, including the case of rational ψ, we have equality. We show in this short note that

equality actually holds for all ψ ∈ L∞, thus answering an open question stated in [4].

The two problems can be reformulated in terms of operators on a Hilbert space. Denote

by P+ the projection in L2 onto H2 and by P− the projection onto H2
− := L2 ⊖ H2. The

Hankel operator of symbol ψ is Hψ : H2 → H2
−, defined by Hψf = P−ψf .

By changing the variable z = eit and denoting ζ(t) = eit, we have

Γ(ψ) = sup
f∈H2

‖f‖2=1

∣
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∫ 2π

0

ζ(t)ψ(eit)f(eit)2 dt

∣

∣

∣

∣

= sup
f∈H2

‖f‖2=1

|〈ψf, ζ̄f̄〉| = sup
f∈H2

‖f‖2=1

|〈Hψf, ζ̄f̄〉|. (3)

On the other hand, any function F ∈ H1 may be written as F = fg with f, g ∈ H2 and

‖f‖2 = ‖g‖2 = ‖F‖1. Therefore we get

Λ(ψ) = sup
f,g∈H2

‖f‖2=‖g‖2=1

∣
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0

ζ(t)ψ(eit)f(eit)g(eit) dt

∣

∣

∣

∣

= sup
f,g∈H2

‖f‖2=‖g‖2=1

|〈ψf, ζ̄ḡ〉| = ‖Hψ‖. (4)

Both problems (1) and (2) are thus rephrased in terms of Hankel operators. A convenient

reference for these, including all results that we shall use below, is [9].

2 Complex symmetric operators and their relatives

In [2, 3] the authors introduce the notion of complex symmetric operator on a Hilbert space,

which has since found several applications; in particular, complex symmetric operators are

used in [4] to prove the equivalence, in a particular case, of the two extremal problems. We

need an extension of some of these facts to operators acting between two different spaces.

Suppose then that X ,Y are two Hilbert spaces. Define c : X → Y to be an antiunitary

operator if it is a conjugate linear surjective map which satisfies 〈cx, cx′〉 = 〈x′, x〉 for all

x, x′ ∈ X . It is then immediate that c−1 : Y → X is also an antiunitary operator. A

conjugation is an antiunitary operator which acts on the same space and is equal to its

inverse. If T ∈ L(X ,Y), we say that T is c-symmetric if T = cT ∗c. If T ∈ L(X ) and

there exists a conjugation C such that T is C-symmetric, then one says that T is complex

symmetric; this is the class considered in [2, 3].

In order to go from complex symmetric to c-symmetric operators, the main tool is the

following lemma.

Lemma 2.1. If c : X → Y is an antiunitary operator, then there exists a unitary operator

V : X → Y (not uniquely defined) such that C = V ∗c is a conjugation on X . If such a V is
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fixed, then the map T 7→ V ∗T is a bijection between c-symmetric operators and C-symmetric

operators.

Proof. Take an orthonormal basis (en) in X , and define V to be the unitary operator which

maps en into cen. Then it is easily seen that C = V ∗c is precisely the conjugation on X

associated with the basis (en).

Now, if T ∈ L(X ,Y), then

T = cT ∗c ⇔ V ∗T = V ∗
cT ∗

c ⇔ V ∗T = V ∗
cT ∗V V ∗

c

⇔ V ∗T = C(V ∗T )∗C,

which proves the second part of the lemma.

As a consequence, we obtain the result that interests us, namely the analogue of Theorem 1

in [4] (which deals with the complex symmetric case).

Lemma 2.2. Suppose c : X → Y is an antiunitary operator and T : X → Y is c-symmetric.

Then:

(i) ‖T‖ = sup‖x‖=1 |〈Tx, cx〉|.

(ii) The supremum in (i) is attained if and only if T attains its norm (or, equivalently,

if ‖T‖ is an eigenvalue for |T |.) In this case Tx = ω‖T‖cx for some unimodular constant ω.

Proof. Suppose that V is the unitary operator and C is the conjugation given by Lemma 2.1;

thus T ′ := V ∗T is C-symmetric. Theorem 1 in [4] says then that ‖T ′‖ = sup‖x‖=1 |〈T
′x,Cx〉|.

Since ‖T‖ = ‖T ′‖ and

sup
‖x‖=1

|〈Tx, cx〉| = sup
‖x‖=1

|〈V ∗Tx, V ∗
cx〉| = sup

‖x‖=1

|〈T ′x,Cx〉|,

the first assertion is proved.

For the second, it is immediate by Schwarz’s inequality that, if ‖x‖ = 1, then ‖T‖ =

|〈Tx, cx〉| if and only if Tx = ω‖T‖cx for some unimodular constant ω. But it is a general

fact (for any operator T ) that T attains its norm if and only if ‖T‖ is an eigenvalue of |T |,

given that ‖T‖ = ‖|T |‖ and ‖|T |‖ = sup‖x‖=1〈|T |x, x〉.

It might be of independent interest to state, as a corollary, the corresponding version of

Theorem 2 in [1], characterizing the spectrum of the modulus of a c-symmetric operator in

terms of what Garcia [1] calls an approximate antilinear eigenvalue problem.

Proposition 2.3. Let T be a bounded c-symmetric operator and λ ≥ 0. Then
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(i) λ belongs to the spectrum of |T | if and only if there exists a sequence of unit vectors

(fn)n such that limn→∞ ‖(T − λc)fn‖ = 0.

(ii) λ is a singular value of T if and only if Tf = λcf has a nonzero solution f .

3 Main result

We can now prove the equivalence of the two problems (1) and (2) in the general case.

Theorem 3.1. For any ψ ∈ L∞ we have Γ(ψ) = Λ(ψ).

Proof. We intend to apply Lemma 2.2 to the following situation: X = H2, Y = H2
−, T = Hψ

and c : H2 → H2
− defined by cf = ζ̄ f̄ . It is easy to see that c is antiunitary. Note that

c−1 : H2
− → H2 is given formally by the same formula as c. To be more accurate, we will

define C : L2 → L2 by Cf = ζ̄ f̄ . Then c = C|H2 = P−C|H2 and c−1 = C|H2
− = P+C|H2

−.

Moreover, we have CP+ = P−C.

Then Hψ is c-symmetric: H∗
ψ : H2

− → H2 acts by the formula H∗
ψg = P+ψ̄g, so

(cH∗
ψc)(f) = (cH∗

ψ)(ζ̄ f̄) = c(P+ψ̄ζ̄f̄) = CP+(ψ̄ζ̄f̄)

= P−C(ψ̄ζ̄f̄) = P−(ζ̄ψζf) = P−(ψf) = Hψf.

We may apply Lemma 2.2 (i), which gives:

‖Hψ‖ = sup
‖f‖=1

|〈Hψf, cf〉| = sup
‖f‖=1

|〈P−(ψf), ζ̄f̄〉|.

Since cf = ζ̄ f̄ ∈ H2
−, there is no need of P− in the last scalar product, and therefore, by (3),

‖Hψ‖ = sup
‖f‖=1

|〈ψf, ζ̄f̄〉| = Γ(ψ).

Since ‖Hψ‖ = Λ(ψ) by (4), the theorem is proved.

Also, from the second part of Lemma 2.2 it follows that the existence of an extremal

function (a function that realizes Γ(ψ)) is equivalent to the fact that the Hankel operator

attains its norm. This happens, for instance, if Hψ is compact, which is equivalent, via

Hartman’s theorem [6], to ψ ∈ H∞ + C(T), where C(T) denotes the algebra of continuous

functions on T.

Note that in [4] the solution to the extremal problem is related to truncated Toeplitz

operators. These are operators on KΘ = H2 ⊖ ΘH2 defined, for φ ∈ H∞, by the formula

AΘ
φ (f) = PΘφf, f ∈ KΘ,
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where PΘ is the orthogonal projection onto KΘ. More precisely, it is shown in [4] that, if

there is an inner function Θ such that ψΘ ∈ H∞, then

Λ(ψ) = Γ(ψ) = ‖AΘ
ψΘ‖.

The relation with Theorem 3.1 above is made by the following observation. Consider the

orthogonal decompositions H2 = KΘ⊕ΘH2 and H2
− = Θ̄KΘ⊕ Θ̄H2

−. With respect to them,

the only nonzero entry of the matrix of Hψ is in the upper left corner, and it is equal to

AψΘ : KΘ → KΘ followed by multiplication with Θ̄. Consequently, in this case most of the

results for the Hankel operators can be translated in terms of the truncated Toeplitz operator.

Moreover, this is an analytic truncated Toeplitz operator, that is, one whose symbol is in

H∞. Their theory is significantly simpler that in the case of general truncated Toeplitz

operators, since we may apply Sarason’s interpolation arguments.

4 Final remarks

This section has no claim of novelty; its purpose is to put some other results in [4] in a more

general context.

4.1 First, note that it is immediate that Γ(ψ) ≤ ‖ψ‖∞. Obviously Γ(ψ) depends only on

the antianalytic part of ψ. Using the equivalence of (1) and (2), and Nehari’s theorem [8],

it follows that for each ψ ∈ L∞ there exists ψ̂ such that ψ − ψ̂ ∈ H∞ and ‖ψ̂‖∞ = Γ(ψ).

In the context of truncated Toeplitz operators used in [4], ψ̂ corresponds to what is called

therein a norm attaining symbol.

4.2 In case an extremal function exists (equivalently, when the Hankel operator attains

its norm) one can say more. With the previous notations, suppose g ∈ H2 is an extremal

function with ‖g‖2 = 1; thus ‖H
ψ̂
g‖2 = ‖H

ψ̂
‖. The sequence of inequalities

‖ψ̂‖∞ = ‖H
ψ̂
‖ = ‖H

ψ̂
g‖2 = ‖P−(ψ̂g)‖2 ≤ ‖ψ̂g‖2 ≤ ‖ψ̂‖∞‖g‖2 = ‖ψ̂‖∞

imply that ‖P−(ψ̂g)‖2 = ‖ψ̂g‖2 = ‖ψ̂‖∞. It follows then, first that ψ̂ has constant modulus,

and secondly that ψ̂g ∈ H2
− and thus ψ̂go ∈ H2

−, where go is the outer part of g. Then

‖H
ψ̂
go‖2 = ‖ψ̂go‖2 = ‖ψ̂‖∞ = ‖H

ψ̂
‖. Therefore, in case an extremal function exists, one can

chose it outer, and thus not having zeros in D. This recaptures the result of [7] quoted in [4],

which says that if the symbol is continuous then there exists an extremal function which is

nonzero on D (as noted above, a Hankel operator with continuous symbol is compact and

thus attains its norm).
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4.3 In case there exists an inner function Θ such that φ = ψ̂Θ ∈ H∞, then the result can be

strengthened. With the above notations, we have then Θ̄φgo ∈ H2
−, which implies φgo ∈ KΘ;

thus φ is a scalar multiple of the inner part of a function in KΘ. This is essentially noticed

in the remarks after [4, Theorem 2].

4.4 Finally, let us note that, in case there exists no extremal function, norm attaining

symbols might not have constant modulus. An example appears in [5, Ch. IV, Example

4.2]. Namely, suppose Θ is an inner function that does not extend analytically across the

unit circle in the neighborhood of 1, while f is a nonconstant invertible outer function with

‖f‖∞ = 1 that has modulus 1 on an arc of T around 1. Then the only norm attaining symbol

for the Hankel operator HΘ̄f is Θ̄f , which has not constant modulus.
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