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ON CERTAIN RIESZ FAMILIES IN VECTOR-VALUED DE
BRANGES–ROVNYAK SPACES

NICOLAS CHEVROT, EMMANUEL FRICAIN, AND DAN TIMOTIN

Abstract. We obtain criteria for the Riesz basis property for families of repro-

ducing kernels in vector-valued de Branges–Rovnyak spaces H(b). It is shown that

in several situations the property implies a special form for the function b. We

also study the completeness of a related family.

1. Introduction

Starting with the works of Paley–Wiener ([PW34]), a whole direction of research

has investigated families of exponentials in L2(R), looking for properties as com-

pleteness, minimality, or being an unconditional basis. A classical result is Ingham’s

Theorem [Ing34], which says roughly that a small perturbation of the standard ex-

ponentials eint remains a basis in L2(−π, π). This line of approach, the consideration

of a given family of exponentials as a small perturbation of one that is known to

be complete or a Riesz basis has subsequently yielded many stability results. One

should also mention that the theory of geometric properties of scalar or vector

valued exponential families has found applications in various areas such as convolu-

tion equations, string scattering theory or controllability of dynamical systems (see

[HNP81, AI95, Nik02b] for a survey on exponentials systems and their applications).

In this context, functional models have been used in [HNP81], allowing the use of

tools from operator theory on a Hilbert space. The model spaces are subspaces of

the Hardy space H2, invariant under the adjoints of multiplications; their theory is
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connected to dilation theory for contractions on Hilbert spaces (see [SNF67]). The

approach has proved fruitful, leading to the recapture of all the classical results as

well as to several generalizations.

This investigation has been pursued with respect to families of reproducing kernels

in vector-valued and scalar model spaces in [Fri01], [Fri02] and [CFT03], and in

scalar de Branges–Rovnyak spaces in [Fri05]. Again the main goal is to obtain

criteria for a family of reproducing kernels to be complete, minimal or Riesz basis.

We also mention an interesting paper of A. Baranov [Bar06] whose criteria is based

on recent work of Ortega-Cerdà and Seip [OCS02].

In this paper we investigate similar problems in the context of vector-valued de

Branges–Rovnyak spaces. It appears that the functional methods used in [Fri01,

Fri05] are no more appropriate in this situation, and we have to find a new approach.

This is essentially done by using in more detail the structure of the model theory

of contractions [SNF67], and especially its relation to vector valued de Branges–

Rovnyak spaces as emphasized in [NV85]. This new approach throws some light also

on the scalar-valued case; we show, for instance, that if the scalar-valued de Branges–

Rovnyak space H(b) admits a Riesz basis of reproducing kernels, then necessarily b

is inner. Similar methods are used to investigate properties of a different family of

functions, called difference quotients; in particular, in the scalar case, we show that

the difference quotients are complete in H(b) if and only if either b is an extreme

point of the unit ball of H∞ or b is not pseudocontinuable.

The plan of the paper is the following. The next section contains some preliminary

material. The connection of the de Branges–Rovnyak spaces to the functional model

for contractions is described in detail in Section 3, where a main notion is that

of abstract functional embedding, introduced in [NV98]. Section 4 shows how the

problems concerning bases of reproducing kernels can be reduced, under suitable

hypotheses, to the study of the invertibility of a certain operator (the distortion

operator). Criteria for this invertibility are given in Section 5, which contains the

main results of the paper. A different type of criterium appears in Section 6, while
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Section 7 contains some interesting examples. Finally, Section 8 studies completeness

properties of the difference quotients.

2. Preliminaries

2.1. Hardy spaces and de Branges–Rovnyak spaces. If E is a separable com-

plex Hilbert space, L2(E) is the usual L2-space of E-valued functions f on the unit

circle T with respect to the normalized measure m endowed with the norm

‖f‖22 =
∫

T

‖f(z)‖2E dm(z).

The corresponding Hardy space H2(E) is defined as E-valued analytic functions on

D, f(z) =
∑

n≥0 anz
n, an ∈ E, with ‖f‖2 < +∞, where

‖f‖22 =
∑

n≥0

‖an‖2E.

Alternately, it is well-known that H2(E) can be regarded as the closed subspace of

L2(E) consisting of functions whose negative Fourier coefficients vanish. The symbol

P+ (respectively P−) stands for the Riesz orthogonal projection from L2(E) onto

H2(E) (respectively onto H2
−(E) := L2(E)⊖H2(E)).

If E,E∗ are two separable Hilbert spaces, we denote by L(E,E∗) the space of

all bounded linear operators from E to E∗. Then L∞(E → E∗) is the Banach

space of weakly measurable essentially bounded functions defined on T with values

in L(E,E∗), endowed with the essential norm. The Banach space H∞(E → E∗) is

formed by bounded analytic functions on D with values in L(E,E∗); taking (strong)

radial limits identifies H∞(E → E∗) with a subspace of L∞(E → E∗).

If ϕ ∈ L∞(E → E∗), we will make a standard abuse of notation and denote by

the same symbol ϕ the multiplication operator

ϕ : L2(E) −→ L2(E∗)

f 7−→ ϕf

defined by (ϕf)(ζ) := ϕ(ζ)f(ζ), ζ ∈ T. The inclusion ϕH2(E) ⊂ H2(E∗) is equiv-

alent to ϕ ∈ H∞(E → E∗), while ‖ϕ‖ ≤ 1 (or ‖ϕ|H2(E)‖ ≤ 1) is equivalent to
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‖ϕ(ζ)‖ ≤ 1 a.e. on T. The symbol Tϕ denotes the Toeplitz operator from H2(E) to

H2(E∗) defined by

Tϕf := P+(ϕf).

Then Tϕ ∈ L(H2(E), H2(E∗)), ‖Tϕ‖ = ‖ϕ‖∞, and T ∗
ϕ = Tϕ∗ , where ϕ∗ ∈ L∞(E∗ →

E) is defined by ϕ∗(ζ) := (ϕ(ζ))∗, ζ ∈ T.

We will also use occasionally the Hankel operator Hϕ : H2(E) → H2
−(E∗) defined

by

Hϕ(f) = P−(ϕf).

We have then

(2.1) ϕf = Tϕf +Hϕf, ‖ϕf‖2 = ‖Tϕf‖2 + ‖Hϕf‖2.

The vector valued Nehari Theorem says that ‖Hϕ‖ = dist(ϕ,H∞(E → E∗)).

Let b ∈ H∞(E → E∗), ‖b‖∞ ≤ 1. The de Branges–Rovnyak space H(b), associated

to b, is the vector space of those H2(E∗) functions which are in the range of the

operator (Id − TbT
∗
b )

1/2; it becomes a Hilbert space when equipped with the inner

product

〈(Id− TbT
∗
b )

1/2f, (Id− TbT
∗
b )

1/2g〉b := 〈f, g〉2,

where f, g ∈ H2(E∗) ⊖ ker(Id − TbT
∗
b )

1/2 (see [dBR66, BK87]; [Sar95] contains an

extensive presentation of the scalar case). Note that H(b) is contained contractively

in H2(E∗) and the inner product is defined in order to make (Id−TbT
∗
b )

1/2 a coisom-

etry from H2(E∗) to H(b). The norm of H(b) will be denoted by ‖ · ‖b; it coincides
with the induced norm from H2(E∗) if and only if Tb is a partial isometry on H2(E).

An important particular case is obtained for b an inner function, that is, a function

in H∞(E → E∗) such that b(ζ) is an isometry for almost all ζ ∈ T. Then H(b) is a

closed subspace ofH2(E∗), and ‖·‖b coincides with the induced norm; more precisely,

we have H(b) = H2(E∗) ⊖ bH2(E). By the Lax–Halmos Theorem, these are the

nontrivial subspaces ofH2(E∗) which are invariant for the backward shift S∗|H2(E∗).

They are traditionally denoted by Kb; thus, in this case, we have H(b) = Kb.
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For further use, remember that b is called ∗-inner if b(ζ) is a coisometry for almost

all ζ ∈ T. This is equivalent to b̃(ζ) := b(ζ̄)∗ being inner.

2.2. Reproducing kernels. If λ ∈ D and e ∈ E∗, the function kλ,e(z) = 1
1−λz

e

belongs to H2(E∗) and is a reproducing kernel for this space; that is, for any f ∈
H2(E∗) we have 〈f(λ), e〉E∗ = 〈f, kλ,e〉H2(E∗). Since H(b) is contained contractively

in H2(E∗), this formula defines also a bounded linear functional on H(b), which,

according to Riesz’s theorem, is given by the inner product in H(b) with a vector

kb
λ,e ∈ H(b); thus, for all f ∈ H(b), 〈f, kb

λ,e〉b = 〈f(λ), e〉E∗. A computation similar to

the case of scalar de Branges–Rovnyak spaces (see [Sar95, Ch.2]) yields the formula

(2.2) kb
λ,e(z) = (Id− TbT

∗
b )kλ,e =

1

1− λz
(Id− b(z)b(λ)∗)e

for the reproducing kernels in H(b). Also, it follows easily that

‖kλ,e‖22 =
‖e‖2

1− |λ|2 , ‖kb
λ,e‖2b =

‖e‖2 − ‖b(λ)∗e‖2
1− |λ|2 .(2.3)

We denote by κλ,e and κb
λ,e the normalized reproducing kernels of H2(E∗) and

H(b) respectively; that is

κλ,e(z) =

√
1− |λ|2

(1− λz)‖e‖
e

and

κb
λ,e(z) =

√
1− |λ|2

(1− λz)
√

‖e‖2 − ‖b(λ)∗e‖2
(Id− b(z)b(λ)∗)e.

We will also discuss properties of another interesting family of elements of the de

Branges–Rovnyak space H(b): the so-called difference quotients, defined by

(2.4) k̂b
λ,e =

1

z − λ
(b(z)− b(λ))e, λ ∈ D, e ∈ E.

3. A geometric approach to the de Branges–Rovnyak space

The function-theoretical approach, as developed for the scalar case in [Sar95], is

no more adequate when dealing with vector-valued de Branges–Rovnyak spaces. We
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will use a more geometric description, connected to the model theory for contrac-

tions. The main source for this point of view is [NV98] (see also [Vas77, NV85], as

well as the exposition of [Nik02b]).

We start with an abstract functional embedding (AFE). This is a linear mapping

Π = (π, π∗) : L
2(E)⊕ L2(E∗) → K,

satisfying the following properties:

(1) the restrictions π and π∗ are isometries;

(2) πH2(E) ⊥ π∗H
2
−(E∗);

(3) the range of Π is dense in K;

(4) π∗
∗π commutes with the shift operator and maps H2(E) into H2(E∗); hence

we know (see [Nik02b, Lemma 1.2.3]) that π∗
∗π = b, with b being a contractive

H∞(E → E∗) function.

Note that, in contrast to [NV98], we do not include the purity of π∗
∗π in the definition

(since we are not interested in the correspondence with the model contraction). It

follows then easily that the operator UΠ defined by the relation UΠΠ = Πz is unitary

on K.

Set ∆ = (Id− b∗b)1/2 and ∆∗ = (Id− bb∗)1/2. Since

‖(π − π∗b)f‖K = ‖∆f‖2, ‖(π∗ − πb∗)g‖K = ‖∆∗g‖2,

for every f ∈ L2(E) and g ∈ L2(E∗), the equalities

τ∆ = π − π∗b, τ∗∆∗ = π∗ − πb∗

determine the partial isometries

τ : L2(E) −→ K, τ∗ : L
2(E∗) −→ K

with initial spaces clos(∆L2(E)) and clos(∆∗L
2(E∗)) respectively. It is easy to see

that

(3.1) τ ∗π = ∆, τ ∗π∗ = 0, τ ∗∗π = 0, τ ∗∗π∗ = ∆∗ τ ∗∗ τ = −b,
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and

(3.2) Id = ππ∗ + τ∗τ
∗
∗ = π∗π

∗
∗ + ττ ∗.

In particular, we get from (3.1) and (3.2) the following decompositions:

(3.3) K = π(L2(E))⊕ τ∗(L
2(E∗)) = π∗(L

2(E∗))⊕ τ(L2(E)).

Conversely, if we start with b, a contractive H∞(E → E∗) function, then one can

construct an AFE Π = (π, π∗) : L2(E) ⊕ L2(E∗) → K such that π∗
∗π = b (see for

instance the Sz.-Nagy–Foias or de Branges–Rovnyak transcriptions related to the

construction of the model for contractions on Hilbert spaces [NV98]).

Now for a given AFE Π, we define H = K ⊖ (π(H2(E))⊕ π∗(H
2
−(E∗)); thus

(3.4) K = H⊕ π(H2(E))⊕ π∗(H
2
−(E∗)),

and

(3.5) PH = Id− πP+π
∗ − π∗P−π

∗
∗.

The space H is further decomposed as

H = H′ ⊕H′′ = H′
∗ ⊕H′′

∗,

where H′′ = H ∩ τ(L2(E)) = H ∩ τ(clos(∆L2(E))), H′ = H ⊖ H′′, and H′′
∗ =

H ∩ τ∗(L
2(E∗)) = H ∩ τ∗(clos(∆L2(E∗))), H

′
∗ = H ⊖ H′′

∗. Note also that (3.3) and

(3.4) imply that actually H′′ = H ∩ π∗(H
2(E∗))

⊥ and H′′
∗ = H ∩ π(H2

−(E))⊥.

We will also denote, for further use,

R = clos(∆L2(E))⊖ clos(∆H2(E))

R∗ = clos(∆∗L
2(E∗))⊖ clos(∆∗H

2
−(E∗)).

(3.6)

The following simple lemma will be used several times in the sequel.

Lemma 3.1. Let Π = (π, π∗) : L
2(E)⊕L2(E∗) → K be an AFE and let b = π∗

∗π be

the contractive H∞(E → E∗) function associated to Π. Then, we have

H′′ = τ(R), H′′
∗ = τ∗(R∗).
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Consequently, H = H′ if and only if clos(∆H2(E)) = clos(∆L2(E)), and H = H′
∗ if

and only if clos(∆∗H
2
−(E∗)) = clos(∆∗L

2(E∗)).

Proof. Suppose χ = τg with g ∈ clos(∆L2(E)). By (3.1), it follows that χ ⊥
π∗L

2(E∗); in particular, χ ⊥ π∗H
2
−(E∗). Then

χ ∈ H′′ ⇔ χ ∈ H ⇔ χ ⊥ π(H2(E))

Using again (3.1), one obtains that χ ⊥ π(H2(E)) is equivalent to

0 = 〈τg, πh〉 = 〈g, τ ∗πh〉 = 〈g,∆h〉

for all h ∈ H2(E), which proves the first assertion of the Lemma. The second asser-

tion follows from similar arguments, while for the last part we have only to remember

that τ and τ∗ are isometries on clos(∆L2(E)) and clos(∆∗L
2(E∗)) respectively. �

In the end of this section we connect the abstract functional embeddings with the

de Branges–Rovnyak spaces.

Lemma 3.2. Let Π = (π, π∗) : L
2(E)⊕L2(E∗) → K be an AFE and let b = π∗

∗π be

the contractive H∞(E → E∗) function associated to Π. Then

Id− TbT
∗
b = π∗

∗PHπ∗|H2(E∗) = π∗
∗PH′π∗|H2(E∗).

Proof. Using (3.5) as well as the relations π∗
∗π∗ = Id and π∗

∗π = b, we obtain

π∗
∗PHπ∗ = π∗

∗π∗ − π∗
∗πP+π

∗π∗ − π∗
∗π∗P−π

∗
∗π∗ = P+ − bP+b

∗.

whence

π∗
∗PHπ∗|H2(E∗) = (P+ − bP+b

∗)|H2(E∗) = Id− TbT
∗
b .

The second equality follows since H⊖H′ = H′′ = τ(R) is contained in the kernel of

π∗
∗ according to (3.1). �

Proposition 3.3. Let Π = (π, π∗) : L
2(E)⊕L2(E∗) → K be an AFE and let b = π∗

∗π

be the contractive H∞(E → E∗) function associated to Π. The operator π∗
∗ is a

coisometry from H onto H(b), with ker π∗
∗ |H = H′′. In particular, if clos(∆L2(E)) =

clos(∆H2(E)), then π∗
∗ : H → H(b) is unitary.
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Proof. First, using (3.4), we see that π∗
∗H ⊂ H2(E∗). Then, if we put A = π∗

∗|H :

H → H2(E∗) and B = (Id − TbT
∗
b )

1/2, Lemma 3.2 shows that AA∗ = B2. There

exists therefore a partial isometry U : H −→ H2(E∗), with initial space (ker A)⊥

and final space the closure of the range of B, such that A = BU . The definition

of the norm of H(b) implies then that A = π∗
∗|H is a partial isometry from H onto

H(b). Its kernel is

ker π∗
∗ |H = H ∩ ker π∗

∗ = H ∩ (Im π∗)
⊥ = H′′,

whence the proof is ended using Lemma 3.1. �

Remark 3.4. In [NV85] (see also [Nik02a, pp. 84-86]), some conditions equivalent

to clos(∆H2(E)) = clos(∆L2(E)) are given; in particular, one of them is the density

of the polynomials in L2(E,∆). In [Tre86], S. Treil shows that b is an extreme point

in the unit ball of H∞(E → E∗) if and only if either clos(∆H2(E)) = clos(∆L2(E))

or clos(∆∗H
2
−(E∗)) = clos(∆∗L

2(E∗)), which is equivalent (according to Lemma 3.1)

to H = H′ or H = H′
∗. In the scalar case dimE = dimE∗ = 1, b is extreme if and

only if log(1− |b|) is not integrable on T (see [dLR58]).

4. Riesz bases of reproducing kernels

The main problems that we intend to study are the following: given b ∈ H∞(E →
E∗), ‖b‖∞ ≤ 1, given a sequence (λn)n≥1 ⊂ D and a sequence (en)n≥1 ⊂ E∗, ‖en‖ = 1,

n ≥ 1, find criteria for the sequence (κb
λn,en

)n≥1 to form

(P1): a Riesz basis of its closed linear hull;

(P2): a Riesz basis of H(b).

We will not, however, study these problems in the most general form. First, note

that if dim E∗ = +∞ and (en)n≥1 is an orthonormal sequence in E∗, then (κλn,en)n≥1

is an orthonormal sequence in H2(E∗), for any choice of sequence (λn)n≥1 in D. In

some sense, if E∗ is an infinite dimensional Hilbert space, there is too much freedom

for the vectors en to hope to get a satisfactory criterion for Riesz basis. That is why
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interesting results have usually been obtained under the condition dim E∗ < +∞
(see [Tre89, AI95]). This condition will be assumed in this section.

Now, it is easy to see that if (κb
λn,en

)n≥1 is a Riesz basis, then (κλn,en)n≥1 is minimal,

which implies that (λn)n≥1 is a Blaschke sequence [AI95, page 65-67]. Therefore we

will also suppose, in the sequel, that the sequence (λn)n≥1 is a Blaschke sequence of

distinct points in D. We have then span(κλn,en : n ≥ 1) = H2(E∗)⊖BH2(E∗) = KB,

where the inner function B ∈ H∞(E∗ → E∗) is a Blaschke–Potapov product (see,

for instance, [Nik74]).

At this point, the technique originating in [Nik80] (and which is used in [Fri01,

Fri05]) regards the family (κb
λn,en

)n≥1 as a ”distortion” of (κλn,en)n≥1. It is then

assumed that Id − TbT
∗
b does not distort very much the norms of the reproducing

kernels, in the sense that

sup
n≥1

‖kλn,en‖2
‖(Id− TbT

∗
b )kλn,en‖b

< +∞.

Using (2.3), we see that this condition is equivalent to

sup
n≥1

‖b(λn)
∗en‖ < 1.(4.1)

Under this further condition, we can state the following result.

Theorem 4.1. Let b ∈ H∞(E → E∗), ‖b‖∞ ≤ 1, let (λn)n≥1 be a Blaschke sequence

in D and let (en)n≥1 ⊂ E∗, ‖en‖ = 1. Assume that dim E∗ < +∞ and that condition

(4.1) is satisfied. Then the following are equivalent:

a) the sequence (κb
λn,en

)n≥1 is a Riesz basis of its closed linear hull (resp. of

H(b));

b) the sequence (κλn,en)n≥1 is a Riesz basis of KB and the operator

(Id− TbT
∗
b )|KB : KB −→ H(b)

is an isomorphism onto its range (resp. onto H(b)).

Proof. a) ⇒ b) By formula (2.2) we have (Id− TbT
∗
b )(kλn,en) = kb

λn,en
and condition

(4.1) implies that ‖kb
λn,en‖b ≍ ‖kλn,en‖2. It follows then (see, for instance, [HNP81,
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page 228]) that the uniform minimality of (kb
λn,en

)n≥1 implies the uniform minimality

of (kλn,en)n≥1. But, according to a result of S. Treil [Tre89], since dimE∗ < ∞, the

latter is equivalent to the fact that the sequence (κλn,en)n≥1 is a Riesz basis of KB.

Since the operator (Id − TbT
∗
b )|KB maps one Riesz basis onto another, it is an

isomorphism of KB onto span(κb
λn,en

: n ≥ 1).

b) ⇒ a) Conversely, if (Id− TbT
∗
b )|KB is an isomorphism onto its range and the

sequence (κλn,en)n≥1 is a Riesz basis of KB, then ((Id − TbT
∗
b )κλn,en)n≥1 is a Riesz

basis of its closed linear hull. But

(Id− TbT
∗
b )κλn,en =

‖kb
λn,en‖b

‖kλn,en‖2
κb
λn,en,

and since
‖kb

λn,en
‖b

‖kλn,en‖2
is bounded from below and above, we obtain that the sequence

(κb
λn,en

)n≥1 is a Riesz basis of its closed linear hull. Moreover, if (Id − TbT
∗
b )|KB is

an isomorphism onto H(b), we have

span(κb
λn,en : n ≥ 1) = span((Id− TbT

∗
b )kλn,en : n ≥ 1) = H(b). �

Remark 4.2. Till now the elaborated theory [Nik80, Fri01, Fri05] works under

condition (4.1) only. This is not surprising in view of the method used, which is

based on projecting a basis from KB; therefore the first thing to require is that the

size of the individual elements of the base should not be changed too drastically. In

the particular case of exponential families, this condition means that the imaginary

parts of the frequencies of the exponentials are bounded below, which is the case for

families arising from control theory. It should be mentioned however that [Bar06]

gives certain criteria for a family of reproducing kernels to be a Riesz basis in

a model subspace associated to a meromorphic inner function, without using the

assumption (4.1).

Remark 4.3. Theorem 4.1 reduces the problem of finding Riesz bases in H(b) to

the case of KB. To apply it, we should be able first to decide when a reproducing

sequence of kernels in H2(E∗) forms a Riesz sequence. Such a criterion has been
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given by S. Ivanov (see [AI95, page 73]); we need some further notations in order to

state it.

We define, for λ ∈ D and r > 0, the pseudo-hyperbolic disc

ω(λ, r) := {z ∈ D : |bλ(z)| < r}, where bλ(z) =
λ− z

1− λz
.

Then, for a sequence Λ = (λn)n≥1 in D, we set

G(Λ, r) =
⋃

n≥1

ω(λn, r).

For m ≥ 1, we denote by Gm(Λ, r) the connected components of the set G(Λ, r) and

we write

Em(r) := {n ≥ 1 : λn ∈ Gm(Λ, r)}.

Then the sequence (κλn,en)n≥1 is a Riesz basis of its closed linear hull if and only if

the two following conditions are satisfied:

a) the sequence (λn)n≥1 is the union of at most dimE∗ Carleson sets;

b) there exists r > 0 such that

inf
m≥1

min
n∈Em(r)

α(en, span(ep : p ∈ Em(r), p 6= n)) > 0,

where α(en, Y ) denotes the angle between the vector en and the subspace Y .

We will call (Id − TbT
∗
b )|KB : KB → H(b) the distortion operator. By Theorem

4.1 and Remark 4.3, problems P1 and P2 are reduced, in case condition (4.1) is

satisfied, to the following: find criteria for the distortion operator to be

(P1′): an isomorphism onto its range;

(P2′): an isomorphism onto H(b).

These problems will be addressed in the next section.

We end this section by stating a stability result. The proof is similar to the anal-

ogous result for model subspaces (i.e. the inner case) obtained in [Fri05, Theorem

3.4], and will therefore be omitted.
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Theorem 4.4. Let b ∈ H∞(E → E∗), ‖b‖∞ ≤ 1, Λ = (λn)n≥1 be a Blaschke

sequence in D and let (en)n≥1 ⊂ E∗, ‖en‖ = 1 such that the sequence (κb
λn,en)n≥1 is

a Riesz basis of its closed linear hull (resp. of H(b)). Assume that dim E∗ < +∞
and that condition (4.1) is satisfied. Then there exists ε > 0 such that any sequence

(κb
µn,an)n≥1 satisfying

|bλn
(µn)| ≤ ε and ‖an − en‖ ≤ ε, n ≥ 1,

is a Riesz basis of its closed linear hull (resp. of H(b)).

Let us also mention that in the scalar de Branges–Rovnyak spaces, using a different

approach based on Bernstein type inequalities, a stability result was found in [BFM]

without the assumption (4.1). However, the techniques used therein do not seem

adaptable to the vector case.

5. The distortion operator

We will discuss in this section the invertibility of the distortion operator (Id −
TbT

∗
b )|KΘ : KΘ → H(b), for a general inner function Θ ∈ H∞(F → E∗) and

b ∈ H∞(E → E∗) contractive. As noted above, the methods used in the scalar case

in [HNP81, Fri05] and in the inner vector case in [Fri01], are no more appropriate,

and we have to use a different approach, based on the AFE introduced in Section 3.

We start by reminding a simple lemma, whose proof we omit.

Lemma 5.1. Suppose we have two orthogonal decompositions of a Hilbert space H:

H = X1 ⊕ X2 = Y1 ⊕Y2.

Then the following statements are all equivalent:

(1) PY1 |X1 is surjective.

(2) PX1|Y1 is bounded below.

(3) ‖PX2|Y1‖ < 1.

(4) ‖PY1 |X2‖ < 1.

(5) PY2 |X2 is bounded below.
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(6) PX2 |Y2 is surjective.

Here for a (closed) subspace E of H, the notation PE denotes the orthogonal

projection of H onto E.

The first result gives the answer to Problem (P1′).

Theorem 5.2. Let b ∈ H∞(E → E∗), ‖b‖∞ ≤ 1 and let Θ ∈ H∞(F → E∗) be

an inner function. The distortion operator is an isomorphism onto its range if and

only if dist(Θ∗b,H∞(E → F )) < 1.

Proof. Let Π = (π, π∗) : L
2(E)⊕L2(E∗) → K be an AFE such that π∗

∗π = b. Recall

that according to Lemma 3.2, we have

Id− TbT
∗
b = π∗

∗PHπ∗|H2(E∗).

Moreover by Proposition 3.3, π∗
∗ is a partial isometry from H onto H(b) with kernel

equals to H′′. Since PHπ∗L
2(E∗) ⊂ (ker π∗

∗|H)⊥, we have that Id−TbT
∗
b : KΘ → H(b)

is an isomorphism onto its range if and only if PH|π∗KΘ is bounded below. Applying

Lemma 5.1, this last assertion is equivalent to

‖PK⊖H|π∗KΘ‖ < 1.

Now, K⊖H = π(H2(E))⊕π∗(H
2
−(E∗)), and the second term in the orthogonal sum

is orthogonal to π∗KΘ. Thus the condition is equivalent to ‖Pπ(H2(E))|π∗KΘ‖ < 1,

or, passing to the adjoint, ‖Pπ∗KΘ
|π(H2(E))‖ < 1.

But we obviously have

‖Pπ∗KΘ
|π(H2(E))‖ = ‖π∗PKΘ

π∗
∗π|H2(E)‖ = ‖PKΘ

b|H2(E)‖

while, using the vector valued Nehari Theorem,

‖PKΘ
b|H2(E)‖ = ‖ΘP−Θ

∗b|H2(E)‖ = ‖HΘ∗b‖ = dist(Θ∗b,H∞(E → F )).

This string of equalities proves the theorem. �

The next theorem is an answer to Problem (P2′); it is not, however, as explicit as

the answer to Problem (P1′).
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Theorem 5.3. The distortion operator is an isomorphism onto H(b) if and only if

dist(Θ∗b,H∞(E → F )) < 1 and the operator

Γb := (P+b
∗Θ P+∆) :

H2(F )

⊕
clos(∆H2(E))

−→ H2(E).

is bounded below.

Proof. Let Π = (π, π∗) : L2(E) ⊕ L2(E∗) → K be an AFE such that π∗
∗π = b. It

follows from Proposition 3.3 that the operator π∗
∗ is an isometry from H′ onto H(b);

therefore, using Lemma 3.2, we get that

Id− TbT
∗
b = π∗

∗PH′π∗|H2(E∗),

and Id − TbT
∗
b : KΘ → H(b) is an isomorphism onto H(b) if and only if PH′|π∗KΘ

is bounded below and surjective. According to Theorem 5.2, PH′|π∗KΘ is bounded

below if and only if dist(Θ∗b,H∞(E → F )) < 1; thus it remains to show that

PH′|π∗KΘ is surjective if and only if Γb is bounded below.

Now, since

H′ ⊕ π∗(H
2
−(E∗)) = K ⊖

[
π(H2(E))⊕H′′],

π∗(KΘ)⊕ π∗(H
2
−(E∗)) = π∗(L

2(E∗))⊖ π∗(ΘH2(F )),

it follows that PH′|π∗KΘ is surjective if and only if PK⊖[π(H2(E))⊕H′′]|π∗(L
2(E∗)) ⊖

π∗(ΘH2(F )) is surjective. Apply then Lemma 5.1 to the case X1 = π∗(L
2(E∗)) ⊖

π∗(ΘH2(F )), X2 = π∗(ΘH2(F ))⊕ π∗(L
2(E∗))

⊥, Y1 = K ⊖
[
π(H2(E))⊕H′′], Y2 =[

π(H2(E))⊕H′′], the surjectivity of PY1 |X1 is equivalent to PY2 |X2 bounded below.

Since H′′ ⊂ π∗(L
2(E∗))

⊥, this last condition is equivalent to

Pπ(H2(E))|π∗(ΘH2(F ))⊕
[
π∗(L

2(E∗))
⊥ ⊖H′′]

bounded below. Now we note that PπH2(E) = πP+π
∗ and according to (3.3) and

Lemma 3.1, we have

π∗(L
2(E∗))

⊥ ⊖H′′ = τ(L2(E))⊖H′′ = τ(clos(∆L2(E)))⊖H′′ = τ(clos(∆H2(E))).
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Therefore, PH′|π∗KΘ is surjective if and only if

πP+π
∗ (π∗Θ τ) : H2(F )⊕ clos(∆H2(E)) −→ K

is bounded below. But it follows from (3.1) that

πP+π
∗ (π∗Θ τ) = π (P+π

∗π∗Θ P+π
∗τ) = π (P+b

∗Θ P+∆) = πΓb.

Since π is an isometry, we obtain the desired conclusion. �

Theorem 5.3 may be compared to a basic result in the scalar case, namely the

Theorem on Close Subspaces in [Nik86, page 201] (and its complement on page 204),

where conditions are given for the projection from Kθ to Kθ′ to be an isomorphism

(θ, θ′ scalar inner functions). For instance, an equivalent condition therein is the

invertibility of the scalar Toeplitz operator Tθθ̄′. Although the necessary and suf-

ficient condition obtained above may be hard to check in practice (see, however,

Example 7.3), it leads to several useful corollaries. They show that the invertibility

of the distortion operator often implies strong conditions on the function b.

Corollary 5.4. If clos(∆H2(E)) = clos(∆L2(E)) and the distortion operator is

invertible, then b is inner.

Proof. If Γb is bounded below, then for any f ∈ clos(∆L2(E)) = clos(∆H2(E)), we

have

c‖f‖2 = c‖znf‖2 ≤ ‖Γb(0⊕ znf)‖2 = ‖P+∆znf‖2 = ‖P+z̄
n∆f‖2.

Since the right side of the last inequality tends to 0 as n → +∞, we obtain

clos(∆L2(E)) = {0}, which is equivalent to b inner. �

An interesting result can be obtained in the case the inner function Θ has full

range.

Corollary 5.5. Suppose dimF = dimE∗ < +∞. If the distortion operator is

invertible, then b is ∗-inner.
If also dimE = dimE∗, then b is inner.
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Proof. If Γb is bounded below, then (b∗Θ ∆) is bounded below as an operator from

H2(F )⊕clos(∆H2(E)) to L2(E). Since for any f ∈ L2 and ǫ > 0 one can find g ∈ H2

and N ∈ N such that ‖zNf − g‖2 < ǫ, a standard argument shows that (b∗Θ ∆)

is bounded below from L2(F )⊕ clos(∆L2(E)) to L2(E). If dimF = dimE∗ < +∞,

then Θ inner implies that ΘL2(F ) = L2(E∗), and thus

(b∗ ∆) :

L2(E∗)

⊕
clos(∆L2(E))

−→ L2(E)

is bounded below. But the adjoint of this last operator is an isometry. Since

a coisometry that is bounded below is necessarily unitary, it is easily seen that

multiplication with b must be a coisometry from L2(E) to L2(E∗), whence b is ∗-
inner. The last assertion is then obvious. �

In particular, Corollary 5.5 can be applied to our original problem, namely the

Riesz property of a family of reproducing kernels in H(b). Indeed, in that case

the inner function Θ is actually a Blaschke–Potapov product corresponding to a

Blaschke sequence (λn), which verifies the condition dimF = dimE∗ and we have

assumed that dimE∗ < +∞.

Corollary 5.6. Suppose dimE = dimE∗ = 1. Then the distortion operator is

invertible exactly in the two following cases:

(i) b is inner, dist(Θ̄b,H∞) < 1 and dist(b̄Θ, H∞) < 1.

(ii) F = {0} and ‖b‖∞ < 1.

Proof. From Corollary 5.5 it follows that the invertibility of the distortion opera-

tor implies either b inner or F = {0}. If b is inner, then the conditions in (i) are

known to be equivalent to the invertibility of the distortion operator (see, for in-

stance, [Nik86]). If {F} = {0}, then KΘ = H2, and the invertibility of the distortion

operator is equivalent to ‖b‖∞ < 1. �
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Remark 5.7. Provided condition (4.1) is satisfied, Corollary 5.6 generalizes Propo-

sition 5.1 in [Fri05], where it is shown that in the scalar nonextreme case we cannot

have bases of reproducing kernels for H(b).

The next corollary discusses the connection between different conditions that are

related to our original problem.

Corollary 5.8. Consider the assertions

(i) the operator Id− TbT
∗
b : KΘ → H(b) is invertible;

(ii) dist(Θ∗b,H∞(E, F )) < 1 and Tb∗Θ is left invertible;

(iii) dist(Θ∗b,H∞(E, F )) < 1 and dist(b∗Θ, H∞(E, F )) < 1.

Then we have (i) ⇒ (ii) ⇒ (iii).

If b is inner (b∗b = Id), then (ii) ⇒ (i), while, if b is ∗-inner, then (iii) ⇒ (ii).

Proof. For f ∈ H2(F ) we have

(5.1) ‖Γb(f ⊕ 0)‖2 = ‖Tb∗Θf‖2

and (i) ⇒ (ii) follows immediately from Theorem 5.3. If b is inner, then Γb = Tb∗Θ

and we use again Theorem 5.3 to conclude that (ii) ⇒ (i).

Since we have, by (2.1),

‖f‖2 ≥ ‖b∗Θf‖22 = ‖Tb∗Θf‖22 + ‖Hb∗Θf‖22,

the vector valued Nehari Theorem yields (ii) ⇒ (iii). If b is ∗-inner, the first in-

equality becomes an equality, giving the converse. �

In general, none of the implications in Corollary 5.8 can be reversed; examples

will be given in the Section 7.

6. A different characterization

In the scalar case, another equivalent condition for the orthogonal projection from

Kθ to Kθ′ to be an isomorphism is given by the two relations dist(θ′θ̄, H∞) < 1,

dist(z̄θ′θ̄, H∞) = 1. A similar condition for scalar de Branges spaces appears
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in [Fri05, Theorem 4.1]. We will obtain below an alternate answer along that line to

Problem (P2′); however, the formulation in the case of vector-valued de Branges–

Rovnyak spaces is less elegant.

Some notations are needed: for any x ∈ F , let Px be the orthogonal projection

onto the subspace generated by x and define θx ∈ H∞(F → F ) by θx(z) := zPx +

(Id−Px). It is immediate that θx is an inner function in H∞(F → F ) and we have

Kθx = Cx (the subspace of constant functions equal to a multiple of x).

Proposition 6.1. Let b ∈ H∞(E → E∗), ‖b‖∞ ≤ 1 and let Θ ∈ H∞(F → E∗) be an

inner function. Assume that the operator Id− TbT
∗
b : KΘ → H(b) is left invertible.

Then the following assertions are equivalent:

(i) Id− TbT
∗
b : KΘ → H(b) is an isomorphism;

(ii) for all x ∈ F , we have dist(θ∗xΘ
∗b,H∞(E → F )) = 1.

Proof. Once more, we will use an AFE Π = (π, π∗) : L
2(E)⊕L2(E∗) → K such that

π∗
∗π = b. By Lemma 3.2 and Proposition 3.3, the assertion (i) is equivalent to the

invertibility of PH′π∗|KΘ : KΘ → H′, while from Theorem 5.2 it follows that

(ii) ⇐⇒ for all x ∈ F, PH′π∗|KΘθx : KΘθx → H′ is not left invertible.

We will also use repeatedly the equality

(6.1) KΘθx = KΘ ⊕ΘKθx = KΘ ⊕ CΘx.

(i) =⇒ (ii) Since (6.1) implies KΘ ( KΘθx , it follows that if PH′π∗|KΘ is invert-

ible, then PH′π∗|KΘθx is not one-to-one. Therefore it cannot be left invertible.

(ii) ⇒ (i) We argue by contradiction, assuming that PH′π∗|KΘ is not invertible.

Since this operator is left invertible, that means that PH′π∗KΘ is not dense in H′;

there exists thus χ ∈ H′, χ 6= 0 such that χ ⊥ π∗KΘ.

Since PH′π∗|KΘ is left invertible and PH′π∗|KΘθx is not, this last operator is not

one-to-one, and we may choose gx ∈ KΘθx \KΘ such that PH′π∗gx = 0. Since gx ∈
KΘθx ⊂ H2(E∗), it follows that π∗gx ∈ π∗H

2(E∗) ⊂ (π∗H
2
−(E∗))

⊥ = H ⊕ πH2(E).

However, by definition we have π∗gx ∈ H′⊥, while, using (3.3) and the definition
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of H′′, we also have π∗gx ∈ H′′⊥. Therefore π∗gx ∈ H⊥, whence π∗gx ∈ π(H2(E)).

But the space πH2(E) is UΠ-invariant, which implies that Uk
Ππ∗gx ∈ πH2(E). In

particular, we have π∗(z
kgx) = Uk

Π(π∗gx) ⊥ χ (since π(H2(E)) ⊥ H′).

We claim now that

(6.2) span
(
KΘ, z

kgx : k ≥ 0, x ∈ F
)
= H2(E∗).

To prove it, let f ∈ H2(E∗) and assume that f ⊥ span
(
KΘ, z

kgx : k ≥ 0, x ∈ F
)
.

Since f ⊥ KΘ, there exists f1 ∈ H2(F ) such that f = Θf1. We will show by

induction that for all k ≥ 0, f
(k)
1 (0) = 0, which of course will imply that f1 ≡ 0, and

thus the truth of (6.2).

First, by (6.1) there exists gΘx ∈ KΘ and λx ∈ C∗ such that

gx = gΘx + λxΘx.

We have then

0 = 〈f, gx〉 = 〈Θf1, g
Θ
x + λxΘx〉2 = λx〈f1, x〉2 = λx〈f1(0), x〉F .

Since λx 6= 0, that implies that 〈f1(0), x〉F = 0 for all x ∈ F , whence f1(0) = 0.

Assume now that f
(k)
1 (0) = 0. That means that there exists fk+2 ∈ H2(F ) such

that f1 = zk+1fk+2. Therefore

0 = 〈f, zk+1gx〉 = 〈Θzk+1f2, z
k+1gx〉2 = 〈Θfk+2, gx〉2.

As before we deduce that fk+2(0) = 0, which implies that f
(k+1)
1 (0) = 0. The

property for f1 follows now by induction, concluding the proof of (6.2).

Since π∗ is an isometry, (6.2) implies that

span
(
π∗KΘ, π∗(z

kgx) : k ≥ 0, x ∈ F
)
= π∗H

2(E∗).

Recall that by construction χ ⊥ π∗KΘ, while we have shown that χ ⊥ π∗(z
kgx), for

all k ≥ 0 and for all x ∈ F . Consequently χ ⊥ π∗H
2(E∗). On the other hand, since

χ ∈ H′, we also have χ ⊥ π∗H
2
−(E∗), whence χ ⊥ π∗L

2(E∗). Finally, we obtain that
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χ ∈ H∩ (π∗L
2(E∗))

⊥ = H′′. Therefore χ ∈ H′ ∩H′′ = {0} which is absurd and ends

the proof of the Proposition.

�

The next result is then a consequence of Theorem 5.2 and Proposition 6.1.

Theorem 6.2. Let b ∈ H∞(E → E∗), ‖b‖∞ ≤ 1 and let Θ ∈ H∞(F → E∗) be an

inner function. Then the operator (Id−TbT
∗
b )|KΘ is an isomorphism from KΘ onto

H(b) if and only if
{

dist(Θ∗b,H∞(E → F )) < 1,

dist(θ∗xΘ
∗b,H∞(E → F )) = 1, ∀x ∈ F.

In the scalar case dim E = dim E∗ = dim F = 1, we have θx(z) = z; thus

Theorem 6.2 generalizes part of [Fri05, Theorem 4.1] and of the Theorem on Close

Subspaces in [Nik86].

7. Some examples and remarks

The first two examples show that the two implications in Corollary 5.8 cannot be

reversed even in the scalar case dimE = dimE∗ = dimF = 1.

Example 7.1. Define

f(eiϑ) :=





1 if ϑ ∈ [0, π]

1/2 if ϑ ∈]π, 2π[,

and consider the outer function g, positive at the origin and with modulus equals

to |f | a.e. on T. Set b = Θg, where Θ is any inner function. Since log(1 − |b|) is

not integrable, b is an extreme point of the unit ball of H∞. Since f, f−1 ∈ L∞, it

is immediate that g is invertible in H∞, whence Tb̄Θ = Tg = T ∗
g is invertible. Also,

Θ̄b = g ∈ H∞, so dist(Θ̄b,H∞) = 0 < 1.

On the other hand, Corollary 5.6 shows that the distortion operator Id − TbT
∗
b :

KΘ −→ H(b) cannot be invertible. Consequently, the implication (i) ⇒ (ii) in

Corollary 5.8 cannot be reversed.



22 NICOLAS CHEVROT, EMMANUEL FRICAIN, AND DAN TIMOTIN

Example 7.2. Let h : D → D be the conformal transform of the disk D onto the

simply connected domain

Ω =
{
z ∈ C : |z| < 1, −1

4
< ℜez < 0

}
.

If we regard h as an element of H∞, then |h(eit)| = 1 on an arc of positive measure,

while 0 is in the essential range of h; also, |ℜeh| ≤ 1
4
everywhere.

Let Θ be an arbitrary inner function, and define b = Θh; b is then an extreme

function. Since Θ̄b = h ∈ H∞, dist(Θ̄b,H∞) = 0 < 1. Also, b̄Θ = h̄; since

|h̄ + h| = 2|ℜeh| ≤ 1/2 everywhere, it follows that dist(b̄Θ, H∞) ≤ 1/2 < 1. Thus

condition (iii) of Corollary 5.8 is satisfied.

On the other hand, 0 is in the essential range of b̄Θ = h; it is then known (see, for

instance, [Nik02a, B.4.2]) that Tb̄Θ cannot be left invertible. Thus the implication

(ii) ⇒ (iii) in Corollary 5.8 cannot be reversed.

As shown in Corollaries 5.4–5.6, the invertibility of the distortion operator often

implies the already studied case of b inner. It is therefore interesting to see some

concrete examples when this does not happen.

Example 7.3. This is a simple case when b is neither inner nor ∗-inner, with both

H(b) and KΘ infinite dimensional.

Let α, β ∈ R satisfying |α|2 + |β|2 = 1, α > β and αβ > −1/2 and let θ be a

scalar inner function. Then take b(z) =

(
1√
2

1
2
√

2

− z√
2

z

2
√

2

)
and Θ(z) =

(
αθ
zβθ

)
. It is easy

to check that b is in the unit ball of H∞(C2 → C2) and Θ is an inner function in

H∞(C → C2). Moreover straightforward computations show that

∆ =

(
0 0

0
√
3
2

)
, b∗Θ =

(
(α−β)θ√

2
(α+β)θ

2
√
2

)
,

whence clos(∆H2(C2)) = H2 and

Γb =



T (α−β)θ√

2

0

T (α+β)θ

2
√

2

√
3
2


 :

H2

⊕
H2

→ H2(C2).
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Now it is well known that if T := ( A 0
B C ) then T is bounded below if A and C are

bounded below. But since α > β, it is clear that T (α−β)θ√
2

is bounded below; thus Γb

is bounded below. On the other hand, we have

Θ∗b =

(
α−β√

2
θ̄

α+β

2
√
2
θ̄

)
=

(
α−β√

2
α+β

2
√
2

)
θ̄,

and thus since θ is inner and |α|2 + |β|2 = 1, we obtain

dist(Θ∗b,H∞(C2 → C)) ≤ ‖Θ∗b‖∞ =

∥∥∥∥∥

(
α−β√

2
α+β

2
√
2

)∥∥∥∥∥
2

=

√
5− 6αβ

2
√
2

.

Now the condition αβ > −1/2 implies that dist(Θ∗b,H∞(C2 → C)) < 1. We may

then apply Theorem 5.3 to conclude that the distortion operator is invertible.

In the next example b is ∗-inner, but not inner.

Example 7.4. Consider a ∗-inner function b = (α β) ∈ H∞(C2 → C); that is,

|α|2 + |β|2 = 1. Then

(I − TbT
∗
b )f = αP−(ᾱf) + βP−(β̄f).

Therefore the image of (I−TbT
∗
b ) as well as the image of (I−TbT

∗
b )

1/2 are contained

in the invariant subspace for T ∗
z generated by T ∗

z α and T ∗
z β. In particular, if α and

β are rational, then H(b) is finite dimensional, and thus equal as a set to KΘ for

some Blaschke product Θ. But in general the norm on H(b) is different from the

usual H2 norm on KΘ, and the distortion operator corresponding to Θ is invertible,

but not equal to the identity.

On the other hand, if we take b = (1/
√
2 1/

√
2B) ∈ H∞(C2 → C) with B an

infinite Blaschke product, then (I − TbT
∗
b )

1/2 = 1/
√
2PKB

. Thus H(b) is just KB

with the norm divided by
√
2, and the corresponding distortion operator is again

invertible.

One might expect that if b and Θ are sufficiently close, in the sense that

‖b−Θ‖∞ < 1,(7.1)
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then the distortion operator should be invertible. In the scalar case, if b is inner,

then it was pointed in [Nik86, p. 202] that this condition is indeed sufficient. If b

is a vector-valued inner function, then condition (7.1) remains sufficient to ensure

the invertibility of the distortion operator. Indeed, it follows from (7.1) that ‖1 −
Θ∗b‖∞ < 1, whence TΘ∗b = Id + T1−Θ∗b is invertible. In particular, Tb∗Θ = (TΘ∗b)

∗

is left invertible; therefore, condition (ii) of Corollary 5.8 is satisfied, which implies

that the distortion operator is invertible.

However, even in the general case of an arbitrary extreme point b in the unit ball of

H∞, condition (7.1) is no longer sufficient to ensure the invertibility of the distortion

operator. Actually, it seems improbable that a condition expressed only in terms of

functions might be found. The next example shows that indeed no condition similar

to (7.1) is sufficient.

Example 7.5. For ε > 0, let h be the conformal transform of the disk D onto the

simply connected domain

Ω =
{
z ∈ C : |z| < 1, ℜez > 1− ε

2

}
.

If we regard h as an element of H∞, then |h| = 1 on an arc of positive measure but

h is not inner. Moreover, on T, we have

|1− h|2 = 1 + |h|2 − 2ℜeh ≤ 2(1− ℜeh) < ε.

Now take b = Θh with Θ is an arbitrary inner function. We have ‖Θ − b‖∞ =

‖1 − h‖∞ ≤ ε, while Corollary 5.6 implies that the distortion operator Id − TbT
∗
b :

KΘ → H(b) is not invertible. Consequently, no condition of closeness in the H∞

norm can ensure the invertibility of the distortion operator.

8. Completeness of the difference quotients

Recall that the difference quotients are the elements k̂b
λ,e of H(b) defined by (2.4).

For dimE = dimE∗ = 1 and b an extreme point in the unit ball of H∞, the

set {k̂b
λ : λ ∈ D} (which does not depend on e in this case) has been shown to
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be complete in H(b) in [Fri05]; this completeness is further used therein to obtain

results about properties of reproducing kernels. If, moreover, b is inner, then the

completeness of the difference quotients can easily be obtained by noting that the

mapping f 7→ z̄bf̄ is an antilinear surjective isometry which maps kb
λ onto k̂b

λ.

The study of the completeness of the family of the difference quotients in the gen-

eral case may present independent interest. Together with the kernels, the difference

quotients represent the main examples of “concrete” elements of the de Branges

space H(b); they also appear in the study of model spaces and related questions

(see, for instance, [BK87, Gar06]). We devote this section to the investigation of

their completeness.

We start with an equivalent condition.

Lemma 8.1. Let b ∈ H∞(E → E∗). Then the following two conditions are equiva-

lent:

(1) span{k̂b
λ,e : λ ∈ D, e ∈ E} = H(b).

(2) span{S∗n+1be : n ≥ 0, e ∈ E} = H(b).

Proof. As in the scalar case [Sar95, II-8] it is easily seen that, for λ ∈ D and f ∈
H2(E), we have

f(z)− f(λ)

z − λ
= (Id− λS∗)−1S∗f.

In particular, applying this formula to f(z) := b(z)e, we obtain

(8.1)
b(z)− b(λ)

z − λ
e = (Id− λS∗)−1S∗be =

∞∑

n=0

λnS∗n+1be.

Now according to (8.1), we have f ∈ H(b)⊖ span{k̂b
λ,e : λ ∈ D, e ∈ E} if and only

∞∑

n=0

λn〈S∗n+1be, f〉b = 0, (λ ∈ D, e ∈ E),
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and, since the function λ 7−→
∞∑

n=0

λn〈S∗n+1be, f〉b is analytic in a neighbourhood of

0, this is equivalent to

〈S∗n+1be, f〉b = 0, (n ≥ 0, e ∈ E),

which gives the result. �

The scalar case has been discussed in [Fri05]; we give a different proof of Lemma

4.2 therein, which seems to us of independent interest. Note that in Corollary 8.4

below we will obtain a more general result.

Theorem 8.2 (Lemma 4.2, [Fri05]). Let b be an extreme point of the unit ball of

H∞. Then

span{k̂b
λ : λ ∈ D} = H(b).

Proof. As in the case of b inner, we will construct an antilinear surjective isometry

from H(b) onto H(b) which maps kb
λ onto k̂b

λ. Consider Π = (π, π∗) : L
2 ⊕L2 −→ K

be an AFE such that π∗
∗π = b and let W : K −→ K be the operator defined (on a

dense set) by

W (πf + π∗g) = πJg + π∗Jf,

with J : L2 −→ L2 the antilinear map defined by Jf = z̄f̄ (note that since b is a

scalar function, then the maps π and π∗ act on scalar L2-space). Then standard

arguments show that W is an antilinear surjective isometry, keeping the model space

H and interchanging the subspaces πH2 and π∗H
2
−. In other words, we have

WPH = PHW.(8.2)

Now, for χ ∈ H, set

Ω(π∗
∗χ) = π∗

∗(Wχ).

Since b is an extreme point of the unit ball of H∞, it follows from Proposition 3.3

that π∗
∗ is an isometry from H onto H(b), and then we can easily verify that Ω is

an antilinear surjective isometry from H(b) onto H(b). For λ ∈ D, recall that kλ
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denotes the reproducing kernel of H2 and consider the function Ξλ ∈ H defined by

Ξλ = PHπ∗kλ. According to Lemma 3.2 and (2.2), we have

π∗
∗Ξλ = π∗

∗PHπ∗kλ = (Id− TbT
∗
b )kλ = kb

λ,

and then we get using (8.2)

Ω(kb
λ) =Ω(π∗

∗Ξλ) = π∗
∗WΞλ = π∗

∗WPHπ∗kλ = π∗
∗PHWπ∗kλ

=π∗
∗PHπJ

(
1

1− λ̄z

)
= π∗

∗PHπ

(
1

z − λ

)
.

Now it is easy to see that (3.5) implies

(8.3) π∗
∗PHπ = P+b− bP+,

and therefore since (z − λ)−1 ∈ H2
−, we obtain

Ω(kb
λ) = P+

(
b(z)

z − λ

)
= P+

(
b(z) − b(λ)

z − λ
+

b(λ)

z − λ

)
=

b(z) − b(λ)

z − λ
= k̂b

λ,

and the proof is complete. �

The nonextreme scalar case will be discussed below, as a consequence of Theo-

rem 8.3.

To go now beyond the scalar case, we will use the abstract functional embedding

introduced in Subsection 3. We have then the following general result.

Theorem 8.3. Suppose b ∈ H∞(E → E∗), ‖b‖∞ ≤ 1 and consider Π = (π, π∗) :

L2(E)⊕ L2(E∗) −→ K be an AFE such that π∗
∗π = b. The following assertions are

equivalent:

(1) span{k̂b
λ,e : λ ∈ D, e ∈ E} = H(b).

(2) H′ ∩H′′
∗ = {0}.

(3) H′′ ∨H′
∗ = H.

(4) ker (PRb
∗|R∗) = {0} (R,R∗ defined by (3.6)).
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Proof. (1) ⇔ (2) Denote ξn = PHπ(z̄
n+1e), n ≥ 0. One can easily check that

(8.4) span(ξn) = clos(PHπH
2
−(E)).

We know from Proposition 3.3 that π∗
∗ is a coisometry from H onto H(b) with kernel

H′′ = H⊖H′. Denoting ηn = PH′ξn, we have

π∗
∗ηn = π∗

∗(PH′ + PH⊖H′)ξn = π∗
∗PHξn = π∗

∗PHπ(z̄
n+1e).

and using (8.3), we get

π∗
∗ηn = P+bz̄

n+1e = S∗n+1be.

It follows that π∗
∗ is a unitary from span(ηn) onto span(S∗n+1be : n ≥ 0, e ∈ E).

Then, according to Lemma 8.1, the difference quotients are not complete iff there

exists a non-null vector χ in H′ that is orthogonal to all ηn; or equivalently, that is

orthogonal to all ξn. By (8.4), this is equivalent to being orthogonal to π(H2
−(E)),

which is the same as saying that χ ∈ H′′
∗. The equivalence is thus proved.

(2) ⇔ (3) follows easily from the definition.

(2) ⇔ (4) Let χ ∈ K. Using Lemma 3.1, we have χ ∈ H′ ∩ H′′
∗ if and only if

there is g ∈ R∗ such that χ = τ∗g and τ∗g ⊥ τf , for every f ∈ R. Now it follows

from (3.1) that this is equivalent to the existence of g ∈ R∗ such that χ = τ∗g and

PRb
∗g = 0. Since τ∗ is an isometry on R∗, we get the conclusion. �

Corollary 8.4. Let b ∈ H∞(E → E∗), ‖b‖∞ ≤ 1. If clos(∆∗H
2
−(E∗)) = clos(∆∗L

2(E∗)),

then

span{k̂b
λ,e : λ ∈ D, e ∈ E} = H(b).

In particular, if b is ∗-inner, then the difference quotients are complete.

Proof. The hypothesis implies that R∗ = {0} and the conclusion follows from The-

orem 8.3. �

Corollary 8.5. Let b be an extreme point of the unit ball of H∞(E → E∗). Then

the two following conditions are equivalent:
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(i) span{k̂b
λ,e : λ ∈ D, e ∈ E} = H(b).

(ii) clos(∆∗H
2
−(E∗)) = clos(∆∗L

2(E∗)).

Proof. (ii) ⇒ (i) follows from Corollary 8.4. As for (i) ⇒ (ii), we know from [Tre86]

(see Remark 3.4) that b is an extreme point of the unit ball of H∞(E → E) if

and only if R = {0} or R∗ = {0}. Assume that (ii) is not satisfied, which means

R∗ 6= {0}. Then we necessarily have R = {0} and thus ker (PRb
∗|R∗) 6= {0}.

But if the difference quotients are complete, then by Theorem 8.3, we obtain a

contradiction. �

For the nonextreme scalar case, we have to recall that a function f in the Nevan-

linna class of the unit disc D is said to be pseudocontinuable (across T) if there exist

g, h ∈
⋃

p>0H
p such that

f = h/g

a.e. on T. The function f̃ := h/g is the (nontangential) boundary function of

the meromorphic function f̃(z) := h(1
z
)/g(1

z
) defined for |z| > 1, which is called

a pseudocontinuation of f . R. Douglas, H. Shapiro and A. Shields have obtained

[DSS70] the following characterization: a function f ∈ H2 is pseudocontinuable if

and only if it is not S∗-cyclic, that is span(S∗nf : n ≥ 0) 6= H2. It follows then from

the structure of invariant subspaces of S∗ that there exists an inner function θ such

that f ⊥ θH2; in particular, f̄θ ∈ H2.

Theorem 8.6. Suppose b is not an extreme point in the unit ball of H∞. Then

span{k̂b
λ : λ ∈ D} = H(b) ⇐⇒ b is not pseudocontinuable.

Proof. According to Theorem 8.3, it is sufficient to prove that b is not pseudocon-

tinuable if and only if ker(PRb̄|R∗) 6= {0}. Note first that nonextremality of b

implies that log∆ ∈ L1 and in particular ∆ 6= 0 almost everywhere on T; thus

clos(∆L2) = L2. On the other hand, it follows easily from the Beurling-Helson The-

orem on shift-invariant subspaces that there exists an outer function φ ∈ H2 with

|φ| = ∆ such that clos∆H2 = ∆
φ
H2.
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Now assume that ker(PRb̄|R∗) 6= {0}. Since

R = L2 ⊖ ∆

φ
H2 and R∗ = L2 ⊖ clos(∆H2

−),

there exists h ∈ L2, h 6= 0 such that g = ∆h ∈ H2 and b̄h = ∆
φ
h1, with h1 ∈ H2.

Multiplying the first equality by b̄, we obtain

b̄g = b̄∆h =
1− |b|2

φ
h1

whence b̄(φg + bh1) = h1, or

b =
h̄1

φg + bh1

,

(note that h1 6= 0 and thus φg + bh1 6= 0). Consequently, b is pseudocontiuable.

Conversely, if b is pseudocontinuable, there exists an inner function θ such that

h1 = b̄θ ∈ H2. Then g = θ−bh1

φ
= ∆2θ

φ
is in the Nevanlinna class of D, while on T we

have |g| = |∆|. It follows that g belongs to H2 (even to H∞); moreover, h = g/∆

is a unimodular function in L2 with b̄h = ∆
φ
h1. This means that h ∈ ker(PE b̄|E∗),

which is therefore different from {0}. �

Example 8.7. As a consequence of Theorem 8.6, it is simple to give two examples

of de Branges–Rovnyak spaces (both corresponding to nonextreme functions b),

with the completeness of the difference quotients false for the first and true for the

second. Note first that, if supz∈T |b(z)| < 1, then log(1− |b|) is integrable, and thus

b is not extreme. This condition is satisfied by both functions b1(z) := 1/(z − 3)

and b2(z) := exp((z − 2)−1). The first is pseudocontinuable, and thus the difference

quotients are not complete in H(b1), while the second is not, whence the difference

quotients are complete in H(b2). We see then that extremality is not a necessary

condition for the completeness of the difference quotients.
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