
A Source Discovery Protocol for
ASM Applications in SSM Networks

Mickaël Hoerdt, Frédéric Beck
Université Louis Pasteur – LSIIT

Boulevard Sébastien Brant
67400 Illkirch, France

{hoerdt,beck}@clarinet.u-strasbg.fr

Damien Magoni
Université Louis Pasteur – LSIIT

Boulevard Sébastien Brant
67400 Illkirch, France

magoni@dpt-info.u-strasbg.fr

Jean-Jacques Pansiot
Université Louis Pasteur – LSIIT

Boulevard Sébastien Brant
67400 Illkirch, France
pansiot@crc.u-strasbg.fr

Abstract— The Single Source Multicast (SSM) model has
received considerable attention from the research community
as it could finally bring a scalable solution for some multicast
applications. In the SSM model it is the responsibility of the
applications to tell the network what are their sources of interest.
As a consequence, the SSM model is well suited for one to many
multicast applications (such as TV and radio streaming) because
there is only one source to discover and it is supposed to be well
known. However there still does not exist an SSM session layer
protocol and middleware in order to help Any Source Multicast
(ASM) applications to discover the presence or departure of the
SSM sources. In this paper, we propose a detailed architecture
for such a source discovery session layer protocol. We have
implemented our protocol as a middleware called Libemu and
freely available as an open source library.

I. I NTRODUCTION

Classical multicast multi-sources applications use the Deer-
ing’s [1] ASM group communication model where anyone,
including non-members, can send packets with one local
operation to a group identifier G with best effort guarantees
that its packets will be transmitted to all group members:
the network duplicates packets and manages the dynamics
of sources and receivers. With the new Holbrook’s [2] SSM
model it is the responsibility of applications to tell the network
who are their sources of interest. In this paper we propose a
detailed architecture and implementation of a source discovery
session layer protocol for making ASM applications able to
use SSM sources. Among the most important sections of
this paper, section IV presents an overview of the problem
and our solution to it. In section V we describe the ASM
over SSM emulation part of the protocol. Section VI presents
an optional source management mechanism to perform some
control operations on an applicative group. Finally section VII
shows the various states in which a source can be.

II. PREVIOUS WORK

In his thesis [2], Holbrook considered the case of using
multi-source applications in SSM network only environment.
He defined two schemes, an hybrid approach of them and
evaluated them: he proposed a sender advertisement scheme
using a control channel and a session relaying scheme using a
central node, and argues that both of them have advantages and
drawbacks. He measured the startup delay of the sessions and

simulated both propositions but did not define an architecture
for it. That’s why we propose a detailed architecture based on
his idea in this paper.

In paper [3] Chesterfield and Schooler propose to modify
RTP/RTCP to have it working under SSM environment. It
is aimed at large scale multimedia distribution and control
and dot not consider the case of medium sized multiparty
conferences. Their solution could work under specific ap-
plications [4], [5] but reduces the information provided by
RTP/RTCP protocol for conference applications and could
only work with multicast applications using RTP/RTCP. We
try here to define an architecture aimed at multi-source appli-
cations, as independent as possible from the application and
only providing independent services for an applicative group.

An architecture based on session relaying has been proposed
in [6]. They propose to put multiple proxies on the network
to improve the deployment of SSM. They do not consider the
problem of multi-source in SSM networks.

A more recent work proposes to modify the SSM model to
allow multiple source to emit toward a channel [7]. They argue
that this require little modifications in the forwarding state
entries, improve the multicast state scalability, and eliminate
the single point of failure problem present in the solutions
proposed in [2]. We believe that their solution will require a
very high deployment effort as it require to change the IGMP
and PIM-SSM specification, in the hosts and in the routers.
This paper describes a protocol which could be used in the
current SSM architecture to achieve the source discovery in
the existing SSM Network. We have implemented the protocol
as a freely available library for the research community [8].

III. M OTIVATION AND GOALS

As a first point, we would like to have a quickly usable
architecture, according to the latest network and application
research efforts. We would like to be able to use multi-
source multicast at the inter-domain Internet scale too. This
means using SSM service, because it is simple to maintain
for operators and because it is believed to be a viable solution
for large scale Internet multicast.

Second, this proposition must be scalable regarding the
number of announced sources and fault tolerant regarding the

source dynamics. This means using soft-state retransmission
and UDP for control messages.

For application performances and ease of portability, the
architecture must be as transparent as possible with respect to
the classical ASM model.

On the implementation viewpoint, this architecture must be
portable, independent of the IP version stack used and easy to
use for an application developer.

IV. PROBLEM OVERVIEW

In this section, we will describe an architecture that solves
the problems cited, and permits the use of channels in multi-
sender applications. This architecture is inspired by Hugh W.
Holbrook’s thesis [2].

A. Problems to solve

We aim to use channels in multi-sender applications, but to
do so, we have several problems to solve.

Firstly, in the ASM model described by Deering, a multicast
group is only identified by its IP address. But here, we will
work with SSM multicast channels, which are described by a
tuple (S,G) composed of the unicast IP address of a source
S and an IP multicast address G where only S is allowed to
put data in. But then, knowing that at the moment, in most
of the multi-source multicast applications a multicast group is
identified by both its IP multicast address and the port used
to send data to, the problem of identifying a multicast group
appears.

Secondly, on the one hand, in ASM when a receiver joins a
group, he discovers automatically the sources when they send
data to the group. In the same way, when a new source appears,
the receivers learn it simply by receiving the packets sent.
On the other hand, with the SSM model, no such mechanism
exists, because we work with channels (S,G) where S is the
single source being able to emit on this channel.

Consequently, the receivers must have a way of discovering
the active sources and being informed of the arrival of new
ones. To achieve these goals, we have two choices as exposed
in [2]:

• Session Relaying.
• Sender Advertising.

We will now explain a solution, based on sender advertising.

B. Solution proposed

This solution uses at least a channel per source, and
a control channel, used for relaying various administration
information and source advertising for the group. This control
channel identifies the multicast group, and runs on top of UDP
for sending data. Therefore, to announce a group, it is only
necessary to advertise this channel and the UDP port used,
receivers having only to join the multicast channel and bind it
to obtain all information necessary to take part in the session.
The source of this control channel will be the controller of
the group, and will perform various operations for this group,
like advertising new sources, giving the list of the existing

ones on demand and optionally making some network group
management.

As it is possible for the same controller to have authority for
several groups, it has been decided to use a single controller
that takes care of multiple groups. This controller uses a single
UDP socket listening on an announced port to communicate
with the sources or the receivers which want to learn the
existing sources. The source advertising messages and other
administration messages are sent to all the receivers via the
control channel. One control channel corresponds to one ASM
group at the network level. This controller takes care on a
controller S of all the control channels identified by a channel
(S,...). These channels do not necessarily use the same UDP
port to sent data to.

This controller is run at the application level of the OSI
model, because it takes care of the interaction between the
network and the applications used in multicast sessions. The
advantage of having this controller running on the application
layer, is that it is possible to choose its location so that the
performances are the best, and it introduces the possibility of
doing group management at the application layer. Moreover
to manipulate UDP socket is very easy and allows quick
implementation on the hosts.

This paper describes a protocol which could be used be-
tween the sources or the receivers and the controller in SSM
networks to manage sources.

V. ASM OVER SSM EMULATION

In this section, we describe the ASM over SSM emulation
part of the protocol, which means the way the receivers learn
the active sources for a group at a given time, and the new
ones which could appear during the session.

A. Protocol description for source-controller interaction

Now we will describe the interaction between a source for a
group, and the controller (that means the controller responsible
of source announcing) for this group. We’ll only take a look
at the source advertising, the group management control is
optional and is described in Section VI.

1) With a new source: When a new source wants to
announce itself, it must begin by informing the controller.
The controller then stores the information about the source
in its cache. To achieve robustness and scalability, this an-
nouncement is sent periodically with a message composed of
the protocol header with an optional SDP payload [9], [10].
We call this messageON . It is sent to the UDP socket of
the controller’s process. This message must contain all the
necessary information for a receiver to join the channel used
by the source to send its data to the group. It is composed of
the new source channel information and possibly transport or
protocol over IP information.

It must be noted that the transport information is only
destined to applications and not the protocol described here.
In the previous example, the application behavior is the same
than the ASM one. It means that UDP sources have to send

to the same UDP announced port and that each receiver have
to bind on the same UDP port for data reception.

Once this messageON has been treated, the controller
announces the source to the receivers and optionally send an
ONRESP to the new source to inform it about various session
parameters, depending on the group management policy. To
do so, it forwards this message to the whole group via the
control channel, if the source is allowed to send data to the
group. Therefore, all the receivers learn that this source exists,
and are able to join the channel it uses to send data if desired.
Figure 1 illustrates this mechanism.

Fig. 1. Interaction Source-Controller for a messageON

2) With an existing source: Periodically, a source must
send a messageON to the controller, in order to inform it
that it is still active, and the controller forwards this message
on its control channel to the receivers. For each source, the
controller keeps a timerON validity which gives the time
the source entry in his cache is valid. If the controller does
not receive such a message before the timer associated with
the source ends, it considers that the source is not active
anymore, removes the corresponding entry in his cache and
sends a messageOFF to inform the receivers that this source
no longer exists.

The sources and the receivers also have to maintain timers
in order to take care of the validity of the various information
and messages. For example, a source has to run a timer for
the validity of a messageON in order to take care of the
periodical sent of this message.

A source can also explicitly announce that it stops its
activity by sending a messageOFF to the controller, which
removes the corresponding entry in its cache and forwards
this message on the corresponding control channel in order
to inform the receivers, which then leave this channel. The
mechanism is illustrated on figure 2. Note that some upper
layer protocols already have a function to advertise the end
in a session participation(BYE packets from RTCP protocol).
this mechanism may be redundant for some applications but
one important thing of our approach is that the control plane
is over UDP and the data plane is over IP. This means that any

multicast applications working over IP could use this source
discovery protocol.

The messageOFF is almost identical to the messageON .
It is sent to the announced port of the control channel on an
UDP socket and is a message composed of this protocol’s
header with payload containing the identifier of the group and
the identifier of the channel used to send data. These two
parameters are sufficient to leave the channel corresponding to
the source. If the messageOFF is lost, the source timer will
expire in the controller cache because it is no more updated
with the periodicON messages. As a consequence aOFF

message will be sent in the control channel and the receivers
will unsubscribe for this source.

Fig. 2. Interaction Source-Controller for a messageOFF

B. Protocol description for receiver-controller interaction

Here we describe the interaction between a receiver and the
group’s controller. We distinguish the case when a receiver
demands information about the sources which are active for
the group, and the case when a source has announced itself.

1) Information Request: The controller acts here as a
directory of sources. A receiver which wants to learn the list
of the existing sources for a group on which the controller has
authority, sends him a unicast message on a known port from
the receiver. This message is an UDP packet with a payload
containing the protocol header and the group identifier, which
is the tuple (S,G). We call this message a messageINFOREQ.

When the controller receives such a message, it takes a look
at its cache, and responds to the receiver in unicast with a
messageINFORESP giving this list of sources and enough
information for the receiver to join the corresponding channels
if wanted.

If the controller wants to be able to give these information,
it has to maintain a cache containing all these. That means that
the cache must contain the group identifier (S,G), if there are
more than one controller, the control channels used by these
controllers, the dates of beginning and ending of validity of
the session, and the source list. That gives the table I.

The source list is composed of zero or several entries. Each
entry describes a source and gives the information that a

TABLE I

CONTROLLER’ S CACHE INFORMATION

control channel second control channel other control channels beginning ending sources

receiver may need to join the channel used for sending data
to the group. Such an entry is illustrated on table II.

TABLE II

SOURCE LIST DETAILS

sending channel port KICKED MUTED coding information Timer

The flags KICKED and MUTED are used if source man-
agement operations are performed, and are set to 0 by default,
and the coding information are optional.

This cache is used by the controller to store all the informa-
tion for a group, but the receivers have to maintain the same
cache, but limited to the joined applicative group. This cache
is updated thanks to the messages sent on the control channel.

The messageINFORESP is an UDP packet with as pay-
load this protocol’s header with a SDP description describing
the session and the sources. The SDP part contains the group
identifier, the dates of beginning and end of validity of the
session, and a list of zero or more channels and ports used
by the sources to send data to the group, and possibly more
information about these sources which the receivers could
need.

When a receiver receives a packetINFORESP , if it has
not done so yet, it joins the control channel, and does the same
with the channels used by the sources which it has interest in.
See Figure 3.

Fig. 3. Interaction Receiver-Controller

2) Source advertising: When a new source announces its
activity to the controller. The controller has to inform all the
receivers. To do so, it forwards the messageON received from
the source on the control channel.

In the same way, when the controller detects the explicit or
implicit departure of a source, it forwards or sends, according
to the case, a messageOFF for this source on the control
channel.

VI. SOURCE MANAGEMENT CAPABILITIES

This protocol allows the possibility to perform some control
operations on an applicative group. These source management
operations are optional. In this section, we give two exam-
ples of such operations, the KICK and MUTE mechanisms,
inspired by the control operations available in the IRC proto-
col [11].

A. KICK

The KICK operation consists in forbidding a source to send
data to the group. As we are using channels, the controller
cannot block the traffic from the source, but it has the
possibility to advice the receivers to not receive it. Indeed, if
a source is not wanted anymore for a group, the flag KICKED
is set in the entry corresponding from the controller’s cache,
and a messageKICK is sent on the control channel for
this source. Then, all the receivers learn that the source is
not desired anymore and have the possibility to leave the
corresponding channel, after having set the flag KICKED in
their cache.

As the source is still active, it sends periodicallyON

messages to the controller, but as long as the flag KICKED
is set for this source, the controller does not forward these
messages, but instead sends aKICK message.

If the source is authorized to emit again, it is enough to
withdraw the KICKED flag and to propagate a messageON

for this source on the control channel, the receivers unsetting
the KICKED flag in their cache will have the possibility to
join again the corresponding channel if it has been left.

This mechanism is transparent for the sources: this operation
is done by the receivers which are supposed to leave the
channel used by the source.

B. MUTE

This mechanism is less violent than the KICK one. Here
the source is not undesirable, but in order to save resources or
to maintain session integrity, it is wished that only specified
sources transmit data at a given time.

To do so, the controller sends a messageMUTE containing
the group identifier to the sources that should not send data.
When they receive such a message, sent in unicast to their
announced port UDP (the address is known from the channel
used to send data to), the sources stop sending data on
their channels, but keep doing the other things like sending
periodicalON messages to the controller.

To authorize the source to emit again, a message
UNMUTE containing the group identifier is send to the
source.

If a source has been asked to mute, the flag MUTED is
set in the corresponding entry in the controller’s cache, and
this flag is removed if the source is authorized to send data
to the group. As long as the flag MUTE is set, the controller
periodically sendsMUTE message to the source.

This operation is totally transparent for the receivers, unlike
the KICK one where they have to perform JOIN and LEAVE
actions. But this operation needs the cooperation of the source

which has to stop sending data to the group. That implies
that sources also run a process which listens on this port and
performs the needed operations ifMUTE or UNMUTE

messages are received.

C. Timers

To perform all these operations, both the source and the
controller have to keep running timers, in order to take care
of the validity of KICK andMUTE messages.

If the timer associated to theMUTE message expires, the
source decides that it can send data again, removes the MUTE
flag and sends again on its data channel.

A receiver has to run a timer giving the validity of aKICK

message. If this timer runs out, the KICKED flag is removed
and the channel data corresponding to the source is joined (if
it was left).

In the same way, the controller has to maintain two timers
giving the duration before the next sent of aKICK or
MUTE message. The timers used forKICK and MUTE

periodical messages have the same value than the timer used
for the ON message.

VII. STATES OF THE SOURCE

In this section, we describe the different states in which a
source can be, depending on the action realized thanks to this
protocol. We will distinguish the ASM over SSM emulation
part and the Control operations.

A. ASM over SSM emulation states

The different states in which a source can be in this case
are:

• ACTIVE: the source is considered to be active, notifying
it periodically to the controller withON messages.

• INACTIVE: the source has never been active or has sent
a OFF message.

The following state diagram illustrated in figure 4 describes the
different states and the transition between them for the ASM
over SSM emulation part, which means the source advertising.

Inactive

Active

Register_a_source
(Send ON)

UnRegister_a_source
(Send OFF)

Received On_resp
(update local middleware
 info)

Timer On cycle expired
(Send ON)

Fig. 4. State diagram for ASM over SSM emulation

B. Source management states

If the optional source management operations are per-
formed, some new states are introduced. The different states
in which a source can be in this case are:

• ACTIVE: the source is normally active.
• MUTED: The source has been asked by the controller to

stop sending data on its channel.
• KICKED: The source has been KICKED by the controller

(but it is still active).
• INACTIVE: The source has announced that it is not active

anymore.

The MUTE state is transparent for the receivers, the muted
source’s channel (multicast tree) is kept. This state is only
available for sources. In the same way, the KICKED state has
only sense for the receivers, the channel of a kicked source is
removed (actually it is virtually removed by the controller’s
KICK message, the source keeps its data channel and keeps
on sending data on it). We can imagine that we send a message
KICK to the source to advertise it that it has been kicked
from the session, but it is not an obligation as the receivers
will not get the data anymore. The INACTIVE state is reached
when the receiver has received theOFF message forwarded
on the control channel.

The following state diagram illustrated in figure 5 describes
the different states and the transition between them for the
source management operations.

Active

Muted Kicked

Inactive

Unmute
received

Mute
received

On
received

Kick
received

Off
received

Off
received

Fig. 5. State diagram for source management

VIII. B REAKDOWNS AND CONSEQUENCES

The basic idea to prevent breakdowns is setup a backup
controller. The master controller S sends on its control channel
periodical ALIVE messages to show that it is always active.
This message is a UDP packet with this protocol’s header and
a SDP description containing the group identifier for which it
is the controller.

If the backup controller S’ does not receive any ALIVE
message from S on (S,G) after the configured time, it considers
that S is down and begins sending ALIVE packets and source

advertising. A source which was kicked by the other controller
will be announced as active the next time it sends a message
ON unless the new one kicks it. In the same way, a source
that has been asked to mute, after the timer of the validity
of the MUTE message has expired, will begin to send data
again. To avoid this situation, it is possible to distribute this
by adding a KICK flag in each receiver’s cache. Then, if
the master controller kicks a source, it announces it with a
messageKICK, which causes this KICK to be set in all
receivers, including the second master. This flag would be
valid until a ON message for this source is sent. Such a
mechanism gives us at the application level the possibility for
the application based on this protocol to ask the user if he still
wants to receive data from the source even if the controller
recommends to kick it, or if he wants to follow the controller’s
order in case of aMUTE message.

Supposing that the master controller S breaks down, S’
detects it and begins assuming this role as already described
earlier. A receiver that has already joined the group is a
member of both control channels, and then receives the control
data on (S’,G’), and except the time until S’ takes the control,
nothing special happens. In the same way, a receiver that wants
to join the session joins both control channels, and has the
information he needs from S’.

IX. T IMERS AND THEIR DEFAULT VALUES

The messagesON , KICK andMUTE are sent periodi-
cally in order to add robustness to the protocol. Therefore, we
have to use several timers to define the validity of the different
states and information.

In this section, we describe the different timers used by
this protocol and their default value. Some of them are
configurable, the other ones depend on each others.

• ONV alidity: This timer describe the validity of a source
entry in the controller’s cache. It is the reference used
to define most of other timers. If we allow its value to
being configurable, we could distribute it to the sources
and the receivers thanks to theON message. Default: 15
seconds.

• ONForwarding: This timer describes the period the con-
troller uses to sendON messages on the control channel.
Default: 1/3 * ONV alidity (5 seconds).

• ONCycle: The ON Cycle is the period between two
ON messages sent by a source. In order to be robust
to one messageON lost, we must have 2 *ONCycle >
ONV alidity Default: 1/3ONV alidity (5 seconds).

• ONSrc: The ON Src is the time of validity of aON

message for a receiver. Default:ONV alidity (15 seconds).
• KICK: It is the time of validity of aKICK message

sent by the controller, and is used at the receiver’s level.
Default: ONV alidity (15 seconds).

• MUTE: It is the time of validity of aMUTE message
sent by the controller, and is used at the source’s level.
Default: ONV alidity (15 seconds).

• ALIV E: It is the time of validity of an ALIVE message
sent by the controller, and is used at the receiver’s level.

Actually, it only makes sense for the other controllers if
we have redundancy in order to add robustness. Default:
2 * ONV alidity (30 seconds).

• ALIV ECycle: It is the time between two ALIVE mes-
sages sent by the controller. Default: 3/4 *ONV alidity

(12 seconds).

X. SCALABILITY CONSIDERATIONS

An important question is the scalability of this architecture,
especially at the controller point. The controller is acting as a
sort of rendez-vous pointala PIM, and a relay node for control
messages between sources and receivers in the emulated ASM
group. It is then a central point of failure, sensible to the
bandwidth generated by the different announcing sources.

We consider here the problem of bandwidth scalability at
the controller in the worst case with the default timers values.
What is the amount of required download bandwidth at the
controller point in function of the number of synchronized
announcing sources?

If we take the messages defined in [12], anON message
which contains one channel will take 158 bytes on the wire,
considering that the source is transmitting on Ethernet and
IPv6 and that the announced channel is IPv6. With IPv4 it
will take 90 bytes considering that the announced channel is
IPv4.

In a critical case, if there are N synchronized sources
announcing themselves and located at 100 different hosts and
that all the messages arrive together at the controller, the
mean bandwidth required is a simple linear function, N*158
byte/sfor IPv6 and N*90 byte/s for IPv4 as illustrated in
figure 6.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 100 200 300 400 500 600

M
ea

n
re

qu
ire

d
ba

nd
w

id
th

 (
by

te
s/

s)

Number of active sources

Ipv6
IPv4

Fig. 6. Required download bandwidth vs number of announcing sources.

The generated bandwidth is not too high as we are con-
sidering this case and that applications with more that 100
applicative sources at the same time are very specific and will
be certainly based on the ASM network service model if it is
finally deployed. Moreover thanks to the acknowledgement
mechanism, it is possible to rate limit the sources at the
controller. Note that once the messages arrive at the controller,

the Controller has complete control over the bandwidth usage
of its control channel.

XI. SECURITY CONSIDERATIONS

At this moment, this protocol does not provide security
mechanism at all. The only security warrants are based on
IP. Because this protocol is based on top of a connectionless
protocol (UDP), it’s very easy for someone to abuse the
security mechanisms offered by IP with techniques like IP
spoofing. This is why it is very important on the receiver part
to bind on the two part of the (S,G) control channel. According
to the SSM service model, and how the SSM multicast tree
construction is done at the IP level, it is more difficult to spoof
a SSM channel than an IP.

More security mechanisms could be imagined, like using a
single session identifier per group which is only distributed
between the controllers.

But the security problem is not limited to the controller.
We can imagine that a source usurps another one’s identity
and carries out false advertisements for this one. By doing
so, a source can be announced as no more active whereas it
still sends data. To avoid this, we could use an appropriate
authentication mechanism, which can be done thanks to the
acknowledgment messages for example.

XII. I MPLEMENTATION

Our architecture is further defined in an Internet draft
available to the research community [12]. In particular, this
draft contains the full description of the protocol messages, the
format of the packets as well as the definition of all headers
and flags. We have implemented our middleware as a library
called Libemu that can be used by applications running over
Windows, Linux or *BSD operating systems depending on
the IP stack version. The library is implemented in C++ and
consists in more than 8000 lines of code. It is freely available
for download at [8]. It’s worth noticing that our library makes
use of the GNU Common C++ library (freely available)
and needs an host implementation of the multicast protocols
IGMPv3 and MLDv2. These protocol implementations are
provided by the Kame’s project under *BSD and can be found
in the latest GNU/Linux Kernel version 2.4.22 or in the new
2.6.x versions.

XIII. C ONCLUSION

Our work aims at providing a multicast library for multi-
source applications wanting to connect to Source Specific
Multicast only networks. Source Specific Multicast is a new
multicast over IP distribution paradigm: by pushing the source
selection in the hosts, it is a good candidate for an Internet
wide multicast service offer. It is well fitted for TV and radio
streaming applications but it does not provide automatic source
discovery as the original Any Source Multicast paradigm from
Steeve Deering does. Considering multi-source applications
with source dynamics and old applications based on the ASM
model, a multicast library (usable as a middleware) implement-
ing a source discovery protocol was missing. In this paper we

have filled this gap by designing an architecture able to provide
such a discovery service. We have defined a new protocol and
implemented its corresponding middleware in order to enable
ASM applications linked against our library to discover SSM
sources. Our next task consists in assessing the performance
of our proposal through extensive simulations. We also plan
to evaluate our implementation in the environment of the
6NET project and to define a proxy architecture based on this
protocol in order to use unmodified ASM applications on SSM
networks.

XIV. A CKNOWLEDGMENTS

This work was partly sponsored by the6net European
project under contract number IST-2001-32603.

REFERENCES

[1] S. Deering, “Multicast routing in a datagram internetwork,” Ph.D.
dissertation, Standford University, Dec. 1991.

[2] H. Holbrook, “A channel model for multicast,” Ph.D. dissertation,
Standford University, Aug. 2001.

[3] J. Chesterfield and E. M. Schooler, “An extensible rtcp control frame-
work for large multimedia distributions,”IEEE Symposium on Network
Computers and Applications (NCA-03), Apr. 2003.

[4] S. McCanne and V. Jacobson, “vic : A flexible framework for packet
video,” in ACM Multimedia, 1995, pp. 511–522. [Online]. Available:
citeseer.nj.nec.com/mccanne95vic.html

[5] V. H. an M-A. Sasse and I. Kouvelas, “Successful multiparty audio
communication over the internet,”Communications of the ACM, vol. 41,
no. 5, May 1998.

[6] D. Zappala and A. Fabbri, “Using ssm proxies to provide
efficient multiple-source multicast delivery,” inIEEE Globecom,
Sixth Global Internet Symposium, Nov. 2001. [Online]. Available:
http://citeseer.nj.nec.com/447783.html

[7] K. Sarac, P. Namburi, and K. C. Almeroth, “Ssm
extensions: Network layer support for multiple senders in
ssm,” in ICCCN, Dallas, Oct. 2003. [Online]. Available:
http://www.utdallas.edu/ ksarac/research/publications/ICCCN03.pdf

[8] F. Beck and M. Hoerd, Libemu 1.0, Université Louis Pasteur,
http://clarinet.u-strasbg.fr/ hoerdt/libemu/.

[9] M. Handley, C. Perkins, and E. Whelan, “Session announcement pro-
tocol,” Internet Engineering Task Force, Request For Comments 2974,
October 2000.

[10] M. Handley and V. Jacobson, “Sdp: Session description protocol,”
Internet Engineering Task Force, Request For Comments 2327, April
1998.

[11] J. Oikarinen and D. Reed, “Internet relay chat protocol,” Internet
Engineering Task Force, Request For Comments 1459, May 1993.

[12] F. Beck, M. Hoerdt, and J.-J. Pansiot, “Source discovery protocol in ssm
network,” Internet Engineering Task Force,” Internet Draft, June 2003.

