
HAL Id: hal-00946554
https://hal.science/hal-00946554v2

Submitted on 16 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed synthesis for acyclic architectures
Anca Muscholl, Igor Walukiewicz

To cite this version:
Anca Muscholl, Igor Walukiewicz. Distributed synthesis for acyclic architectures. FSTTCS, 2014,
Bombai, India. �10.4230/LIPIcs.FSTTCS.2014.639�. �hal-00946554v2�

https://hal.science/hal-00946554v2
https://hal.archives-ouvertes.fr

Distributed synthesis for acyclic architectures

Anca Muscholl

Université de Bordeaux and Igor Walukiewicz

CNRS, Université de Bordeaux

July 16, 2014

Abstract

The distributed synthesis problem is about constructing correct dis-
tributed systems, i.e., systems that satisfy a given specification. We con-
sider a slightly more general problem of distributed control, where the
goal is to restrict the behavior of a given distributed system in order to
satisfy the specification. Our systems are finite state machines that com-
municate via rendez-vous (Zielonka automata). We show decidability of
the synthesis problem for all ω-regular local specifications, under the re-
striction that the communication graph of the system is acyclic. This
result extends a previous decidability result for a restricted form of local
reachability specifications.

1 Introduction

Synthesizing distributed systems from specifications is an attractive objective,
since distributed systems are notoriously difficult to get right. Unfortunately,
there are very few known decidable frameworks for distributed synthesis. We
study a framework for synthesis of open systems that is based on rendez-vous
communication and causal memory. In particular, causal memory implies that
specifications can talk about when a communication takes place, but cannot
limit information that is transmitted during communication. This choice is
both realistic and avoids some pathological reasons for undecidability. We show
a decidability result for acyclic communication graphs and local ω-regular spec-
ifications.

Instead of synthesis we actually work in the more general framework of dis-
tributed control. Our setting is a direct adaptation of the supervisory control
framework of Ramadge and Wonham [15]. In this framework we are given a
plant (a finite automaton) where some of the actions are uncontrollable, and a
specification, and the goal is to construct a controller (another finite automaton)
such that its product with the plant satisfies the specification. The controller
is not allowed to block uncontrollable actions, in other words, in every state
there is a transition on each uncontrollable action. The controlled plant has less
behaviors, resulting from restricting controllable actions of the plant. In our
case the formulation is exactly the same, but we consider Zielonka automata in-
stead of finite automata, as plants and controllers. Considering parallel devices,
as Zielonka automata, in the standard definition of control gives an elegant
formulation of the distributed control problem.

1

Zielonka automata [17, 12] are by now a well-established model of distributed
computation. Such a device is an asynchronous product of finite-state pro-
cesses synchronizing on shared actions. Asynchronicity means that processes
can progress at different speed. The synchronization on shared actions allows the
synchronizing processes to exchange information, in particular the controllers
can transfer control information with each synchronization. This model can en-
code some common synchronization primitives available on modern multi-core
processors for implementing concurrent data structures, like compare-and-swap.

We show decidability of the control problem for Zielonka automata where the
communication graph is acyclic: a process can communicate (synchronize) with
its parent and its children. Our specifications are conjunctions of ω-regular
specifications for each of the component processes. We allow uncontrollable
communication actions – the only restriction is that all communication actions
must be binary. Uncontrollable communications give a big flexibility, for in-
stance it is possible to model asymmetric situations where communication can
be refused by one partner, but not by the other one.

Our result extends [5] that showed decidability for a restricted form of local
reachability objectives (blocking final states). We still get the same complexity
as in [5]: non-elementary in general, and EXPTIME for architectures of depth
1. Covering all ω-regular objectives allows to express fairness constraints but
at the same time introduces important technical obstacles. Indeed, for our con-
struction to work it is essential that we enrich the framework by uncontrollable
synchronization actions. This makes a separation into controllable and uncon-
trollable states impossible. In consequence, we are lead to abandon the game
metaphor, to invent new arguments, and to design a new proof structure.

Most research on distributed synthesis and control has been done in the set-
ting proposed by Pnueli and Rosner [14]. This setting is also based on shared-
variable communication, however it does not allow to pass additional informa-
tion between processes. So their model leads to partial information games, and
decidability of synthesis holds only for very restricted architectures [8, 9, 2].
While specifications leading to undecidability are very artificial, no elegant so-
lution to eliminate them exists at present. The synthesis setting is investigated
in [9] for local specifications, meaning that each process has its own, linear-time
specification. For such specifications, it is shown that an architecture has a
decidable synthesis problem if and only if it is a sub-architecture of a pipeline
with inputs at both endpoints. More relaxed variants of synthesis have been
proposed, where the specification does not fully describe the communication
of the synthesized system. One approach consists in adding communication in
order to combine local knowledge, as proposed for example in [6]. Another ap-
proach is to use specifications only for describing external communication, as
done in [4] on strongly connected architectures where processes communicate
via signals.

Apart from [5], two closely related decidability results for synthesis with
causal memory are known, both of different flavor than ours. The first one [3]
restricts the alphabet of actions: control with reachability condition is decidable
for co-graph alphabets. This restriction excludes among others client-server ar-
chitectures, which are captured by our setting. The second result [10] shows
decidability by restricting the plant: roughly speaking, the restriction says that
every process can have only bounded missing knowledge about the other pro-
cesses, unless they diverge (see also [13] that shows a doubly exponential upper

2

bound). The proof of [10] goes beyond the controller synthesis problem, by cod-
ing it into monadic second-order theory of event structures and showing that this
theory is decidable when the criterion on the plant holds. Unfortunately, very
simple plants have a decidable control problem but undecidable MSO-theory of
the associated event structure. Game semantics and asynchronous games played
on event structures are considered in [11]. More recent work [7] considers games
on event structures and shows a Borel determinacy result for such games under
certain restrictions.

Overview. In Section 2 we state our control problem, and in Section 3 we give
the main lines of the proof, that works by a reduction of the number of processes.
In Section 3.2 we show that we may assume for the process that is eliminated
that there is a bound on the number of local actions it can perform between
consecutive synchronizations with its parent. In Section 3.3 we present the
reduction, and in Sections 3.4, 3.5 we show the correctness of the construction.

2 Control for Zielonka automata

In this section we introduce our control problem for Zielonka automata, adapting
the definition of supervisory control [15] to our model.

A Zielonka automaton [17, 12] is a simple distributed finite-state devices.
Such an automaton is a parallel composition of several finite automata, called pro-
cesses, synchronizing on shared actions. There is no global clock, so between two
synchronizations, two processes can do a different number of actions. Because
of this, Zielonka automata are also called asynchronous automata.

A distributed action alphabet on a finite set P of processes is a pair (Σ, dom),
where Σ is a finite set of actions and dom : Σ → (2P \ ∅) is a location func-
tion. The location dom(a) of action a ∈ Σ comprises all processes that need to
synchronize in order to perform this action. Actions from Σp = {a ∈ Σ | p ∈
dom(a)} are called p-actions. We write Σloc

p = {a | dom(a) = {p}} for the set
of local actions of p.

A (deterministic) Zielonka automaton A = 〈{Sp}p∈P, sin, {δa}a∈Σ〉 is given
by:

• for every process p a finite set Sp of (local) states,

• the initial state sin ∈
∏

p∈P
Sp,

• for every action a ∈ Σ a partial transition function δa :
∏

p∈dom(a) Sp
·
→

∏

p∈dom(a) Sp on tuples of states of processes in dom(a).

Example 1 Boolean multi-threaded programs with shared variables can be
modeled as Zielonka automata. As an example we describe the translation for
the compare-and-swap (CAS) instruction. This instruction has 3 parameters:
CAS(x: variable; old, new : int). Its effect is to return the value of x and at
the same time set the value of x to new, but only if the previous value of x
was equal to old. The compare-and-swap operation is a widely used primitive
in implementations of concurrent data structures, and has hardware support in
most contemporary multiprocessor architectures.

Suppose that we have a thread t, and a shared variable x that is accessed
by a CAS operation in t via y := CASx(i, k). So y is a local variable of t. In

3

the Zielonka automaton we will have one process modeling thread t and one
process for variable x. The states of t will be valuations of local variables. The
states of x will be the values x can take. The CAS instruction above becomes a
synchronization action. We have the following two types of transitions on this
action:

Notice that in state s′, we have y = i, whereas in s′′, we have y = j.

For convenience, we abbreviate a tuple (sp)p∈P of local states by sP , where
P ⊆ P. We also talk about Sp as the set of p-states.

A Zielonka automaton can be seen as a sequential automaton with the
state set S =

∏

p∈P
Sp and transitions s

a
−→ s′ if (sdom(a), s

′
dom(a)) ∈ δa, and

sP\dom(a) = s′
P\dom(a). So the states of this automaton are the tuples of states of

the processes of the Zielonka automaton. For a process p we will talk about the
p-component of the state. A run of A is a finite or infinite sequence of transi-
tions starting in sin. Since the automaton is deterministic, a run is determined
by the sequence of labels of the transitions. We will write run(u) for the run
determined by the sequence u ∈ Σ∞. Observe that run(u) may be undefined
since the transition function of A is partial. We will also talk about the pro-
jection of the run on component p, denoted runp(u), that is the projection on
component p of the subsequence of the run containing the transitions involving
p. We will assume that every local state of A occurs in some run. For finite
w let state(w) be the last state in run(w). By dom(u) we denote the union of
dom(a), for all a ∈ Σ occurring in u.

We will be interested in maximal runs of Zielonka automata. For parallel
devices the notion of a maximal run is not that evident, as one may want to
impose some fairness conditions. We settle here for a minimal sensible fairness
requirement. It says that a run is maximal if processes that have only finitely
many actions in the run cannot perform any additional action.

Definition 2 (Maximal run) For a word w ∈ Σ∞ such that run(w) is de-
fined, we say that run(w) is maximal if there is no decomposition w = uv, and
no action a ∈ Σ such that dom(v) ∩ dom(a) = ∅ and run(uav) is defined.

Automata can be equipped with a correctness condition. We prefer to talk
about correctness condition rather than acceptance condition since we will be
interested in the set of runs of an automaton rather than in the set of words it
accepts. We will consider local regular correctness conditions: every process has
its own correctness condition Corrp. A run of A is correct if for every process
p, the projection of the run on the transitions of Ap is in Corrp. Condition
Corrp is specified by a set Tp ⊆ Sp of terminal states and an ω-regular set
Ωp ⊆ (Sp × Σp × Sp)

ω. A sequence (s0p, a0, s
1
p)(s

1
p, a1, s

2
p) . . . satisfies Corrp if

either: (i) it is finite and ends with a state from Tp, or (ii) it is infinite and
belongs to Ωp. At this stage the set of terminal states Tp may look unnecessary,
but it will simplify our constructions later.

Finally, we will need the notion of synchronized product A×C of two Zielonka
automata. For A = 〈{Sp}p∈P, sin, {δ

A
a }a∈Σ〉 and C = 〈{Cp}p∈P, cin, {δ

C
a }a∈Σ〉

4

let A × C = 〈{Sp × Cp}p∈P, (sin, cin), {δ
×
a)a∈Σ}〉 where there is a transition

from (sdom(a), cdom(a)) to (s′
dom(a), c

′
dom(a)) in δ×a iff (sdom(a), s

′
dom(a)) ∈ δAa and

(cdom(a), c
′
dom(a)) ∈ δCa .

To define the control problem for Zielonka automata we fix a distributed
alphabet 〈P, dom : Σ → (2P \ ∅)〉. We partition Σ into the set of system ac-
tions Σsys and environment actions Σenv. Below we will introduce the notion
of controller, and require that it does not block environment actions. For this
reason we speak about controllable/uncontrollable actions when referring to sys-
tem/environment actions. We impose three simplifying assumptions: (1) All
actions are at most binary (|dom(a)| ≤ 2 for every a ∈ Σ); (2) every process
has some controllable action; (3) all controllable actions are local. Among the
three conditions only the first one is indeed a restriction of our setting. The
other two are not true limitations, in particular controllable shared actions can
be simulated by a local controllable choice, followed by non-controllable local
or shared actions (see Proposition 6).

Definition 3 (Controller, Correct Controller) A controller is a Zielonka
automaton that cannot block environment (uncontrollable) actions. In other
words, from every state every environment action is possible: for every b ∈ Σenv,
δb is a total function. We say that a controller C is correct for a plant A if all
maximal runs of A× C satisfy the correctness condition of A.

Recall that an action is possible in A × C iff it is possible in both A and
C. By the above definition, environment actions are always possible in C. The
major difference between the controlled system A × C and and A is that the
states of A×C carry the additional information computed by C, and that A×C
may have less behaviors, resulting from disallowing controllable actions by C.

The correctness of C means that all the runs of A that are allowed by C are
correct. In particular, C does not have a correctness condition by itself. Con-
sidering only maximal runs of A×C imposes some minimal fairness conditions:
for example it implies that if a process can do a local action almost always, then
it will eventually do some action.

Definition 4 (Control problem) Given a distributed alphabet 〈P, dom : Σ →
(2P \ ∅)〉 together with a partition of actions (Σsys,Σenv), and given a Zielonka
automaton A over this alphabet, find a controller C over the same alphabet such
that C is correct for A.

The important point in our definition is that the controller has the same
distributed alphabet as the automaton it controls, in other words the controller
is not allowed to introduce additional synchronizations between processes.

Example 5 We give an example showing how causal memory works and helps
to construct controllers. Consider an automaton A with 3 processes: p, q, r. We
would like to control it so that the only two possible runs of A are the following:

5

So p and q should synchronize on α when action a happened before b, otherwise
q and r should synchronize on β. Communication actions are uncontrollable,
but the transitions of A are such that there are local controllable actions c and
d that enable communication on α and β respectively. So the controller should
block either c or d depending on the order between a and b. The transitions of
A are as follows

δa(p0, q0) =(p1, q1) δa(p0, q1) =(p1, q2) δb(q0, r0) =(q1, r1) δb(q1, r0) =(q2, r1)

δc(p1) =p2 δα(p2, q2) =(p3, q3) δd(r1) =r2 δβ(q2, r2) =(q3, r3)

These transitions allow the two behaviors depicted above but also two unwanted
ones, as say, when a happens before b and then we see β. Clearly, the specifi-
cation of the desired behaviors can be formulated as a local condition on q. So
by encoding some information in states of q this condition can be expressed by
a set of terminal states Tq. We will not do this for readability.

The controller C for A will mimic the structure of A: for every state of A
there will be in C a state with over-line. So, for example, the states of q in C will
be q0, . . . , q3. Moreover C will have two new states p1 and r1. The transitions
will be

δa(p0, q0) =(p1, q1) δa(p0, q1) =(p1, q2) δb(q0, r0) =(q1, r1) δb(q1, r0) =(q2, r1)

δc(p1) =p2 δc(p1) =⊥ δd(r1) =r2 δd(r1) =⊥

δα(p2, q2) =(p3, q3) δβ(q2, r2) =(q3, r3)

Observe that c is blocked in p1, and so is d from r1. It is easy to verify that the
runs of A × C are as required, so C is a correct controller for A. (Actually the
definition of a controller forces us to make transitions of C total on uncontrollable
actions. We can do it in arbitrary way as this will not add new behaviors to
A× C.)

This example shows several phenomena. The states of C are the states of
A coupled with some additional information. We formalize this later under a
notion of covering controller. We could also see above a case where a commu-
nication is decided by one of the parties. Processes p, thanks to a local action,
can decide if it wants to communicate via α, but process q has to accept α al-
ways. This shows the flexibility given by uncontrollable communication actions.
Finally, we could see information passing during communication. In C process
q passes to p and r information about its local state (transitions on a and on b).

We end the section by showing the assumption that controllable actions are
local, is not a restriction.

Proposition 6 The control problem for Zielonka automata where communi-
cation actions may be controllable, reduces to the setting where controllable
actions are all local.

Proof
We start with an automaton A over a distributed alphabet 〈Σ, dom〉 and a cor-
rect covering controller C. We define first a new automaton A′ over an extended
distributed alphabet 〈Σ′, dom ′〉 with Σ′ = Σ ∪ {ch(A) | A ⊆ Σsys

p for some p ∈

P}. All new actions are local: dom ′(ch(A)) = {p} if A ⊆ Σsys
p ; the domain

6

of other actions do not change. What changes is that all old actions become
uncontrollable, and the only controllable actions in Σ′ are those of the form
ch(A).

• The set of p-states of A′ is the set of p-states of A, plus some new states
of the form 〈sp, A〉 where sp is a p-state of A and A ⊆ Σsys

p .

• For every old p-state sp we delete all outgoing controllable transitions and
add

sp
ch(A)
−→ 〈sp, A〉 ,

for every set A of controllable actions enabled in sp. From 〈sp, A〉 we put

in A′ transitions as follows. If a ∈ A is local then we have 〈sp, A〉
a

−→ s′p
whenever sp

a
−→ s′p in A. If a ∈ A∩B and dom(a) = {p, p′} then we have

(〈sp, A〉, 〈sp′ , B〉)
a

−→ (s′p, s
′
p′) whenever (sp, sp′)

a
−→ (s′p, s

′
p′) in A.

• The correctness condition of A′ is a straightforward modification of the
one of A.

Assume first that C′ is a correct covering controller for A′. From C′ we
define the automaton C over the same sets of states, by modifying slightly the

transitions as follows. Suppose that c
ch(A)
−→ d is a (local) transition in C′

p. Since

C′ is covering we have a transition of the form sp = π′(c)
ch(A)
−→ π′(d) = 〈sp, A〉

in A′. Let a ∈ A be local. Since a is uncontrollable in A′ and 〈sp, A〉
a

−→ s′p (for

some s′p) we must also have d
a

−→ e for some state e of C′
p, since C′ is covering.

We delete c
ch(A)
−→ d from C′ and replace d

a
−→ e by c

a
−→ e. If a is shared by

p, p′, let us consider some transition c′
ch(B)
−→ d′ with a ∈ B in C′

p′ . Since a is

uncontrollable in A′ we find again some transition (d, d′)
a

−→ (e, e′) in C′. We

replace then (d, d′)
a

−→ (e, e′) by (c, c′)
a

−→ (e, e′) in C. Of course, this is done
in parallel for all transitions labeled by some ch(A). It is immediate that C is
covering A, by taking π = π′. Maximal runs of C map to maximal runs of C′

and thus satisfy the correctness condition for A.
Conversely, given a correct covering controller C for A we define C′ for A′.

Local p-states of C′ are those of C, plus additional states of the form cA, where
c is a p-state of C and A ⊆ Σsys

p . Consider any p-state c of C, and let A be
the set of controllable actions enabled in c (a communication action a with
dom(a) = {p, p′} is enabled in c if there exists some p′-state c′ and an a-
transition from (c, c′)). We replace all controllable transitions from c by one

(local) controllable transition c
ch(A)
−→ cA, plus some uncontrollable transitions.

If a ∈ A is local, then we add the uncontrollable transitions cA
a

−→ d whenever
c

a
−→ d in C. If dom(a) = {p, p′}, (c, c′)

a
−→ (d, d′) in C, and B is the set of

controllable actions enabled in the p′-state c′, then we replace (c, c′)
a

−→ (d, d′)

by (cA, c
′
B)

a
−→ (d, d′). Extending π by π′(cA) = 〈π(c), A〉 shows that C′ is a

covering controller for A′. Maximal runs of C′ satisfy the acceptance condition
as for C. �

7

3 Decidability for acyclic architectures

In this section we present the main result of the paper. We show the decidabil-
ity of the control problem for Zielonka automata with acyclic architecture. A
communication architecture of a distributed alphabet is a graph where nodes
are processes and edges link processes that have common actions. An acyclic
architecture is one whose communication graph is acyclic. For example, the
communication graph of the alphabet from the example on page 5 is a tree with
the root q and two successors, p and r.

Theorem 7 The control problem for Zielonka automata over distributed alpha-
bets with acyclic architecture is decidable. If a controller exists, then it can be
effectively constructed.

The remaining of this section is devoted to the outline of the proof of The-
orem 7. This proof works by induction on the number |P| of processes in the
automaton. A Zielonka automaton over a single process is just a finite au-
tomaton, and the control problem is then just the standard control problem
as considered by Ramadge and Wonham but extended to all ω-regular condi-
tions [1]. If there are several processes that do not communicate, then we can
solve the problem for each process separately.

Figure 1: Eliminating process r: r is glued with q.

Otherwise we choose a leaf process r and its parent q, and construct a new
plant A▽ over P\{r}.We will show that the control problem for A has a solution
iff the one for A▽ does. Moreover, for every solution for A▽ we will be able to
construct a solution for A.

For the rest of this section let us fix the distributed alphabet 〈P, dom : Σ →
(2P \ ∅)〉, the leaf process r and its parent q, and a Zielonka automaton with a
correctness condition A = 〈{Sp}p∈P, sin, {δa}a∈Σ, {Corrp}p∈P〉.

The first step in proving Theorem 7 is to simplify the problem. First, we
can restrict to controllers of a special form called covering controllers. Next, we
show that the component of A to be eliminated, that is Ar, can be assumed to
have a particular property (r-short). After these preparatory results we will be
able to present the reduction of A to A▽ (Section 3.3).

3.1 Covering controllers

The notion of a covering controller will simplify the presentation because it will
allow us to focus on the runs of the controller instead of a product of the plant
and the controller.

Definition 8 (Covering controller) Let C be a Zielonka automaton over the
same alphabet as A; let Cp be the set of states of process p in C. Automaton

8

C is a covering controller for A if there is a function π : {Cp}p∈P → {Sp}p∈P,

mapping each Cp to Sp and satisfying two conditions: (i) if cdom(b)
b

−→ c′
dom(b)

then π(cdom(b))
b

−→ π(c′
dom(b)); (ii) for every uncontrollable action a: if a is

enabled from π(cdom(a)) then it is also enabled from cdom(a).

Remark 9 Strictly speaking, a covering controller C may not be a controller
since we do not require that every uncontrollable action is enabled in every state,
but only those actions that are enabled in A. From C one can get a controller
Ĉ by adding self-loops for all missing uncontrollable transitions.

Notice that thanks to the projection π, a covering controller can inherit the
correctness condition of A. Moreover, the sequences labeling the maximal runs
of C, A× C and A× Ĉ are the same.

Lemma 10 There is a correct controller for A if and only if there is a covering
controller C for A such that all the maximal runs of C satisfy the inherited
correctness condition.

Proof
If C is a covering controller for A such that all its maximal runs satisfy the
inherited correctness condition then Ĉ is a correct controller for A. Conversely,
if C is a correct controller for A then A × C is a covering controller where all
maximal runs satisfy the inherited correctness condition. �

We will refer to a covering controller with the property that all its maximal
runs satisfy the inherited correctness condition, as correct covering controller.

3.2 Short automata

In this section we justify our restriction to plants A where the r-component
Ar is short (see Definition 11 below). Recall that we have assumed that all
controllable actions are local and that we consider a tree architecture with a
leaf process r and its parent q.

Definition 11 (r-short) Automaton A is r-short if there is a bound on the
number of actions that r can perform without doing a communication with q.

Theorem 12 For every automaton A, we can construct an r-short automaton
As such that there is a correct controller for A iff there is one for As.

The rest of this subsection is devoted to the proof of the above theorem. The-
orem 12 bears some resemblance with the fact that every parity game can be
transformed into a finite game: when a loop is closed the winner is decided
looking at the ranks on the loop. This construction would do if r had no inter-
action with q. Possible interactions with q make the construction more involved.
Moreover, need to prove existence of some kind of memoryless strategies for dis-
tributed controllers.

Observe that we can make two simplifying assumptions. First, we assume
that the correctness condition on r is a parity condition. That is, it is given by
a rank function Ωr : Sr → N and the set of terminal states Tr. We can assume
this since every regular language of infinite sequences can be recognized by a

9

deterministic parity automaton. The second simplification is to assume that the
automaton A is r-aware with respect to the parity condition on r. This means
that the state of r determines the biggest rank that has been seen since the last
communication of r with q. It is easy to transform an automaton to an r-aware
one.

Recall that if C is a covering controller for A (cf. Definition 8) then there is
a function π : {Cp}p∈P → {Sp}p∈P, mapping each Cp to Sp and respecting the

transition relation: if cdom(b)
b

−→ c′
dom(b) then π(cdom(b))

b
−→ π(c′

dom(b)).

Definition 13 (r-memoryless controller) A covering controller C for A is
r-memoryless when for every pair of states cr 6= c′r of Cr: if there is a path on
local r-actions from cr to c′r then π(cr) 6= π(c′r).

Intuitively, a controller can be seen as a strategy, and r-memoryless means
that it does not allow the controlled automaton to go twice through the same
r-state between two consecutive communication actions of r and q.

Lemma 14 Fix an r-aware automaton A with a parity correctness condition
for process r. If there is a correct controller for A then there is also one that is
covering and r-memoryless.

The proof of Lemma 14 uses the notion of signatures, that is classical in
2-player parity games, for defining a r-memoryless controller Cm from C. The
idea is to use representative states of Cr, defined in each strongly connected
component according to a given signature and covering function π.

By Lemma 10 we can assume that we have a covering controller for A. Let
us fix an arbitrary linear order on the set Cr of states of the automaton Cr. Let
C↓loc
r denote the graph obtained from Cr by taking Cr as set of vertices and the

transitions on local r-actions as edges. Since C is a covering controller, every
sequence of actions in C can be performed in the controlled plant. Since C is
correct for A, every infinite sequence of local r-actions in the controlled plant
satisfies the parity condition. We can lift this parity condition directly to C
thanks to the fact that C is covering. We obtain that every infinite path in C↓loc

r

satisfies the parity condition.
Before proceeding it will be convenient to recall some facts about parity

games, in particular the notion of signature (or progress measure) [16]. We
consider C↓loc

r as a parity game. Suppose that it uses priorities from {1, . . . , d}.
A signature is a d-tuple of natural numbers, that is, an element of Nd. We will
be interested in assignments of signatures to states of C↓loc

r , that is in functions
sig : Cr → N

d. Signatures are ordered lexicographically. We write sig(c) ≥
sig(c′) if the signature assigned to c is lexicographically bigger or equal to that
of c′. For i ∈ {1, . . . , d} we write sig(c) ≥i sig(c

′) if the signature of c truncated
to the first i positions is lexicographically bigger or equal to the signature of c′

truncated to the first i positions. For a fixed assignment of signatures sig and
two states c, c′ of Cr we write c ⊲sig c′ if

sig(c) ≥Ω(c) sig(c
′) and the inequality is strict if Ω(c) is odd.

We say that an assignment of signatures sig : Cr → N
d is consistent if for every

edge (c, c′) of C↓loc
r we have c ⊲sig c′. We now recall a fact that holds for every

finite parity game, but we specialize them to C↓loc
r .

10

Fact. Every path of C↓loc
r satisfies the parity condition iff there is a consistent

assignment of signatures to states of C↓loc
r .

After these preparations we can define for every state cr of Cr its representa-
tive state in Cr, denoted rep(cr), as the unique state c′r satisfying the following
conditions:

1. π(cr) = π(c′r) and c′r is reachable from cr;

2. for every c′′r with π(cr) = π(c′′r): if c
′′
r is reachable from c′r then it belongs

to the same SCC as c′r;

3. among all states satisfying points (1) and (2) consider those with the
smallest signature; if there is more than one such state then pick the state
that is the smallest in our fixed arbitrary ordering.

Remark 15 For every c′r reachable in C↓loc
r from rep(cr): if π(c

′
r) = π(cr) then

rep(c′r) = rep(cr). Indeed, by conditions (1) and (2) above rep(c′r) and rep(cr)
must be in the same SCC. But then, the representative is uniquely determined
by signature and ordering.

We define now Cm
r from Cr by redirecting every transition on a local r-

action to representatives: if the transition goes to a state cr we make it go to
rep(cr). Of course, Cm is still covering and the above remark implies that it is
r-memoryless.

Remark 16 If we have a transition cr
b

−→ c′r in Cm
r then there is a sequence

z ∈ Σloc
r of local r-actions and some state c′′r such that cr

b
−→ c′′r

z
−→ c′r in Cr.

Remark 16 allows to map paths in Cm
r into paths in Cr. Consider a state

c1 of Cm
r and a finite sequence x ∈ (Σloc

r)∗ such that x = b1 · · · bk labels some

path from c1 in Cm
r , say u = c1

b1−→ c2
b2−→ c3 · · ·

bk−→ ck+1. Remark 16 gives
us a sequence rep−1(c1, x) = b1z1b2z2 . . . bkzk, and a corresponding path in Cr:

c1
b1z1−→ c2

b2z2−→ c3 . . .
bkzk−→ ck+1, for some zi ∈ (Σloc

r)∗. In particular the two paths
end in the same state. Of course rep−1(c1, x) is defined similarly for infinite
sequences x.

Proof of Lemma 14. We are ready to show that Cm obtained from C by
replacing Cr with Cm

r satisfies the parity condition. For this take a maximal
run and suppose towards a contradiction that it does not satisfy the parity
condition.

If on this run there are infinitely many communications between q and r
then there is an equivalent run whose labeling has the form:

u = y0x0a1y1x1a2 . . . (1)

where ai ∈ Σq∩Σr, xi ∈ (Σloc
r)∗, and yi ∈ (Σ\Σr)

∗. Here two runs are equivalent
means that the projections of the two runs on every process are identical. In
particular, if two runs are equivalent and one of them satisfies the correctness
condition then so does the other.

Let cir = stateC
m

r (y0x0a1 · · · ai) be the state of Cm
r reached on the prefix of

u up to ai. Let x
′
i = rep−1(cir, xi). We get that the sequence

u′ = y0x
′
0a1y1x

′
1a2 . . . (2)

11

is a labeling of a maximal run in C. The projections on processes other than
r are the same for u and u′. It remains to see if the parity condition on r is

satisfied. We have cir
xi−→ ci+1

r in Cm
r and cir

x′

i−→ ci+1
r in Cr. Since we lifted

priorities to C and Cm (being both covering), the r-awareness of A lifts to C and
Cm, so the same maximal rank is seen when reading xi and x′

i. This shows that
the parity condition on r is satisfied on the run of Cm on u, since it is satisfied
by the run of C on u′.

Consider now a maximal run with finitely many communications between q
and r. There is an equivalent one labeled by a sequence of the form:

u = y0x0a1y1x1a2 · · · akykxk (3)

where yk and xk are potentially infinite. Since we have only modified the r-
component of the controller, it must be xk that does not satisfy the parity
condition on r.

Suppose first that xk = b1b2 · · · is infinite. Take the run c1
b1−→ c2

b2−→ c3 . . .

in Cm
r , where c1 = stateC

m

r (y0x0a1 · · · ak). We have a run c1
b1−→ c′2

x2−→ c2
b2−→

c′3
x3−→ c3 · · · in Cr, where rep(c′i) = ci and xi ∈ (Σloc

r)∗ is the accessibility path,
as given by Remark 16. We have ci ⊲sig c′i+1 for all i = 1, 2, . . . because there
is an edge from ci to c′i+1 in C↓loc

r . Recall that ci = rep(c′i). The definition of
representatives implies that either sig(c′i) ≥ sig(ci) or ci is in a strictly lower
SCC than c′i. Since lowering a component can happen only finitely many times
we have sig(c′i) ≥ sig(ci) for all i bigger than some n. We get ci ⊲sig ci+1 for
i > n which implies that xk satisfies the parity condition. A contradiction.

If xk is finite then we define the sequence u′ = y0x
′
0a1y1x

′
1a2 · · · akykx

′
k in

L(C), as in the first case. Since u was maximal in Cm, we have that u′ is maximal
in C (if r can do an action in u′, the same can be done in u, since u and u′ end
in the same state). Thus the r-state reached in A by u belongs to Tr, since this
holds already for u′. We get again a contradiction.

We will use Lemma 14 to reduce the control problem to that for r-short
automata.

Given A we define a r-short automaton As. All its components will be the
same but for the component r. The states Ss

r of r will be sequences w ∈ S+
r of

states of Ar without repetitions, plus two new states ⊤,⊥. For a local transition

s′r
b

−→ s′′r in Ar we have in As
r transitions:

ws′r
b

−→ws′rs
′′
r if ws′rs

′′
r a sequence without repetitions

ws′r
b

−→⊤ if s′′r appears in w and the resulting loop is even

ws′r
b

−→⊥ if s′′r appears in w and the resulting loop is odd

There are also communication transitions between q and r:

(sq, ws
′
r)

b
−→ (s′q, s

′′
r) if (sq, s

′
r)

b
−→ (s′q, s

′′
r) in A

Notice that w disappears in communication transitions. The parity condition
for As is also rather straightforward: it is the same for the components other
than r, and for Ar it is

• Ωs(wsr) = Ω(sr),

12

• Ts
r = {⊤} ∪ {wsr : sr ∈ Tr}.

Proof of Theorem 12: Consider the implication from left to right. Let C
be a correct covering controller for A. By Lemma 14 we can assume that it is
r-memoryless. We show that C is also a covering correct controller for As. We
will concentrate on correctness, since the covering part follows by examination
of the definitions.

Let us take some maximal run runs(u) of As × C, and suppose by contra-
diction that it does not satisfy the parity condition of As. By definition run(u)
is a run of A× C, but it may not be maximal. We have by construction of As

that statesp (u) = statep(u) for p 6= r and that stater(u) is the last element of

statesr (u). (Recall that statesp (u), statep(u) denote the state reached on u by

As × C and A× C, resp.)
Suppose that run(u) is not a maximal run of A × C. We will extend it to

a maximal run run(u). If run(u) ended in ⊥ in the r-component of As then
we could extend run(u) to a run of A × C not satisfying the parity condition
(here we use that C is memoryless, so the odd loop in A exists also into one in
A×C). So the only other possibility is that run(u) ends in ⊤. In this case it is
possible to extend run(u) to a complete run of A× C by adding the even loop
in the r-component. This makes r satisfy the parity condition. Let run(u) be
the resulting run.

Now observe that if a parity condition for some process p 6= r is violated on
u then on u the same condition is violated. If it is violated on r then the only
remaining possibility is that there are finitely many r-actions in u, and the state
reached on u is wsr with sr 6∈ Tr. But then u is a maximal run of A× C and is
not well terminated on r either, a contradiction.

For implication from right to left we take a covering controller Cs for As and
construct a controller C for A. The controller C will be obtained by modifying
the r-component of Cs. The states of Cr will be sequences of states of Cs

r . They
will be of bounded length. We will have that if cs1 · · · csk is a state of Cr then

πs(csk) is the state s1 · · · sk of As
r , where πs(csj) = s1 · · · sj , for j = 1, . . . , k.

Moreover, we define π(cs1 · · · csk) = sk. The transitions of Cr are

• wcs
b

−→ wcsds if cs
b

−→ ds in Cs
r and πs(ds) 6= ⊤.

• cs1 · · · csk
b

−→ cs1 · · · csj if csk
b

−→ cs in Cs
r , πs(cs) = ⊤ and j is such

that πs(csk) is s1 · · · sk with sk
b

−→ sj in A.

Notice that since Cs satisfies the parity condition ⊥ cannot be reached.

Remark 17 The construction of C guarantees that every sequence of local r-
actions x of C has a corresponding (possibly shorter) sequence x′ of Cs. If the
sequence in Cs starts in s1 and finishes in s2 then the sequence in C starts also
in s1, but now considered as a sequence of length 1, and finishes in a sequence
ending in s2. Since A is r-aware and C and Cs are both covering, this means
that the maximal rank seen on both sequences is the same.

We need to show that all maximal runs of A×C satisfy the parity condition.
For contradiction suppose that run(u) does not.

13

If there are infinitely many communications between q and r on u then we
write it as

u = y0x0a1y1x1a2 . . . (4)

where ai ∈ Σq ∩ Σr, xi ∈ (Σloc
r)∗, and yi ∈ (Σ \ Σr)

∗. Now for every xi,
Observation 1 gives x′

i so that the maximal ranks on xi and x′
i are the same, so

for
u′ = y0x

′
0a1y1x

′
1a2 . . . (5)

run(u′) is a maximal run of Cs. This gives a run violating the parity condition
of Cs.

If there are finitely many communications between q and r on u then we
write it as

u = y0x0a1y1x1a2 . . . akykxk (6)

where yk and xk are potentially infinite. The only complicated case is when
xk is infinite. We need to show that the run of Cr on xk satisfies the parity
condition. Recall that the states of Cr are sequences of states of Cs

r . Moreover
the length of this sequences is bounded. Take the shortest sequence appearing
infinitely often in xk. The biggest rank seen between consecutive appearances
of this sequence is even, since the path can be decomposed into (several) even
loops of A.

Corollary 18 In the r-short plant As the r-controller may be chosen memo-
ryless since there are no infinite local r-plays.

Remark 19 We claim that the complexity of the reduction from A to A▽ is
polynomial in the size of Aq and simply exponential in the size of Ar. The
reason is as follows. States of As

r are simple paths (i.e., without repetition
of states) of Ar. When going from A to A▽, the states of A▽

q contain r-local

strategies f : (Σloc
r)∗ → Σsys

r . Putting things together, in f we deal with paths
of As

r (mapping them to Σsys
r). But the latter can be written more succinctly

as paths of Ar without repetitions.

3.3 The reduced automaton A▽

Equipped with the notions of covering controller and r-short strategy we can now
present the construction of the reduced automaton A▽. We suppose that A =
〈{Sp}p∈P▽ , sin, {δa}a∈Σ〉 is r-short and we define now the reduced automaton
A▽ that results by eliminating process r (cf. Figure 1). Let P▽ = P \ {r}. We
construct A▽ = 〈{S▽

p }p∈P▽ , s▽in, {δ
▽
a }a∈Σ▽〉 where the components are defined

below.
All the processes p 6= q of A▽ will be the same as in A. This means: S▽

p = Sp,
and Σ▽

p = Σp. Moreover, all transitions δa with dom(a) ∩ {q, r} = ∅ are as in
A. Finally, in A▽ the correctness condition of p 6= q is the same as in A.

Before defining process q in A▽ let us introduce the notion of r-local strategy.
An r-local strategy from a state sr ∈ Sr is a partial function f : (Σloc

r)∗ → Σsys
r

mapping sequences from Σloc
r to actions from Σsys

r , such that if f(v) = a then

sr
va
−→ in Ar. Observe that since the automaton A is r-short, the domain of f

is finite.

14

Figure 2: Transitions of A▽

Given an r-local strategy f from sr, a local action a ∈ Σloc
r is allowed by f if

f(ǫ) = a, or a is uncontrollable. For a allowed by f we denote by f|a the r-local

strategy defined by f|a(v) = f(av); this is a strategy from s′r, where sr
a

−→ s′r.
The states of process q in A▽ are of one of the following types:

〈sq, sr〉 , 〈sq, sr, f〉 , 〈sq, a, sr, f〉 ,

where sq ∈ Sq, sr ∈ Sr, f is a r-local strategy from sr, and a ∈ Σloc
q . The

new initial state for q is 〈(sin)q, (sin)r〉. Recall that that since A is r-short, any
r-local strategy in Ar is necessarily finite, so S▽

q is a finite set. Recall also that
controllable actions are local.

The transitions of A▽
q are presented in Figure 2. Transition 1 chooses an

r-local strategy f . It is followed by transition 2 that declares a controllable
action a ∈ Σsys

q that is enabled from sq. Transition 3 executes the chosen

action a; we require sq
a

−→ s′q in Aq. Transition 4 executes an uncontrollable

local action b4 ∈ Σenv
q ; provided sq

b4−→ s′′q in Aq. Transition 5 executes a local

action b5 ∈ Σloc
r , provided that b5 is allowed by f and sr

b5−→ s′r. Transition 6

simulates a synchronization b6 between q and r; provided (sq, sr)
b6−→ (s′q, s

′
r)

in A. Finally, transition 7 simulates a synchronization between q and p 6= r.
An example of a simulation of Aq and Ar by A▽

q is presented in Figure 3. The
numbers below transitions refer to the corresponding cases from the definition.

To summarize, in Σ▽
q we have all actions of Σr and Σq, but they become

uncontrollable. All the new actions of process q in plant A▽ are controllable:

• action ch(f) ∈ Σsys, for every local r-strategy f ,

• action ch(a), for every a ∈ Σsys
q .

The correctness condition for process q in A▽ is:

1. The correct infinite runs of q in A▽ are those that have the projection
on transitions of Aq correct with respect to Corrq, and either: (i) the
projection on transitions ofAr is infinite and correct with respect to Corrr;
or (ii) the projection on transitions of Ar is finite and for f, sr appearing
in almost all states of q of the run we have that from sr all sequences
respecting strategy f end in a state from Tr.

2. T▽
q contains states 〈sq, sr, f〉 such that sq ∈ Tq, and sr ∈ Tr.

15

Figure 3: Simulation of Aq and Ar by A▽
q .

Item 1(ii) in the definition above captures the case where q progresses alone till
infinity and blocks r, even though r could reach a terminal state in a couple
of moves. Clearly, item 1 can be expressed as an ω-regular condition. The
definition of correctness condition is one of the principal places where the r-
short assumption is used. Without this assumption we would need to cope with
the situation where we have an infinite execution of Aq, and at the same time
an infinite execution of Ar that do not communicate with each other. In this
case A▽

q would need to fairly simulate both executions in some way.
The reduction is rather delicate since in concurrent systems there are many

different interactions that can happen. For example, we need to schedule actions
of process q, using ch(a) actions, before the actions of process r. The reason is
the following. First, we need to make all r-actions uncontrollable, so that the
environment could choose any play respecting the chosen r-local strategy. Now,
if we allowed controllable q-actions to be eligible at the same time as r-actions,
then the control strategy for automaton A▽ would be to propose nothing and
force the environment to play the r-actions. This would allow the controller of
A▽ to force the advancement of the simulation of r and get information that is
impossible to obtain by the controller of A.

Together with Theorem 12, the theorem below implies our main Theorem 7.

Theorem 20 For every r-short Zielonka automaton A and every local, ω-
regular correctness conditions: there is a correct covering controller for A iff
there is a correct covering controller for A▽. The size of A▽

q is polynomial in
the size of Aq and exponential in the size of Ar.

We end with some notations used in the following sections. For a Zielonka
automaton C▽ over (Σ▽, loc) and w ∈ (Σ▽)∞ we will write run▽(w) for the
sequence of transitions of C▽ when reading w. For finite w we will write state(w)
for the last state in run▽(w).

3.4 Proof of Theorem 20: from C to C▽

By Lemma 10 we can assume that we have a correct covering controller C for
A. We show how to construct a correct controller C▽ for A▽. This will give the
left to right implication of Theorem 20.

Remark 21 Some simple observations about C.

16

1. We may assume that from every state of C there is at most one transition
on a local controllable action. If there were more than one, we could
arbitrary remove one of them. This will reduce the number of maximal
runs so the resulting controller with stay correct.

2. C determines for every state c of Cr a local r-strategy f from π(c): if

c = c0
a1−→ c1

a2−→ · · ·
ak−→ ck, π(ci) = si and ai ∈ Σloc

r for all i, then
f(c0 · · · ck) = a where a ∈ Σsys

r is a (unique) controllable action possi-
ble from ck. This strategy may have memory, but all the (local) plays
respecting f are of bounded length, assuming that A is r-short.

The components C▽
p for p 6= q are just Cp, and the initial state is the

same. The component C▽
q is described below. Its states are of the form (cq, cr),

(cq, cr, f) and (cq, a, cr, f) with cq ∈ Cq, cr ∈ Cr, a ∈ Σsys
q , and local r-strategy

f . Its initial state is (c0q, c
0
r), with c0q, c

0
r initial states of Cq, Cr.

The transitions of C▽
q ensure the right choice of a local strategy and of a

local action:

• Choice of r-strategy:

(cq, cr)
ch(f)
−→ (cq, cr, f)

where f is the local r-strategy from π(cr) determined by C in state cr.

• Choice of a (local) controllable q-action:

(cq, cr, f)
ch(a)
−→ (cq, a, cr, f)

For a ∈ Σsys
q unique such that cq

a
−→ c′q, for some c′q. If there is no such

transition then we put some arbitrary fixed action a0 ∈ Σsys
q .

The other transitions of C▽
q are on uncontrollable actions, they just reflect

the structure of A▽:

• Execution of the chosen controllable q-action:

(cq, a, cr, f)
a

−→ (c′q, cr, f) if cq
a

−→ c′q in Cq.

• Execution of an uncontrollable local q-action:

(cq, a, cr, f)
b

−→ (c′q, cr, f) if cq
b

−→ c′q in Cq, where b ∈ Σenv
q ∩ Σloc

q .

• Communication between q and p 6= r:

(cp, (cq, a, cr, f))
b

−→ (c′p, (c
′
q, cr, f)) if (cp, cq)

b
−→ (c′p, c

′
q) in C.

• Local move of r:

(cq, a, cr, f)
b

−→ (cq, a, c
′
r, f) if cr

b
−→ c′r in Cr, where b ∈ Σloc

r .

• Communication between q and r

(cq, a, cr, f)
b

−→ (c′q, c
′
r) if (cq, cr)

b
−→ (c′q, c

′
r) in C.

17

Lemma 22 If C is a covering controller for A then C▽ is a covering controller
for A▽. The covering function is

π▽(cq, cr) =(π(cq), π(cr))

π▽(cq, cr, f) =(π(cq), π(cr), f)

π▽(cq, a, cr, f) =(π(cq), a, π(cr), f) .

For the correctness proof we will need one more definition:

Definition 23 (hide) For w ∈ (Σ▽)∞ we let hide(w) ∈ Σ∞ be the sequence
obtained by removing actions from Σ▽ \ Σ.

Observe that by construction of C▽ if run▽(w) is defined then in w there can
be at most two consecutive q-actions from Σ▽ \ Σ.

Lemma 24 Let w ∈ (Σ▽)∗. If run▽(w) is defined then so is run(hide(w)).
Moreover, letting c▽ = state▽(w) and c = state(hide(w)), we have that (i)
c▽p = cp for all p 6= q, r, and (ii) c▽q is either (cq, cr), or (cq, cr, f), or (cq, a, cr, f);
where a and f are determined by cq and cr as follows:

• a is the unique controllable q-action from cq in C (or a0 if there is none).

• f is the local r-strategy determined by C in cr.

Proof
The proof is by induction on the length of w. It follows by direct examination
of the rules. �

Lemma 25 Assume that w ∈ (Σ▽)∞. For every process p 6= q we have
run▽

p (w) = runp(hide(w)). Concerning run▽
q (w): if we project it on transi-

tions of Cq we obtain runq(hide(w)); if we project it on transitions of Cr we
obtain runr(hide(w)).

Proof
Directly from the previous lemma. �

Lemma 26 If C is a correct covering controller for A then C▽ is a correct
covering controller for A▽.

Proof
Since C is a correct covering controller we have that all maximal runs of C are
correct w.r.t A. By Lemma 22 we know that C▽ is a covering controller, so it is
enough to show that all maximal runs of C▽ are correct w.r.t. A▽.

Take a maximal run in C▽, say on w ∈ (Σ▽)∞. The first obstacle is that
run(hide(w)) may be not maximal in C. This can only happen when there are
infinitely many q-actions in w, but only finitely many r-actions. Then we have
w = v1v2 and there are no r-actions in v2. Let state▽q (v1) = (cq, a, cr, f). We
have that cr and f appear in all state▽q (v1v

′), for every prefix v′ of v2. The
run run(hide(w)) is not maximal when there is at least some local action of Cr
enabled in cr. Let x be a maximal sequence of local r-actions that is possible in
Cr from state cr. Since A is r-short, every such sequence is finite. Moreover we

18

choose x in such a way that it brings Cr into a state not in Tr (if it is possible).
We get that u = v1xv2 also defines a maximal run of C▽, but now the run
on hide(u) is maximal in C. Notice that run▽(u) satisfies Corr▽ iff run▽(w)
does: the difference is the sequence x, and we have chosen, if possible, a losing
sequence.

We need to show that the run of A▽ on u satisfies Corr▽ using the fact that
the run on hide(u) satisfies Corr . For p 6= q, Lemma 25 tells us that run▽

p (u) is

the same as runp(hide(u)). Since Corr▽p and Corrp are the same, we are done.
It remains to consider run▽

q (u). If there are finitely many q-actions in
u ∈ (Σ▽)∞ then u = u1u2 with no q-action in u2. Consider state▽q (u1) =
(cq, a, cr, f). We have that stateq(hide(u1)) = cq and stater(hide(u1)) = cr.
As there are no q-actions in u2, and runq(u) satisfies Corrq, we must have
π(cq) ∈ Tq and π(cr) ∈ Tr. This shows that run

▽
q (u) satisfies Corr

▽
q .

If there are infinitely many q-actions in u ∈ (Σ▽)∞, we still have two cases.
The first is when there are infinitely many actions from Σr as well. Then run▽

q (u)

satisfies Corr▽q if the corresponding runs runq(hide(u)) and runr(hide(u)) sat-
isfy Corrq and Corrr, respectively. This is guaranteed by our assumption that
run(hide(u)) satisfies Corr .

The last case is when in u ∈ (Σ▽)∞ we have infinitely many q-actions and
only finitely many actions from Σr. Then u = u1u2 with no actions from Σr in
u2. We get state▽q (u1) = (cq, a, cr, f) with both cr, f appearing in all the further
states of the run. Since runr(hide(u)) satisfies Corrr, we have that π(cr) ∈ Tr.
But then, by the construction of u, there is no Σr-transition possible from cr
(and neither from π(cr) in A▽

r , since C▽ is covering). This means that run▽
q (u)

satisfies Corr▽q .
�

3.5 Proof of Theorem 20: from D▽ to D

This subsection gives the right-to-left direction of the proof. Given a correct
controller D▽ for A▽, we show how to construct a correct controller D for A.
By Lemma 10 we can assume that D▽ is covering.

The components Dp for p 6= q, r are the same as in D▽. So it remains to
define Dq and Dr. The states of Dq and Dr are obtained from states of D▽

q . We
need only certain states of D▽

q , namely those dq whose projection π▽(dq) in A▽
q

has four components, we call them true states of D▽
q :

ts(D▽
q) = {dq ∈ D▽

q | π▽(dq) is of the form (sq, a, sr, f)}.

Figure 4 presents an execution of A▽ controlled by D▽. We can see that d2 is
a true state, and d3 is not.

The set of states of Dq is just ts(D▽
q), while the states of Dr are pairs (dq, x)

where dq is a state from ts(D▽
q) and x ∈ (Σloc

r)∗ is a sequence of local r-actions

that is possible from dq in D▽, in symbols dq
x

−→. We will argue later that
such sequences are uniformly bounded. The initial state of Dq is the state d1q
reached from the initial state of D▽

q by the (unique) transitions of the form
ch(f0), ch(a0). The initial state of Dr is (d1q, ε). The local transitions for Dr are

(dq, x)
b

−→ (dq, xb), for every b ∈ Σloc
r and dq

xb
−→.

19

Figure 4: Decomposing controller D▽
q into Dq and Dr.

Before defining the transitions of Dq let us observe that if dq ∈ D▽
q is not in

ts(D▽
q) then only one controllable transition is possible from it. Indeed, as D▽

is a covering controller, if π▽(dq) is of the form (sq, sr) then there can be only
an outgoing transition on a letter of the form ch(f). Similarly, if π▽(dq) is of
the form (sq, sr, f) then only a ch(a) transition is possible. Since both ch(f)
and ch(a) are controllable, we can assume that in D▽

q there is no state with two
outgoing transitions on a letter of this form. For a state dq ∈ D▽

q not in ts(D▽
q)

we will denote by ts(dq) the unique state of ts(D▽
q) reachable from dq by one

or two transitions of the kind
ch(f)
−→ or

ch(a)
−→ , depending on the cases discussed

above. Going back to Figure 4, we have ts(d3) = d4.
We now describe the q-actions possible in D.

• Local q-action b ∈ Σloc
q : dq

b
−→ ts(d′q) if dq

b
−→ d′q in D▽

q . For example,

this gives a transition d1
bq
−→ d4 in Figure 4.

• Communication b ∈ Σq ∩Σp between q and p 6= r: (dp, dq)
b

−→ (d′p, ts(d
′
q))

if (dp, dq)
b

−→ (d′p, d
′
q) in D▽.

• Communication b ∈ Σq∩Σr of q and r: (d1q, (d
2
q, x))

b
−→ (ts(d′′q), (ts(d

′′
q), ε))

if d1q
x

−→ d′q
b

−→ d′′q in D▽
q ; observe that

x
−→ is a sequence of transitions.

For example, this gives a transition on b in Figure 4.

In the last item the transition does not depend on d2q since, informally, d1q has
been reached from d2q by a sequence of actions independent of r. The condition

d1q
x

−→ d′q
b

−→ d′′q simulates the order of actions where all local r-actions come
after the other actions of q, then we add a communication between q and r.

The next lemma says that D is a covering controller for A. Since A is
assumed to be r-short, the lemma also gives a bound on the length of sequences
in the states of Dr.

Lemma 27 If D▽ is a covering controller for A▽ then D is a covering controller
for A.

Proof
We need to define the projection function π using the projection function π▽.
For p 6= q, r set π = π▽. For Dq we define π(dq) = sq where sq is the state of Aq

20

in π▽(dq). For Dr and its state (dq, x) we define π(dq, x) = s′r where dq
x

−→ d′q
and s′r is the state of Ar in π▽(d′q).

We need to check that the transitions defined above preserve this projection

function; namely for every process p: if dp
b

−→ d′p in Dp then π(dp)
b

−→ π(d′p)
in Ap; and similarly for communication actions. The statement is obvious if the
move is in components other than q or r. We are left with four cases:

• Local move of q, namely dq
b

−→ d′q. We have dq
b

−→ d′′1
ch(a′)
−→ d′q in D▽

for some a′, since d′q = ts(d′′q). By the fact that D▽ covers A▽ and the
definition of moves of the latter automaton we have in A▽:

π▽(dq) = 〈sq, a, sr, f〉
b

−→ 〈s′q, sr, f〉
ch(a′)
−→ 〈s′q, a

′, sr, f〉 = π▽(d′q) ,

and by definition of A▽ we know that sq
b

−→ s′q is in A.

• Communication between q and p 6= r is similar.

• Local move of r: (dq, x)
b

−→ (dq, xb). By definition we know that from

dq it is possible to do in D▽ the sequence of actions xb, that is dq
x

−→

d1q
b

−→ d2q. We have π▽(dq) = (sq, a, sr, f), π
▽(d1q) = (sq, a, s

1
r, f |x) and

π▽(d2q) = (sq, a, s
2
r, f |xb); since xb is a sequence of local r-actions the other

components do not change. We have s1r
b

−→ s2r by definition of A▽
q , and

π▽(dq, x) = s1r, π
▽(dq, xb) = s2r, as required.

• Communication between q and r: (d1q, (d
2
q, x))

b
−→ (ts(d′′q), (ts(d

′′
q), ε)). By

definition this is possible only when d1q
x

−→ d′q
b

−→ d′′q in D▽
q . Since D▽ is

covering we get the following sequence of transitions in A▽:

π▽(d1q) = 〈sq, a, sr, f〉
x

−→ 〈sq, a, s
1
r, f |x〉

b
−→ 〈s′q, s

′
r〉

ch(g)
−→

〈s′q, s
′
r, g〉

ch(a′)
−→ 〈s′q, a

′, s′r, g〉 = π▽(ts(d′′q))

So we have (sq, s
1
r)

b
−→ (s′q, s

′
r) inA and π(d1q) = sq, π(ts(d

′′
q)) = s′q, π(ts(d

′′
q), ε) =

s′r. We claim that π(d2q, x) = s1r, and for this we need to observe a property
of the runs of D (proved by induction on the length of the run). The intuition
for the property below is that dq was reached from d′q by actions that do not
involve r.

Property (*) If from the initial state D can reach a global state
with dq and (d′q, x) at the coordinates corresponding to q and r,
respectively, then the sr- and f -components of the π▽ projections
of dq and d′q are the same: π▽(dq) = (sq, a, sr, f) and π▽(d′q) =
(s′q, a

′, sr, f), for some sq, s
′
q, a, a

′, sr, f .

From Property (*) it follows that π(d2q, ε) = sr, hence π(d2q, x) = s1r since

sr
x

−→ s1r.
It remains to check the controllability condition for D. For components other

than q and r this is obvious. We have four cases to examine.

21

First, let us take a state (dq, x) of Dr. Suppose that π(dq, x)
b

−→ s′r is a

local, uncontrollable transition in Ar. We need to show that (dq, x)
b

−→ (dq, xb)

is possible in Dr. Since (dq, x) is a state of Dr we have dq
x

−→ d′q in D▽
q .

Moreover, π▽(d′q) is of the form (sq, a, sr, f) and π(dq, x) = sr. We get that

(sq, a, sr, f)
b

−→ (sq, s
′
r, f |b) exists in A▽

q . Since D▽ satisfies the controllability

condition, in D▽
q there must be a transition d′q

b
−→ d′′q for some d′′q . Hence, by

definition, (dq, x)
b

−→ (dq, xb) exists in Dr.

For the next case we take a state dq of Dq and suppose that π(dq)
b

−→ s′q is
a local, uncontrollable transition in Aq. We need to show that a b-transition is
possible from dq inDq. We get π▽(dq) is of the form (sq, a, sr, f), and π(dq) = sq.

This means that the transition (sq, a, sr, f)
b

−→ (s′q, sr, f) is in A▽
q . Since D▽ is

covering, we get dq
b

−→ d′q for some d′q in D▽
q . But then dq

b
−→ ts(d′q) in Dq by

definition.
The case of communication of q with p 6= r is similar to the above.
The last case is a communication between q and r. So take (d1q, (d

2
q, x))

and suppose (π(d1q), π(d
2
q, x))

b
−→ (s′q, s

′
r) in A. We have that π▽(d1q) is of

the form (s1q, a1, sr, f) and π▽(d2q) is of the form (s2q, a2, sr, f); the sr- and f -
components are the same by Property (*). Moreover, by definition π(d1q) = s1q
holds. Let s1r = π(d2q, x), thus sr

x
−→ s1r. These observations allow us to obtain

the following sequence of transitions in A▽:

(s1q, a1, sr, f)
x

−→ (s1q, a1, s
1
r, f |x)

b
−→ (s′q, s

′
r)

Since D▽ satisfies the controllability condition we must have transitions d1q
x

−→

d′q
b

−→ d′′q in D▽, with π▽(d′′q) = (s′q, s
′
r). This means that we have transition

(d1q, (d
2
q, x))

b
−→ (ts(d′′q), (ts(d

′′
q), ε)) in D and π(ts(d′′q)) = s′q, π(ts(d

′′
q), ε) = s′r.

�

As D is covering, to prove that D is correct we need to show that all its
maximal runs satisfy the correctness condition. For this we will construct for
every run of D a corresponding run of D▽. The following definition and lemma
tells us that it is enough to look at the runs of D of a special form.

Definition 28 (slow) We define slowr(D) as the set of all sequences labeling
runs of D of the form y0x0a1 · · · akykxkak+1 . . . or y0x0a1 · · · yk−1xk−1akxkyω,
where ai ∈ Σq ∩ Σr, xi ∈ (Σloc

r)∗, yi ∈ (Σ \ Σr)
∗, and yω ∈ (Σ \ Σr)

ω

Lemma 29 A covering controller D is correct for A iff for all w ∈ slowr(D),
run(w) satisfies the correctness condition inherited from A.

Proof
Observe first D is r-short, since A is r-short and D is covering. Thus every
sequence labeling some run of D either has finitely many r-actions or infinitely
many communications of r with q.

Secondly, note that every sequence w labeling some run of D can be rewritten
into a sequence w′ from slowr(D) by repeatedly replacing factors ab by ba, if
dom(a) ∩ dom(b) = ∅. We have that run(w′) is also defined and runp(w) =

22

runp(w
′) for every process p. Therefore for correctness it will be enough to

reason on sequences from slowr(D). �

For every sequence w ∈ slowr(D) as in Definition 28 we define the sequence
χ(w) ∈ (Σ▽)∞ by induction on the length of w. Let χ(ε) = ch(f0) ch(a0), where
f0 and a0 are determined by the initial q-state of D▽. For w ∈ Σ∗, b ∈ Σ let

χ(wb) =

χ(w)b if b 6∈ Σq

χ(w)b ch(a) if b ∈ Σq \ Σr

χ(w)b ch(f) ch(a) if b ∈ Σq ∩ Σr.

where a and f are determined by the state reached by D▽ on χ(w)b. The
next lemma implies the correctness of the construction, and at the same time
confirms that the above definition makes sense, that is, the needed runs of D▽

are defined.

Lemma 30 For every sequence w ∈ slowr(D) we have that run▽(χ(w)) is
defined. If w is finite then the states reached by D on w and by D▽ on χ(w)
satisfy the following:

1. statep(w) = state▽p (χ(w)) for every p 6= q, r.

2. Let w = y0x0a1 · · · akykxk, where ai ∈ Σq ∩ Σr, xi ∈ (Σloc
r)∗, and yi ∈

(Σ \ Σr)
∗. Then stater(w) = (dq, xk) and stateq(w) = d′q, where dq =

state▽q (χ(y0x0a1 · · · ak)) and d′q = state▽q (χ(y0x0a1 · · · akyk)).

Proof
Induction on the length of w = y0x0a1 · · · akykxk. If w = ε then stateq(ε) = d1q

and stater(ε) = (d1q, ε) where d
0
q

ch(f0) ch(a)
−→ d1q in Dq, which shows the claim. Let

w = w′b. If b /∈ (Σq∪Σr), then xk = ε, yk = y′b, χ(w′b) = χ(w′)b, stateq(w
′b) =

stateq(w
′)

ind.
= state▽q (χ(y0x0a1 · · · aky

′)) = state▽q (χ(y0x0a1 · · · aky
′)b). More-

over, stater(w
′b) = stater(w

′)
ind.
= (dq, ε), where dq = state▽q (χ(y0x0a1 · · · ak)).

Finally, assuming that run▽(χ(w′)) defined, observe that this run can be ex-
tended by a b-transition since it can be in w and the concerned states are the
same.

We consider the remaining cases:

1. Let b ∈ Σloc
r , then χ(w′b) = χ(w′)b and xk = x′b. We have stateq(w

′b) =

stateq(w
′)

ind.
= state▽q (χ(y0x0a1 · · · yk)) =: d′q. Moreover, stater(w

′) =
(dq, x

′), where dq = state▽q (χ(y0x0a1 · · · ak)). In Dr there is a transition

(dq, x
′)

b
−→ (dq, x

′b), which shows the claim about states. Finally we
justify that the run on χ(w′) in D▽ can be extended by a b. We know

that dq
x′b
−→ and d′q

x′

−→ in D▽, and want to show that d′q
x′b
−→. This holds

since D▽ is covering and since Property (*) guarantees that the sr and f
components of π▽(dq) and π▽(d′q) are the same.

2. Let b ∈ Σq \ Σr, so b is either local on q or a communication with p 6=
q, r. We have xk = ε and yk = y′b. Assume that b is local on q. We
have χ(w) = χ(w′)b ch(a), where a ∈ Σloc

q and dq are such that dq =

state▽q (χ(w
′)) and dq

b
−→ d1q

ch(a)
−→ d2q in D▽. By induction, stateq(w

′) =

23

state▽q (χ(y0x0a1 · · · aky
′)) = dq, and by definition of Dq, dq

b
−→ d2q =

ts(d1q). Thus stateq(w) = d2q = state▽q (χ(w)) and the claim about states
is shown. The run on χ(w) in D▽ exists by the definition of χ(w) from
χ(w′).

The case of a communication with p 6= r is similar to the above.

3. Let b ∈ Σq ∩ Σr be a communication between q and r, thus ak = b
and xk = yk = ε. We have χ(w) = χ(w′)b ch(f) ch(a), where a, f

are such that state▽q (χ(w
′)) = dq

b
−→ d1q

ch(f) ch(a)
−→ d2q. Consider d′q =

state▽q (χ(y0x0a1 · · · ak−1)) and d′′q = state▽q (χ(y0x0a1 · · · ak−1yk−1)). By
induction, stateq(w

′) = d′′q and stater(w
′) = (d′q, xk−1). In D we have a

transition (d′′q , (d
′
q, xk−1))

b
−→ (d2q, (d

2
q, ε)) since d

′′
q

xk−1

−→ dq
b

−→ d1q
ch(f) ch(a)

−→
d2q in D▽. Thus, stateq(w) = d2q = state▽q (χ(w)) and stater(w) = (d2q, ε) =
(state▽q (χ(w)), ε), which shows the claim about states. The run on χ(w)
in D▽ exists by the definition of χ(w) from χ(w′).

�

Lemma 31 If w ∈ slowr(D) and run(w) is maximal in D, then run(χ(w)) is
maximal in D▽.

Proof
Recall first that run(χ(w)) is not maximal only if for some finite prefix x of
χ(w), run(x) can be extended by some action a (and the processes in dom(a)
do not appear anymore in the remaining suffix of χ(w)). From the definition
of χ(w) it follows that it suffices to consider prefixes of χ(w) of the form χ(u),
where w = uv with u finite. By Lemma 30 we note first that such an a cannot
be on processes other than q or r, since statep(u) = state▽p (χ(u)) for all p 6= q, r.

We consider the remaining cases, and assume u = y0x0a1 · · · akykxk:

1. Assume that χ(u) can be extended by some b ∈ Σloc
r in D▽, and let

dq = state▽q (χ(y0x0a1 · · · ak)), d
′
q = state▽q (χ(y0x0a1 · · · akyk)), so d′q

xkb−→
in D▽

q . By Lemma 30 we have stater(u) = (dq, xk) and by Property (*),
the sr- and f -components of π▽(dq) and π▽(d′q) are the same. Since D▽

is covering, this means that dq
xkb−→, hence there is a run on ubv in D so w

was not maximal.

2. Assume that χ(u) can be extended by some b ∈ Σq \ Σr and recall from
Lemma 30 that stateq(u) = dq, where dq = state▽q (χ(y0x0a1 · · · akyk)).
Consider u1 = y0x0a1 · · · akykb and assume that b is q-local (the case of a

communication with p 6= r is similar). We have dq
xk−→ d′q

b
−→ in D▽ from

some d′q, and we want to show that dq
b

−→ d′′q for some d′′q . But this holds
since D▽ is covering and the sq components of π▽(dq) and π▽(d′q) are the
same. So the run of w in Dq was not maximal, since there is a run on ubv
in D.

3. Assume that χ(u) can be extended by some b ∈ Σq ∩ Σr. Recall from
Lemma 30 that stateq(u) = d′q and stater(u) = (dq, xk), where dq =
state▽q (χ(y0x0a1 · · · ak)) and d′q = state▽q (χ(y0x0a1 · · · akyk)). We have

24

that state▽q (χ(u)) = d1q where d′q
xk−→ d1q, and d1q

b
−→ d2q. According to the

definition of D, there is a transition (d′q, (dq, xk))
b

−→ (ts(d2q), (ts(d
2
q), ε))

in D, so that the run on w was not maximal.

Note that a run on χ(u) cannot be extended by actions of the form ch(a) or
ch(f), since D▽ is covering. So the above four cases exhaust all the possibilities.
�

Lemma 32 If D▽ is a correct covering controller for A▽, then D is a correct
covering controller for A.

Proof
By Lemma 29 it is enough to show that for all w ∈ slowr(D), run(w) satisfies
Corr . By Lemmas 30 and 31 the run on χ(w) exists and is maximal. Since D▽

is correct this run satisfies Corr▽.
Consider a maximal run in D, labeled by some w ∈ slowr(D). It is of one of

the forms
y0x0a1 · · · akykxkak+1 . . . or y0x0a1 · · · akxkyω

where ai ∈ Σq ∩ Σr, xi ∈ (Σloc
r)∗, yi ∈ (Σ \ Σr)

∗, and yω ∈ (Σ \ Σr)
ω

By Lemma 30 runp(w) and run▽
p (χ(w)) are the same for p 6= q, r. Since

for such p also the correctness conditions of A and A▽ are the same, and since
run▽

p (χ(w)) satisfies Corr
▽
p , so does runp(w).

Considering runq(w), Lemma 30 gives us

stateq(y0x0a1 · · · akyk) = stateq(y0x0a1 · · · akykxk) = state▽q (χ(y0x0a1 · · · akyk))

for every k. Moreover, the Aq-component does not change when going from
π▽(χ(y0x0a1 · · · akyk)) to π▽(χ(y0x0a1 · · · akykxk)). Thus, π(runq(w)) is equal
to the projection on Aq of π▽(runq(χ(w))), so runq(w) satisfies Corrq.

It remains to consider runr(w). For this we can use Lemma 30 obtaining
stater(y0x0a1 · · · akykxk) = (dq, xk) with dq = state▽q (χ(y0x0a1 · · · ak)), for ev-
ery k. Recall that π(dq, x) was defined as the Ar-component of π▽(d′q), where

dq
x

−→ d′q in D▽. Assume first that w is of the form y0x0a1 · · · akykxkak+1
Observe that π(runr(w)) is equal to the projection on Ar of π▽(run▽

q (χ(w))),
thus runr(w) satisfies Corrr because run▽

r (χ(w)) satisfies Corrr. Let now
w be of the form y0x0a1 · · · akxkyω. Since run(w) is maximal we have that
stater(w) ∈ Tr, again because run▽

r (χ(w)) satisfies Corrr. �

4 Conclusion

We have considered a model obtained by instantiating Zielonka automata into
the supervisory control framework of Ramadge and Wonham [15]. The result
is a distributed synthesis framework that is both expressive and decidable in
interesting cases. To substantiate we have sketched how to encode threaded
boolean programs with compare-and-swap instructions. Our main decidability
result (Theorem 7) shows that the synthesis problem is decidable for hierarchical
architectures and for all local omega-regular specifications. Recall that in the
Pnueli and Rosner setting essentially only pipeline architectures are decidable,

25

with an additional restriction that only the first and the last process in the
pipeline can handle environment inputs. In our case all the process can interact
with the environment.

The synthesis procedure presented here is in k-Exptime for architectures of
depth k, in particular it is Exptime for the case of a one server communicating
with clients who do not communicate between each other. From [5] we know
that these bounds are tight.

This paper essentially closes the case of tree architectures introduced in [5].
The long standing open question is the decidability of the synthesis problem for
all architectures [3].

References

[1] A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of con-
trollers with partial observation. Theoretical Computer Science, 303(1):7–
34, 2003.

[2] B. Finkbeiner and S. Schewe. Uniform distributed synthesis. In Proc. LICS
2005.

[3] P. Gastin, B. Lerman, and M. Zeitoun. Distributed games with causal
memory are decidable for series-parallel systems. In Proc. FSTTCS 2004.

[4] P. Gastin and N. Sznajder. Fair synthesis for asynchronous distributed
systems. ACM Transactions on Computational Logic, 14(2): 9, 2013.

[5] B. Genest, H. Gimbert, A. Muscholl, and I. Walukiewicz. Asynchronous
games over tree architectures. In Proc. ICALP 2013.

[6] S. Graf, D. Peled, and S. Quinton. Achieving distributed control through
model checking. Formal Methods in System Design, 40(2):263–281, 2012.

[7] J. Gutierrez and G. Winskel. Borel determinacy of concurrent games. In
Proc. CONCUR 2013.

[8] O. Kupferman and M. Vardi. Synthesizing distributed systems. In
Proc. LICS 2001.

[9] P. Madhusudan and P. Thiagarajan. Distributed control and synthesis for
local specifications. In Proc. ICALP 2001.

[10] P. Madhusudan, P. S. Thiagarajan, and S. Yang. The MSO theory of
connectedly communicating processes. In Proc. FSTTCS 2005.

[11] P.-A. Melliès. Asynchronous games 2: The true concurrency of innocence.
TCS, 358(2-3):200–228, 2006.

[12] M. Mukund and M. A. Sohoni. Keeping Track of the Latest Gossip in a
Distributed System. Distributed Computing, 10(3):137–148, 1997.

[13] A. Muscholl and S. Schewe. Unlimited decidability of distributed synthesis
with limited missing knowledge. In Proc. MFCS 2013.

26

[14] A. Pnueli and R. Rosner. Distributed reactive systems are hard to synthe-
size. In Proc. FOCS 1990.

[15] P. J. G. Ramadge and W. M. Wonham. The control of discrete event
systems. Proc. of the IEEE, 77(2):81–98, 1989.

[16] I. Walukiewicz. Pushdown processes: Games and model checking.
Inf. Comput., 164(2):234–263, 2001.

[17] W. Zielonka. Notes on finite asynchronous automata. RAIRO–Theoretical
Informatics and Applications, 21:99–135, 1987.

27

	Introduction
	Control for Zielonka automata
	Decidability for acyclic architectures
	Covering controllers
	Short automata
	The reduced automaton A
	Proof of Theorem 20: from C to C
	Proof of Theorem 20: from D to D

	Conclusion

