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DYNAMICS OF RETICULATED STRUCTURES:
EVIDENCE OF ATYPICAL GYRATION MODES
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Ecole Nationale des Travaux Publics de I'Etat, Université de Lyon, DGCB, FRE CNRS 3237,
Lyon, France

*Address all correspondence to C. Boutin, E-mail: claude.boutin@entpe.fr

This paper deals with the dynamic behavior of periodic reticulated beams made of symmetric unbraced framed cells. Such
archetypical cells can present a high contrast between shear and compression deformabilities that opens the possibility of
enriched local kinematics. Through the homogenization method of periodic discrete media associated with a systematic
use of scaling, the existence of atypical gyration modes is established theoretically. These latter modes appear when the
elastic moment is balanced by the rotation inertia, conversely to “natural” modes where the elastic force is balanced
by the translation inertia. A generalized beam modeling including both “natural” and gyration modes is proposed and
discussed through a dimensional analysis. The results are confirmed on numerical examples.

KEY WORDS: reticulated structures, homogenization, structural dynamics, micromorphic media, gyra-
tion modes, generalized beam

1. INTRODUCTION

This paper deals with the macroscopic dynamic behavior of periodic reticulated structures widely encountere
mechanical engineering. Periodic lattices have been studied through various approaches such as transfer matrix
ational approach (Kerr and Accorsi, 1985), and finite-difference operator (Noor, 1988). Asymptotic methods of t
mogenization (Sanchez-Palencia, 1980) initially developed for periodic media, were extended to multiple parame
and scale changes by Cioranescu and Saint Jean Paulin (2010) and adapted to periodic discrete structures by Cs
et al. (1989), and then by Moreau and Caillerie (1998). Unbraced framed structures have been studied in struc
dynamics, for instance by Skattum (1971). All those studies aim to relate the features of the basic cell and the gl
behavior.

The morphology of reticulated beams is such that the basic cells can present a high contrast between shea
compression deformabilities (conversely to “massive” beams). This opens the possibility of enriched local kinema
involving phenomena of global rotation, inner deformation or inner resonance, according to studied configuration :
frequency range (Hans and Boutin, 2008). A numerical illustration of these atypical situations is given in Fig. 1, whi
shows some unusual macroscopic modes (Chesnais, 2010).

This paper addresses the theoretical evidence of atypical gyration modes. These latter modes appear whe
elastic moment is balanced by the rotation inertia, conversely to “natural” modes where the elastic force is balan
by the translation inertia. We proceed in two steps. First, analysis is performed on the archetypical case of symm
unbraced framed cells (Boutin and Hans, 2003; Hans and Boutin, 2008). Assuming the cell size is small compz
to the wavelength, the homogenization method of periodic discrete media leads to the macro-behavior at the lea
order. Second, the results are extended to a wider class of reticulated frames. A generalized beam modeling inclt
both natural and gyration modes is established via a dimensional analysis approach.

To our knowledge very few works are devoted to such topics. The possibility of gyration modes has been m
tioned by Skattum (1971) and partially treated in some study cases. However, a comprehensive analytical appr
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FIG. 1: Examples of typical (T) and atypical (G) mode shapes of framed structures.
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aiming at understanding and modeling gyration modes is not yet available in a general framework. The present pa
provides a contribution in this field.

The paper is organized as follows. Section 2 gives an overview of the method. In Section 3 the different type
of natural transverse modes (even if the beam behavior is not classical) are presented and discussed in a partic
case. Section 4 is devoted to gyration vibrations, governed by the balance of elastic moment and rotation inertia.
Section 5, a generalized modeling is proposed, discussed through a dimensional analysis and illustrated numerice

2. OVERVIEW OF DISCRETE HOMOGENIZATION AND STUDIED STRUCTURES
An outline of the method is given hereatfter, for a detailed presentation one may refer to Hans and Boutin (2008). T
analysis of periodic beam lattices is performed in two steps (Tollenaere and Caillerie, 1998).

2.1 Discretization

The studied structures (Fig. 2) are made of plates behaving as Euler—Bernoulli beams in out-of-plane motion, a
assembled with rigid connections. The motions of each extremity connected to the same node are identical and de
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FIG. 2: The class of unbraced framed structures (left) and the basic frame and notations (right).



the discrete nodal kinematic variables of the system. The discretization consists in integrating the dynamic balar
(in a harmonic regime) of the beams, the unknown displacements and rotations at their extremities taken as bounc
conditions. Forces applied by an element on its extremities are then expressed as functions of the nodal variables.
balance of each element being satisfied, the balance of the whole structure is rigorously reduced to the balance of
nodes.

2.2 Homogenization

The key assumption is that cell sizés small compared to the characteristic sizef the vibrations of the structure.
Thus,e = ¢/L <« 1. The existence of a macro-scale is expressed by means of a macro-space varidide
physical variables are continuous functionszofoinciding with the discrete variables at any node; dg.(x =

x,) = U(node n). These quantities, assumed to converge wheands to zero, are expanded in powerseof
Ue(z) = U%x) + eU(z) + €2U?(x) + . ... Similarly, all unknowns, including the modal frequency, are expanded
in powers ofe. As ¢ = eL is small with respect ta, the variations of the variables between neighboring nodes are
expressed using Taylor’s series, which introduces the macroscopic derivatives. To account for the local physics, |
geometrical and mechanical characteristics of the elements are scaled according to the pewAss fof modal
frequencies, the scaling is imposed by the balance of elastic and inertia forces at the macro-level. The scaling inst
that each effect appears at the same order whatevervhkie is. Therefore, the same physics is kept whes 0;

i.e., for the homogenized model. Finally, the expansions are introduced in the nodal balances. Those relations, ve
for any smalle, lead for eacle-order to balance equations whose resolution defines the macroscopic equations.

2.3 Inner Quasi-Statics and Inner Dynamics

In general, the scale separation requires wavelengths of the compression and bending vibrations generated in ¢
local element to be much longer than the element length at the modal frequency of the global system. Hence,
nodal forces can be developed in Taylor’s series with respectTais situation corresponds to a quasi-static state at
the local scale. The developments presented hereafter are established in this context.

Note that situations where only the compression wavelength is much longer than the length of the elements, wh
local resonance in bending appears, are also possible. The homogenization still applies through the expansions of
compression forces only and leads to atypical descriptions with inner dynamics. For such situations, out of the foc
of this paper, one may refer to Boutin et al. (2009), Chesnais et al. (2007), Chesnais (2010).

2.4 Natural and Unusual Transverse Vibrations

According to the properties of the cell of the reticulated structures, the homogenization enables to evidence t
categories of transverse vibrations related to the nature of the governing dynamic balance.

For natural modes (Section 3), the horizontal elastic force balances the horizontal translation inertia. When tl
elastic moment is balanced by the rotation inertia one obtains the unusual gyration modes (Section 4).

2.5 Structures

The structures, of heightf = N.¢, spanh, consist in a large numbéy of identical unbraced frames called cells
(Fig. 2). The parameters of horizontal£ f) and vertical elements & w) are: length?; (¢ = ¢,,); thicknessa;;
section areal; = a;h; inertial; = a}h/12 in directiones; densityp,; and elastic modulug;.

At any leveln, the displacements in the two directions and the rotafion us, 0) of the two nodes can be
replaced by (1) three variables associated with the rigid body motion ofdewble mean transverse displacements,
U(n) alonge;, V(n) alonge,, and the rotatiorx(n) (differential vertical nodal motion divided bdf) and (2) three
variables corresponding to the deformation of lewelthe mean and differential rotations of the nodeg;) and
®(n), and the transverse dilatatidn(n) (cf. Fig. 3). Because of the longitudinal symmetry, the transverse kinematics
associated withl(, «, 8) is uncoupled with the longitudinal kinematics (driveny®, A; not studied here).
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FIG. 3: Decoupling of transverse (left) and longitudinal (right) kinematics.

3. NATURAL TRANSVERSE VIBRATIONS

For natural transverse vibrations, the horizontal elastic force balances the horizontal translation inertia and the f
guency range is such that the cell behaves quasi-statically (lower frequencies would lead to a static regime). T
possible beam-like behaviors were established by varying the properties of the basic frame elements by Hans :
Boutin (2008) to which one may refer for a precise analysis. The synthesis of the different macro-behaviors shov
that only three mechanisms—shear, global bending, and inner bending—govern the physics at the macro-scale. Eac
them is associated with an elastic cell parameter of stiffness: in $hgarglobal bending?,, I, and in inner bending

E,T (T is the effective inner bending inertia). Owing to the quasi-static local state, these parameters are deduced fr
the elastic properties of elements in statics. For structures as in Fig. 2, theyArstoh(s for the linear mass):

Eul, E;l Ayl3
K'=K,'"+K;', K,=2 o Kf:12£f€;”, I= 2f, 7 =21, 1)
¢
A=Ap+As Ay =puAy, Ap=psA;-TL @)

by
3.1 Generic Beam Model

The generic beam model is governed by

e The beam behavior laws (3) relating macroscopic shear forcglobal bending moment/, and the inner
bending moment\ to the kinematic variable§ and« (rigid body motion of the section):

T=-K@U -—«), M=-E,Jo«, M=—E,IU" (3)

e The force and moment of momentum balance equations:

4
M +T=0 )

{ (T — M) = Aw?U
This generalized beam description includes shear and inner bending. The dominating effect(s) that actually drive
the effective behavior of a given structure, can be identified through a dimensional analysis. In this aim, we introdu
the actual first mode vibration's size= 2H /7t (for then'® mode of a clamped-free bea, = 2H/[(2n — 1)7))
and the variables are rewritten &8s= U"U* andx = «"a* where the exponent denotes reference values, and
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FIG. 4: Map of different kinds of transverse natural behaviors in function of the paranieéterg” andy = €¥, Hans

and Boutin (2008). As discussed in Section 5.2, the zoning also applies for the gyration modes: (1) In the domain
Global Bending without she&' < O(e), gyration modes are impossible. (2) In the Generic and Slender Timoshenko
domains,O(e~1) > C > O(e), gyration modes occur provided that< O(e), and their frequency range is much
higher than for natural modes. (3) In the Shear and Inner Bending doiaing) (e 1) both natural and gyration
modes exist and are uncoupled while their frequency range may be common or disjointed.

denotes the dimensionless terr@g1) by construction. Introducing the expression of the beam efforts (3) and making
the change of variables= x/L, set (4) becomes
Q2U* + U*(2) _ C«,YU>|<(4)~ — (EOCT/UT)O(*/ (5)
—o* + Coa*® = —(U" /LU

where the numbers in brackets stand for the order of derivative. The dimensionless naimnpdgs1 for common
cell geometry) and? compare, respectively, global bending and shear, inner and global bendings, translation inerti:
and shear. They read

E, T , Aw’L?
= %5t Y= Q S (6)
Eliminatingoc* (or U*) in Eq. (5) gives the differential equation governi&ig (or oc*):
Q2
CyU*©® —(1+v) U*<4LQ2U*<2>+6U*:O(@;) @)

The termO(€) highlights the fact that Eq. (7) is a zero-order balance and, hence, is only valid up to the aécuracy
Consequently, according to the value€HfCy andy compared t& powers € = £/£ = 1/2N), Eq. (7) degenerates

into simplified forms. The mapping (Fig. 4) gives the validity domain of the seven possible behaviors according t
the two parameters andy defined byC' = €* andy = €Y. Note that as the validity of the model requires the scale
separation; i.e.{/L,, < 1, the maximum number of homogenizable modes of a structuré oélls is at the most
Nmax = N/3



3.2 An Example: The Slender Timoshenko Beam

Consider structures for whighl = O(1) andy < O(€). Then, the terms related @y andy are negligible in Eq. (7)
and the model is a slender Timoshenko beam driven by

Q2
U@ 4?2 g — U= 0(¢) (8)

To show how to reach Eq. (8) by homogenization, consider a structure as shown in Fig. 2 with the floors thicker th:
the walls:

“ oy Yo -on; Z_on ©

so that, as required:

E,I 22 21, aZ, 5
C—m—o%p) = 0l) V—I—O<3ez> = 0(eh)

The dynamic regime is reached wh@h/C' = O(1); i.e., sinceC = O(1), A = O(Ay), K = O(K,,), for circular
frequencyw, = O(L~'\/K,/A;) = O(K,/\/EwIAy). In that case, the leading order equations obtained by
homogenization are

— K, (U —8%) = A;w3U° (10a)
Kf(a®—0%) =0 (10b)
—EuIa® — K, (UY —8°) =0 (10¢)

Equation (10a) expresses the balance of horizontal forces; Egs. (10b) and (10c) are derived from the balance of b
local and global moments at the first two significant orders. Equation (10b) also describes the inner equilibrium
the cell and impose8® = «’. Thus, the behavior is described by a differential set that governs the mean transvers
motionU and the section rotation":

{ _K, (U — o) = A ;w300

(11)
—EuyIa® — K, (U” =) =0

Eliminating «° provides:
E,1
E,IU™ 4 KLAwaUO(Q) —AywdU% =0

which corresponds to Eq. (8); i.e., a degenerated form of Eq. (7)with O(€). The similarity with Timoshenko
beams is obvious when rewriting Eq. (11) with the macro-shear fBfcand the global bending momehf® defined
in Eq. (3) (here with 0 exponent):

TO = Apw3U° (12a)
MY+ 70 =0 (12b)

Two features distinguish Eq. (12) from the Timoshenko description of “massive” beams. First, the shear effect [th
comes from the bending of the walls in parallel, Eq. (1)] remains at the leading order even if the reticulated structu
is slender. Second, while the translation inertia is significant in the force balance [Eq. (12a)], the rotation inertia
negligible in the moment of momentum balance [Eq. (12b)] (where the effective bending results from the opposi
extension—compression of the two walls distant from the floor length). In other words, the translation is in the dynam
regime but the rotation remains in quasi-statics for the studied frequency range. This leads to considering higt
frequencies to obtain rotational dynamics.



4. ATYPICAL TRANSVERSE VIBRATIONS: GYRATION MODES

This section is devoted to gyration modes; i.e., transverse modes resulting from the dynamic equilibrium betwe
elastic moment and rotation inertia. As previously mentioned, this requires considering higher frequencies than f
natural modes. Consequently, in addition to the change of kinematics, phenomena of inner dynamics could also oc
Here, only situations with local quasi-statics will be investigated. A particular case is first treated, whose resul
are slightly generalized. Then, the theoretical features of the gyration modes are studied and confirmed throug
numerical example.

4.1 Evidence of Gyration Modes

To evidence the existence of gyration modes, we come back to the framed structures, whose geometry and par
eters are scaled as previously shown in Eq. (9). The frequency range is increased of one erdes.jnv, =
O(t~'\/K,/Ay), which remains sufficiently low to insure the quasi-static regime of the cell. As above, the three
equations derived by homogenization express (1) the balance of horizontal forces at the leading order [Eq. (13
(2) the inner equilibrium of the cell derived from the balance of both local and global moments at the leading orde
[Eg. (13b)], and (3) the sum of the local and global moments at the next significant order [Eq. (13¢)]:

0= Afw%UO (133)
Ky (a0 —0%) =0 (13b)
pr At}
_ orn __ 07 _ n0) —
B, Lo — K, (U ~0%) = S
xwj (42 — 70°) (13c)

The comparison of Egs. (10) with Eqgs. (13) shows that the higher frequency leaves the inner equilibrium conditic
of the cell unchanged (thus, here also the mean rotation of the nodes matches the section rotafdn=ie®).
Conversely, the increased order of magnitude of inertia terms implied thaf U° cannot be balanced by horizontal
elastic forces; thus, the section translation vanish&s,= 0. In parallel, the rotation inertia now appears in the
moment of momentum balance. After eliminati®y the macroscopic behavior at the leading order is described by
the following differential equation of the second degree:

—E, I + Kol = Jpwda® (14a)
A3
00 = ol U0 =0; Jp=CE (14b)

This is an atypical gyration beam model fully driven by the section rotatidwithout lateral translation (more
precisely, one shows that the first nonvanishing translation is of the secondedtdér= [K,,/A;w3]a”). The
gyration dynamics is governed by the mechanism of opposite traction-compression of vertical elements (the elas
parameter is the global bending stiffngsgI), the shear of the cell (stiffneds,,) acting as an inner elastic source of
moment, and the classical rotation inertia of the thick flodg (

Introducing the macroscopic shear forE@ and the global bending momemt® already defined in Eq. (3) and
accounting fol° = 0 shows that Eq. (14a) is nothing but the moment of momentum balance of the usual Timoshenk
formulation:

T° + MY = Jrwia (15)

However, in massive Timoshenko beams, variablemd« reach the dynamic regime in the same range; hence, both
are involved in common modes. Conversely, for the reticulated beams studied in this section, natural and gyrati
modes are uncoupled because the dynamic regimés$ ord « occur in different frequency ranges. This specificity
implies that in the frequency range of non-homogenizable natural modes, homogenizable gyration modes can
found. Note that the thick floors of the specific studied frame lead to neglecting the shear deformability of the floc



and the rotation inertia of the walls. The particular description [Eq. (14)] can be extended to other types of frames |
considering the cell shear stiffnesSinstead ofi,, and rotation inertia/ instead ofJ; (for structures as in Fig. 2,
J = Jg 4 Jy With Ty, = 0y Ay (3 /2).

4.2 Modal Analysis and Physical Properties

To analyze the features of gyration modes, let us first establish the energy balance by multiplying Eqg. (14a) by t
rotationx and integrating over the beam length [superscripts 0 are omitted to save notations and, for more generali
the extended form of Eq. (14a) withand K is considered]. After integration by part, one obtains:

H

H
1 o 0, L [(T? M? 1 H
0

0

which shows that the working boundary conditions are momiérdand rotationx, while the shear force only takes
part in the energy of deformation. Hence, the external actions for which these modes are relevant are either verti
differential forces (global moment) or vertical differential displacements (section rotation) imposed at the extremitie
of the walls. For instance, considering a beam clamped en0 (no section rotation) and free an= H (no global
moment), the boundary conditions read:

«(0)=0 and M(H)=0, thus o (H)=0 (16)

Because of the presence of the source té&fmin the moment of momentum balance [Eq. (14a)], the gyration
dynamics deviates from the dynamics of systems governed by a Helmholtz equation (as shear beam). To investic
the features of gyration modes, Eq. (14a) is rewritten in the form:

Jw? — K
«' = —Da; D:%; 5 =1/y/D|

As D may be positive or negative, the character of the gyration modes differs for frequencies lower or higher than tt
threshold frequency/K/J.

In the low-frequency range defined by < /K /J, thenD < 0 and the general solution reads:
a(x) = Acosh(z/8) + Bsinh(x/5)

The determination ofA and B from clamped-free boundary conditions (16) leads to the trivial solutitfx) =
0. Other boundary conditions may lead &3(x) # 0, with an exponential decay of characteristics length-

O/ EwI/K)whenw — 0.

Thus, actual gyration modes only appear for frequencies higher than the threshold. Indeed:
for w>+/K/J, ox)= Acos(z/d)+ Bsin(x/8)

and boundary conditions (16) impoge= 0 and(B/b) cos(H/5) = 0. Finally, the clamped-free gyration modes are
defined by
2H

. Eol (2k—12® K
(2k — 1)m’

2 i
Y=g T (17)

a(xz) = Bsin(z/d); & =

Consequently, the macroscopic length (naméjy= 5,,) of the kth gyration mode follow the common estimate. The
mode shape (i) is of the same sinusoidal nature as shear bea¥itConversely, the frequency distribution does
not follow the series of odd numbers.



4.3 Numerical Illustration

These results are illustrated and confirmed numerically on a structure (as in FigN2)-ofl5 levels and of span
h = 10 m. Thus,é = m/2N = 0.105. Choosing a squared frame of length = ¢; = 3 m, the wall and floor
thicknesses respect Eq. (9), which gives:= € ¢, = 31.4cm,ay = Vél,, =97.1 cm. The material properties are
those of concretep = 2500 kg/n¥, Eyoung = 30 GPay = 0.2, E = Eyoung/(1 — v?) = 31.250 GPa.

As the scale separation is not very sharp, the thicknesses deduced from Eq. (9) yield that the wall inertia and sh
deformability of the floor are not negligible. For this reason, the accuracy of the gyration beam model is improved b
usingJ and K instead ofJ; and K,,. The frequencies of the fourth first gyration modes are deduced from Eq. (17)
and compared to a finite-element (FE) modeling (RDM6). The results presented in Fig. 5 show that the discrepanc
are smaller than 8%. Accounting for the poor scale separation, this rather good accuracy illustrates the robustnes

mode 1 mode 2 mode 3 mode 4
H.M. : 34.75 Hz 56.96 85.54 115.88
F.E.: 33.09 Hz 53.61 80.13 107.66

Error: 5.0 % 6.3 6.8 7.6

FIG. 5: Fourth first frequencies and shapes of gyration modes calculated by RDM6. Comparison between homog
nization method (H.M.) and finite elements (F.E.) and relative error.



the homogenization approach. The mode shapes clearly evidence the specific nature of the gyration modes gove
by the section rotation, with negligible transverse maotions. Notice also that the gyration eigenfrequenfy ratio
{1;1.6;2.5; 3.3} departs very significantly from the odd number series, with a much denser distribution.

5. GENERALIZATION: COMPREHENSIVE APPROACH

The previous section leads us to infer the existence of structures responding to more general descriptions where |
translation and rotation inertias balance macro-scopic shear Tgrgeobal bending moment/, and inner bending
momentM. This generalized model is established directly at the macro-scale independently of the homogenizatic
process. It enables recovering the results already established, but also to identifying the occurrence of gyration mo
for more complex basic frames. The theoretical approach based on balance equations and beam laws is first prese
then discussed trough a dimensional analysis, and finally its validity is illustrated from a numerical example.

5.1 Generic Beam Model Including Gyration Modes

The model is built by introducing, as in Eq. (15), the rotation inertia in the moment of momentum balance of the
generic model, while keeping the same beam behavior laws (3):

(T — MY = Aw?U; T=-K (U - a);
M=—-E,ZU"; M +T=Jw’x; (18)
M=—-FE,Id«

To facilitate the physical understanding of the interactions between the mechanisms involved in this model, we proce
to its dimensional analysis. In addition to the dimensionless numbers already defined in Eq. (6) we introduce the nq
number( attached to the rotation inertia: 5

AL?

For common geometry, has a typical value of = O(E?/EQ) = O(€&?). The dimensionless formulation of Eq. (18)
evidences the coupling between the dynamic operators actib @md oc*:

C:

QU + U@ — CoyU* = (La” /U™ (19a)
(2 — Do + Coa*® = —(U" /Lo )U* (19b)

and the sixth-order differential equation drivibg or o* reads:

2
CyU*©® — [1+y(1 - 0] U*® — (1 + é) QU + (1-¢9?) %U* =0(8) (20)

In principle, it is possible to design periodic structures from cells such that all the dimensionless numlgk) are
In that case, by construction, all the mechanisms conjointly exist [andfhgtLa”) = O(1); i.e.,O(x) = O(U")].
The modes of such structures involve bath and «* in the same frequency range and the classification of natural
and gyration modes disappears.

By varying the properties of the basic cell, simplified forms of the model can be reached for other structure:
according to the values of the dimensionless numbers in powZe&of/E. For instance, the generic beam where the
rotational inertia is negligible [Eq. (7)], is obtained provided thaandy areO(1) and that:

C JK _ s  Jw? -
—=_"_ =<
C BN S O(€) and 149} % S O(¢€)
The first inequality concerns the mass distribution within the cell: the radius of gyratioiA should be smaller

than the intrinsic bending/shear Iengﬂ@,u,I/K. The second condition imposes frequencies lower than the threshold



frequency to be in the range of vanishing gyration modes (Section 4.2). Besides, one obtains a “full” Timoshenko bez
(that involves at the leading order shear, global bending and rotation inertia) when:

EuI 7 o Jwrl? . )
= — = M :—< . —_— = . .e. =
L5 =0 y=7<0@); g =" =0(): ie. 2?=0()

The latter requirement implies that frequencies should be higher than the threshold frequency for gyration modes.
the lower-frequency rangéN? < O(€) the slender Timoshenko beam analyzed in Section 3.2 is recovered. These
examples show that the occurrence of gyration modes depends on both the structure of the cell (say the distribut
of mass compared to the distribution of stiffness) and on the frequency range. The next section aims at defining |
condition in which macroscopic gyration modes do exist.

5.2 Condition of Existence of Gyration Modes

A necessary condition for the existence of gyration modes isitfigactually in a dynamic regime. This imposes, [cf.
Eqg. (19b)], (1) a frequency higher than the threshold frequency of vanishing gyration, and (2) the balance betwe
rotation inertia and moment. Consequently,

Jw? 902 Jw?L?
2" > . - = = >
2 % 2 O(1); c o O(1) thus C > 0(1)

The inequalityC' > O(1) provides a first criterion of existence: gyration modes can only appear in structures suck
that the macro-deformation is not dominated by the global bending mechanism. This condition will be assumed in t
sequel.

To go further, notice that gyration modes distinct from natural modes, means that among the modes one m
distinguish two uncoupled families. To identify the situations of uncoupling, it is convenient to write Eqgs. (20) in the
hereafter equivalent forms deduced from Egs. (19):

()
Cleyur® — @ — 2| 4 (@2 - 1) [oyur® 0@ - 2ot 0@ = 0(@) (@)
where, according to Eq. (19a), the terms in brackets are proportiondl,tor
2 *(2) ) 2 *(2) (2) 2 2 *(2) *(2) ~
—Cy [(m Dot Ca } + [((:Q Do+ Ca } o) [(m ot Ca } +or® = 0(6)  (22)

where, according to Eq. (19b), the terms in brackets are proportiorfat’toTwo possibilities of uncoupling arise
depending on the magnitude 6f A synthesis of the discussion developed below is presented @i ttremapping

(Fig. 4).

5.2.1 Structures such thét = O(1)

For structures with balanced global bending and shear mechanismé; +e( (1), there are two families of modes
associated to two frequency ranges, provided that O(€). The requirement < O(€) means that the radius of
gyration of the cell is smaller (of half an order at least) than the size of the whole structure, and it is generally satisfie
for common framed cells.

First, consider frequencies such that

02 = 0(1); i.e., w?=0 <K)
AL2

then Eqg. (21) reduces to

[ch*<4> —U*<2>—QQU*} (2) —% [CyU*<4>—QQU*} = 0()



This latter equation coincides with Eq. (7) that governs the natural modes of the generic beam model. Notice that t
kinematics of these modes also involves a rotatifx) = O(U”).
Now, at higher frequencies such that

0% =0(1); ie. w?=0 (IJ()

Then? > O(e~!) and Eq. (22) reduces to the equation that governs the gyration modes:
1
5(&92 — D+ a*@ =0(e)

From Eq. (19a) the translation satisfi@$l/) = O(La" «*' /Q?) = O(«/Q?) < O(w). Consequently, in this fre-
guency range, occur pure gyration modes.

This situation corresponds to the example treated in Section 4.2 where in addition a weak inner bending mechani
was assumed; i.ey, < O(€). This latter assumption does not interfere with the above description of gyration modes,
however, at low frequency, occur the natural modes of a slender Timoshenko beam driven by

QQ
U 42 U@ 5 U =00

5.2.2 Structures such that > O(e™1)

Consider now structures with negligible global bending mechanism compared to shear, Goth@{(e~1). As a
consequence Eq. (21) simplifies to

@ 02
CYU*(4)_U*(2)_QQU*} +%[CyU*(4)—U*(2)—Q2U* =0(€) (23)

Without evoking the frequency ranges, Eq. (23) splits into two uncoupled equations. Indeed, either the terms
brackets vanish, which leads to the fourth degree differential operator driving the natural modes of a shear-inr
bending beam, or the terms in brackets, proportionattpsatisfy the second degree differential operator driving the
gyration modes:

Q2U* + U — CyU*™ = O(§) (24a)
2
%(x* + o = 0(e) (24b)

The natural modes appear for frequency = O [EwI/(AE‘*)} if Cy > 1,orw? = O[K/(AL?)]if Cy < 1.

The gyration modes appear at frequencies = O [Ewl/(JEQ)}. The conditiond < 1 is sufficient for the

frequency range of gyration modes to be higher than those of natural modes. Note that, conversely to the previous ¢
the source termK « in dimensional form) vanishes in the moment of momentum balance [Eq. (24b)]. Consequently
here, the gyration modes follow the classical features of systems driven by an Helmholtz equation, namely sinusoit
mode shapes (i), frequency distribution according to the odd number series and no threshold frequency. Thi
second situation is illustrated in the next section.

5.3 A Numerical Validation

The validity of the above developments has been checked numerically on a (fictitious) struchire- of5 levels

(€ = /2N = 0.105) and of sparh = 10 m. The cell is built in order to satisfy both Egs. (24) in the same frequency
range. To enhance the rotation inertia, the cell is made of a double frame where the lengths of walls and floors a
respectively/,, = 3 m and?; = 6 m. To favor the inner bending, the thickness of both external and internal walls is



a,, = 80 cm, and that of floors iy = 20 cm. In addition, the density of each external wall is increased+dl0
000 kg/n¥, while that of the floors and internal wall is decreaseg@ to500 kg/nt. The modulus is that of concrete
(see Section 4.3). With these values the scaling of the dimensionless numbers is

C=0(7?); Cy=0(&); (=0(e)

Figure 1 displays the transverse modes calculated through RDM6. The kinematics shows the uncoupling of both ¢
egory of modes. As continuous modeling is only valid ugMg3 = 5 modes, the eigenfrequencies of first gyration
modes appedreyondhe homogenizable domain of the natural modes. This is even more clear for the second gyratio
mode. Besides, as expected from Eq. (24b), [or also Eq. (17) whgn 1], the second gyration frequency is very
close to three times the first gyration frequency. Again, even with a poor scale separation, the prediction of the h
mogenized model seems rather reliable. Finally, it is worth underlining the drastic differences between the mechani
characteristics of the cells constituting this structure and the structure studied in Section 4.3, while both clearly exhil
gyration modes.

6. CONCLUSION

Reticulated beams present much more diversified behaviors than massive homogeneous beams. This results fron
large contrast of the shear and extension deformabilities of the cell. The homogenization method applied to sing
framed structures, whose results are extended to a wider class of reticulated structures through dimensional analy
provides an efficient tool to identify the different families of behaviors.

In particular, this paper focuses on the possibility of gyration modes only based on the moment of momentu
balance of the section, conversely to the natural modes. Such atypical mode kinematics, derived theoretically ¢
proven numerically for reticulated beams, are impossible in usual beams. Indeed, for this latter, the scale ratio matcl
the slender rati@ = b/H whereb is the section size, angd = 0, ¢ = O(€?), C = O(&?), and{/C = O(1).
Consequently, the gyration modes would appear at frequencies where the shear wavelength of the beam materi
of the order of section sizie which is in contradiction with a beam modeling. For the same reason, the Timoshenko
formulation in usual beams is necessarily a corrector (associated to weak terms) of the classical Euler—Bernoulli bez
Conversely, for reticulated beams made of specific cells, all the terms can be of the same order, and their features
far from that of Euler—Bernoulli beams.

The study underlines that gyration modes generally occur at higher frequencies that natural modes. For this rea;
mechanisms of inner resonance (by bending of the elements) may conjointly occur, Chesnais et al. (2007), Chestr
(2010). For instance, this would be the case for framed structures whose cell geometry is sadled, p&,) =
O(as/tw) = O(€). This situation, not considered in the present paper, leads to the same global moment paramete
than for local quasi-statics but differs fundamentally by the inertia term and the inner elastic source of moment, bo
depending on frequency. Again, this behavior is impossible in massive beams.

Numerical modeling performed on two structures with very different inner morphologies of the cell (hence, me
chanical characteristics) confirms the theoretical results. Besides, dynamic experiments on real regular buildir
(mostly based on ambient noise records) Boutin et al. (2005) have demonstrated the reliability of the homogenizati
method coupled with a systematic use of scaling and its practical interest in structural dynamics. However, in th
domain, according to loading principally due to the base translation, the observations focus on the analysis of natu
modes and disregard motions generated by much noisier external loading.

More generally, to our knowledge, no experimental evidence of gyration modes is available in the literature
While they are undoubtedly uncommon, they could be of importance for structures anchored in rotating bases or
structures loaded by vibrating equipment or machinery generating (parasite) momentum. A direct application of tl
present study is to provide simple criteria enabling to identify the reticulated structures in which gyration modes me
occur and to specify the external actions for which they are relevant. Thus, in complement to the numerical validatic
simple reticulated systems may be designed to confirm experimentally the unusual features of these modes.
investigation of the practical applications of a dense frequency distribution of macro-modes, in a frequency ran
where the natural modes have lost their spatial coherence by absence of scale separation, would also be of intere:



Finally, these results may be extended to the rheology of reticulated materials such as foam, glass wool, pla
bones, etc. Further, they present strong analogies with generalized continua (Eringen, 1968; Boutin et al., 2009).
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