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This paper deals with the dynamic behavior of periodic reticulated beams made of symmetric unbraced framed cells. Such
archetypical cells can present a high contrast between shear and compression deformabilities that opens the possibility of
enriched local kinematics. Through the homogenization method of periodic discrete media associated with a systematic
use of scaling, the existence of atypical gyration modes is established theoretically. These latter modes appear when the
elastic moment is balanced by the rotation inertia, conversely to “natural” modes where the elastic force is balanced
by the translation inertia. A generalized beam modeling including both “natural” and gyration modes is proposed and
discussed through a dimensional analysis. The results are confirmed on numerical examples.

KEY WORDS: reticulated structures, homogenization, structural dynamics, micromorphic media, gyra-
tion modes, generalized beam

1. INTRODUCTION

This paper deals with the macroscopic dynamic behavior of periodic reticulated structures widely encountered in
mechanical engineering. Periodic lattices have been studied through various approaches such as transfer matrix, vari-
ational approach (Kerr and Accorsi, 1985), and finite-difference operator (Noor, 1988). Asymptotic methods of ho-
mogenization (Sanchez-Palencia, 1980) initially developed for periodic media, were extended to multiple parameters
and scale changes by Cioranescu and Saint Jean Paulin (2010) and adapted to periodic discrete structures by Caillerie
et al. (1989), and then by Moreau and Caillerie (1998). Unbraced framed structures have been studied in structural
dynamics, for instance by Skattum (1971). All those studies aim to relate the features of the basic cell and the global
behavior.

The morphology of reticulated beams is such that the basic cells can present a high contrast between shear and
compression deformabilities (conversely to “massive” beams). This opens the possibility of enriched local kinematics
involving phenomena of global rotation, inner deformation or inner resonance, according to studied configuration and
frequency range (Hans and Boutin, 2008). A numerical illustration of these atypical situations is given in Fig. 1, which
shows some unusual macroscopic modes (Chesnais, 2010).

This paper addresses the theoretical evidence of atypical gyration modes. These latter modes appear when the
elastic moment is balanced by the rotation inertia, conversely to “natural” modes where the elastic force is balanced
by the translation inertia. We proceed in two steps. First, analysis is performed on the archetypical case of symmetric
unbraced framed cells (Boutin and Hans, 2003; Hans and Boutin, 2008). Assuming the cell size is small compared
to the wavelength, the homogenization method of periodic discrete media leads to the macro-behavior at the leading
order. Second, the results are extended to a wider class of reticulated frames. A generalized beam modeling including
both natural and gyration modes is established via a dimensional analysis approach.

To our knowledge very few works are devoted to such topics. The possibility of gyration modes has been men-
tioned by Skattum (1971) and partially treated in some study cases. However, a comprehensive analytical approach
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FIG. 1: Examples of typical (T) and atypical (G) mode shapes of framed structures.

aiming at understanding and modeling gyration modes is not yet available in a general framework. The present paper
provides a contribution in this field.

The paper is organized as follows. Section 2 gives an overview of the method. In Section 3 the different types
of natural transverse modes (even if the beam behavior is not classical) are presented and discussed in a particular
case. Section 4 is devoted to gyration vibrations, governed by the balance of elastic moment and rotation inertia. In
Section 5, a generalized modeling is proposed, discussed through a dimensional analysis and illustrated numerically.

2. OVERVIEW OF DISCRETE HOMOGENIZATION AND STUDIED STRUCTURES

An outline of the method is given hereafter, for a detailed presentation one may refer to Hans and Boutin (2008). The
analysis of periodic beam lattices is performed in two steps (Tollenaere and Caillerie, 1998).

2.1 Discretization

The studied structures (Fig. 2) are made of plates behaving as Euler–Bernoulli beams in out-of-plane motion, and
assembled with rigid connections. The motions of each extremity connected to the same node are identical and define

FIG. 2: The class of unbraced framed structures (left) and the basic frame and notations (right).
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the discrete nodal kinematic variables of the system. The discretization consists in integrating the dynamic balance
(in a harmonic regime) of the beams, the unknown displacements and rotations at their extremities taken as boundary
conditions. Forces applied by an element on its extremities are then expressed as functions of the nodal variables. The
balance of each element being satisfied, the balance of the whole structure is rigorously reduced to the balance of the
nodes.

2.2 Homogenization

The key assumption is that cell sizeℓ is small compared to the characteristic sizeL of the vibrations of the structure.
Thus, ϵ = ℓ/L ≪ 1. The existence of a macro-scale is expressed by means of a macro-space variablex. The
physical variables are continuous functions ofx coinciding with the discrete variables at any node; e.g.,Uϵ(x =
xn) = U(node n). These quantities, assumed to converge whenϵ tends to zero, are expanded in powers ofϵ:
Uϵ(x) = U0(x) + ϵU1(x) + ϵ2U2(x) + . . .. Similarly, all unknowns, including the modal frequency, are expanded
in powers ofϵ. As ℓ = ϵL is small with respect tox, the variations of the variables between neighboring nodes are
expressed using Taylor’s series, which introduces the macroscopic derivatives. To account for the local physics, the
geometrical and mechanical characteristics of the elements are scaled according to the powers ofϵ. As for modal
frequencies, the scaling is imposed by the balance of elastic and inertia forces at the macro-level. The scaling insures
that each effect appears at the same order whatever theϵ value is. Therefore, the same physics is kept whenϵ → 0;
i.e., for the homogenized model. Finally, the expansions are introduced in the nodal balances. Those relations, valid
for any smallϵ, lead for eachϵ-order to balance equations whose resolution defines the macroscopic equations.

2.3 Inner Quasi-Statics and Inner Dynamics

In general, the scale separation requires wavelengths of the compression and bending vibrations generated in each
local element to be much longer than the element length at the modal frequency of the global system. Hence, the
nodal forces can be developed in Taylor’s series with respect toϵ. This situation corresponds to a quasi-static state at
the local scale. The developments presented hereafter are established in this context.

Note that situations where only the compression wavelength is much longer than the length of the elements, while
local resonance in bending appears, are also possible. The homogenization still applies through the expansions of the
compression forces only and leads to atypical descriptions with inner dynamics. For such situations, out of the focus
of this paper, one may refer to Boutin et al. (2009), Chesnais et al. (2007), Chesnais (2010).

2.4 Natural and Unusual Transverse Vibrations

According to the properties of the cell of the reticulated structures, the homogenization enables to evidence two
categories of transverse vibrations related to the nature of the governing dynamic balance.

For natural modes (Section 3), the horizontal elastic force balances the horizontal translation inertia. When the
elastic moment is balanced by the rotation inertia one obtains the unusual gyration modes (Section 4).

2.5 Structures

The structures, of heightH = N.ℓ, spanh, consist in a large numberN of identical unbraced frames called cells
(Fig. 2). The parameters of horizontal (i = f ) and vertical elements (i = w) are: lengthℓi (ℓ = ℓw); thicknessai;
section areaAi = aih; inertiaIi = a3ih/12 in directione3; densityρi; and elastic modulusEi.

At any leveln, the displacements in the two directions and the rotation(u1, u2, θ) of the two nodes can be
replaced by (1) three variables associated with the rigid body motion of leveln: the mean transverse displacements,
U(n) alonge1, V (n) alonge2, and the rotationα(n) (differential vertical nodal motion divided byℓf ) and (2) three
variables corresponding to the deformation of leveln: the mean and differential rotations of the nodes,θ(n) and
Φ(n), and the transverse dilatation∆(n) (cf. Fig. 3). Because of the longitudinal symmetry, the transverse kinematics
associated with (U,α, θ) is uncoupled with the longitudinal kinematics (driven byV,Φ,∆; not studied here).
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FIG. 3: Decoupling of transverse (left) and longitudinal (right) kinematics.

3. NATURAL TRANSVERSE VIBRATIONS

For natural transverse vibrations, the horizontal elastic force balances the horizontal translation inertia and the fre-
quency range is such that the cell behaves quasi-statically (lower frequencies would lead to a static regime). The
possible beam-like behaviors were established by varying the properties of the basic frame elements by Hans and
Boutin (2008) to which one may refer for a precise analysis. The synthesis of the different macro-behaviors shows
that only three mechanisms–shear, global bending, and inner bending–govern the physics at the macro-scale. Each of
them is associated with an elastic cell parameter of stiffness: in shearK, in global bendingEwI, and in inner bending
EwI (I is the effective inner bending inertia). Owing to the quasi-static local state, these parameters are deduced from
the elastic properties of elements in statics. For structures as in Fig. 2, they read (Λ stands for the linear mass):

K−1 = K−1
w +K−1

f , Kw = 24
EwIw
ℓ2w

, Kf = 12
EfIf
ℓwℓf

, I =
Awℓ

2
f

2
, I = 2Iw (1)

Λ = Λw + Λf , Λw = ρwAw, Λf = ρfAf
ℓf
ℓw

(2)

3.1 Generic Beam Model

The generic beam model is governed by

• The beam behavior laws (3) relating macroscopic shear forceT , global bending momentM , and the inner
bending momentM to the kinematic variablesU andα (rigid body motion of the section):

T = −K (U ′ − α) , M = −EwIα
′, M = −EwIU ′′ (3)

• The force and moment of momentum balance equations:{
(T −M′)′ = Λω2U

M ′ + T = 0
(4)

This generalized beam description includes shear and inner bending. The dominating effect(s) that actually drive(s)
the effective behavior of a given structure, can be identified through a dimensional analysis. In this aim, we introduce
the actual first mode vibration’s sizẽL = 2H/π (for thenth mode of a clamped-free beam,L̃n = 2H/[(2n − 1)π])
and the variables are rewritten asU = UrU∗ andα = αrα∗ where the exponentr denotes reference values, and∗
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FIG. 4: Map of different kinds of transverse natural behaviors in function of the parametersC = ϵ̃x andγ = ϵ̃y, Hans
and Boutin (2008). As discussed in Section 5.2, the zoning also applies for the gyration modes: (1) In the domain of
Global Bending without shearC ≤ O(ϵ), gyration modes are impossible. (2) In the Generic and Slender Timoshenko
domains,O(ϵ−1) ≥ C ≥ O(ϵ), gyration modes occur provided thatζ ≤ O(ϵ), and their frequency range is much
higher than for natural modes. (3) In the Shear and Inner Bending domainsC ≥ O(ϵ−1) both natural and gyration
modes exist and are uncoupled while their frequency range may be common or disjointed.

denotes the dimensionless terms,O(1) by construction. Introducing the expression of the beam efforts (3) and making
the change of variablesx = x/L̃, set (4) becomes{

Ω2U∗ + U∗(2) − CγU∗(4) = (L̃αr/Ur)α∗′

−α∗ + Cα∗(2) = −(Ur/L̃αr)U∗′ (5)

where the numbers in brackets stand for the order of derivative. The dimensionless numbersC, γ (≤1 for common
cell geometry) andΩ2 compare, respectively, global bending and shear, inner and global bendings, translation inertia,
and shear. They read

C =
EwI

KL̃2
; γ =

I
I
; Ω2 =

Λω2L̃2

K
(6)

Eliminatingα∗ (orU∗) in Eq. (5) gives the differential equation governingU∗ (orα∗):

CγU∗(6)−(1+γ)U∗(4)−Ω2U∗(2)+
Ω2

C
U∗=O(ϵ̃) (7)

The termO(ϵ̃) highlights the fact that Eq. (7) is a zero-order balance and, hence, is only valid up to the accuracyϵ̃.
Consequently, according to the values ofC, Cγ andγ compared tõϵ powers (̃ϵ = ℓ/L̃ = π/2N ), Eq. (7) degenerates
into simplified forms. The mapping (Fig. 4) gives the validity domain of the seven possible behaviors according to
the two parametersx andy defined byC = ϵ̃x andγ = ϵ̃y. Note that as the validity of the model requires the scale
separation; i.e.,ℓ/L̃n < 1, the maximum number of homogenizable modes of a structure ofN cells is at the most
nmax = N/3.
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3.2 An Example: The Slender Timoshenko Beam

Consider structures for whichC = O(1) andγ ≤ O(ϵ̃). Then, the terms related toCγ andγ are negligible in Eq. (7)
and the model is a slender Timoshenko beam driven by

U∗(4) +Ω2 U∗(2) − Ω2

C
U∗ = O(ϵ̃) (8)

To show how to reach Eq. (8) by homogenization, consider a structure as shown in Fig. 2 with the floors thicker than
the walls:

aw
lw

= O(ϵ);
af
lw

= O(
√
ϵ);

ℓw
ℓf

= O(1);
Ew

Ef
= O(1) (9)

so that, as required:

C =
EwI

KwL̃2
= O

(
ℓ2w
a2w

ℓ2w
L̃2

)
= O(1); γ =

2Iw
I

= O

(
a2w
3ℓ2f

)
= O(ϵ2)

The dynamic regime is reached whenΩ2/C = O(1); i.e., sinceC = O(1), Λ = O(Λf ), K = O(Kw), for circular
frequencyω0 = O(L̃−1

√
Kw/Λf ) = O(Kw/

√
EwIΛf ). In that case, the leading order equations obtained by

homogenization are 
−Kw

(
U0′′ − θ0′

)
= Λfω

2
0U

0 (10a)

Kf

(
α0 − θ0

)
= 0 (10b)

−EwIα
0′′ −Kw

(
U0′ − θ0

)
= 0 (10c)

Equation (10a) expresses the balance of horizontal forces; Eqs. (10b) and (10c) are derived from the balance of both
local and global moments at the first two significant orders. Equation (10b) also describes the inner equilibrium of
the cell and imposesθ0 = α0. Thus, the behavior is described by a differential set that governs the mean transverse
motionU0 and the section rotationα0:{

−Kw

(
U0′′ − α0′) = Λfω

2
0U

0

−EwIα
0′′ −Kw

(
U0′ − α0

)
= 0

(11)

Eliminatingα0 provides:

EwIU
0(4) +

EwI

Kw
Λfω

2U0(2) − Λfω
2
0U

0 = 0

which corresponds to Eq. (8); i.e., a degenerated form of Eq. (7) withγ ≤ O(ϵ̃). The similarity with Timoshenko
beams is obvious when rewriting Eq. (11) with the macro-shear forceT̃ 0 and the global bending moment̃M0 defined
in Eq. (3) (here with 0 exponent):{

T 0′ = Λfω
2
0U

0 (12a)

M0′ + T 0 = 0 (12b)

Two features distinguish Eq. (12) from the Timoshenko description of “massive” beams. First, the shear effect [that
comes from the bending of the walls in parallel, Eq. (1)] remains at the leading order even if the reticulated structure
is slender. Second, while the translation inertia is significant in the force balance [Eq. (12a)], the rotation inertia is
negligible in the moment of momentum balance [Eq. (12b)] (where the effective bending results from the opposite
extension–compression of the two walls distant from the floor length). In other words, the translation is in the dynamic
regime but the rotation remains in quasi-statics for the studied frequency range. This leads to considering higher
frequencies to obtain rotational dynamics.
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4. ATYPICAL TRANSVERSE VIBRATIONS: GYRATION MODES

This section is devoted to gyration modes; i.e., transverse modes resulting from the dynamic equilibrium between
elastic moment and rotation inertia. As previously mentioned, this requires considering higher frequencies than for
natural modes. Consequently, in addition to the change of kinematics, phenomena of inner dynamics could also occur.
Here, only situations with local quasi-statics will be investigated. A particular case is first treated, whose results
are slightly generalized. Then, the theoretical features of the gyration modes are studied and confirmed through a
numerical example.

4.1 Evidence of Gyration Modes

To evidence the existence of gyration modes, we come back to the framed structures, whose geometry and param-
eters are scaled as previously shown in Eq. (9). The frequency range is increased of one order inϵ; i.e., ω0 =
O(ℓ−1

√
Kw/Λf ), which remains sufficiently low to insure the quasi-static regime of the cell. As above, the three

equations derived by homogenization express (1) the balance of horizontal forces at the leading order [Eq. (13a)],
(2) the inner equilibrium of the cell derived from the balance of both local and global moments at the leading order
[Eq. (13b)], and (3) the sum of the local and global moments at the next significant order [Eq. (13c)]:

0 = Λfω
2
0U

0 (13a)

Kf

(
α0 − θ0

)
= 0 (13b)

−EwIα
0′′ −Kw

(
U0′ − θ0

)
=

ρfAf ℓ
3
f

420ℓw
×ω2

0

(
42α0 − 7θ0

)
(13c)

The comparison of Eqs. (10) with Eqs. (13) shows that the higher frequency leaves the inner equilibrium condition
of the cell unchanged (thus, here also the mean rotation of the nodes matches the section rotation; i.e.,θ0 = α0).
Conversely, the increased order of magnitude of inertia terms implies thatΛf ω

2
0U

0 cannot be balanced by horizontal
elastic forces; thus, the section translation vanishes,U0 = 0. In parallel, the rotation inertia now appears in the
moment of momentum balance. After eliminatingθ0, the macroscopic behavior at the leading order is described by
the following differential equation of the second degree:

−EwIα
0′′ +Kwα

0 = Jfω
2
0α

0 (14a)

θ0 = α0; U0 = 0; Jf =
ρfAf ℓ

3
f

12ℓw
(14b)

This is an atypical gyration beam model fully driven by the section rotationα0 without lateral translation (more
precisely, one shows that the first nonvanishing translation is of the second-orderϵ2U2 = [Kw/Λfω

2
0]α

0′). The
gyration dynamics is governed by the mechanism of opposite traction-compression of vertical elements (the elastic
parameter is the global bending stiffnessEwI), the shear of the cell (stiffnessKw) acting as an inner elastic source of
moment, and the classical rotation inertia of the thick floors (Jf ).

Introducing the macroscopic shear forceT 0 and the global bending momentM0 already defined in Eq. (3) and
accounting forU0 = 0 shows that Eq. (14a) is nothing but the moment of momentum balance of the usual Timoshenko
formulation:

T 0 +M0′ = Jfω
2
0α

0 (15)

However, in massive Timoshenko beams, variablesU andα reach the dynamic regime in the same range; hence, both
are involved in common modes. Conversely, for the reticulated beams studied in this section, natural and gyration
modes are uncoupled because the dynamic regimes forU andα occur in different frequency ranges. This specificity
implies that in the frequency range of non-homogenizable natural modes, homogenizable gyration modes can be
found. Note that the thick floors of the specific studied frame lead to neglecting the shear deformability of the floor
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and the rotation inertia of the walls. The particular description [Eq. (14)] can be extended to other types of frames by
considering the cell shear stiffnessK instead ofKw and rotation inertiaJ instead ofJf (for structures as in Fig. 2,
J = Jf + Jw with Jw = ρwAwℓ

2
f/2).

4.2 Modal Analysis and Physical Properties

To analyze the features of gyration modes, let us first establish the energy balance by multiplying Eq. (14a) by the
rotationα and integrating over the beam length [superscripts 0 are omitted to save notations and, for more generality,
the extended form of Eq. (14a) withJ andK is considered]. After integration by part, one obtains:

1

2

H∫
0

Jω2α2dx =
1

2

H∫
0

(
T 2

K
+

M2

EwI

)
dx+

1

2

[
Mα

]H
0

which shows that the working boundary conditions are momentM and rotationα, while the shear force only takes
part in the energy of deformation. Hence, the external actions for which these modes are relevant are either vertical
differential forces (global moment) or vertical differential displacements (section rotation) imposed at the extremities
of the walls. For instance, considering a beam clamped onx = 0 (no section rotation) and free onx = H (no global
moment), the boundary conditions read:

α(0) = 0 and M(H) = 0, thus α′(H) = 0 (16)

Because of the presence of the source termKα in the moment of momentum balance [Eq. (14a)], the gyration
dynamics deviates from the dynamics of systems governed by a Helmholtz equation (as shear beam). To investigate
the features of gyration modes, Eq. (14a) is rewritten in the form:

α′′ = −Dα; D =
Jω2 −K

EwI
; δ = 1/

√
|D|

AsD may be positive or negative, the character of the gyration modes differs for frequencies lower or higher than the
threshold frequency

√
K/J .

In the low-frequency range defined byω ≤
√

K/J , thenD < 0 and the general solution reads:

α(x) = A cosh(x/δ) +B sinh(x/δ)

The determination ofA andB from clamped-free boundary conditions (16) leads to the trivial solutionα0(x) =
0. Other boundary conditions may lead toα0(x) ̸= 0, with an exponential decay of characteristics lengthδ =
O(
√
EwI/K) whenω → 0.

Thus, actual gyration modes only appear for frequencies higher than the threshold. Indeed:

for ω ≥
√
K/J, α(x) = A cos(x/δ) +B sin(x/δ)

and boundary conditions (16) imposeA = 0 and(B/δ) cos(H/δ) = 0. Finally, the clamped-free gyration modes are
defined by

αk(x) = B sin(x/δk); δk =
2H

(2k − 1)π
; ω2

k =
EwI

J

(2k − 1)2π2

4H2
+

K

J
(17)

Consequently, the macroscopic length (namely,L̃k = δk) of thekth gyration mode follow the common estimate. The
mode shape (inα) is of the same sinusoidal nature as shear beam (inU ). Conversely, the frequency distribution does
not follow the series of odd numbers.
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4.3 Numerical Illustration

These results are illustrated and confirmed numerically on a structure (as in Fig. 2) ofN = 15 levels and of span
h = 10 m. Thus,ϵ̃ = π/2N = 0.105. Choosing a squared frame of lengthℓw = ℓf = 3 m, the wall and floor
thicknesses respect Eq. (9), which gives:aw = ϵ̃ ℓw = 31.4 cm,af =

√
ϵ̃ ℓw = 97.1 cm. The material properties are

those of concrete:ρ = 2500 kg/m3, EYoung = 30 GPa,ν = 0.2, E = EYoung/(1− ν2) = 31.250 GPa.
As the scale separation is not very sharp, the thicknesses deduced from Eq. (9) yield that the wall inertia and shear

deformability of the floor are not negligible. For this reason, the accuracy of the gyration beam model is improved by
usingJ andK instead ofJf andKw. The frequencies of the fourth first gyration modes are deduced from Eq. (17)
and compared to a finite-element (FE) modeling (RDM6). The results presented in Fig. 5 show that the discrepancies
are smaller than 8%. Accounting for the poor scale separation, this rather good accuracy illustrates the robustness of

mode 1 mode 2 mode 3 mode 4
H.M. : 34.75 Hz 56.96 85.54 115.88
F.E. : 33.09 Hz 53.61 80.13 107.66
Error : 5.0 % 6.3 6.8 7.6

FIG. 5: Fourth first frequencies and shapes of gyration modes calculated by RDM6. Comparison between homoge-
nization method (H.M.) and finite elements (F.E.) and relative error.
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the homogenization approach. The mode shapes clearly evidence the specific nature of the gyration modes governed
by the section rotation, with negligible transverse motions. Notice also that the gyration eigenfrequency ratiofk/f1 =
{1; 1.6; 2.5; 3.3} departs very significantly from the odd number series, with a much denser distribution.

5. GENERALIZATION: COMPREHENSIVE APPROACH

The previous section leads us to infer the existence of structures responding to more general descriptions where both
translation and rotation inertias balance macro-scopic shear forceT , global bending momentM , and inner bending
momentM. This generalized model is established directly at the macro-scale independently of the homogenization
process. It enables recovering the results already established, but also to identifying the occurrence of gyration modes
for more complex basic frames. The theoretical approach based on balance equations and beam laws is first presented,
then discussed trough a dimensional analysis, and finally its validity is illustrated from a numerical example.

5.1 Generic Beam Model Including Gyration Modes

The model is built by introducing, as in Eq. (15), the rotation inertia in the moment of momentum balance of the
generic model, while keeping the same beam behavior laws (3): (T −M′)′ = Λω2U ; T = −K (U ′ − α) ;

M = −EwIU ′′; M ′ + T = Jω2α;
M = −EwIα

′
(18)

To facilitate the physical understanding of the interactions between the mechanisms involved in this model, we proceed
to its dimensional analysis. In addition to the dimensionless numbers already defined in Eq. (6) we introduce the new
numberζ attached to the rotation inertia:

ζ =
J

ΛL̃2

For common geometry,ζ has a typical value ofζ = O(ℓ2f/L̃
2) = O(ϵ̃2). The dimensionless formulation of Eq. (18)

evidences the coupling between the dynamic operators acting onU∗ andα∗:{
Ω2U∗ + U∗(2) − CγU∗(4) = (L̃αr/Ur)α∗′ (19a)

(ζΩ2 − 1)α∗ + Cα∗(2) = −(Ur/L̃αr)U∗′ (19b)

and the sixth-order differential equation drivingU∗ orα∗ reads:

CγU∗(6) −
[
1 + γ(1− ζΩ2)

]
U∗(4) −

(
1 +

ζ

C

)
Ω2U∗(2) +

(
1− ζΩ2

) Ω2

C
U∗ = O(ϵ̃) (20)

In principle, it is possible to design periodic structures from cells such that all the dimensionless numbers areO(1).
In that case, by construction, all the mechanisms conjointly exist [and thenUr/(L̃αr) = O(1); i.e.,O(α) = O(U ′)].
The modes of such structures involve bothU∗ andα∗ in the same frequency range and the classification of natural
and gyration modes disappears.

By varying the properties of the basic cell, simplified forms of the model can be reached for other structures,
according to the values of the dimensionless numbers in power ofϵ̃ = ℓ/L̃. For instance, the generic beam where the
rotational inertia is negligible [Eq. (7)], is obtained provided thatC andγ areO(1) and that:

ζ

C
=

JK

EwIΛ
≤ O(ϵ̃) and ζΩ2 =

Jω2

K
≤ O(ϵ̃)

The first inequality concerns the mass distribution within the cell: the radius of gyration
√

J/Λ should be smaller
than the intrinsic bending/shear length

√
EwI/K. The second condition imposes frequencies lower than the threshold

Journal for Multiscale Computational Engineering



Dynamics of Reticulated Structures: Evidence of Atypical Gyration Modes 525

frequency to be in the range of vanishing gyration modes (Section 4.2). Besides, one obtains a “full” Timoshenko beam
(that involves at the leading order shear, global bending and rotation inertia) when:

C =
EwI

KL̃2
= O(1); γ =

I
I
≤ O(ϵ̃);

ζΩ2

C
=

Jω2L̃2

EwI
= O(1); i.e., ζΩ2 = O(1)

The latter requirement implies that frequencies should be higher than the threshold frequency for gyration modes. In
the lower-frequency rangeζΩ2 ≤ O(ϵ̃) the slender Timoshenko beam analyzed in Section 3.2 is recovered. These
examples show that the occurrence of gyration modes depends on both the structure of the cell (say the distribution
of mass compared to the distribution of stiffness) and on the frequency range. The next section aims at defining the
condition in which macroscopic gyration modes do exist.

5.2 Condition of Existence of Gyration Modes

A necessary condition for the existence of gyration modes is thatα is actually in a dynamic regime. This imposes, [cf.
Eq. (19b)], (1) a frequency higher than the threshold frequency of vanishing gyration, and (2) the balance between
rotation inertia and moment. Consequently,

ζΩ2 =
Jω2

K
≥ O(1);

ζΩ2

C
=

Jω2L2

EwI
= O(1) thus C ≥ O(1)

The inequalityC ≥ O(1) provides a first criterion of existence: gyration modes can only appear in structures such
that the macro-deformation is not dominated by the global bending mechanism. This condition will be assumed in the
sequel.

To go further, notice that gyration modes distinct from natural modes, means that among the modes one may
distinguish two uncoupled families. To identify the situations of uncoupling, it is convenient to write Eqs. (20) in the
hereafter equivalent forms deduced from Eqs. (19):

C
[
CγU∗(4) − U∗(2) − Ω2U∗

](2)
+ (ζΩ2 − 1)

[
CγU∗(4) − U∗(2) − Ω2U∗

]
− U∗(2) = O(ϵ̃) (21)

where, according to Eq. (19a), the terms in brackets are proportional toα∗′, or

−Cγ
[
(ζΩ2−1)α+Cα∗(2)

](4)
+
[
(ζΩ2−1)α+ Cα∗(2)

](2)
+Ω2

[
(ζΩ2−1)α+Cα∗(2)

]
+ α∗(2) = O(ϵ̃) (22)

where, according to Eq. (19b), the terms in brackets are proportional toU∗′. Two possibilities of uncoupling arise
depending on the magnitude ofC. A synthesis of the discussion developed below is presented in theC, γ mapping
(Fig. 4).

5.2.1 Structures such thatC = O(1)

For structures with balanced global bending and shear mechanisms; i.e.,C = O(1), there are two families of modes
associated to two frequency ranges, provided thatζ ≤ O(ϵ̃). The requirementζ ≤ O(ϵ̃) means that the radius of
gyration of the cell is smaller (of half an order at least) than the size of the whole structure, and it is generally satisfied
for common framed cells.

First, consider frequencies such that

Ω2 = O(1); i.e., ω2 = O

(
K

ΛL̃2

)
then Eq. (21) reduces to[

CγU∗(4)−U∗(2)−Ω2U∗
](2)

− 1

C

[
CγU∗(4)−Ω2U∗

]
= O(ϵ̃)
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This latter equation coincides with Eq. (7) that governs the natural modes of the generic beam model. Notice that the
kinematics of these modes also involves a rotationO(α) = O(U ′).

Now, at higher frequencies such that

ζΩ2 = O(1); i.e., ω2 = O

(
K

J

)
ThenΩ2 ≥ O(ϵ̃−1) and Eq. (22) reduces to the equation that governs the gyration modes:

1

C
(ζΩ2 − 1)α+ α∗(2) = O(ϵ̃)

From Eq. (19a) the translation satisfiesO(U) = O(L̃αrα∗′/Ω2) = O(α/Ω2) ≪ O(α). Consequently, in this fre-
quency range, occur pure gyration modes.

This situation corresponds to the example treated in Section 4.2 where in addition a weak inner bending mechanism
was assumed; i.e.,γ ≤ O(ϵ̃). This latter assumption does not interfere with the above description of gyration modes,
however, at low frequency, occur the natural modes of a slender Timoshenko beam driven by

U∗(4) +Ω2 U∗(2) − Ω2

C
U∗ = O(ϵ̃)

5.2.2 Structures such thatC ≥ O(ϵ−1)

Consider now structures with negligible global bending mechanism compared to shear, so thatC ≥ O(ϵ−1). As a
consequence Eq. (21) simplifies to[

CγU∗(4)−U∗(2)−Ω2U∗
](2)

+
ζΩ2

C

[
CγU∗(4) − U∗(2) − Ω2U∗

]
= O(ϵ̃) (23)

Without evoking the frequency ranges, Eq. (23) splits into two uncoupled equations. Indeed, either the terms in
brackets vanish, which leads to the fourth degree differential operator driving the natural modes of a shear-inner
bending beam, or the terms in brackets, proportional toα∗′, satisfy the second degree differential operator driving the
gyration modes: 

Ω2U∗ + U∗(2) − CγU∗(4) = O(ϵ̃) (24a)

ζΩ2

C
α∗ + α∗(2) = O(ϵ̃) (24b)

The natural modes appear for frequencyω2 = O
[
EwI/(ΛL̃4)

]
if Cγ ≫ 1, orω2 = O[K/(ΛL̃2)] if Cγ ≤ 1.

The gyration modes appear at frequenciesω2 = O
[
EwI/(JL̃

2)
]
. The conditionζ < 1 is sufficient for the

frequency range of gyration modes to be higher than those of natural modes. Note that, conversely to the previous case,
the source term (Kα in dimensional form) vanishes in the moment of momentum balance [Eq. (24b)]. Consequently,
here, the gyration modes follow the classical features of systems driven by an Helmholtz equation, namely sinusoidal
mode shapes (inα), frequency distribution according to the odd number series and no threshold frequency. This
second situation is illustrated in the next section.

5.3 A Numerical Validation

The validity of the above developments has been checked numerically on a (fictitious) structure ofN = 15 levels
(ϵ̃ = π/2N = 0.105) and of spanh = 10 m. The cell is built in order to satisfy both Eqs. (24) in the same frequency
range. To enhance the rotation inertia, the cell is made of a double frame where the lengths of walls and floors are,
respectively,ℓw = 3 m andℓf = 6 m. To favor the inner bending, the thickness of both external and internal walls is
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aw = 80 cm, and that of floors isaf = 20 cm. In addition, the density of each external wall is increased toρ = 10
000 kg/m3, while that of the floors and internal wall is decreased toρ = 500 kg/m3. The modulus is that of concrete
(see Section 4.3). With these values the scaling of the dimensionless numbers is

C = O(ϵ̃−2); Cγ = O(ϵ̃); ζ = O(ϵ̃)

Figure 1 displays the transverse modes calculated through RDM6. The kinematics shows the uncoupling of both cat-
egory of modes. As continuous modeling is only valid up toN/3 = 5 modes, the eigenfrequencies of first gyration
modes appearbeyondthe homogenizable domain of the natural modes. This is even more clear for the second gyration
mode. Besides, as expected from Eq. (24b), [or also Eq. (17) whenC ≫ 1], the second gyration frequency is very
close to three times the first gyration frequency. Again, even with a poor scale separation, the prediction of the ho-
mogenized model seems rather reliable. Finally, it is worth underlining the drastic differences between the mechanical
characteristics of the cells constituting this structure and the structure studied in Section 4.3, while both clearly exhibit
gyration modes.

6. CONCLUSION

Reticulated beams present much more diversified behaviors than massive homogeneous beams. This results from the
large contrast of the shear and extension deformabilities of the cell. The homogenization method applied to single
framed structures, whose results are extended to a wider class of reticulated structures through dimensional analysis,
provides an efficient tool to identify the different families of behaviors.

In particular, this paper focuses on the possibility of gyration modes only based on the moment of momentum
balance of the section, conversely to the natural modes. Such atypical mode kinematics, derived theoretically and
proven numerically for reticulated beams, are impossible in usual beams. Indeed, for this latter, the scale ratio matches
the slender ratiõϵ = b/H whereb is the section size, andγ = 0, ζ = O(ϵ̃2), C = O(ϵ̃2), andζ/C = O(1).
Consequently, the gyration modes would appear at frequencies where the shear wavelength of the beam material is
of the order of section sizeb, which is in contradiction with a beam modeling. For the same reason, the Timoshenko
formulation in usual beams is necessarily a corrector (associated to weak terms) of the classical Euler–Bernoulli beam.
Conversely, for reticulated beams made of specific cells, all the terms can be of the same order, and their features are
far from that of Euler–Bernoulli beams.

The study underlines that gyration modes generally occur at higher frequencies that natural modes. For this reason
mechanisms of inner resonance (by bending of the elements) may conjointly occur, Chesnais et al. (2007), Chesnais
(2010). For instance, this would be the case for framed structures whose cell geometry is scaled byO(aw/ℓw) =
O(af/ℓw) = O(ϵ). This situation, not considered in the present paper, leads to the same global moment parameters
than for local quasi-statics but differs fundamentally by the inertia term and the inner elastic source of moment, both
depending on frequency. Again, this behavior is impossible in massive beams.

Numerical modeling performed on two structures with very different inner morphologies of the cell (hence, me-
chanical characteristics) confirms the theoretical results. Besides, dynamic experiments on real regular buildings
(mostly based on ambient noise records) Boutin et al. (2005) have demonstrated the reliability of the homogenization
method coupled with a systematic use of scaling and its practical interest in structural dynamics. However, in this
domain, according to loading principally due to the base translation, the observations focus on the analysis of natural
modes and disregard motions generated by much noisier external loading.

More generally, to our knowledge, no experimental evidence of gyration modes is available in the literature.
While they are undoubtedly uncommon, they could be of importance for structures anchored in rotating bases or for
structures loaded by vibrating equipment or machinery generating (parasite) momentum. A direct application of the
present study is to provide simple criteria enabling to identify the reticulated structures in which gyration modes may
occur and to specify the external actions for which they are relevant. Thus, in complement to the numerical validation,
simple reticulated systems may be designed to confirm experimentally the unusual features of these modes. The
investigation of the practical applications of a dense frequency distribution of macro-modes, in a frequency range
where the natural modes have lost their spatial coherence by absence of scale separation, would also be of interest.
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Finally, these results may be extended to the rheology of reticulated materials such as foam, glass wool, plant,
bones, etc. Further, they present strong analogies with generalized continua (Eringen, 1968; Boutin et al., 2009).
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