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Abstract

This paper proposes an extension to an online vehi-
cle routing problem described in [3], with dynamic
travel time perturbations (due to accidents, traffic
jam, etc.) and dynamic customer requests. We show
that the tracking of vehicles using GPS devices al-
lows the dispatch office to take better decisions more
quickly. In particular, a vehicle can now be diverted
from its current destination as soon as a perturbation
occurs. Computational results show the relevance of
the new model and measure the improvement over
previous models reported in the literature.

1 Introduction

Dynamic vehicle routing, where a part of the informa-
tion about the customers to be visited is not known
in advance, is attracting a growing attention from
transportation companies (see, for example, [1, 6]).
An interesting survey on this topic can be found in
[4], where the problem is first discussed, applications
are reviewed, and solution methods are presented. In
particular, tabu search led to impressive results on
different dynamic vehicle routing problems [4]. Nowa-
days, new possibilities offered by localization devices
such as global positioning systems (GPS) can be ex-
ploited to improve vehicle routing management.

In [5], the authors are interested in a vehicle rout-
ing problem with time windows and dynamic travel
times. The travel times include three different com-
ponents: long-term forecasts, such as those based on
long-term trends (time-dependency), short-term fore-
casts, where the travel time on a link is modified with
a random uniform value to account for any new in-
formation available when a vehicle is ready to depart
from its current location, and dynamic perturbations,

which represent any unforeseen events that might oc-
cur while traveling on a link (e.g., accident causing
sudden congestion). A modification to a planned
route is only possible when the vehicle is at a cus-
tomer location. That is, a planned route cannot be
reconsidered while a vehicle is traveling on a link. An
extension of this model is proposed in [3], where the
position of each vehicle can be obtained when a ve-
hicle reaches some lateness tolerance limit or when a
new customer request occurs. Based on this informa-
tion, the planned route of each vehicle is reconsidered,
including the possibility of diversion (i.e., redirecting
a vehicle en route to its current destination). The re-
sults show that the setting of an appropriate lateness
tolerance limit can provide substantial improvements.

Here, we propose a further extension by assuming
that the position of each vehicle is known at all time,
thanks to accurate GPS devices. This assumption al-
lows the system to detect much earlier perturbations
to the travel times and to react appropriately.

2 Problem formulation

The description of our problem is based on [3]. A set
of customers (some known in advance, some revealed
dynamically) must be visited by a fleet of identical ve-
hicles, represented by set K, where each vehicle trav-
els a single route starting from and ending at a central
depot. Customers who are known in advance can be
used to create a set of initial planned routes. Then,
as the other customers appear dynamically over time,
they are integrated into the current solution.

Formally, let us consider a complete undirected graph
G = (V,E) with a set of vertices V = {0, 1, 2, . . . , n},
where vertex 0 is the depot and the other vertices
are customers. A travel time is associated with every
edge (i, j) ∈ E. Furthermore, each customer vertex
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is characterized by a time window for service [ei, li].
A vehicle arriving before ei must wait, while a late-
ness penalty is incurred when a vehicle arrives after
li. Also, each vehicle must return to the depot be-
fore an upper bound l0, otherwise another penalty is
incurred.

We note by tikp the arrival time of vehicle k at cus-

tomer ikp in position p in its planned route, p =

1, ...,mk−1, and by tk0 the return time of vehicle k at
the depot. The objective function takes into account
(1) the travel time, (2) the sum of lateness at cus-
tomer locations and (3) the lateness at the depot. It
can be written as f(S) =

∑
k∈K f(Sk), where f(Sk)

is equal to:

mk∑

p=1

tik
p-1,i

k
p
+

mk-1∑

p-1
max{0, tik

p-1
− lik

p-1
}+max{0, tk0− l0}

with Sk = {ik0 , i
k
1 , . . . , i

k
mk

} the route of vehicle k,

ik0 = ikmk
= 0 and S =

⋃
k∈K Sk the set of all routes

(solution).

With regard to the time-dependent component of the
travel time (long-term forecast), we do as in [2] and
split the operations day in three time periods for the
morning, lunch time and afternoon. With each period
is associated a coefficient which multiplies the average
travel time (namely, 1.25 for the morning, 0.5 for the
lunch time, and 1.25 for the afternoon). To guaran-
tee that a vehicle leaving earlier from some customer
location also arrives earlier at destination, which is
known as the FIFO property, the travel times are ad-
justed when a boundary between two time periods is
crossed. The travel times also suffer dynamic pertur-
bations due, for example, to unexpected congestion.
A dynamic perturbation is thus added to the time-
dependent travel time. Its value is generated with
a normal probability law with mean 0 and different
standard deviations σ. Negative perturbations are
reset to 0 to represent the absence of any delay.

3 Models

Three different models are presented in this section.
The paper is concerned about the third model, which
is an extension of the two previous ones.

3.1 Model 1

In the first model [5], a central dispatch office knows
the planned route of each vehicle. When a vehicle has
finished serving a customer, it is informed by the cen-
tral office of its next destination. It means that the
drivers are not aware of their planned route, only the
next customer to be served. It also means that the
communication between the drivers and the dispatch
office takes place only at customer locations. The
initial routes are first computed with the static cus-
tomer requests, which are known at the start of the
day. The proposed heuristic inserts each customer in
turn at the best possible position (i.e., with minimum
increase of the objective value). A re-optimization
procedure is then triggered, which is a local descent
based on CROSS exchanges [8], where sequences of
customers are moved from one route to another. Fi-
nally, a local descent is applied on each individual
route, based on the relocation of each customer.

A lateness tolerance TL is included in the model,
which is the maximum acceptable delay to a vehicle’s
planned arrival time at its current destination before
some reassignment action is considered. For exam-
ple, if we assume that sk is the current destination
of vehicle k and its planned arrival time is tsk , then
tsk +TL defines the tolerance time limit TTLk of ve-
hicle k. That is, if vehicle k has not reached customer
sk at time TTLk, sk is removed from its planned route
and inserted somewhere in the planned route of an-
other vehicle k′ (note that vehicle k is not aware of
this change and will continue toward sk as communi-
cation between the dispatch office and vehicles only
take place at customer locations). If it happens that
vehicle k reaches sk before vehicle k′ and while k′ is
en route to sk, then vehicle k serves sk, but vehicle k′

will only know when reaching sk. A major drawback
of this model thus occurs when two vehicles converge
toward the same location.

3.2 Model 2

In [3], Model 1 was extended by adding diversion
which allows any vehicle k to be redirected to another
destination, while en route to its current destination,
if it is beneficial to do so (with regard to the objec-
tive). It can serve two purposes: a pure diversion of
vehicle k to serve a newly occurring customer request
or the reassignment of its current destination to an-
other vehicle k′ when its tolerance time limit TTLk is
reached. In the latter case, vehicle k is diverted to the
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customer that immediately follows its current desti-
nation in the planned route. In these two situations,
it is assumed that the dispatch office can obtain the
current location of each vehicle to evaluate the bene-
fits of a diversion. Figures 1 and 2 illustrate the pure
diversion and reassignment actions. In Figure 1, a
new customer request s occurs while vehicle k is lo-
cated at position x between vertices ikp−1 and ikp. In

this case, vehicle k will serve s before ikp if it is ben-
eficial to do so. In Figure 2, vehicle k has reached
its tolerance time limit. Thus, its current destination
s = ikp is removed from its planned route to be reas-
signed to another vehicle k′ and vehicle k is redirected
to ikp+1. The results reported in [3] show that Model
2 significantly outperforms Model 1. Also, the best
TL value was shown to be 0, which means that an
appropriate action must be considered as soon as a
perturbation is detected.

x

s

current movement

canceled movement

diversion movement

planned movement

current destination

new request

current location of the vehicle

i
k
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p

Figure 1: Pure diversion: vehicle k is diverted to the
new customer location s
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Figure 2: Reassignment: customer s is removed from
the planned route of vehicle k

3.3 Model 3

Model 3 extends Model 2 by assuming that the po-
sition of each vehicle is known at all time, not only
when the two types of situations described for Model
2 occurs. To this end, we first assume that the dy-
namic perturbation component of the travel time (or
delay) is distributed uniformly along a link. Then, as
soon as it is impossible for vehicle k to arrive at its
current destination at time TTLk, given its current
location, a reassignment action is considered. For ex-
ample, let us assume that vehicle k departs from i to
j at time t, with a travel time tij = 5 and a dynamic
perturbation ∆tij = 5. That is, the vehicle is planned
to arrive at j at time t+5, but will in fact arrive only

at time t + 10. If TL = 0, then TTLk = t + 5 and
Model 2 will consider a reassignment at time t + 5
when it is observed that vehicle k has not yet reached
j. On the other hand, by tracking the current posi-
tion of each vehicle, Model 3 can detect the problem
much earlier. For example, at time t + 1, vehicle
k has still to cover 9

10
of the distance, so that the

planned arrival time at location j could be updated
to t+ 1 + 9

10
· 5 = t+ 5.5 (assuming no more pertur-

bation on the remainder of the link) which already
exceeds TTLk.

4 Results

Tests were performed on a 3.4 GHz Intel Quad-core
i7 with 8 GB DDR3 of RAM memory. The Eu-
clidean 100-customer Solomon’s benchmark instances
[7] were used to compare models 2 and 3. In each in-
stance, 50% of the customers are dynamic. Any dy-
namic customer request i occurs at time ei · r, where
r is a random number between 0 and 1. In this work,
the three classes of instances R1, C1 and RC1, with
12, 8 and 9 instances, respectively, are considered. In
these classes, the customers are randomly generated
(R), clustered (C) or both clustered and randomly
generated (RC). Every instance is solved five times,
using five different seeds, and the average values of the
objective function over all runs and all instances are
reported for each class. Note also that the computing
times are not commented given that the optimization
takes place within a fraction of a second.

The results are reported in Tables 1 to 3 for classes
R1, C1, RC1 respectively, for various tolerance TL

and σ values in Euclidean units (where σ is the
variance of the dynamic perturbations to the travel
times). Apart from the average objective value, there
is also a pair of numbers between parentheses: the
first one is the average number of times a reassign-
ment action was considered and the second one is
the percentage of times the reassignment action took
place because it was beneficial. The results indicate
that small TL values lead to better results, with the
best value being TL = 0 in most cases. It means
that an action should be considered as soon as a per-
turbation to the planned routes is detected. Table 4
then shows the improvement in percentage of Model
3 over Model 2. As we can see, Model 3 is clearly
superior and provides larger improvements when the
magnitude of the perturbations, as indicated by the
σ value, increases.
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Table 1: Results of Model 3 on class R1

TL σ = 1 σ = 4 σ = 16 σ = 32

0
1715.64
(53.9,10.4%)

2212.62
(57.6,19.6%)

3935.67
(74.7,55.7%)

5246.38
(85.4,73.2%)

σ
1757.62
(16.2,7.5%)

2284.18
(16.5,20.0%)

5116.46
(16.9,45.5%)

9130.65
(15.4,56.1%)

2σ
1759.90
(2.1,4.8%)

2335.89
(2.1,20.3%)

5230.58
(1.8,33.3%)

9472.23
(1.4,40.7%)

3σ
1761.19
(0.1,0.0%)

2337.80
(0.1,0.0%)

5237.70
(0.1,50.0%)

9493.16
(0.1,50.0%)

1000σ
1761.19
(0.0,-)

2337.80
(0.0,-)

5234.47
(0.0,-)

9491.62
(0.0,-)

Table 2: Results of Model 3 on class C1

TL σ = 1 σ = 4 σ = 16 σ = 32

0
2088.55
(52.2,7.0%)

2369.31
(52.6,9.3%)

3841.45
(55.9,18.3%)

5703.40
(60.4,28.9%)

σ
2074.06
(16.1,6.9%)

2396.31
(16.1,10.1%)

3839.04
(14.0,19.9%)

5656.81
(10.2,40.2%)

2σ
2101.42
(2.1,4.3%)

2415.90
(2.1,8.4%)

3920.15
(1.4,29.0%)

5946.18
(0.6,59.3%)

3σ
2103.16
(0.1,25.0%)

2423.74
(0.1,0.0%)

3955.09
(0.1,33.3%)

6000.31
(0.0,-)

1000σ
2103.33
(0.0,-)

2423.74
(0.0,-)

3958.24
(0.0,-)

6000.31
(0.0,-)

Table 3: Results of Model 3 on class RC1

TL σ = 1 σ = 4 σ = 16 σ = 32

0
1882.10
(53.0,7.1%)

2351.59
(56.3,15.8%)

4212.73
(72.6,49.3%)

5605.93
(81.8,66.6%)

σ
1903.45
(15.7,5.4%)

2446.37
(16.0,12.3%)

5175.86
(15.5,36.2%)

8746.32
(13.7,49.8%)

2σ
1914.84
(2.0,5.0%)

2482.16
(1.9,13.0%)

5203.06
(1.8,31.9%)

8808.90
(1.3,44.0%)

3σ
1911.76
(0.1,0.0%)

2478.94
(0.1,0.0%)

5177.29
(0.1,33.3%)

8797.24
(0.1,0.0%)

1000σ
1911.76
(0.0,-)

2478.94
(0.0,-)

5182.56
(0.0,-)

8774.24
(0.0,-)

Table 4: Improvement of Model 3 over Model 2

σ = 1 σ = 4 σ = 16 σ = 32

R1 Model 2
Model 3
% Imprv.

1752.31
1715.64
2.14%

2298.89
2212.62
3.90%

4402.67
3935.67
11.87%

6070.87
5246.38
15.72%

C1 Model 2
Model 3
% Imprv.

2098.69
2074.06
1.19%

2413.72
2369.31
1.87%

3945.31
3839.04
2.77%

6130.17
5656.81
8.37%

RC1 Model 2
Model 3
% Imprv.

1910.61
1882.10
1.52%

2419.64
2351.59
2.89%

4731.05
4212.73
12.30%

6545.70
5605.93
16.76%

5 Conclusion

This paper proposes an extension to a previous
work in [3], where an online vehicle routing prob-
lem with dynamic perturbations to the travel times
is addressed. The positive impact of vehicle posi-
tion tracking devices on solution quality was demon-
strated for this type of problem. Also, the results
indicate that a reassignment action should be consid-
ered as soon as a perturbation to the current plan is
detected.
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