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1 Introduction

Sequence constraints are useful in a number of applications. Constraints of this class enforce upper and/or

lower bounds on all sub-sequences of variables of a given length within a main sequence. For instance, in Crew-

Rostering problems, we may want to have an upper bound on the number of worked days in every sub-sequence

to meet working regulations. Several constraints of this class have been studied in the Constraint Programming

(CP) literature such as GENSEQUENCE, AMONGSEQ, etc. An even more general constraint, REGULAR, can

be used to enforce arbitrary patterns on all sub-sequences. However, the more general a constraint is, the

higher is the complexity of reasoning about it. We therefore investigate the ATMOSTSEQCARD constraint, a

particular case where the sequence of variables is subject to a chain of ATMOST constraints (all subsequences

of size q have at most u values in a set v) along with a global cardinality [6]. This constraint is useful in Car-

Sequencing and Crew-Rostering problems. In [7], two algorithms designed for the AMONGSEQ constraint

were adapted to this constraint with an O(2qn) and O(n3) worst case time complexity, respectively. In [2],

another algorithm similarly adaptable to filter the ATMOSTSEQCARD constraint with a time complexity of

O(n2) was proposed. Our contributions start with a an algorithm achieving arc consistency on this constraint

with an O(n) (hence optimal) worst case time complexity. Next, we showed that this algorithm can be easily

modified to achieve arc consistency on some extensions of this constraint. In particular, the conjunction of a

set of m ATMOSTSEQCARD constraints sharing the same scope can be filtered in O(nm). Finally, in [1], we

showed how to use this constraint in a hybrid CP/SAT framework in order to solve efficiently car-sequencing

problems via powerful clause learning mechanisms. Empirical experiments show outstanding results on Car-

Sequencing and Crew-Rostering benchmarks.

2 Achieving GAC in an optimal worst case time complexity

We consider in this paper tree search procedures in a Constraint Programming (CP) framework, where each

constraint is associated to a propagator (or filtering algorithm) that prunes unconsistent values w.r.t to the

current domains at each node of the search tree. A constraint C is Generalized Arc-Consistent (GAC) iff for

every variable x in its scope and every value v in the current domain of x, we can extend the current assignment

to be consistent while assigning v to x.

Let u, q, d be three integers and [x1, . . . , xn] be a sequence of Boolean variables. We define the ATMOSTSEQCARD

constraint as follows :



Definition 1. ATMOSTSEQCARD(u, q, d, [x1, . . . , xn])⇔

n−q∧

i=0

(

q∑

l=1

xi+l ≤ u) ∧ (

n∑

i=1

xi = d)

While the best filtering algorithm for this constraint runs in O(n2) [2], we showed in [6] that GAC can be

achieved in linear time in the worst case. For a lack of space, we only outline the main idea. Let leftmost be

a greedy rule taking a sequence of Boolean variables as a parameter and returning an assignment maximizing

the cardinality of the sequencing w.r.t. the ATMOST constraints (i.e. constraints of type
∑q

l=1
xi+l ≤ u).

leftmost starts from x1 towards xn by trying to assign the unassigned values to 1 without violating any of

the related ATMOST constraints. The outcome is an assignment with the maximum possible cardinality. We

denote −→w the result of leftmost from left to right (i.e. on [x1, .., xn]) and←−w its result from right to left (i.e.

on [xn, . . . , x1]). We also define two vectors L and R such that L[i] =
∑i

k=1

−→w [k] and R[i] =
∑i

k=1

←−w [k].
After computing L and R, the propagator executes the following filtering rules :

– If L[i] +R[n− i+ 1] ≤ d, then assign xi to 0
– If L[i− 1] +R[n− i] < d, then assign xi to 1

Applying the two rules above in addition to achieving GAC on each ATMOST and on the global cardinality

enforces the constraint to be GAC [6]. This can be done in O(n) (hence optimal).

3 Extension

We presented in [6] two possible extensions of this constraint using similar propagation. In particular, take

the example of a Crew-Rostering problem where an employee cannot work more than one 8-h shift per

day and no more than 5 days in any 7 days period. If we consider a boolean variable per shift and em-

ployee, then the sequence corresponding to a given employee is subject to (simultaneously) ATMOST(1,3) and

ATMOST(5,21) in addition to the global work demand (i.e. a cardinality constraint). In fact, it is very common

to have different ATMOST constraints in the same sequence, hence the MULTIATMOSTSEQCARD constraint.

Let u1, .., um, q1, .., qm be integers.

Definition 2. MULTIATMOSTSEQCARD(u1, .., um, q1, .., qm, d, [x1, . . . , xn])⇔

m∧

k=1

n−qk∧

i=0

(

qk∑

l=1

xi+l ≤ uk) ∧ (

n∑

i=1

xi = d)

Observe first that using m ATMOSTSEQCARD does not enforce GAC on their conjunction [6]. However,

we were able to show a complete filtering on MULTIATMOSTSEQCARD in O(m.n) based on an extension of

the leftmost procedure.

4 Learning

We went one step further with ATMOSTSEQCARD by considering learning in a hybrid CP/SAT context. The

most general architecture for that is, Lazy Clause Generation [4]. The key point for such frameworks is to

explain constraints that can be later used to extract a nogood [3]. Propagators are augmented to give clausal



representation of their actions (i.e. pruning and failure triggering). We outline the main idea for explaining

a failure on ATMOSTSEQCARD. A similar procedure is used when explaining pruning. Let max(i) be the

maximum cardinality of any of the q subsequences involving xi at the the beginning of the ith iteration in

leftmost. It is computed alongside −→w and will be useful to explain failure.

The explanation procedure that we propose works as follows : when a failure is triggered, we first consider

the set of all assignments in the sequence. Note that this is, by default, a valid explanation of this failure. Then

we try to reduce it according to the following rules :

– If xi is assigned to 0 and max(i) = u, then remove xi ← 0
– If xi is assigned to 1 and max(i) 6= u, then remove xi ← 1

Note that all the values max(i) can be generated using one call of leftmost, hence the whole procedure

runs in O(n).

5 Experimental results

We first evaluated the new propagator embedded in tree search on Car-Sequencing and Crew-Rostering bench-

marks [6]. Tables 1 and 2 summarise these results where sum is the default model, gsc uses the IloSequence

constraint of Ilog Solver (GSC) [5], amsc uses the ATMOSTSEQCARD propagator, gsc+amsc combines GSC

with ATMOSTSEQCARD and finally mamsc uses the MULTIATMOSTSEQCARD propagator.

Table 1: Car-Sequencing results (averaged over 42 heuristics)

propagation
set1 (70 × 5) set2 (4 × 5) set3 (5 × 5) set4 (7 × 5)

#sol avg bts time #sol avg bts time #sol avg bts time #sol avg bts time

sum 11270 174017 10.49 124 1101723 58.75 0 - > 1200 99 378475 30.83

gsc 14008 1408 3.16 425 131062 109.45 31 55365 276.06 195 23897 53.61

amsc 13497 33600 3.79 470 665205 70.56 16 40326 8.62 214 215349 38.45

gsc+amsc 14033 1007 3.03 439 104823 99.71 32 57725 285.43 202 22974 61.61

Table 2: Crew-Rostering results

Heuristic Most constrained employee Most constrained shift

Model
satisfiable (1140) unsatisfiable (385) satisfiable (1140) unsatisfiable (385)

#sol time avg bts #sol time avg bts #sol time avg bts #sol time avg bts

sum 772 21.93 205087 165 0.06 0 987 20.76 169964 352 19.74 180161

gsc 746 65.75 14133 175 0.98 0 1006 33.30 8875 335 15.97 5145

amsc 818 20.51 147479 215 0.13 330 1061 10.07 90247 362 12.19 108797

mamsc 842 20.78 125886 270 0.05 0 1074 10.94 91222 377 14.63 110244

Note first that the the two filtering (ATMOSTSEQCARD and GSC) are totally different on Car-Sequencing.

Hence, their combination is worth trying. In Car-Sequencing, best results were obtained by ATMOSTSEQCARD

or by the new combination. In crew-restoring, however, ATMOSTSEQCARD is by far better than GSC. In addi-

tion, one can see the impact of MULTIATMOSTSEQCARD compared to a simple conjunction of ATMOSTSEQCARD.

Furthermore, in both benchmarks, we observed that the new extra filtering was faster (in terms of nodes ex-

plored per second) by at least an order of magnitude compared to GSC.

Regarding learning, we evaluated the new explanation procedure with the Car-Sequencing problem against

a pure CP model (details regarding the experiments can be found in [1]). In table 3, the lines hybrid (VSIDS)



and hybrid (Slot) use a hybrid model with respectively a SAT generic heuristic, and a CP dedicated heuris-

tic whereas pure-CP is a state-of-the-art CP model. Note also that pure-CP and hybrid (Slot) use the same

heuristic.

Table 3: Learning Evaluation

Method
sat[easy] (74× 5) sat[hard] (7× 5) unsat (28× 5)

#suc avg fails time #suc avg fails time #suc avg fails time

hybrid (VSIDS) 370 739 0.23 35 76256 64.52 37 204858 248.24

hybrid (Slot) 370 132 0.04 35 6304 3.75 23 174097 299.24

pure-CP 370 43.06 0.03 35 57966 16.25 0 - -

Using ATMOSTSEQCARD alone already outperform all the other CP models with a 100% resolution of

the satisfiable instances from the CSPLib in a very short time (few seconds). However, CP-Solvers suffer

when trying to prove unfeasability (i.e. with unsatisfiable instances). Using the new explanation, however,

greatly improve this behaviour and outperforms all CP models. In addition, explanations do not hinder solver’s

capacity to find solutions quickly. It is even better sometimes (for instance hybrid (Slot) on sat[hard]

compared to pure-CP).

6 Conclusion

We considered the ATMOSTSEQCARD constraint for solving hard sequencing problems. While the state-of-

the-art filtering algorithm for this constraint runs in O(n2), we showed how to enforce arc-consistency in an

optimal worst case time complexity. Then we presented practical extensions of this constraint and showed how

the propagator can be adapted accordingly. We finally proposed a novel linear time mechanism for explaining

this constraint in a hybrid CP/SAT context. Our new models outperform previous systematic approaches in

Car-Sequencing and Crew-Rostering benchmarks.
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