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In this paper, we formulate and solve a real life coal blending problem using a Column Generation Approach. The objective of the model is to prescribe optimal mixes of coal used to produce coke. The problem is formulated as a mixed integer program. It involves various types of constraints arising out of technical considerations of the blending process. The model also incorporates integer variables. Three heuristics based on column generation ideas are proposed to solve this problem. The heuristics enabled by the use of dual variables related to the ratio amounts of each coal.

Introduction

In this paper, we consider a real life problem: a coal blending problem for coke production. The model includes not only quality constraints for the coke but also all the constraints coming from the different transportation modes and the inventory constraints.

Different types of constraints should be applied during the production. Firstly, the coke is subject to a collection of quality constraints which, for some of them, may depend on the clients. These constraints are all linear. But there are also, for technical reasons, a maximum number of coal types in the mix, this number depending on the number of gates of the plant. A mix is simply a result of running for a certain duration using particular ratios of different coal types.

There is also, for technical reasons, a minimal proportion for each coal present in the mix. As we shall see in Section 3, the modeling of these conditions introduces integer variables and nonlinear constraints which may by linearized under a restrictive condition (See Williams [START_REF] Williams | Model building in Mathematical Programming[END_REF]).

Thirdly, the coke delivered to the customers can be obtained using different mixes of coals. However, the total number of mixes used by a plant in a given period is bounded from above: there is an important fixed cost to change the mix and generally, two different mixes can be used each month. Finally, capacity constraints are present at the plants, as well as minimum production levels.

The industrial problem tackled in this paper is more difficult than the classical coal blending problem of the Operations Research literature considered by Sarker and Gunn [START_REF] Sarker | A simple SLP algorithm for solving a class of nonlinear programs[END_REF] or Greenberg [START_REF] Greenberg | Analyzing the Pooling Problem[END_REF] because of the presence of binary variables. These binary variables are required to model the minimum and/or maximum level of use of each coal. Sarker and Gunn [START_REF] Sarker | A simple SLP algorithm for solving a class of nonlinear programs[END_REF] solve the tactical planning/coal blending problem. This leads to a nonlinear nonconvex problem for which solutions are computed using simple Successive Linear Programming. They used the Lasdon SLP implementation based on the XLP code of Marsten (See Lasdon [START_REF] Lasdon | SLP user guide[END_REF]). Greenberg [START_REF] Greenberg | Analyzing the Pooling Problem[END_REF] looks at the same pooling problem that arises in blending materials but considers a different application, namely the blending of crude or refined petroleum. He presents a new method based upon computational geometry which provides exact answers to questions of sensitivity analysis for this nonlinear nonconvex

We solve a more complicated problem through the following column generation technique (See Vanderbeck and L. Wolsey [START_REF] Vanderbeck | An Exact Algorithm for IP Column Generation[END_REF] for an exact algorithm for IP column generation, Vanderbeck [START_REF] Vanderbeck | On Dantzig-Wolfe decomposition in integer programming and ways to perform branching in a branch-and-price algorithm[END_REF] for the branch-and-price algorithm or Desaulniers, Desrosiers, and Solomon [START_REF]Column Generation[END_REF] for a didactic introduction to the use of column generation technique in integer programming). For each time period, and each plant, by fixing the coal delivery prices at the entry of the plant, i.e. a price that represents the unit purchasing and transportation costs, we determine the optimal coal mix for one unit of production. This constitutes our subproblems. Then, the Master problem determines the level of use of these mixes. The Master problem also determines the coal delivery plan to the plants and the coke delivery plan to the clients. As we shall see in Section 4, the solution of the Master problem leads to reviewing the delivery prices at the entry of the plant for each coal and a new mix based on these new prices is generated by solving the subproblems. Consequently, new columns are generated for the Master problem. Note that there are also integer variables at the upper level, since only a limited number of different mixes can be considered at each time period.

The main contribution of this paper is to solve a real life problem coming out of the industry which is a large-scaled problem intractable by classical operation research methods. Defining three heuristics methods based on column generation techniques, we furnished reasonable solutions to the industrial company.

Problem Description

The manager of a coke production company wants to determine the operation schedule for the next three months for the five production units situated in Belgium. We use t as index for the time periods. The three time periods correspond to the months January to March. We note days t the number of days for month t.

These five plants produce different types of coke by mixing different types of coals and then firing them to produce coke. Different type of clients corresponding to different type of steel are furnished by the company which results in different mixes of coal types.

The demand is assumed to be known with accuracy for the first three months of the year. The different coals are purchased from several countries and brought to Belgium by means of two transportation modes, namely by boat or by rail. The buying prices of the different coals and the transportation cost from producer to the plant are known.

Plants description

Each production plant k is characterized by a daily capacity of plant cap k (See Table 1), namely the maximum amount of coal that can be handled by the plant. 1. Plant characteristics Since the plant can never be stopped, there is also a minimal utilization rate for each plant, denoted minuse k for plant k. To put the coals into the oven, there is only a limited number of entry gates, denoted gates k for plant k. This induces that the number of coal types in the mix is limited. There are also a minimal and a maximal proportion for each coal in the mix, denoted respectively mincoal k and maxcoal k for plant k. Note that these two parameters are function of the plant and are independent of the coal type: in fact, the minimal and maximal proportion depend on the charging machinery of the plants. Since the plants were constructed at different time periods, the technology used is different, which explains the difference from plant to plant.

Plants also differ by their unitary production cost. We note by prodcost kt the unitary production cost of plant k at time period t (See 

Coal characteristics

The firm can use during this production horizon 16 types of coal which differ by their characteristics such as the ash rate, denoted ash c for coal c, the sulfur rate, denoted sulf c , the alkali rate, denoted alk c , the volatile part, denoted vol c and the wet part, denoted wet c . The wet part is the unusable part of the coals. One also distinguishes three classes among the coals: the "High Volume", denoted HV, the "Mid Volume", denoted MV, and the "Low Volume", denoted LV (See Table 3 1). We use the subset b of c to note these coals. They mainly come from North America and from Australia. There are two possible arriving harbors that we index by h. There is an initial coal inventory at the beginning of the year in the two harbors, noted by initstock ch (See Table 4). We note expq ct deliveries correspond to to already ordered quantities expected for some of these coals. The other coals are delivered by rail. They mainly come from Germany and from Eastern Europe. There is no storage capacity for these coals. Deliveries, noted expq ct , are also expected for these coals. The final destination of these quantities is not yet decided. (See Table 4).

Some of the coals are paid in US dollar ($), others in Euro ( = C). Expected exchange rate for the next three months are given by Table 4. The $ is the 4 where the relevant currency is also given for each coal. Multiplying the price in foreign currency by the expected exchange rate, we obtain the price of coal c at time period t in = C denoted price ct .

The transportation costs

The transportation costs by boat to the harbour, denoted boatcost ch , are given in $ per ton of coal (See Table 5). There is no difference for the transportation costs between the two arrival harbors. Handling costs at the harbour, denoted dockcost h are also the same at the two harbours due to the competition between the harbours: 3.3875 = C per ton. Transportation costs from harbours to plants, denoted transpcost hk are also given in = C per ton (See Table 5).

Note that there is no transportation cost between harbour 2 and plant 3, the plant being located in the harbour area. Consequently, plant 3 is only supplied from harbour 2. The four other plants are also supplied by rail. The transportation costs by rail between the departure station and the plants, denoted railcost ck , are given in = C per ton by Table 5 for all coals that are coming directly from the production site to the plant by rail.

Characteristics of the demand

The coke company must satisfy the demand of 13 clients for the next three months. We used a as index for the client. The demand of client a in time period t is denoted dem at (See Table 6). In order to minimize the coke transportation 7. Specifications which depend on the client. and 26 %. We denote these two parameters as minvol and maxvol. The second one concerns the ash rate. The mix has a maximal ash rate depending on the client. We note maxash a this quantity for client a. The third specification concerns the sulfur rate. There is a lower and upper limit on sulfur, denoted minsulf a and maxsulf a , which also depends on the client. The fourth specification concerns the alkali rate. There is an upper limit on alkali, denoted maxalk a , which also depends on the client a. The fifth specification concerns the Low Volume rate. The lower and upper limits on Low Volume, denoted minlv a and maxlv a , also depend on the client (See Table 7). For three characteristics (ash, sulfur, alkali), there is a multiplicative coefficient from the mix to the coke: they are denoted respectively multash, multsulf and multalk (See Table 7).

( = C/ton) transpcost hk railcost ck ( = C/ton) h = 1 h = 2 c = 3 c = 6 c = 7 c = 8 c = 9 c = 13 c = 15 k = 1 4.
For all minimal and/or maximal characteristic rates that depend on the client, we shall consider as specification for the mix of the plant the specification of the most restrictive client that the plant has to serve.

The sixth specification concerns the rate in "Mid Volume". Here there are lower and upper bounds on Mid Volume, denoted minmv (0.25) and maxmv (0.25) respectively, which do not depend on the client. In fact, for technical reasons, there is a fixed rate 1/4 of Mid volume coals. The seventh specification concerns the soft rate. There is an upper bound on Soft coal, denoted maxsof t (0.10), which does not depend on the client. The only soft coal is coal 12. The eighth specification concerns the Australian coal rate. Here, there is for commercial reason an upper bound, denoted maxaus (0.30), which does not depend on the client. The only Australian coal is coal 4.

Finally, one must account for the fact that the number of mixes that can be used for each plant per period is limited. This maximum number of mixes, denoted maxmix kt , is equal to 2 mixes per month for each plant. The different mixes will be indiced by m.

Problem formulation

We have already introduced the following indices : the coals are indexed by c, the plants by k, the time periods by t, the mixes by m, the harbours by h and the clients by a. For facility of the notation, we have also introduced the subindices b for the coals coming by boat and r for the coals coming by rail.

Choice of decision variables

The first set of variables concerns the production of coke in the different plants: we denote by COAL cktm the quantity of coal c used in plant k at the time period t in the mix m. We introduce only for convenience the variable SU M ktm which is the total quantity of coals for plant k in the mix m at the time period t. These two quantities are given in tons. To account for the limited number of coal in the mix, we introduce the binary variables COALP RES cktm to indicate the fact that coal c is present in the mix m for plant k at time period t. To account for the limited number of mixes at each time period, we introduce the binary variables M IXP RES ktm to indicate the fact that mix m is used for plant k at time period t. A second set of variables is used to manage the deliveries and inventories of coals (See Figure 2). We denote by ORDQ ct the new ordered quantity of coal c at time period t. We assume that the orders placed in period t are also delivered in period t. Thus, this quantity addition to the expected quantities at time period t, expq ct which are given (See Section 2). We denote by XBOAT bth the quantity of coal b coming by boat that is sent to harbour h at time period t and by XRAIL rkt the quantity of coal r coming by rail that is sent to coke plant k at time period t. We denote by ST OCK bth the inventory of coal delivered by boat b at the end of time period t in harbour h. We denote by COALDEL bkth the coal b deliveries from harbour h to plant k at time period t. We denote by P ROD kta the tons of coke produced in plant k at time period t for client a. These variables are necessary to compute the coke transportation plan since some clients can be supplied by more than one plant.

Mathematical expression of the objective

The objective function is the sum of six following terms:

min z = c t price ct (expq ct + ORDQ ct ) (1) 
+ b t h (boatcost bh + dockcost h )XBOAT bth (2) 
+ b t h rate • delprice bth ST OCK bth (3) 
+ b k t h transpcost hk COALDEL bkth (4) + r k t railcost rk XRAIL rkt (5) 
+ k t m prodcost kt SU M ktm (6) 
• the coal purchasing cost (1) where price ct is the coal price c at period t,

• the boat transportation cost and the handling cost at the harbors (2) where boatcost bh is the boat transportation cost and dockcost h is the handling cost at harbor, • the holding inventory cost for each coal stored at the arrival harbor [START_REF] Wolf | Using Column Generation to Solve an Industrial Mixing Problem[END_REF] where rate is the monthly opportunity rate (0,5 %) and delprice bth is the delivery price, i.e the sum of the purchasing cost, the boat transportation cost and the handling cost at the harbor:

delprice bth = price bt + boatcost bh + dockcost h
• the transportation cost from harbor to plants (4) where transpcost hk is the unitary transportation cost from the harbour to the plant

• the transportation cost by rail [START_REF] Lasdon | SLP user guide[END_REF] with railcost rk the unitary rail cost,

• the production costs [START_REF] Sarker | A simple SLP algorithm for solving a class of nonlinear programs[END_REF] with prodcost kt the unitary production cost.

Mathematical expression of the constraints

We have the following relations between theses variables: 

SU M ktm = c COAL cktm (7) 
COAL cktm ≤ COALP RES cktm cap k days t (8) SU M ktm ≤ M IXP RES ktm cap k days t ( 9 
)
minuse k cap k days t ≤ m SU M ktm ≤ cap k days t ( 10 
)
expq bt + ORDQ bt = h XBOAT bth ( 11 
)
expq rt + ORDQ rt = k XRAIL rkt (12) h COALDEL bkth = m COAL bktm (13) 
XRAIL rkt = m COAL rktm (14) 
mincoal k COALP RES cktm ≤ COAL cktm SU M ktm (20) COAL cktm SU M ktm ≤ maxcoal k COALP RES cktm (21) 
• Equation ( 7) computes the sum of coals for each mix and each time period.

• Equation ( 8) and ( 9) are the definition of the binary variables: namely they indicate the presence of the coal or the use of the mix. Note that cap k is the daily coal entry capacity for plant k and days t is the number of days in time period t. This number of days is needed since capacity is a daily capacity and the variables are monthly quantities of coal coming in.

• Equations ( 10) express the minimal utilization rate and capacities of plants.

• Equation (11) expresses that the total amount of coal delivered by boat must be allocated between the two harbors since equation ( 12) expresses that the total amount of coal delivered by rail must be allocated between the plants. • Equation ( 13) is the balance for each coal coming by boat at each plant since equation ( 14) is the balance for each coal delivered by rail. Note also that the two last constraints (20) and (21) are nonlinear. All the other quality constraints on the mix are easy to write. They are listed in appendix A.

Solution Method

Except for constraints (20) and ( 21), all the constraints of the problem are purely linear. Note that the left hand side of constraint (20) must be multiplied by the variable COALPRES, otherwise all the coals would be present in the mix.

The solution technique followed by Sarker and Gunn [START_REF] Sarker | A simple SLP algorithm for solving a class of nonlinear programs[END_REF] is to define for each ratio COAL cktm /SU M ktm a variable, say f cktm , introducing for each c, k, t and m the constraint:

f cktm SU M ktm = COAL cktm . They obtain a problem with a nonlinear part of bilinear type (product of variables). Heuristics for solving such problems have been proposed in the OR literature. They are related to techniques for solving fractional linear programs and resort to successive linear programming (SLP).

But in our problem, integer variables remain since constraints (20) and ( 21) are written as:

mincoal k COALP RES cktm ≤ f cktm ≤ maxcoal k COALP RES cktm .
We propose here a heuristic method based on column generation ideas. The problem formulated in Section 3 has two types of binary variables: one called COALP RES cktm to indicate the presence of coal c in the mix m for plant k at time period t. The other one, called M IXP RES ktm indicates that the mix m is used for plant k at time period t. We know that column generation procedures solve only LP problems. In our heuristic method, we keep the binary variable in the subproblem (for limiting the number of coal types in the mix) and in the main program (for limiting the number of mixes used for each plant and each time period).

The subproblems are defined as follows. For each plant, and for each time period, initially we consider the delivery price at the entry of the plant as the sum of the coal price and the total transportation cost to the plant. We seek a mix of one ton that satisfies all the quality constraints on the mix. This gives an initial column of coal proportions for each plant for each time period. Note that imposing that the sum of coals be equal to zero is a simple manner to linearize the two non linear constraints (20) and ( 21).

In the master problem, we shall determine the level of utilization of these mixes in order to meet the demand of the several clients at minimal production, transportation and coal purchasing costs. Multiplying the level of use of a mix by the column of the coal proportions in the mix for a particular plant, we obtain the coal quantities needed for the plant at the time period.

To update the delivery price at the entry of the plant, we consider the dual price of the balance at the entry of the plant constraints (13) or ( 14) depending on the transportation mode. In fact, these dual variables have a marginal effect on the objective function: the increasing by one unit of the delivery of this coal at this period for the plant.

As previously said, we suppose initially for the subproblems that all the the coals were bought from the producer to the plant to compute the initial coal delivery price at the entry of the plant. One main iteration is the solution of the 15 subproblems (5 plants × 3 time periods) and of one main problem. At the end of the first main iteration, we update the initial delivery price at the entry of the plant by substituting the dual price of constraints (13) or (14).

The sub programs

The subproblems correspond to the following task: find, for each time period and each plant, the optimal mix for one unit of coal mix. The constraints encompass all the mix quality constraints, the maximal number of coal constraint and the minimal and maximal rate for each coal in the mix constraints. The only variables are variables COAL c and COALP RES c . Recall that the objective coefficients encompass at the first iteration the coal purchasing cost, transportation cost, handling cost and the production cost. At the following iterations, we only consider the sum of the dual variable and the production cost. We have thus the following sub problems SP(k,t) where p(c, k, t) is the delivery price of the coal c to plant k at time period t:

min z = c p(c, k, t)COAL ckt s.t.                                                                                                                     c COAL ckt = 1 c COALP RES ckt ≤ gates k mincoal k COALP RES ckt ≤ COAL ckt COAL ckt ≤ maxcoal k COALP RES ckt c ash c multash COAL ckt ≤ min a delivered by k maxash a SU M kt c sulf c multsulf COAL ckt ≥ max a delivered by k minsulf a SU M kt c sulf c multsulf COAL ckt ≤ min a delivered by k maxsulf a SU M kt c alk c multalk COAL ckt ≤ min a delivered by k maxalk a SU M kt c vol c COAL ckt ≥ minvol SU M kt c vol c COAL ckt ≤ maxvol SU M kt c∈LV COAL ckt ≥ max a delivered by k minlv a SU M kt c∈LV COAL ckt ≤ min a delivered by k maxlv a SU M kt c∈MV COAL ckt ≤ maxmv SU M kt c∈MV COAL ckt ≥ minmv SU M kt c is a Soft Coal COAL ckt ≤ maxsof t SU M kt c is an Australian coal COAL ckt ≤ maxaus SU M kt (22) 
We need thus to solve as many problems as there are plants and time periods. This can be done by using two inner loops in GAMS/OSL (See Brooke, Kendrick and Meeraus [START_REF] Smeers | GAMS User's guide Release 2.25[END_REF]): the first one on time periods and the second one on plants. These problems are easy to solve: they have only 16 linear variables (COAL) and 16 binary variables (COALP RES). We note coal(c, k, t, m) the proportion of coal c used in mix m (initially, m is set to 1) at plant k at time period t.

The main problem

The main problem corresponds to the determination of the delivery planning of coals to the plants, the allocation of ordered quantities to the harbors, the determination of the level of use of the mixes generated by the sub-problems for each plant and each time period and finally the coke transportation planning to the final clients. We obtain the following main problem:

min z = c t price ct (expq ct + ORDQ ct ) + b t h rate • delprice bth ST OCK bth + b t h (boatcost bh + dockcost h )XBOAT bth + b k t h transpcost hk COALDEL bkth + r k t railcost rk XRAIL rkt + k t m prodcost kt SU M ktm s.t.                                                                  SU M ktm ≤ M IXP RES ktm cap k days t minuse k cap k days t ≤ m SU M ktm ≤ cap k days t expq bt + ORDQ bt = h XBOAT bth expq rt + ORDQ rt = k XRAIL rkt h COALDEL bkth = m coal(b, k, t, m)SU M ktm XRAIL rkt = m coal(r, k, t, m)SU M ktm m M IXP RES ktm ≤ maxmix kt ST OCK bth -ST OCK b,t-1,h = XBOAT bth - k COALDEL bkth m c (1 -wet c )coal(b, k, t, m)SU M ktm = a P ROD kta k delivering a P ROD kta ≥ dem at (23) 
This gives a mixed integer program with binary variables M IXP RES since a maximal number of different mixes for each plant at each time period must be imposed. This program can also be solved by GAMS/OSL.

At the first iteration, there are 481 rows and 556 columns. Each iteration adds 15 constraints (15 "rows") and 30 variables ("columns") to the main problem (See table 8). The new variables correspond to the 15 new mixes binary variables and the to 15 new mixes utilization levels. The new constraints correspond to the computation of the SU M variables corresponding to the 15 new mixes.

The global process

The global process includes 3 levels of inner loops in GAMS/OSL:

• the first loop on the main iterations,

• the second loop on the time periods,

• and the third loop on the plants.

It can be summarized by the following procedure: Initialize p(c,k,t) as the sum of the unit production cost and the delivery price of coal assuming that the coal must be bought; For m = 1, 2, etc.. { For t = 1 to 3 { For k = 1 to 5 {Determine the optimal mix for plant k, time t when using p(c,k,t) as objective coefficients by solving the subproblem SP(c,k,t); Let coal(c,k,t,m) be the solution obtained; } } Determine the optimal coal purchases, mix use level and demand satisfaction planning by solving the main problem MP using MIP solveur GAMS/OSL; Update p(c,k,t) to the sum of the production unit cost and the dual variable of the balance equation for coal c at plant k for time period t; } The stopping criterion is as follows: stop if there are no columns pricing out. Before analyzing these results, let us stress the fact that the procedure we propose is heuristic. In fact, with an alternative organization of the master problem and subproblem hierarchy, we can achieve a better objective function value (See Section 5).

Let us conclude this section with a few explanations on the "dual prices" used in the column generation. In fact, our master problem is a mixed integer problem due to the MIXPRES binary variables. It is well know in mathematical programming that the dual information is only valid for a linear program. We explain how this dual information is generated. We have solved this MIP problem using GAMS/OSL. After that the solver has found the optimal solution, GAMS fixes the levels of the integer variables and reruns the model as an LP model to obtain the dual variables values. As an alternative heuristic, one could also use the dual prices of the LP relaxation of the whole MIP problem. We refer to Section 5 for the comparison of the results of the two possible choices for generating the dual information. 8. Evolution of the objective function of the MP Two conclusions can be taken from this table. The first one is the important objective function decrease (about 2 500 000 = C per iteration) during the first five iterations. This global cost reduction continues at a lower rate during the following iterations. Secondly, the heuristic converges in only 16 mains iterations. Recall also that since we use a heuristic method, the solution can be suboptimal. Now, let us say a few words about two other heuristics that were suggested to us to solve the problem. The first one is a variant of our column generation method that was suggested to us by professor Yves Pochet from CORE, Université Catholique de Louvain, Belgium. Since the only difficulty in the main program is the fact that there are binary variables (COALP RES cktm ) in a product with another variable SU M ktm (See 21), one can, for the main program, fix the coals present in the mix instead of fixing their proportion in the mix. This implies, in our method that we send from the lower to the upper level not the COAL variables but only the COALP RES variables. This also implies that we must impose, in the main program, all the quality constraints on the mix listed in appendix A.

Numerical results

Table 9 presents the evolution of the objective function value, the execution time for GAMS/OSL and the size of the main program for this second heuristic method. 9. Evolution of the objective function of the MP for the second method A slightly better solution (68 341 879.48 = C instead of 68 346 480.40 = C) was obtained after 14 main iterations but it took much longer (14 hours 28 min instead of 5 hours 6 minutes for our method). This increase in the execution time is due to the fact that the size of the main problem is increased (compare the last two columns of table 8 and 9).

Iteration

From this example, one conclude that the second method is not competitive since it gives a similar solution in much more time. This example also points out the fact that our procedure is heuristic since the second heuristic gives a slightly better solution .

Finally, we present a third heuristic that was suggested to us by professor Etienne Loute from Facultés Universitaires Saint Louis, Brussels, Belgium. The only difference with the first method is the choice of the dual information to update the coal delivery prices for the subproblem. Instead of using the dual information given at the optimal solution of the MIP version of the master problem, we solved the relaxed version of this master problem and used the dual information of this RMIP problem. Table 10 This third solution method is close to the standard column generation technique. At the end of the procedure, the integrality of variables for the main problem is restored as follows: after solving the LP-relaxation, a branch and bound procedure is performed with these columns.

A slightly expansive solution (68 346 804.38 = C instead of 68 346 480,40 = C) was obtained after 14 main iterations but in less time (2 hours 10 minutes instead of 5 hours 6 minutes with our method). All these run times were in fact acceptable to the industry since we determine the planning for three months. The solution procedure was presented to the industrial and helped both. On one side, it helps the industrial to discover the limiting constraints of its production problem. For example, the industrial was not aware that the number of entering gates is an important constraint for the solution. In fact, if we allow as many coal type as we want in the mix, the production costs decreases. On the other side, our heuristic has helped the industrial to decrease it production cost for the three months.

Conclusions

In this paper, we have formulated and solved a real word problem. It concerns the integration of the distribution and mixing of coals to satisfy the demand of coke of a set of customers throughout a planning horizon. The modelization of the problem implies a great number of constraints with binary variables. The binary variables come from the limitation of the number of coal in the mixes at each plant at each time period and from the limitation of the number of mixes used for each plant and each time period. Some of the constraints were non linear. To solve this difficult problem, we have presented three heuristics based on the idea of the column generation technique.

The implementation of our method has helped the industrial company to reduce its production cost.

In the future, we intend to add new quality constraints on the mix which are non linear and that can not be linearized by our present heuristic method. It concern upper and lower bound on the Gisseler Fluidity which is a non linear function of the coals quantities in the mix.
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 2 Figure 2. Choice for the decision variables for the coal deliveries and inventories

  k cap k minuse k gates k mincoal k maxcoal k

	1 2 300	60 %	8	5 %	100 %
	2 2 850	60 %	4	15 %	35 %
	3 1 250	75 %	8	10 %	100 %
	4 3 500	60 %	8	10 %	100 %
	5 3 500	60 %	8	10 %	100 %
		Table			

Table 2

 2 ).

	k prodcost k1 prodcost k2 prodcost k3
	1	11.450	11.400	11.350
	2	18.175	18.100	18.025
	3	38.150	38.000	37.850
	4	24.125	24.025	23.925
	5	11.300	11.250	11.200

Table 2 .

 2 Production cost (euro per ton of coal)

Table 3 .

 3 ). Coal characteristics 2.3. Availability, delivery and departure prices of the coals Some of the coals come by boat (See Figure

	c	ash c	sulf c	alk c	vol c	wet c	Type
	1 4.99 % .85 % .12 % 17.89% 6.63%	LV
	2 5.53% .70% .09% 17.48% 7.77%	LV
	3 7.72% .94% .31% 22.71% 10.15% LV
	4 8.30% .67% .14% 21.00% 8.00%	LV
	5 8.07% .70% .16% 23.60% 9.47%	MV
	6 4.83% .88% .16% 30.19% 6.80%	HV
	7 6.86% 1.15% .24% 29.90% 7.54%	HV
	8 6.14% .84% .22% 31.39% 8.66%	HV
	9 6.01% .82% .19% 32.75% 6.29%	HV
	10 6.45% .88% .17% 33.08% 7.20%	HV
	11 7.44% .66% .24% 27.43% 6.45%	HV
	12 7.70% .71% .23% 32.09% 6.81%	HV
	13 7.00% .98% .32% 25.10% 8.00%	MV
	14 7.60% .57% .18% 19.30% 10.14% LV
	15 5.79% .82% .18% 24.39% 8.99%	MV
	16 5.30% .72% .13% 33.50% 7.90%	HV

Table 4 .

 4 The landing harbor is not yet decided. Initial inventory, expected quantities and coal prices at the departure

	Coal		initstock ch (tons)	expq ct (tons)	price
	(c)		h = 1	h= 2	t = 1	t = 2	t = 3
	1	b	558	7 620 70 000 70 000 100 000 $ 46.80
	2	b					$ 46.75
	3	t			26 000 26 000 26 000 = C 55.65
	4	b		36 655			$ 37.75
	5	b 42 760	22 570 40 000		60 000 $ 45.75
	6	t			49 600 49 600 49 600 = C 42.225
	7	t			14 800 14 800 14 800 = C 42.225
	8	t			10 000 10 000 10 000 = C 41.775
	9	t			20 000 20 000 20 000 = C 43.575
	10	b					$ 46.65
	11	b	5 950				$ 49.25
	12	b					$ 44.10
	13	t			16 000 16 000 16 000 = C 55.125
	14	b 43 505		40 000		60 000 $ 40.00
	15	t			42 400 42 400 42 400 = C 44.95
	16	b		6 450 25 000 25 000	$ 46.80
			Currency rate	t = 1	t = 2	t =3
			$		0.975	0.925	0.875
			= C		1	1	1

Table 5 .

 5 Boat transportation costs, Dock cost and rail transportation cost to the plants cost, the plant requested by each client is given. A few of them (clients 4 and 6) can be delivered by two plants, the distances being similar.

		4675 4.4675 9.155	4.67	4.67	4.67	9.155	9.155	4.67
	k = 2	2.6375 3.25	7.39 4.2625 4.2625 4.2625	7.39	7.39	4.2625
	k = 3	+∞	0	-	-	-	-	-	-	-
	k = 4	3.86	3.86	8.29	6.08	6.08	6.08	8.29	8.29	6.08
	k = 5	2.460	4.105 7.7475	2.31	2.31	2.31	7.7475 7.7475	2.31
			dem at	t = 1 t = 2	t =3	Plant			
			Client 1 11500 12600 12600	3			
			Client 2		4000	4000	1			
			Client 3 45000 45000 45000	1			
			Client 4 7000	8000	8000	2 or 3			
			Client 5 2000	2000	2000	3			
			Client 6 16500 24800 14400 1 or 2			
			Client 7 26700 19400 14800	2			
			Client 8		3500		2			
			Client 9 6000	6000	5000	1			
			Client 10 16000 16000 14000	2			
			Client 11 12000 12000 12000	3			
			Client 12 58452 49002 51644	4			
			Client 13 68516 68132 71162 5				

Table 6 .

 6 Demand for the next three monthsWe explain now the quality constraints that the coal mix must meet. The first one concerns the volatile rate. The volatile rate of the mix must be between 24 % Client maxash a minsulf a maxsulf a maxalk a minlv a maxlv a

	Client 1	10.		1.	.30	30.	100.
	Client 2	10.		1.	.30	30.	100.
	Client 3	10.		1.	.30	30.	100.
	Client 4	10.		1.	.30	30.	100.
	Client 5	10.		1.	.30	30.	100.
	Client 6	9.5	.7	.9	.30	30.	100.
	Client 7	9.5	.7	.9	.30	30.	100.
	Client 8	10.		1.	.30	40.	50.
	Client 9	10.		1.	.30	30.	100.
	Client 10	10.		1.	.30	30.	100.
	Client 11	10.		1.	.30	30.	100.
	Client 12	9.5	.7	.9	.30	30.	100.
	Client 13	9.5	.7	.9	.30	30.	100.
	Multiplicative coefficient	Ash	Sulfur		Alkali
	from the mix to the coke	1.32	0.92		1.32
		Table					

  • Equation (15) expresses the maximal number of mixes for each plant and each time period noted maxmix kt . • Equation (16) expresses the balance at the end of time period t for coal b at each harbor h since equation (17) expresses the balance at the exit of the plants. • Equation (18) is the demand satisfaction. • Equation (19) expresses the maximal number of coal types in the mix. • Equation (20) concerns the minimal use of each coal in a mix, noted mincoal k since equation (21) concerns the maximal use of each coal in a mix, noted maxcoal k .

We have two types of variables: • the continuous nonnegative variables which must be nonnegative:

COAL cktm , SU M ktm , COALDEL bkth , P ROD kta , XBOAT bth , XRAIL rkt , ORDQ bt , ST OCK bth ≥ 0

• and the binary variables: COALP RES cktm , M IXP RES ktm ∈ {0, 1}

Table 8

 8 presents the successive objective function values for the main program, the execution time for GAMS/OSL and the size of the main program.

	Iteration	Objective	Execution Number	Number
		value ( = C)	time (sec) of rows of columns
	1	91 569 578.20	3	481	556
	2	79 432 349.83	4	496	586
	3	75 029 945.98	11	511	616
	4	71 579 163.48	48	526	646
	5	69 789 373.33	49	541	676
	6	68 615 626.73	522	556	706
	7	68 514 039.00	52	571	736
	8	68 513 503.25	409	586	766
	9	68 428 567.03	119	601	796
	10	68 393 561.65	4151	616	826
	11	68 388 314.23	664	631	856
	12	68 361 242.08	4403	646	886
	13	68 358 137.05	494	661	916
	14	68 349 665.80	2412	676	946
	15	68 347 547.93	1865	691	976
	16 *	68 346 480.40	3184	706	1006
					

* Stopping criterion satisfied. Table

Table 10 .

 10 presents the evolution of the objective function value, the execution time for GAMS/OSL for the RMIP and for the MIP version of the master program. Evolution of the objective function of the MP for the third method

	Iteration	Objective	Execution time Execution time
		value ( = C)	RMIP (sec)	MIP (sec)
	1	91 569 578.20	2	2
	2	79 432 349.83	2	4
	3	75 029 945.98	2	19
	4	72 105 817.88	2	24
	5	68 835 693.58	3	1071
	6	68 503 629.70	2	468
	7	68 433 685.88	3	1 243
	8	68 400 568.13	2	75
	9	68 379 477.03	2	624
	10	68 358 511.35	2	270
	11	68 349 689.18	2	390
	12	68 349 689.18	2	385
	13	68 348 287.88	2	2458
	14 *	68 346 804.38	2	555
				

* Stopping criterion satisfied.
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Appendix A. Quality constraints on the mix