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 and previously extended to event-based control of nonlinear undelayed systems. Under the assumption of the existence of a control Lyapunov-Krasovsky functional, it enables smooth (except at the origin) asymptotic stabilization while ensuring that the sampling intervals do not contract to zero. Global asymptotic stability is obtain under the small control property assumption. Moreover, the control can be proved to be smooth anywhere under certain conditions. Some simulation results highlight the ability of the proposals.

INTRODUCTION

The classical (time-triggered) discrete time framework of controlled systems consists in sampling the system uniformly in time with a constant sampling period. This field has been widely investigated for linear systems, see [START_REF] Åström | Computer-Controlled Systems[END_REF] and the references therein. In the case of nonlinear systems, one way to address a discretetime feedback is to implement a continuous time control algorithm with a sufficiently small sampling period (this procedure is denoted as emulation). However, the hardware used to sample and hold the plant measurements or compute the feedback control action may make impossible the reduce of the sampling period to a level that guarantees acceptable closed-loop performance, as demonstrated in [START_REF] Hsu | The effect of discretized feedback in a closed loop system[END_REF]. Furthermore, although periodicity simplifies the design and analysis, it results in a conservative usage of resources since the control law is computed and updated at the same rate regardless it is really required or not. Some works hence recently addressed resource-aware implementations of the control law, where the control law is event-driven.

Other way to tackle the problem of discrete-time control for nonlinear systems is the application of sampled-data control algorithms based on an approximated discrete-time model of the process, like in [START_REF] Nešić | A framework for stabilization of nonlinear sampled-data systems based on their approximate discrete-time models[END_REF], which is not a trivial task. Another proposed approach consists in modifying a continuous time stabilizing control using a general formula to obtain a redesigned control suitable for sampled-data implementation, as done in [START_REF] Nešić | Lyapunov-based continuous-time nonlinear controller redesign for sampled-data implementation[END_REF]. Some event-triggered control approaches have also been suggested as a solution to overcome such drawbacks of emulation, redesigned control and complexity of the underlying nonlinear sampled-data models.

The advantages of an event-based controller over a timebased one are mainly influenced by the way in which the event are generated. Typical event-based detection mechanisms are functions of the state variation (or the output) of the system, like in Årzén (1999); [START_REF] Sandee | Event-driven control as an opportunity in the multidisciplinary development of embedded controllers[END_REF]; [START_REF] Durand | Further results on event-based PID controller[END_REF]; Sánchez et al. (2009b,a). Although the event-triggered control is well-motivated and allows to relax the periodicity of computations, only few works report theoretical results about the stability, convergence and performance. In [START_REF] Åström | Comparison of Riemann and Lebesque sampling for first order stochastic systems[END_REF] in particular, it is proved that such an approach reduces the number of sampling instants for the same final performance. Some stability and robustness proprieties are exploited in [START_REF] Åström | Comparison of Riemann and Lebesque sampling for first order stochastic systems[END_REF]; [START_REF] Heemels | Analysis of event-driven controllers for linear systems[END_REF]; [START_REF] Lunze | A state-feedback approach to event-based control[END_REF]; [START_REF] Donkers | Outputbased event-triggered control with guaranteed l inf -gain and improved event-triggering[END_REF]; [START_REF] Eqtami | Event-triggered control for discrete-time systems[END_REF]. An alternative approach consists in taking events related to the variation of a Lyapunov function -and consequently to the state too -between the current state and its value at the last sampling, like in [START_REF] Velasco | On Lyapunov sampling for event-driven controllers[END_REF], or in taking events related to the time derivative of the Lyapunov function, like in [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF]; [START_REF] Anta | Self-triggered stabilization of homogeneous control systems[END_REF]; [START_REF] Marchand | A general formula for the stabilization of event-based controlled systems[END_REF][START_REF] Marchand | A general formula for event-based stabilization of nonlinear systems[END_REF]. More particularly, the work in [START_REF] Marchand | A general formula for event-based stabilization of nonlinear systems[END_REF] is based on the universal formula of [START_REF] Sontag | A "universal" construction of Artstein's theorem on nonlinear stabilization[END_REF]. An event-based stabilization of general nonlinear systems affine in the input is proposed. The control updates ensure the strict decrease of a control Lyapunov function (CLF), and so is asymptotically stable the closed-loop system.

Eventually, the event-based control scheme is of growing interest in embedded and networked control systems (where the control loop is closed over a communication link) because it allows to reduce the sending/receiving of information needed for control and, consequently, a strong energy saving. A network has several advantages, like flexibility in the configuration of the communication structure and the number of systems. However, it also has a considerable impact on the performance, notably because of communication delays and packet losses which avoid real-time control constraints to be meet and can even cause the instability of the control loop. This is why it is also important to consider time-delays in the eventbased approaches (note that the packet loss issue is not considered here). Only few works deal with this topic for linear systems, like in Lehmann andLunze (2011, 2012); [START_REF] Guinaldo | Distributed event-triggered control with network delays and packet losses[END_REF][START_REF] Durand | Event-based stabilization of linear system with communication delays in the measurements[END_REF]. Nonetheless, in the best knowledge of the authors, this is the first time an event-based control strategy is proposed for general nonlinear time-delay systems.

The concept of CLF, which is a useful tool for designing robust control laws for nonlinear (undelayed) systems, has been extended to time-delay systems in the form of control Lyapunov-Razumikhin functions (CLRF) and control Lyapunov-Krasovsky functionals (CLKF), see [START_REF] Jankovic | Control Lyapunov-Razumikhin functions to time-delay systems[END_REF][START_REF] Jankovic | Extension of control Lyapunov functions to time-delay systems[END_REF][START_REF] Jankovic | Control of nonlinear systems with time-delay[END_REF]. The latter form is more flexible and easier to construct than CLRFs. Moreover, if a CLKF is known for a nonlinear time-delay system, several stabilizing control laws can be constructed using one of the universal formulas derived for CLFs (such as the Sontag's formula for instance) to achieve global asymptotic stability of the closed loop system. In the present paper, we hence propose to extend the universal event-based formula of [START_REF] Marchand | A general formula for event-based stabilization of nonlinear systems[END_REF] for the stabilization of affine in the control nonlinear time-delay systems. The class of time-delay systems under consideration is restricted here to depend on some discrete delays and a distributed delay. Note also that we only consider state delays and do not consider delays in the control signal (input delays).

The rest of the document is organized as follows. In section 1, some definitions are introduced and the problem is stated. The main contribution is then presented in section 2. The smooth control particular case is also concerned and an example is depicted. An analysis finally concludes the paper.

PRELIMINARIES

Event-triggered stabilization of nonlinear systems

Let consider the general nonlinear dynamical system

ẋ(t) = f x(t), u(t) (1) 
with x(0) := x 0 with x(t) ∈ X ⊂ R p , u(t) ∈ U ⊂ R q and f is a Lipschitz function vanishing at the origin. Note that only null stabilization is considered in this paper for the sake of simplicity, and the dependence on t can be omitted in the sequel. Also, let define X * := X \{0} hereafter. Definition 1.1. (Event-based feedback).

By event-based feedback we mean a set of two functions, that are i) an event function ǫ : X × X → R that indicates if one needs (when ǫ ≤ 0) or not (when ǫ > 0) to recompute the control law and ii) a feedback function υ : X → U .

The solution of (1) with event-based feedback (ǫ, υ) starting in x 0 at t = 0 is then defined as the solution of the differential system

ẋ(t) = f x(t), υ(x i ) ∀t ∈ [t i , t i+1 [ (2) with x i := x(t i ) (3)
where the time instants t i , with i ∈ N, are considered as events (they are determined when the event function ǫ vanishes and denote the sampling time instants) and x i is the memory of the state value at the last event. With this formalization, the control value is updated each time ǫ becomes negative. Usually, one tries to design an eventbased feedback so that ǫ cannot remain negative (and so is updated the control only punctually). In addition, one also wants that two events are separated with a non vanishing time interval avoiding the Zeno phenomenon. All these properties are encompassed with the Minimal inter-Sampling Interval (MSI) property introduced in [START_REF] Marchand | A general formula for event-based stabilization of nonlinear systems[END_REF]. In particular: Property 1.2. (Semi-uniformly MSI). An event-triggered feedback is said to be semi-uniformly MSI if and only if the inter-execution times can be below bounded by some non zero minimal sampling interval τ (δ) > 0 for any δ > 0 and any initial condition x 0 in the ball B(δ) centered at the origin and of radius δ. Remark 1.3. A semi-uniformly MSI event-driven control is a piecewise constant control with non zero sampling intervals (useful for implementation purpose).

A particular event-based feedback has been proposed in [START_REF] Marchand | A general formula for event-based stabilization of nonlinear systems[END_REF], based on the universal formula of [START_REF] Sontag | A "universal" construction of Artstein's theorem on nonlinear stabilization[END_REF]. In order to then understand how was built this strategy, we first recall some seminal results for the stabilization of continuous-time systems. Let consider the affine in the control nonlinear dynamical system A smooth and positive definite functional V : X → R is a control Lyapunov function (CLF) for system (4) if for each x = 0 there is some u ∈ U such that

ẋ(t) = f x(t) + g x(t) u(t) (4 
α(x) + β(x)u < 0 (5) with α(x) := L f V (x) = ∂V ∂x f (x) β(x) := L g V (x) = ∂V ∂x g(x)
where L f V and L g V are the Lie derivatives of f and g functions respectively.

Property 1.5. (Small control property).

If for any µ > 0, ε > 0 and x in the ball B(µ)\{0}, there is some u with u ≤ ε such that inequality (5) holds, then it is possible to design a feedback control that asymptotically stabilizes the system [START_REF] Sontag | A "universal" construction of Artstein's theorem on nonlinear stabilization[END_REF]). Theorem 1.6. (Sontag's universal formula).

Assume that system (4) admits V as a CLF. For any real analytic function q : R → R such that q(0) = 0 and bq(b) > 0 for b = 0, let φ : R 2 → R be defined by

φ(a, b) := a + a 2 + bq(b) b if b = 0 0 if b = 0 (6)
Then, the feedback υ : X → U , smooth on X * , defined by

υ(x) := -β(x) φ α(x), β(x) 2 (7)
with α(x) and β(x) defined in ( 5), is such that ( 5) is satisfied for all x ∈ X * . Property 1.7. If the CLF V in Theorem 1.6 satisfies the small control property, then taking q(b) = b in φ in ( 6), the control is continuous at the origin and so is globally asymptotically stable the closed-loop system.

The event-based feedback suggested in [START_REF] Marchand | A general formula for event-based stabilization of nonlinear systems[END_REF] is based on such an approach, where the control law υ is similar to the one in (7) (but with a lightly different function φ) and the event function ǫ is related to the time derivative of the CLF in order to ensure a (global) asymptotic stability of the closed-loop system. In this paper, we propose to extend this event-based feedback for the stabilization of nonlinear time-delay systems. Actually, the construction is quite similar, this is why we do not detail the event-based feedback for nonlinear undelayed systems here.

Stabilization of time-delay systems

Hereafter, the state of a time-delay system is described by x d : [-r, 0] → X defined by x d (t)(θ) = x(t + θ). This notation, used in [START_REF] Jankovic | Extension of control Lyapunov functions to time-delay systems[END_REF] in particular, seems more convenient than the more conventional x t (θ). Note that the dependence on t and θ can be omitted in the sequel for the sake of simplicity, writing x d (θ) -or only x d -instead of x d (t)(θ) for instance. Let consider the affine in the control nonlinear dynamical time-delay system

ẋ = f (x d ) + g(x d )u (8) with x d (0)(θ) := χ 0 (θ)
where f , g are smooth functions and χ 0 : [-r, 0] → X is a given initial condition. Note that the class of time-delay system under consideration has been restricted to depend on l discrete delays and a distributed delay in the form

ẋ = Φ(x τ ) + g(x τ )u (9) with Φ(x τ ) := f 0 (x τ ) + 0 -r Γ(θ)F x τ , x(t + θ) dθ and x τ := x, x(t -τ 1 ), . . . , x(t -τ l )
where f 0 , g and F : R (l+2)p → R Γ are smooth functions of their arguments. Without loss of generality, we assume that F (x τ , 0) = 0. The matrix Γ : [-r, 0] → R p×Γ is assumed to be piecewise continuous (hence, integrable) and bounded.

Remark 1.8. The restriction (9) on this class of delay systems is needed to avoid the problems that arise due to non-compactness of closed bounded sets in the space C([-r, 0], X , • ), where C([-r, 0], X ) denotes the space of continuous functions from [-r, 0] into X . This is discussed in [START_REF] Jankovic | Control Lyapunov-Razumikhin functions to time-delay systems[END_REF][START_REF] Jankovic | Extension of control Lyapunov functions to time-delay systems[END_REF]. Remark 1.9. Note that we do not consider input delays of the form u(tτ ) in this paper. However, the control law is computed using the state x d of the time-delay system. Definition 1.10. (Control Lyapunov-Krasovsky functional).

A smooth functional V : X → R of the form

V (x d ) = V 1 (x) + V 2 (x d ) + V 3 (x d ) (10) with V 2 (x d ) = l j=1 0 -τj S j (x(t -ς))dς V 3 (x d ) = 0 -r t t+θ L(θ, x(ς))dςdθ
where V 1 is a smooth, positive definite, radially unbounded function of the current state x, V 2 and V 3 are nonnegative functionals respectively due to the discrete delays and the distributed delay in (9), S j : X → R and L : R + × X → R are nonnegative integrable functions, smooth in the x-argument, is a control Lyapunov-Krasovsky functional (CLKF) for system (9) if there exist a function λ, with λ(s) > 0 for s > 0, and two class K ∞ functions κ 1 and κ 2 such that

κ 1 (|χ 0 |) ≤ V (χ d ) ≤ κ 2 ( χ d ) and β d (χ d ) = 0 ⇒ α d (χ d ) ≤ -λ(|χ 0 |) (11) with α d (x d ) := L * f V (x d ) β d (x d ) := L g V 1 (x d )
for all piecewise continuous functions χ d : [-r, 0] → X , where χ 0 is defined in (8). Remark 1.11. Whereas the classical Lie derivative notation is used in

L g V 1 (x) = ∂V1 ∂x g(x)
for the part function of the current state x, an extended Lie derivative is required for functionals of the form (10). L * f V , initially defined in [START_REF] Jankovic | Extension of control Lyapunov functions to time-delay systems[END_REF], comes from the time derivative of the CLKF V in (10) along trajectories of the system (9), that is

V = ∂V 1 ∂x Φ + ∂V 1 ∂x gu + l j=1 S j (x) -S j (x(t -τ j )) + 0 -r L(θ, x) -L(θ, x(t + θ)) dθ = L * f V (x d ) + L g V 1 (x d )u = α d (x d ) + β d (x d )u
(12) when using the notation in (11), where Φ is defined in (9), which gives

L * f V (x d ) := L Φ V 1 + l j=1 S j (x) -S j (x(t -τ j )) + 0 -r L(θ, x) -L(θ, x(t + θ)) dθ
The Sontag's universal formula (Theorem 1.6) has been extended in [START_REF] Jankovic | Extension of control Lyapunov functions to time-delay systems[END_REF] for the stabilization of nonlinear time-delay systems (9) with a CLKF of the form (10). This can be summarized as follows: Theorem 1.12. (Sontag's universal formula with CLKF).

Assume that system (9) admits a CLKF of the form (10). For any real analytic function q : R → R and φ : R 2 → R, both defined in Theorem 1.6, let the feedback υ : X → U, smooth on X * , defined by

υ(x d ) := -β d (x τ ) φ α d (x d ), β d (x d ) 2 (13) 
with x τ and α d , β d defined in ( 9) and ( 11) respectively.

Then υ is such that ( 11) is satisfied for all non zero piecewise continuous functions χ d : [-r, 0] → X . Property 1.13. If the CLKF V in Theorem 1.12 satisfies the small control property, then taking q(b) = b in φ in ( 6), the control is continuous at the origin and so is globally asymptotically stable the closed-loop system.

Contribution of the paper

In the present paper, we propose to extend the event-based approach previously developed in [START_REF] Marchand | A general formula for event-based stabilization of nonlinear systems[END_REF] for nonlinear time-delay systems admitting a CLKF.

In the sequel, let

x di := x d (t i ) (14) 
be the memory of the delayed state value at the last event, by analogy with (3).

EVENT-BASED STABILIZATION OF NONLINEAR TIME-DELAY SYSTEMS

It is possible to design an event-based feedback control that asymptotically stabilizes time-delay systems (9) with a CLKF of the form (10): Theorem 2.1. (Event-based universal formula with CLKF).

If there exists a CLKF V of the form (10) for system (9), then the event-based feedback (ǫ, υ) -see Definition 1.1defined by

υ(x d ) = -β d (x τ )∆(x τ )γ(x d ) (15) ǫ(x d , x di ) = -α d (x d ) -β d (x d )υ(x di ) -σ α d (x d ) 2 + θ(x d )β d (x d )∆(x d )β d (x d ) T (16) 
with

• α d and β d as defined in (11)

• ∆ : X * → R q×q and θ : X → R are smooth positive definite functions

• γ : X → R is defined by γ(x d ) :=      α d (x d ) + α d (x d ) 2 + θ(x d )β d (x d )∆(x d )β d (x d ) T β d (x d )∆(x d )β d (x d ) T if x d ∈ S d 0 if x d / ∈ S d (17) • S d := {x d ∈ X | β d (x d ) = 0} • σ ∈ [0, 1[ is a tunable parameter
where x di and x τ are defined in ( 14) and ( 9) respectively, is semi-uniformly MSI, smooth on X * and such that the time derivative of V satisfies (11) ∀x ∈ X * . Remark 2.2. The simplification made with respect to the original result in [START_REF] Marchand | A general formula for event-based stabilization of nonlinear systems[END_REF] (for the stabilization of nonlinear undelayed systems) resides in the assumptions made for the functions θ and ∆, that are more restrictive here whereas they are assumed to be definite only on the set S d in the original work.

Remark 2.3. The idea behind the construction of the event-based feedback ( 15)-( 16) is to compare the time derivative of the CLKF V in the event-based case, that is applying υ(x di ), and in the classical case, that is applying υ(x d ) instead of υ(x di ). The event function is the weighted difference between both, where σ is the weighted value. By construction, an event is enforced when the event function ǫ vanishes to zero, that is hence when the stability of the event-based scheme does not behave as the one in the classical case. Also, the convergence will be faster with higher σ but with more frequent events in return. σ = 0 means updating the control when V = 0.

Also, some properties are inherited from [START_REF] Marchand | A general formula for event-based stabilization of nonlinear systems[END_REF] and complete the Theorem 2.1. In particular: Property 2.4. (Global asymptotic stability).

If the CLKF V in Theorem 2.1 satisfies the small control property, then the event-based feedback ( 15)-( 16) is continuous at the origin and so is globally asymptotically stable the closed-loop system. Property 2.5. (Smooth control).

If there exists some smooth function ω :

X → R + such that on S * d := S d \{0} ω(x d )β d (x d )∆(x d )β d (x d ) T -α d (x d ) > 0
then the control is smooth on X as soon as θ(x d ) ∆(x d ) vanishes at the origin with

θ(x d ) := ω(x d ) 2 β d (x d )∆(x d )β d (x d ) T -2α d (x d )ω(x d ) (18)

Proofs

Proof of Theorem 2.1 The proof follows the one developed in [START_REF] Marchand | A general formula for event-based stabilization of nonlinear systems[END_REF] for event-based control of systems without delays (4). First, let define

ψ(x) := α d (x) 2 + θ(x)β d (x)∆(x)β d (x) T (19)
for the lake of simplicity in the sequel.

We begin establishing γ is smooth on X * . For this, consider the algebraic equation

P (x d , ζ) := β d (x d )∆(x d )β d (x d ) T ζ 2 -2α d (x d )ζ -θ(x d ) = 0 (20) Note first that ζ = γ(x) is a solution of (20) for all x d ∈ X .
It is easy to prove that the partial derivative of P with respect to ζ is always strictly positive on 21) by the expression of γ (since ζ = γ(x) is a solution of ( 20)). Therefore ∂P ∂ζ never vanishes at each point of the form {(x d , γ(x d ))|x d ∈ X * }. Furthermore, P is smooth w.r.t. x d and ζ since so are α d , β d , θ and ∆. Hence, using the implicit function theorem, γ is smooth on X * .

X * ∂P ∂ζ := 2β d (x d )∆(x d )β d (x d ) T ζ -2α d (x d ) (21) Indeed, when β d (x d ) = 0, (11) gives ∂P ∂ζ = -2α d (x d ) ≥ 2λ(|χ 0 |) > 0 and when β d (x d ) = 0, (17) gives ∂P ∂ζ = 2 α d (x d ) 2 + θ(x d )β d (x d )∆(x d )β d (x d ) T > 0 replacing ζ in (
The decrease of the CLKF of the form (10) when applying the event-based feedback ( 15)-( 16) is easy to prove. For this, let us consider the time interval [t i , t i+1 ], that is the interval separating two successive events. Recall that x di denotes the value of the state when the i th event occurs and t i the corresponding time instant, as defined in (14). At time t i , when the event occurs, the time derivative of the CLKF, i.e. ( 12), after the update of the control is

dV dt (x di ) = α d (x di ) + β d (x di )υ(x di ) = -ψ(x di ) < 0
when substituting ( 17) in ( 15), where ψ is defined in (19). More precisely, defining a compact set not containing the origin, that is

Ω = {x d ∈ CP ([-r, 0], X ) : d ≤ x d ≤ D},
where CP ([-r, 0], X ) denotes the space of piecewise continuous functions from [-r, 0] into X , d and D are some constant in R + . If V is a CLKF for the system of the form ( 9) then for all 0 < δ < D there exists ε > 0 such that

α d (χ d ) ≥ -1 2 λ(|χ 0 |) ⇒ |β d (χ d )| ≥ ε for χ d ∈ Ω.
As a consequence, one obtains (see Lemma 1 in [START_REF] Jankovic | Extension of control Lyapunov functions to time-delay systems[END_REF], and [START_REF] Jankovic | Control Lyapunov-Razumikhin functions to time-delay systems[END_REF], for further details)

V ≤ -λ(|x|)
With this updated control, the event function ( 16) hence becomes strictly positive

ǫ(x di , x di ) = (1 -σ)ψ(x di ) > 0 since σ ∈ [0, 1[,
where ψ is defined in (19). Furthermore, the event-function necessarily remains positive before the next event by continuity, because an event will occur when ǫ(x d , x di ) = 0 (see Definition 1.1). Therefore, on the interval [t i , t i+1 ], one has

ǫ(x d , x di ) = -α d (x d ) -β d (x d )υ(x di ) -σψ(x d ) = - dV dt (x d ) -σψ(x d ) ≥ 0
which ensures the decrease of the CLKF on the interval since σψ(x d ) ≥ 0, where ψ is defined in (19). Moreover, t i+1 is necessarily bounded since, if not, V should converge to a constant value where dV dt = 0, which is impossible thanks to the inequality above. The event function precisely prevents this phenomena detecting when dV dt is close to vanish and updates the control if it happens, where σ is a tunable parameter fixing how "close to vanish" has to be the time derivative of V .

To prove that the event-based control is MSI, we have to prove that for any initial condition in a priori given set, the sampling intervals are below bounded. First of all, notice that events only occur when ǫ becomes negative (with x d = 0). Therefore, using the fact that when 22) when using the definition of υ(x d ) in ( 15) and ( 17), where ψ is defined in (19). Let us define for x di ∈ S d , the level ϑ i := V (x di ) and the set

β d (x d ) = 0, α d (x d ) < -λ(|χ 0 |) (because V is a CLKF as defined in Definition 1.10), it follows from (16), on {x d ∈ X * | β d (x d ) = 0}, that ǫ(x d , x di ) = -α d (x d ) -σ|α d (x d )| = (1 -σ)λ(|χ 0 |) > 0 because σ ∈ [0,
dV dt (x d ) = α d (x d ) + β d (x d )υ(x di ) = -ψ(x d ) + β d (x d ) υ(x di ) -υ(x d ) (
V ϑi := {x d ∈ X |V (x d ) ≤ ϑ i }.
From the choice of the event function, it follows from ( 22) that x d belongs to V ϑ ⊂ V ϑi . Note that if x di belongs to S d , this is not necessarily the case for x d that can escape from this set. First see that, since i) θ(x d ) is such that

α d (x d ) 2 + θ(x d )β d (x d )∆(x d )β d (x d ) T > 0 for all x d ∈ S *
d , and ii) α d (x d ) is necessarily nonzero on the frontier of S d (except possibly at the origin)

dV dt (x di ) = -ψ(x di ) ≤ - inf x di ∈S d s.t. V (x di )=ϑ i ψ(x di ) =: -ϕ(ϑ i ) < 0 (23)
Considering now the second time derivative of the CLKF

V (x d ) = ∂α d ∂x d (x d ) + υ(x di ) T ∂β T d ∂x d (x d ) Θ(x d , x di ) (24)
with Θ(x d , x di ) := Φ(x τ ) + g(x τ )υ(x di ) where Φ is defined in (9). By continuity of all the involved functions (except for Γ in Φ which is piecewise continuous but bounded by assumption), both terms can be bounded for all x d ∈ V ϑi by the following upper bounds ̺ 1 (ϑ i ) and

̺ 2 (ϑ i ) such that ̺ 1 (ϑ i ) := sup x di ∈S d s.t. V (x di )=ϑi x d ∈V ϑ i ∂α d ∂x d (x d ) +υ(x di ) T ∂β T d ∂x d (x d ) ̺ 2 (ϑ i ) := sup x di ∈S d s.t. V (x di )=ϑi x d ∈V ϑ i Θ(x d , x di )
where Θ is defined in (24). Therefore, V is strictly negative at any event instant t i and cannot vanish until a certain time τ (ϑ i ) is elapsed (because its slope is positive). This minimal sampling interval is only depending on the level ϑ i . A bound on τ (ϑ i ) is given by the inequality

dV dt (x d ) ≤ dV dt (x di ) + ρ 1 ρ 2 (t -t i ) x ∈ V ϑi that yields τ (ϑ i ) ≥ ϕ(ϑ i ) ̺ 1 (ϑ i )̺ 2 (ϑ i ) > 0
where ϕ is defined in (23). As a consequence, the eventbased feedback ( 15)-( 16) is semi-uniformly MSI.

Proof of Property 2.4

To prove the continuity of υ at the origin, one only needs to consider the points in S since we already have υ(x d ) = 0 if β d (x d ) = 0. From (15), we have

υ(x d ) ≤ |α d (x d )| β d (x d )∆(x d )β d (x d ) T ∆(x d )β d (x d ) T + ψ(x d ) β d (x d )∆(x d )β d (x d ) T ∆(x d )β d (x d ) T ≤ 2|α d (x d )| β d (x d )∆(x d )β d (x d ) T ∆(x d )β d (x d ) T + θ(x d ) ∆(x d )
(25) With the small control property (see Property 1.5), for any ε > 0, there is µ > 0 such that for any x d ∈ B(µ)\{0}, there exists some u with u ≤ ε such that L

* f V (x d ) + [L g V 1 (x d )] T u = α d (x d ) + β d (x d )u < 0 and therefore |α d (x d )| < β d (x d ) ε. It follows: υ(x d ) ≤ 2ε β d (x d ) ∆(x d )β d (x d ) T β d (x d )∆(x d )β d (x d ) T + θ(x d ) ∆(x d ) Since the function (v 1 , v 2 ) → v1 v2 v T 1 v2
is continuous with respect to its two variables at the origin where it equals 1, since θ and ∆ are also continuous, since θ(x d ) ∆(x d ) vanishes at the origin, for any ε ′ , there is some µ ′ such that ∀x d ∈ B(µ ′ )\{0}, υ(x d ) ≤ ε ′ which ends the proof of continuity.

Proof of Property 2.5

Finally, with θ as in (18), the control becomes υ(x d ) = -β d (x d )∆(x d )ω(x d ) which is obviously smooth on X .

Example

Consider the nonlinear time-delay system

ẋ1 = u ẋ2 = -x 2 + x 2d + x 3 1 + u (26) 
with x 2d := x 2 (tτ ) that admits a CLKF (proposed in [START_REF] Jankovic | Extension of control Lyapunov functions to time-delay systems[END_REF])

V (x) = 1 2 (x 2 1 + x 2 2 ) + 1 2 0 -τ
x 2 2 (θ)dθ ( 27)

with α d = x 2 (-x 2 + x 2d + x 3 1 ) + 1 2 (x 2 2 -x 2 2d ) β d = x 1 + x 2
Indeed, setting, λ(|x|) = 1 4 |x| 4 , one obtains

β d = 0 ⇒ x 1 = -x 2 ⇒ α d = - 1 2 (x 2 -x 2d ) 2 -x 4 2 ≤ -x 4 2 ≤ -λ(|x|)
which proves that ( 27) is a CLKF for (26) using Definition 1.10.

The time evolution of x, υ(x) and the event function ǫ(x, x i ) is depicted in Fig. 1, for ∆ = I p (the identity matrix), θ(x) is as defined in (18) (for smooth control everywhere), with ω = 0.1, σ = 0.1, x 0 = (1 -2) T and a time delay τ = 2 s. One could remark that only 5 events occurs in the 20 s simulation time (including the first event at t = 0) when applying the proposed eventbased approach (15)-( 16). 

CONCLUSION

In this paper, we proposed an extension of the Sontag's universal formula for event-based stabilization of nonlinear time-delay systems. Whereas the original work deals with control Lyapunov functions, some control Lyapunov-Krosovsky functionals (CLKF) are now required for a global (except at the origin) asymptotic stabilization of systems with state delays. The sampling intervals do not contract to zero. Moreover, as in the original result, if the CLKF fulfills the small control property then the control is continuous at the origin. With additional assumption, the control can be proved to be smooth everywhere. Some simulation results were provided, they notably highlighted the low frequency of events of the proposal.

Next step is to also consider input delays. Another way of investigation could be to develop event-based strategies for nonlinear systems based on other universal formulas, like the formula of [START_REF] Freeman | Robust Nonlinear Control Design: State-Space and Lyapunov Techniques[END_REF] or the domination redesign formula of [START_REF] Sepulchre | Constructive Nonlinear Control[END_REF], using CLRF and CLKF in the spirit of [START_REF] Jankovic | Extension of control Lyapunov functions to time-delay systems[END_REF] (for the time-triggered case).

  ) with x(0) := x 0 where f and g are smooth functions with f vanishing at the origin. Definition 1.4. (Control Lyapunov function).

  1[ and λ(s) > 0 for s > 0. Therefore, there is no event on the set{x d ∈ X | β d (x d ) = 0} ∪ {0}.We then restrict the study to the setS * d = {x d ∈ X * | β d (x d ) = 0}, where θ and ∆ are strictly positive by assumption. Let us rewrite the time derivative of the CLKF along the trajectories, that is

Fig. 1 .

 1 Fig. 1. Sumulation results of system (26) with CLKF as in (27) and event-based feedback (15)-(16).
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