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Abstract

The aim of this work is twofold. In a first, abstract part, it is shown
how to derive an asymptotic equation for the amplitude of weakly non-
linear surface waves associated with neutrally stable undercompressive
shocks. The amplitude equation obtained is a nonlocal generalization
of Burgers’ equation, for which an explicit stability condition is exhib-
ited. This is an extension of earlier results by J. Hunter. The second
part is devoted to ‘ideal’ subsonic phase boundaries, which were shown
by the first author to be associated with linear surface waves. The am-
plitude equation for corresponding weakly nonlinear surface waves is
calculated explicitly and the stability condition is investigated analyt-
ically and numerically.

2000 Mathematics Subject Classification: 35C20; 35L50; 35L67; 35R35;
76T10.
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1 Introduction

This work is concerned with the multi-dimensional theory of — possibly non-
classical — shock waves that are neutrally stable, which means that their
linearized stability analysis yields neutral normal modes. More specifically,



we are interested in cases when these neutral modes are of finite energy, that
is, when these modes are (genuine) surface waves. A program initiated by
Hunter [1] has shown that surface waves are usually associated, in the weakly
nonlinear regime, to amplitude equations that are nonlocal generalizations
of Burgers’ equation. Our main purpose is to apply this program in the
framework of ‘shocks’, including undercompressive ones, with application to
phase boundaries. Indeed, it was shown in [2] that nondissipative, dynamic
and subsonic phase boundaries in van der Waals-like fluids are neutrally
stable, with surface waves (also see [3]). The present paper contains two
main parts. In the first one we derive the amplitude equation associated
with surface waves along neutrally stable shocks in an abstract framework,
and give an alternative version of Hunter’s stability condition that is easy
to check in practice. In the second part we perform the computations in the
explicit case of surface waves along dynamic subsonic phase boundaries. It
turns out, as our numerical results show, that Hunter’s stability condition
is not satisfied by the amplitude equation associated with subsonic phase
boundaries. This is in contrast with what happens in Elasticity for instance,
where the amplitude equation associated with Rayleigh waves is known to
satisfy Hunter’s condition [1, 4, 5].

2 Derivation of the amplitude equation

2.1 General framework

We consider a hyperbolic system of conservation laws

d
> oifiw)=0, , xR t>0, (2.1)
=0

where the unknown is u = *(uy,...,u,): (t,2) € [0,00) xR = u(t, z) € R™,

0y stands for the partial derivative with respect to t and d; denotes the par-
tial derivative with respect to x;, i = 1,...,d. Here, f' = *(f{, ..., fi):u €
U fi(u) € R", i =0,...,d, are given smooth fluxes (at least ¥?) on an
open subset U of R™. We shall denote by A’ := (8ukf})1§j,k§n: uel
A(u) € R™™ the Jacobian matrix of f?, i =0,...,d, and assume that:

e for all u € U, the matrix A%(u) is nonsingular,

e for all u € U and all n € R?\ {04}, the matrix A%(u)~! Z?Zl ni A (u),
has n real eigenvalues \i(u,n) < Aa(u,n) < ... < \y(u,n) and n lin-
early independent corresponding eigenvectors ri(u,n),...,r,(u,n) €
R™, ie.

d
<Z ni A (u) — )\jAo(u)> rj=0, , j=1,...,n.
i=1



We are concerned here with special, shock-like weak solutions to (2.1)
that are €' outside a smooth moving interface. Recall that for a hypersur-
face

5= {(t,m) €[0,00) x R : B(t,z) = o} : (2.2)

where ®: [0,00) x R? — R is a ¢ function, a mapping u : (0,T) x R — R"
that is €’ on either side of X is a weak solution of (2.1), if and only if,

d
Zazfl(u:t) =0, , i@(t¢$) >0,t¢€ (OaT)a
1=0

where u4 is the restriction of u to the domain
0y = {(t,a;) € [0,00) x R : £ d(t,z) > o} ,
and

d
Y [fw]oe=0, , otx)=0, (2.3)
i=0
where the brackets [-] give the ‘strength’ of the jump across the interface.
It is well-known that the Rankine-Hugoniot jump conditions in (2.3)
are not sufficient in general to ensure uniqueness of weak solutions. They
must be supplemented with admissibility conditions. For “classical” shocks,
standard admissibility conditions are given by the Lax inequalities (see for
instance [6]), which require that the number of characteristics outgoing the
shockfront is less than the number of incoming characteristics. More pre-
cisely, for Laxian shocks in a states space of dimension n, the number of
outgoing characteristics is n — 1 and the number of incoming ones is n + 1.
For “nonclassical” shocks, the situation is different, and in particular for
undercompressive ones, the number r of incoming characteristics is less or
equal to n. Then a number p := n + 1 — r of additional jump conditions
is needed. In what follows, we consider undercompressive shocks for which
these additional jump conditions can be written as

d
Y dw]ae=0, , ®tax)=0, (2.4)

=0

where g': u € U +— g'(u) € RP, i = 0,...,d, are smooth (at least ¢?). For
both Laxian and undercompressive shocks, the resulting system is

d
> 0if (u) = 0, , ®tz)#0,
=0 (2.5)

i [JE(U)} 0;® = Opgp , P(t,x)=0,

=0

where



e for classical shocks: p =0, f’(u) = fi(u) € R™;

g'(u)

This work is motivated by nondissipative subsonic phase boundaries in
van der Waals fluids, which can viewed as undercompressive shocks with
p = 1 and (2.4) given by the so-called capillarity criterion [2]. More precisely,
for isothermal phase boundaries, the interior equations are given by the
conservation of mass and of momentum — with a non-monotone pressure law
p +— p(p) — and the additional jump condition is given by the conservation
of total energy (in fact, the free energy plus the kinetic energy).

Our purpose is to describe nontrivial approximate solutions to the fully
nonlinear problem (2.5). The starting point will be a planar stationary
noncharacteristic shock-like solution.

e for undercompressive shocks: p > 1, fz(u) = < fi (u) ) € R"*P,

Assumption 1 There exists u = (u,u,) € R" x R such that

L Uy , Tg < 0 s
u(t,x) = { v 250,
O(t,z) :=xq4,

is a solution of the nonlinear problem (2.5). In addition, we assume that
the matrices A%(u;) and A%(u,) are nonsingular.

2.2 The linearized problem

We are interested in solutions of (2.5) close to the planar stationary solution
u given by Assumption 1. In this respect, we shall concentrate on solutions
(v, ¥) for which the location of the shock front is given by an equation of
the form

U(t,z) = 0, where U(t,z) = xq — x(t,21,...,24-1)

for a smooth map x : (t,21,...,24_1) € [0,00) xR s x(t,21,...,04_1) €
R. Then the system (2.5) applied to (v, V) instead of (u, ®) becomes

d
Zalfz(v) = On ) l‘d#X(taxla"wl‘d—l) 5
i=0
d

-1

Z [fl(v)} Oix = [fd(v)} , xg=x(t,x1,. .., x9-1) ,

=0

(2.6)

where [fi(v)] := fi(v,) — fi(v;) € R"*P, being

v(t, X1, .., T4-1) = lim v(t, o1, ..., xq),
zq,/ X215, Td—1)
vp(t, o1, ... xg_q) = lim v(t, 1, ..., xq).

e\ X (621, Tg—1)

4



As usual for free boundary value problems, we start by making a change
of variables that leads to a problem in a fized domain. Introducing the new
unknowns v : [0,00) x R¥™! x [0, 00) — R”, related to v by

v:l:(y07 Y1, .- 7yd) = U(?JO; <y Yd—1, X(yOJ o 7yd71) + yd) )
and redefining v as
v = (v_,vy): [0,00) x R¥L x [0, 00) — R2",

we are led to the boundary value problem

L(Uv VX) v = 02n s Yd > 0 5 (2 7)
b(v, V) = Opyp , wa=0, ’
with
d—1 ’
L(v, Vx) i= Y _ A'(v)dy, + A%(v, VX)dy,
it - )
b(v, Vx) == Y (9ix) [f%(u)} - [fd(v)} c R
=0
where, for i =0,...,d,
i e Ai(v—) ‘ Onxn g —I, | Opxn
A (U) T < On><n ‘ Ai(7)+) > ’ ]IQn T < Onxn In )
o v ) 9 d-1 o
Al(v) = D9,A%(v) , A(v, V) := Ad(v) — 3 (0;x) Al (v) € R2x2n,
=0

and, for convenience, the brackets [v] now stand for v — v_ for any vector
v=(v_,vy) € R?" (or even C2n).

Using an observation of Métivier [7], we may simplify the boundary con-
ditions in (2.7), at least for solutions close to u, provided that the following
assumption holds true.

Assumption 2 The jump vectors [fO(w)], ..., [f©(w)] are independent in
R™*P,

Under Assumption 2, there exist a neighborhood V C U x U of u and a map
Q:veVr Q) e GLyp(R) (the group of non-singular (n + p) x (n +p)
matrices) such that

n+p—d

d—1
Q)Y & [fi(v)} = ( 0 ¢ ) ER™P forall eR? and all v € V.
=0

Therefore, the boundary value problem (2.7) can be rewritten with “simpler”
boundary conditions:

{L('U,VX)'UZOQn ) yd>07

JVY 4 h(v) = Onyp » ya=0, (28)
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where

J = <O(Id> e RPXd 1 h(y) i= —Q(v) [fd(u)} e R™P

n+p—d)xd

The linearization of the simplified problem (2.8) about its constant so-
lution (v = u, x = 0) readily gives the equations for the perturbations v and
x of v and x respectively,

{ L(ﬂa 0) U = O2p, s Yd > 0, (29)

JVX+H@W) ©=01p , ya=0,

where H(u) € R(P)*2% denotes the Jacobian matrix of h at u.

We shall now make a further assumption regarding the solutions of (2.9)
that go to zero as yg goes to +oco. First of all, we introduce, for n =
(N0s M1, -+ -1 Md—1) € R x R4~ the operator

)

d—1
L(u,in) := A(u,in) + A%w) Oy, » with A(u,in) = Zink AR (u)
k=0

obtained from L(u,0) by Fourier transform in the tangential variable y =
(Y0,Y1,---,Yd—1)- Observe that by the noncharacteristicity of the shock u
(Assumption 1), the (2n x 2n) block-diagonal matrix A%(w) is nonsingular.
In what follows, we also use the notation I/L:(g, in) for vectors n for which
ny = —iT € C, Re(r) > 0, the operator L(u,7,in,- - ,ing—1) arising when
we perform a Laplace transform in yg instead of a Fourier transform. The
hyperbolicity of (2.1) implies, by a classical observation due to Hersh [8],
that for all n = (70,711, ...,m4-1) € C x R¥! with Im(ny) < 0, the matrix

v}

A(u,n) = —A%u) " Ay, in) (2.10)

is hyperbolic, that is, has no purely imaginary spectrum. It is well known
that the well-posedness of the linear problem (2.9) crucially depends on the
properties of the invariant subspaces of A(u,n). The following is a natural
generalization of the Lopatinskii condition to undercompressive shocks [9]
(regarding Laxian shocks, see the seminal work by [10] ).

Assumption 3 For alln = (19,11, ...,n4—1) € Cx R with Im(ng) < 0,
the stable subspace Es(u,n) of A(u,n) is of dimension q :=n +p — 1, and
there is no nontrivial (X,V) € C x Es(u,n) such that

XJn+Hw)V = 0pqyp - (2.11)

Assumption 3 is known to be necessary for the well-posedness of (2.9)
associated with suitable initial data. To investigate the actual well-posedness



of this initial-boundary-value problem we need to go further and consider
the subspace £(u,n) obtained as

(‘:(y’ 77) = bh/n‘l() 85(27 7o + Zbu n,... ,77d—1)

(in the Grassmannian of g-dimensional subspaces of C?>"). As the hyper-
bolicity of the matrix A(u,n) fails in general for real 7, the limiting space
E(u,n) decomposes as

E(u,m) = E-(u,n) © Eo(u,n),

where £_(u,n) is the (genuine) stable subspace of A(u,n), of dimension say
m < q, and &y(u,n) is a subspace of the center subspace of A(u, 7).

Assumption 4 There exists 1 = (09,01,...,M4-1) € R%, n9 # 0, and
(Xy, Vi) € C x E(u,m) such that

{(X,V)eCx&(u,n); Xn+ Hw)V =0} = C{(X,,Vp)},
and the vector V,, belongs to £_(u,n)\{02,}.

Assumption 4 means that (2.5) admits surface waves, that is, solutions
that are exponentially decaying in y; and oscillating in y = (yo, Y1, - - -, Yd—1)-
As observed in [11, Chap. 7], even though surface waves signal a failure of
the so-called uniform Kreiss-Lopatinskii condition, their existence is still
compatible with the well-posedness of constant-coefficients linear homoge-
neous boundary value problems, such as (2.9). For non-linear problems,
the resolution of which relies on non-homogeneous linear problems, surface
waves are responsible for a loss of regularity, see in particular the work of
Coulombel and Secchi [12].

Our purpose here is to adapt the method proposed by Hunter [1] to derive
an amplitude equation for weakly non-linear surface waves associated with
weakly stable shocks — i.e. shocks satisfying in particular Assumption 4.

Finally, we shall assume that frequencies of surface waves do not corre-
spond to ‘glancing points’. This is the purpose of the following.

Assumption 5 For all n as in Assumption 4, the matriz A(u,n) is diago-
nalizable.

In particular, for nondissipative isothermal subsonic phase transitions
considered, our five assumptions are satisfied; see Section 3 for more details.
The existence of surface waves has also been evidenced by Serre [13] in a
general framework, when the evolution equations derive from a variational
principle.

We enter now into more technical details. Assumption 5 and the fact that
A(u,n) has purely imaginary coefficients implies the existence of eigenvalues



ﬂii € C and associated eigenvectors Rii € C™, fori € {1,...,q+} with
- =q=n+p—1, ¢ =n—p+1,

(A(u,n) — BTy ) RE = 0gy,

or equivalently,
(Alu,in) + B A%(w)) B = Oan

with
Re(3F) =0, Bf=-87, Rf =R, ie{l,...,m},
Re(f5) =0, RFcR™, ic{m+1,...,q},
and

C2n — Span{R;7-..aR;,vav"'aR;]:} =& (w,n) ®&u,n) & E+(u,n),

where

Ex(u,n) = Span{R{,...,RL},

(we recall that £_(u,n) is the stable subspace of A(u,n), and similarly,
&+ (u,n) is its unstable subspace), and

Ec(u,m) == Span{R,  ,... ,R;,R;H, .. ,R;L}

is the center subspace of A(u,n).
Let Lii € C?" be such that (in)* A%(u) are left eigenvectors of the matrix
A(u,n), and more precisely,

(LE)* (Alw,in) + 6F A% w)) = 03, .

Above “x” gives the conjugate of the transpose, i.e. A* = {(A). Like the

right eigenvectors, they can be chosen so that L;r =L ,i=1,...,m, and
Lgt eR?™ i=m+1,...,q+. We make the following further assumption.

Assumption 6
(LH) AYw) Ry =0, d,j=1,...,qx, i #],

Observe that Assumption 6 is automatic if all the ,Bii are distinct. We rescale
the eigenvectors so that

(L) Aw) RF =1, j=1,...,qx.

Now, Assumption 4 may be interpreted in terms of the eigenvectors
Ry,...,R; only. We first make some further reductions. Observing that



A(u, kn) = k A(u,n) for any k € R (which is due to scale invariance), we see
that the subspace £(u,n) is positively homogeneous degree 0 in 7. Therefore,
the wave vectors n for which Assumption 4 holds true form a positive cone,
and for all £ > 0

1
Xipy = EX"’ Vim = V.
Thus, without loss of generality, we may assume that 79 = 1. Then we

observe that (2.11) equivalently reads
X = _Hl(ﬂ)v¢ C(@an)v = OQ? (212)

where H'(u) = dh!(u) is the first row of the Jacobian matrix H(u) = dh(u),
and C(u,n) € R?*?" is defined by

—m

Clum) =T Hw), Tw):=| = | lo | eroxten,
—TNd-1
0q—d+1

Hence, by Assumption 4, there exists v € C"™\{0,,} such that

m

> v Clu,nR; =0y,

i=1

the components vy; of v merely being the components of V, in the basis
{Ry,...,R,,} of £_(u,n). Moreover, Assumption 4 means that the ¢ x ¢
matrix [C(u,n)Ry,...,C(u,n)R;] is of rank ¢ — 1, so that there exists o €
C?9\{04} such that

O-*C(g7"7)R; = 07 j 6 {]‘""7Q}' (2'13)

Since the matrix C(u, ) and the vectors R, ;, .

and R = Ri;F for j € {1,...,m}, we also have, by conjugation,

.., Ry have real coefficients,

E*C(g,n)R}' =0,5€{1,...,m},

2.14
o Clu,mR, =0,kc{m+1,...q}. (2.14)

2.3 Weakly nonlinear surface waves

We can now turn to the derivation of an amplitude equation for weakly non-
linear surface waves in (2.5). Following Hunter’s approach [1], we consider
an expansion for v, x, of the form

ve(y) =u+ evi(moyo + 71 - ¥, ya» €y0) + €2va(moyo + 7 - U, ya» €yo) + O(e%)

X°(y) =ex1(novo + 1 - . ey0) + €2x2(nmoyo + 71 - U, eyo) + O(£3)



where 77 and § stand for the (d — 1)-dimensional vectors defined by 7 =
(M. n4—1) and § = (y1,...,Y4—1), and vy 2 is supposed to go to zero as
yq goes to infinity. The above ansatz for v describes a small amplitude wave
that is changing slowly in reference frame moving with the wave.

From now on, we use the notation (&,z,7) = (o - yo + 7 - ¥, ya, €yo) for
the new independent variables. Using Taylor expansions for f* and h,

Al(v®) = A¥(u) + & dA¥(u) - v1 + O(e?),
h(v?) =eH(u) v + € (H(u) - vo + % d?h(u) - (v1,v1)) + O(e?),

and equating to zero the coefficients of € and €2 in (2.8), we find

J??8§X1+H(Q)-v1 = 0n+p , 2=0, .
and
[’(Ha 77) * V2 +M(Q7777”1a8§X1) * U1 - O2n P4 >0 (2 16)
InOex2 + H(u) -va + Gu;v1,0;x1) = Opgp , 2=0, :
where

L(u,n) = Au, n) I + A(u) 0 ,
M(u, m;01,9x1) = AP(w)d, + dA(w,n) - vy -9 + dA%(w) - vy - 8,

v}

- (8§X1) A(ﬂv 77) 82: ) with A(ﬂv 77) = ]VIQ’VLA(Qa 77) )
and )
G(u;v1,0-x1) = (Orx1) €1 + 5 d?h(uw) - (v1,v1) ,

with e; denoting the first vector of the canonical basis in C4*1.
We recall that by definition,

Vi = Z ] Rj_
j=1

and X, = —H'(u) V;, solve (2.11), or equivalently, (2.12). Denoting by P;
and @; the real and imaginary parts, respectively, of v; Rj_, we have

V, = P+i@Q, with P := in, Q = in

j=1 j=1

For convenience, we also introduce the notations ¢; and d; for the real and
imaginary parts, respectively, of 3 (j € {1,...,m}). In what follows, H
stands for the Hilbert transform, such that for any L? function w,

FHw|(k) = —isgn(k) Flw](k), Vk € R,

10



where F denotes the Fourier transform, with the convention

+oo .
Flwl(k) = G(k) = / w(z)e* dg | k€ R.

— 00

Proposition 2.1 The solutions (§,z) — (v1,x1)(&, 2) of (2.15) that are
square integrable in & and such that v1 goes to zero as z — +oo are of the
form

ZQJP "’ (205 + &) Q;

v(§,2) = (wrer)(§,2), 76 2) = + (92 +¢€)?

7j=1

or equivalently,

7 e szf k>0,2>0,
vi(k,z) = w(k) r(k, z), 7(k,z) =

MS MS

yjeﬁ k2 R+ k<0,2>0,

and
+oo
B0 = WO P~ Hl© Q. (O = H'w [ w0,
where w is an arbitrary L? function of zero mean.

Proof. By Fourier transform in the variable £, (2.15) becomes

kA(u,in) v1(k, z) + Ad(g) 0.01(k,z) = 02, 2>0,
(2.17)
ikxi(k) Jn + H(u)vi(k,0) = Optp-

Similarly as in (2.12), we may eliminate X7 from the boundary condition in
(2.17). We thus obtain

xi(k) = Eﬂl( u) 01(k,0),  C(u,n)01(k,0) = 0. (2.18)

Since by Assumption 1 the matrix Ad(g) is nonsingular, the first line in
(2.17) is a genuine ODE on v;, which may equivalently be written as

where A(u, kn) is defined as in (2.10) (note that A is homogeneous degree
one in 7). Then, the vanishing of 01 at z = +o0 implies that for k£ > 0, there
exists W (k) € C such that

Gi(k,0) = W(k) Vy = W(k) > v By
j=1

11



hence, by the solving (2.19),

Gi(k,2) = exp(z Aluskn)) 6i(k,0) = W(k) Y 750" ** R} .
j=1

Observing that (k,z) — 01(—k,z) solves the same problem as (k,z) —
01(k, z), we find that for k < 0, there exists also W (k) € C such that

Alk,2) = Wk) S 3¢5 ¥ RE, 220
j=1
The conclusion follows by inverse Fourier transform, with w = F~1[W].
Details are standard and left to the reader. O

Proposition 2.2 We assume that (v1, x1) is a family of solutions of (2.15)
as in Proposition 2.1, depending smoothly on the parameter T, and that
(2.16) admits a solution (va,X2), square integrable in &, jointly smooth in
(z,7), with vy going to zero as z — +oo. Then W(-,7) = Flw(-,T)| satisfies
a nonlocal equation of the form
+oo
ag(k) 0;w(k, ) + / ar(k—0,0) w(k —6,m)w,7)dl =0, (2.20)

—0o0

where ag and ay are given by (2.24) and (2.25) below.

Proof. By Fourier transform in &, (2.16) becomes

kA(Q, 177)'6\2 + Ad(ﬂ) az@ +mp = 02717 z > 07
(2.21)
ikXzJn + H(u) - 02+ g1 = Opip, 2=0,

where
my = FIM(u,m;v1,0ex1) - v1], g1 := FIG(uw;v1,0-x1)] -

A crucial fact in what follows on will be that m (k, z, 7) decays exponentially
fast to zero as z goes to +o00, as vy itself.

We first eliminate X2 from the boundary condition in (2.21), as we have
made for x7 in (2.17). This yields

) = ¢ (H'@ B(k0.7) + gh(k7))

where g1 denotes the first component of g;, and

C(u,n) v2(k,0,7) + T'(n) g1(k,7) = 0. (2.22)

12



Now, decomposing 05 as

q- 4t
02 (ky 2, T) Zyj (k,z,T)R ZV;(]{,Z,T)R;_,
j=1 j=1

thanks to the normalization of left and right eigenvectors, we see that the
first equation in (2.21) is equivalent to

(3721/;E - kﬁfuf + (L;-t)*ml =0, je{l,...,q+}.

Solving these ODEs, taking into account the signs of Re(ﬂji) and the fact
that my decays exponentially fast to zero as z goes to +o0o, we find that for
02 to decay to zero as z goes to 400, necessarily

+o0o
Vj(kvoaT):/O e By 12 (Ly ) ma(k,z,7) dz
for (k<Oand je€{l,...,qg-})or (k>0and j€{m+1,...,9-}), and
+ oo —kBFz (7 4y*
v; (k,O,T):/O e (L) ma(k, z,7) dz
for (k>0and je{l...qx})or (k<Oand je{m+1...q+}).

Going back to the boundary condition in (2.22) and multiplying it suc-
cessively by o* and o*, we get, thanks to (2.13) and (2.14),

q+

> (o Clu,m) R} v (k,0,7) + o T(n)gr(k,7) = 0,

=1
m q+
Y (@ Clun) Ry) vy (k,0,7) + Y (8" Clu,n) RY) v (k,0,7)
j=1 j=m+1

+3"T(n)gi1(k,7) = 0.
Substituting the integrals found above for v; (k: 0, 7), we obtain for all k # 0,

/0 T L 2 ma (ks 2. 7) dz + o(K)T(man(k.7) = 0. (2.23)

with o(k) := " for k < 0 and o(k) := o* for k > 0,

9+

L(k,z) == > (0°Clu,n) R) e P (L), k>0,
j=1
Lk, ) := = > (@ Clun) R;)e i (L)
7=1
a+
+ 3 (@ Clun RN (L), k<0.
j=m+1
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Finally, the compatibility equation (2.23) may be rewritten explicitely
in terms of the amplitude function w = w(k,7) and of the linear surface
wave function 7 = 7(k, z) (given by Proposition 2.1). Indeed, substituting
w(k, ) 7(k, z) for v1(k,z,7) in the definition of m;, we get
+0o0
ma(k,z,7) = 0,0(k,7) A (w)P(k, z) + [ m(u,n;k—0,0,2) @(k—¢,7)D(¢,7) AL,

—00

2 -m(u,m; k,0,2z) = 1 0dA(u,n) -7k, 2) -7, 2)
+i 0dAY(w) -7k, 2) - FIr'](¢, 2)
+i LH (w)P(k, 0) Alu, ) FIr)(¢, 2),

where we have introduced a new vector-valued function r’, defined by
L0F[)(, 2) o= oy 8:7(0, 2)

or equivalently,

—ilon Y B PR, k>0,2>0,
Flr')(k,2) = T

m
v +
—ilon Y 7B PRI, k< 0,2>0.
=1

To find the last term in the kernel m, we have used the expression of X7
given by (2.18). This expression is also useful to compute

g1k, 1) = %&@(k,T)Hl(g) 7(k,0)e;
—+o0
+ / glw, 75k — 0,0 @k — 0,7) D6, 7) dE,

gl 0) = - Qi) - (7(E,0),7(£,0)

We have thus obtained the nonlocal equation (2.20) for w, with

+o0 i
ap(k) :== /0 L(k,z) A%(w) 7(k, z) dz + z (H'(w)7(k,0)) o(k) T(n) e1,
(2.24)
+oo
ay(k,0) := /0 L(k+4,2)m(u,m; k, 0, 2)dz + o(k+0)T(n) g(u,n; k, £) .

(2.25)
O
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Remark 2.3 Since L(k,z) and 7(k, z) are linear combinations of exponen-

tials e %% % and Bz and, by construction, L(k,z) = L(—k, z), 7(k, z) =

7(—k,z), o(k) = o(—k), we see on (2.24) that ag is of the form

2, k>0,
ao(k) = (2.26)

with ag € C. More explicitly, this number is given by

o*C(u,n) RS

5 5 (L) A% (W) (pR,) +i(wH (wR,) o™ T(n)er, (2.27)
fi P

oy =

where we have used the usual summation convention on the repeated indices,
with j € {1, ... ,q+}, p€ {1, ... ,m}.

Remark 2.4 The kernel ay is obviously not symmetric in (k,¢). However,
it can easily be symmetrized. Indeed, by change of variables { — k — £, the
nonlocal equation (2.20) is equivalent to

+oo
ao(k) 8- @(k, 7) + / al(k — 0,0) Dk — 0,7)B(L,7)dl = 0,

—0o0

with

+oo
a(k,0) = /0 L(k + £, 2)m®(w,m: b, €,2) dz + ok + 0 T(n) glws s b, ),

(2.28)
Adrm®(u,n; k, 0, z) = i(k + £)dA(u,n) - 7(k, 2) - 7, 2)

+ildA(w) - 7(k, 2) - F[r') (€, 2) + ikdAY(w) - 7(£, 2) - F[r'](k, 2)

+il HY (u)7(k,0) A(u, n)F[r'|(¢, 2) + ik H (w)7(¢,0) A(u,n)F[r'](k, 2).
(2.29)
(The first term is indeed symmetric by the symmetry of dA, as a linear
combination of second order differentials d® fi. For the same reason, g being
defined by means of d%h, it is symmetric in (k,f).) In addition, both the
integral and the last term in af(k,{) are positively homogeneous degree zero

in (k,0).

Theorem 2.5 Under the Assumptions 1, 2, 8, 4, 5, 6, we also assume that
the number oo defined in (2.27) is nonzero. Then weakly nonlinear surface
waves for the nonlinear model (2.5) are governed by the nonlocal amplitude
equation

Orw + 0¢Q [w] =0, (2.30)
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where @Q is given by

Qv (&) = (K x (v®v))(£,§) (2.31)

for allv € Z(R) (the Schwartz class), the kernel K being the real tempered
distribution on R?

K :=2nF1(A), (2.32)
with A € L™ (R?) defined as in (2.33).

Proof. With the notations introduced above, we define for k £ 0, £ # 0,
k+ ¢ +#0,

a;i(k,0)
Ak, 0) = - 1 . 2.33
(k. 6) i(k+20)ag(k+Y) (2:33)
Then (2.20) can be rewritten as
+o0
Orw(k,T) + ik Ak -0, 0wk —C,m)w(l,7)dl =0. (2.34)
—00

By inverse Fourier transform this gives (2.30) with, formally,

Qw](§,7) = % / - / o AEHOEN (e, ) (K, 7Y@ (0, 7) Al dk,

’ Q] (€,7) = 20F (A G-, 7) © B, T))(E.€)

where F here denotes the Fourier transform on .#/(R?). Since F~1(0®@w) =
w ® w, we find that

20 F AW, 1) @ W(-, 7)) = K * (w(,7) @ w(-,7)),

with K := 27 F~1(A).

To justify the above computations, we first observe that the kernel A has
some nice properties inherited from the properties of aj and ag. It is indeed
smooth (analytic) outside the lines k = 0, £ = 0, and k + ¢ = 0, symmetric
in (k,1), like af, and positively homogeneous degree zero, like aj and k —
kao(k). In addition, since ag(—k) = ao(k) and ai(—k,—¢) = aj(k,{), we
have A(—k,—¢) = A(k,¢). To summarize, we have for all k£ # 0, £ # 0, and
0 >0,

Ak, 0) = AL, k), A(—k, —0) = Ak, 0), A(Ok,00) = A(k,0).  (2.35)

Using these properties and noting that A(1,6) and A(—1,6) are uniformly
bounded for @ € (0, 1), we easily check that A is bounded on (R\{0})2. Thus
it can be viewed as a tempered distribution, and K is therefore well-defined
by (2.32) as a tempered distribution. Furthermore, the second property in
(2.35) shows that K is a real distribution.
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To conclude, for all v € L?(R),

+o00
ko Ak — £,0)5(k — 0)5(£)de

—00

defines an L*° function by the Cauchy-Schwarz inequality, whose inverse
Fourier transform, Q[v], is a tempered distribution. If moreover v belongs
to the Schwartz class, Q[v] is a function, explicitly given in terms of K by
(2.31). O

In [1], Hunter had pointed out the following stability condition for equa-
tions of the form (2.34) with A satisfying (2.35),

A(1,04) = A(1,0-). (2.36)

He had in particular checked it was satisfied in the case of weakly nonlinear
surfaces waves in Elasticity [1, 4, 5]. More recently, he and co-workers
derived and investigated a stronger condition [14, 15], which ensures that
(2.34) has a Hamiltonian structure (see [16] for a local-in-time existence
under this condition in a periodic setting). It turns out that (2.36) is in fact
exactly what we need to get a priori estimates without loss of derivatives
for (2.34), see [17]. This is the condition we are going to investigate further
in our abstract framework and afterwards in the explicit case of subsonic
phase boundaries.

Proposition 2.6 For A defined as in (2.33) with ag given by (2.26) (2.27),
ap being assumed to be nonzero, and ai given by (2.28) (2.29), the stability
condition (2.36) is equivalent to requiring that a(P) and a(Q) be real, with
a the linear form a : C*™ — C defined by

apa(R) = —ic*Td?h- (R, V) +

4+ m U*QR;F ) od . 1y X
7 p

j:l p:l

where, for simplicity, underlined letters correspond to quantities evaluated
at w and/or n, while, as in Proposition 2.1,

V= ifpr;, P = Re(ivap> Q= Im(i'prp) .
p=1 p=1

p=1
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Proof. By direct computation we find that
4mag A(1,04) = —io*Td?*h - (V,V)

U*QR;_ ok o axd _ P 1 < _
ar e (L) (A =15, dA%) - (pRy) -V =8, (H'V)AORR, ) )
j p
A aOJA(l,O—) = —io*Td*h- (V,V)

O—*QR;_ 4\ % ca— g% d — I «n— 177\ & —
ﬂﬁﬁg@)@mﬂ@M%mﬂ»Vﬂ@wVMM%D,
where for simplicity we have used the convention of summation over re-
peated indices. Observe that (2.36) is equivalent to require that A(1,0+) +
A(1,0—) € R and A(1,04+) — A(1,0—) € iR, or that the sum of the above
equalities divided by 2ag and their difference divided by 2icg must be real.
O

3 Application to van der Waals fluids

In this section we apply the method of the previous section to a concrete
model for fluids exhibiting phase changes, and obtain an explicit form for
the kernel as in Theorem 2.5.

3.1 Introduction

The Euler equations governing the motion in R%, d > 1, of a compressible,
non-viscous, isothermal fluid of van der Waals are

Op+ V- (pv) =0,
{ O(pv) + V- (pr®@v)+Vp=10q4. (3:37)

Above p > 0 denotes the density, v € R? the velocity and p > 0 the pressure
of the fluid obeying the pressure law

RT a

p(V):m—W7

where V' := 1/p is the specific volume, T is the temperature, R is the
perfect gas constant and a, b are positive constants. Below the critical tem-
perature, T, := 8a/(27bR), van der Waals fluids can undergo transitions
between two phases, the liquid phase for 1/p € (0, Vi) and the vapor phase
for 1/p € (V*,0), for the presence of the nonphysical region (V,, V*), called
the spinodal region. The van der Waals law is considered here for concrete-
ness, but our results do not depend on the actual form of this law. They
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basically depend on the existence of three zones, namely the intervals (0, V)
and (V*, 00) where the pressure is decreasing with 1/p and the system (3.37)
is hyperbolic, and the interval (V,, V*) where the pressure is increasing with
1/p and the system (3.37) becomes elliptic. In this situation it is natu-
ral to consider (weak) solutions to (3.37) that avoid the spinodal region.
The simplest weak solutions in this case are piecewise ¢! functions which
satisfy (3.37) outside a moving interface X(t¢), and, at least, the Rankine-
Hugoniot jump conditions across the interface. We are interested here in
dynamic discontinuities, for which there is some mass tranfer across the in-
terface, and especially the subsonic ones, for which the Mach numbers with
respect to the interface are lower than one on both sides. In the terminology
of hyperbolic conservation laws these discontinuities are undercompressive,
the number of outgoing characteristics being equal to that of incoming ones,
and an additional jump condition is thus needed. In the continuation of
[2], we have chosen a simple and explicit additional condition, referred to
as the capillarity criterion merely because it is equivalent to the existence
of travelling capillarity profiles. It can be understood as the conservation
of ‘total energy’, namely the kinetic energy plus the free energy, across the
interface. It amounts to neglecting dissipation due to viscosity, which is
reasonable in some physicals contexts (e.g. for water in extreme conditions
or for superfluids). The well-posedness of the full nonlinear problem in this
situation has been proved by Coulombel and Secchi [12].

3.2 The nonlinear problem and the reference phase bound-
ary

We consider a problem of the form (2.6) with n =d+ 1, p =1, and

(P — i) Ji
w_<J>,f%n_% fwy_(MMm+ﬁJ>’

0 . ) U ry o 2 fZ(U)
f(u) = <|';,|0| n pf(p))’ fi(u) = ((”2-]/)2 + f(p) + @)Ji )

where (e1,...,eg) is the canonical basis of R?,

3= (01s---,q) = pv ER?

is the momentum, and f = f(p) is the free specific energy of the fluid,
characterized by

p(p) =P f'(p). (3.38)
By definition, a solution of (2.6) with x = 0 and u constant on either side of
the hyperplane {z € R?: x4 = 0} is characterized by [f%(u)] = 00, that
is,

Da] =0, [p(p)ed +'ijJ] =04, [(Uilj + flp) + pif)>Jd] =0. (3.39)
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As is very well-known, the first two equations imply that for a dynamical
discontinuity, for which j; # 0, the jump of the tangential velocity must be
zero, that is, [vi] = -+ = [vg—1] = 0. By a change of Galilean frame we
may assume without loss of generality that the tangential velocity of the
left and right reference states is zero. With this simplification, the jump
conditions in (3.39) reduce to

B Bl 12 p(p)]
b = 0., [p<p> n ;] — 0, [25 i) + p} — 0. (3.40)

For later use, it is convenient to introduce the functions

j2

-2

AP A p(p)
Z-(p,J)HJ<2p2+f(p)+p)-

Notice that using these functions the jump conditions in (3.40) equivalently
read

Da =0, [9(p3a)] =0, [2(p,3a)] =0. (3.41)

It is not difficult to show that for a non-monotone pressure law p — p(p),
there exist p;, pr, vy, vy satisfying (3.41) with pjv; = prv, =: 34 > 0, that
is, q(p1,3a) = a(pr,3q) and z(p1,34) = 2(pr,1a), together with q,(pir,3a) # 0,
that is p'(p1r) — vzr # 0; see [2, page 249]. The corresponding reference
states w; = “(p;,0,...,0,v;) and u, = *(p;,0,...,0,v,) are thus connected
by a planar dynamical subsonic phase boundary located at z4 = 0, and
u = (ug,u,), satisfies Assumption 1. From now on, we fix u as above, and
we introduce the notations ¢;, for the sound speeds on each side of the
reference phase boundary:

3.3 Linearization

Proceeding as in Section 2.2, we may reformulate the free boundary problem
(2.5) with our specific fluxes in terms of

pi(y[)a Yty .oy yd) = p(y(]v v 7yd—1)X(y07 v 7yd—1) + Z/d) )

J+Wo, vt -5 ya) == 3Wos - -y Ya—1, X(W0, - -+, Yd—1) T Ya) 5

as
0
- |
L(p:t7J:t7 VX) o4 - 02d+2 y  Yd >0 (342)
J+
b(p+,+, VX) = Og42 , ya=0.
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Linearizing this problem about (p— = p;,J_ = (0,...,0, pv1), p+ = pr, )y =
(0,...,0,prv.),x = 0), we readily get a system of the form (2.9), without
having to invoke Assumption 2 for the reduction of the boundary conditions.
Indeed, for the specifix fluxes we are considering, the linearized version of
the jump conditions in (2.6) turns out to reduce to

,

[Pl X = [ial s

[p]alX = [Uji]7 iE{l,...,d—l},

(3.43)
(=) p + 20]y) =0,
[Lpv? + pf] O = [( = vP)op + (F+ 2 + 30%)id] |
which is obviously of the form
JW)Vx + H(u) - (p,J) = Od+2, (3.44)

with J(u) a matrix depending only on the reference state, as well as H(u),
and

(h,3) =

Regarding the linearized version of the interior equation in (2.6), it is given
by the block-diagonal operator

L_(p,v 0
L(p1,r, 02(a-1), vi,r, 0d) = ( Ogl : Ly (pr,vr) ) 7

the operators L being defined in tangential Fourier variables by

ing in +0,,
La(p,v,m) = ip'(p) "7 (ino £ vy, )la—1 | Og—1 ,
+(p'(p) — v*)0y, ivn ino + 200y,
where 77 := (91, ...,m4—1). The subsonicity of the reference phase boundary

(¢ > wy,) and the additional assumption

m < (cty —vi,) llll® (3.45)

imply that Assumption 5 is satisfied (see [2]). In this case, with the notations
of Section 2.2 we have,

n:d+17p:17Q—ZQ+:d+17m:27
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the eigenvalues Bf being the roots of

(cf —vP)B” + 2imow + 03 — cf|Ill* = 0,
and the eigenvalues ﬁ; being the roots of

(2 = v})B% — 2ingue + 03 — |ill* = 0,

which gives explicitly,

B = clzivlz (g —imowr), By = ﬁ (—oq — inovy)

ar = /(= o)l -

(3.46)
/8;_ = ﬁ (ar + i770”7’) , 52_ = ﬁ (_047" + inovr) s
ar = ¢, /(2 = o)Al —nd .
The other, purely imaginary eigenvalues are
+ . ;M U
By 1vl . Py 1vr ,
of multiplicity d — 1. Right eigenvectors may be chosen as follows
+
sz(fl ) R;:<0dy>,
0d+1 1‘2
—ino + vy ino — v By
r, = iclzﬁ , rf = —ileﬁ ,
&%) aq
—ino — vrBy ino + v By
r, = ic27 , 14 = —ic2n ) (3.47)
-y —ay
+
R?z(r’ ) R;=<Odi1>,
Od+1 T,
0 0
+ _ . - 5.
r, = Mo €i—2 ) r, = No €i—2 )
v - €i—2 Up 1]+ €2
1=3,...,d+1,
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where (&1,...,84_1) is an arbitrary basis of R4~!. For left eigenvectors, we

may take
If Od-+1
Li — 1 ) , Li — ( + ,
! < Oat1 )~ 2 Iy o
ino + 2v 8y —ing — 2u,8;
by _J Ch
—ing + 2’07“/62_ ing — 2717"6;_
ly = i oIy = —i ) (3.48)
—By By
1F _ Od+1
L= i L7 = +
oy ) ().
SR ) —v7 i) &,
I = m0& o L= & o ;
v &y ]+ &y
1=3,...,d+1,
where (&),...,8, ) is another arbitrary basis of R9~1. Recalling that

Ad( ) _ ( _Ad(pl7vl) 0(d+1)><(d+1) >
Oa+1)x(@+1) | A%pr,vr) )7

0 0, | 1

Ad(p,v) = Od—1 vlg—1 | 0g-1 |,

plp)—v? | 05, | 2v
we easily compute
F (L) ANy = o}, (7 &) (- &) + v (8 - &)

for i,k € {1,...,d—1}. So, even though the eigenvalues ﬂgt are non-simple,
it is possible to choose the bases (é1,...,&4-1) and (&,...,&, ;) to have

(LE*AYw)RE =0, 4, ke {3,...,d+1}, i # k.

For instance, we can take

6 =& =1,
and choose ‘dual’ bases (€2,...,8q_1) and (&,,...,&, ;) of ﬁlu. The left and
right eigenvectors above are not normalized to have (LF)*Ad(u)RF = 1.
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Instead, we have

(L) A BT = 26 (ullil® — ino B7) = F2% (viow F inocf)

(L) AU RE = 262 (o[l + im0 B7) = 325 (e £inoc?),

(L3) AW Ry = —v (g + of |all?) lI7]1?,

(LH*AY RS = —ynd,i=4,....d+1,

(L3 )*A%(w)Ry = - (g + o7 [0l1*) 9ll*

(L)) AY )R, = vpmd, i=4,...,d+1.

(3.49)
In addition, we do have
(LE*AYw)RT =0, i, ke {1,...,d +1}.

Lemma 3.1 We assume that, as described above, the states *(p;,0,...,0,v;)
and *(py,0,...,0,v,.) are connected by a planar dynamical subsonic phase

boundary located at x4y = 0. Without loss of generality we assume that the
velocities v; and v, are positive. The associated right eigenvectors are defined
as in (3.47). Then a linear combination of the form

j'b_ d+1

- — § R~ el(not+17-9)
P+ — Y

J+

solves the linearized jump conditions in (3.43) for some
x(t,9) = X et +i9)

such that the frequency no # 0 and the wave vector 1 satisfy (3.45), if and

only if,
g — vyoga, = 0, (3.50)

where oy, are defined as in (3.46), v; =0 fori >3, and
Y1 = —vrap — i C%, Yo = vag — ing 012- (3.51)
Proof. This is part of the main result in [2], in different variables though.

Let us give a sketch of computations. First recall that the Rankine-Hugoniot
conditions (3.41) imply that

o) = werlol. o+ 02| = 0.

where g(p) = f(p) + L/f) (which corresponds to the chemical potential of

the fluid). These jump relations will enable us to eliminate y = X el(mot+19)
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from (3.43). Indeed, subtracting (g + $v%) times the first equation to the
(d + 2)th equation in (3.43), we may replace the latter by

—[plOix = [(&& —v*)vp + v*jg] -

Then, substituting X el(™t+79) for ¥ in (3.43), we can complete the elimi-
nation of x. Since 1y # 0 (and therefore also 77 # 0 by (3.45)), we have

X = ld] eilmot+74)
inop]

and we are left with the following algebraic system for (p,j),
no [v3] -7 — (19711 vror [ig] = 0,
(=) + 20j] = 0,
(2= vHvp + (VP + )iy =0,

with the additional condition that [v] be colinear to 77. The rest of the proof
is a matter of elementary algebra and is left to the reader. O

Remark 3.2 As was observed in [2], the linear surface waves found in
Lemma 3.1 are slow, in that for (ny,1) € R? solution of (3.50) with (3.45)
and (3.46), we have the inequality

mo < v |7l (3.52)
This inequality will be used later on.

Notice that, in terms of the abstract form (3.44) of (3.43) for x =
X(not + 7-7), the method of elimination used in Lemma 3.1 above leads to
the system

(0ex) J(w)n + H(w,m) - (5,3) = Oara,
with
— 1o [p]

- 04
J(u)n = e

0
bal
N 1L [v)]
H(u,n) - (p,)) = o [v]] 77— 1911 e vr 3] ;

[ 2 — p + QUJd]
[(¢? = )vp + (v + vor) jg
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where the brackets stand as usual for “jumps” (e.g. [jz] = (Gg)+—0q)-), and
11, denotes the (d—2) x (d—1) matrix whose rows are '¢; for i = 2,...,d—1.
(Recall that (&g,...,84-1) has been chosen to be a basis of iit.) We have
H(u,1) = E(u,n)H(u,1) and J(u) = E(u,n)J (), with

1 051 0 0

Odfz H”] 0d72 0d72
E(u,n) = —7lPovr oty 0 0
0 054 1 0

vy — (g+30%) 05, 0 1

Denoting by C(u,n) the linear mapping

o [v]] - w I[Ivjl]!2 [Jd]

.. 77_ ni=vrvr|J

(P:J) = [ 2 p + ZZde] d )
[(c® - )UP + (v + voy) jg

(that is, we retain all but the first row in H(u, n)-(p,j)), Lemma 3.1 says that
the matrix made up with the column vectors (C(@, MRy, .., Clu,n Ry, )
is of rank d and

1 C(u,n)Ry + 72 C(u,n)Ry = 0gy1-

By definition (see (2.13)), the vector ¢ = (0_g42,...,0-1,01,02,03)
must be orthogonal (in C¥1 equipped with the standard hermitian product)
to

2 Oa-2 2
— _ | 1l (vr or = imoc)
Cu, )Ry —vjog + i77ocl2
vi(—vraq + inocy)

0g—2
e — | Tl trar + i)
- 2 —UrOQly — 17700,%
—vp (v + inoc%)

nOernéi—Q

— _ | 0 = woell?) v (77 - Gi-2) ..
C(ga’r/)RZ — 2U72‘(7?é172) 5 Z—3,...,d+ ].,

vr (o +v,) (7 - &-2)

or, with the choice of the vectors &¢; made above,

Od—2 nOUanéi72
2 > 112 > 112
_ Mo — ViU ||M) (i _ 0
T
vr (o + o) 192 0
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fori=4,...,d+ 1. Since the (d —2) x (d — 2) matrix (II,éz,...,II,€4-1) is
nonsingular, we easily see that o must be of the form o = (0,...,0,01, 02, 03).
Furthermore, taking for instance

)
02 = —U0y + 110C;
we find that _
.12 . 2 71
o3 —o||” = ar —inoci/vr = ——,
Ur
and
VrQly + 177002 Uy — Vg

o1 = —(v, — ) . =M :
" g + |72 g + [177]12v2

Knowing that o*C(u,n)R; 5 = 0, that C(u,n) has real coefficients and that
RIQ = Ry 5, we readily get

o*Clu,mBf = 20°Re (Clu,mRT) = 201w (w57l — 73 — v,53)
= —2aqp v (v — vy)
o*Clu,mRy = 20" Re (Clu,nRy) = 2a, v, (v |il]* — 72 — vio3)
= 2ingca, (v, —1y).
Finally, since

Og—2

2 ~ 112 ~112
RN TS e A
ClumBs = 202 ||
(v +vn) [

resembles C(u,n) Ry, it is not difficult to evaluate

P“

[0]
2 Il == (wgor[|7]* = n3) -

s + 7l

(Observe that by (3.52), the last factor here above is positive.)
To summarize we have

o Clu,mRy = 71

o*C(u,mRf = —2ap05v; [v],

o*Cu,n)Ry = 2inoct oy [v]

. 3.53
gwwwMW—%[P (3:53)
or 18+ 17202

I

o*Cu,n)R3 = 71|17l

c;”“C(g,17)Rj+ =0,je{4,...,d+1}.
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3.4 Weakly nonlinear surface waves for phase boundaries

We are now going to derive the explicit form of the first and second order
systems associated with our specific free boundary problem (3.42). Since the
boundary condition in (3.42) is not as decoupled as in (2.8), the resulting
second order system will look slightly more complicated than (2.16).

To avoid multiple indices we prefer using here notations with dots instead
of subscripts 1 and 2 for the first order and second orders of the expansion.
Then the first and second order systems associated with (3.42) are of the
form

E(Q777) ' (p7.]) - 02d+2 ) z > 0 )
(3.54)
(0ex) J(w)n + H(uw) - (p,j) = Ogy2 , 2=0,
L(w,n) - (,3) + M(w,m; 0,3, 0:x) - (p,3) = 0442 , 2>0,
(3.55)
with . )
p— p—
A s | I-
(p.d) : R (6,3) A
j—l— j+

The linear terms in (3.54) and (3.55) are of course reminiscent of the lin-
earized problem considered in Section 3.3. The operator £(u,n) is block-
diagonal and defined by

L (pr,v;m) | 0gas1)x(a+1) >
L(u,n) = ,
(wm) < O(at1)x(d+1) | £+(pr vr1)

100¢ 710¢ 40,
Li(p,v,m) = P (p) "0 (100 & v0.)I41 0d—1
£(p'(p) —v*)0s 0N 100 + 200,
In the boundary condition we have
—10 [¢]
J(w)n = _[g I :
=10 [p(g + 39%) = p]
[J}i ]
HW- G = | 2oty 20

(2 = v*)vp + (9+ 50%)id]
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We recall that ¢ denotes the sound speed (c(p)? = p/(p)) and g denotes the

chemical potential (g(p) = f(p) + &pp)) of the fluid.
The other terms in (3.55) are of the form

—(9ex) 0:(N (w, ) (p,3))

where Q(u,n) and P(u) are quadratic mappings and N (u,n) is a linear
mapping, and

G(w,m; 0,3, 07X, 0:X) = (9rX) e — (0ex) N(w,n)(p,3) + P(w)(p.]),

where P(u) is another quadratic map (involving P(u)), N(u,n) is another
linear map (involving N (u, 7)), and

Explicit formulas are

o —Nolps,vm)(p-,3-)
N m)(p.3) = ( No(prs vrs 1) (P sis) ) ’

0P + 17 - ]
No(p,v,n)(p,3) = | mod+p'(p)en |
noa + V1]

Qi) = (G ii-d )y,

Qo(pr, vr, 1) (P,
Qo(p,v,n)(p,3) = ( AURIES

P = ( -3

Prs v'r")(p-‘rv.]-i-)

PO(p>v)(p7.j) é( d U'O)j )
(35"(p) + 2)(9)° + Lialia — 209)

. 0(rs vr)(P++35) — Polpr, vi) (p—,J-)
P(y)(p,_]) o 2( 7T(p7‘7vr)(p+a.]i) _W(Pl,’l)l)(p—,j_) ) ’
)

m(p,0)(p3) = 2R13% + (0)?) + S0 (p) — L2 ()2 4 K32 55,
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- No(pryvrs ) (p+4) = No(pr, v m) (p—15-) )
N u’ , — 2 Ty T) rJ+ ) ) . ‘7 ,
wmipsd) = 2( o
v(p,v,m)(p:3) = mo(g(p) — 3v°) p + (9(p) + 30%) (17-3) + Mo via-
From Lemma 3.1 the resolution of (3.54) is given by the following ana-
logue of Proposition 2.1.

Proposition 3.3 The solutions (§,z) — (p,J,x)(&,2) of (3.54) that are
square integrable in & and such that p, J go to zero as z — 400 are of the
form

(P3)(E:2) = (wrer)(&:2), X(©) = (we5)(6),
/\(k Z): fyleﬁ;szl—_i_,)QeB;sz;’ k>072>0’
) ﬁeﬁrszf—i—%eﬁ;sz;, k<0,2>0),

_W%+%m7k>m
ikno[p]
(k) =
_%QW“Fﬁal k<o,
ikno[p]

where w is an arbitrary L? function.

Now, since the triangular matrix E(u,n) is nonsingular (for n # 0), the
boundary condition in the second order system (3.55) is equivalent to

(3eX) J(w)n + H(w,n) - (5,3) + G(w,m; p,3, 92X, 9eX) = Odya s

with G(u, ; -) = E(u,7)G(u, 1) (and as before J(w) = E(u,n)J (w), H(u,1) =
E(u,n)H (u,n)), or, isolating the first row,

—10[p)(DeX) + [ia] — nolp)(0-X) — 2[nop + 1 -3 (Pex) = 0,
(3.56)

C(u,m) - (p,3) + g(w,m; p,3,0-X, 0eX) = Og41,

where
g(%ﬁ?f%L@Xa 85)() = 6(%77) G(ﬂ7n7 pv.]aaTX?an)

0q—2 I, 042 042
._ —[lalPvw,  mo'p 0O 0
6(@, 77) T O 0271 1 0
vy — (g+30%) 05, 0 1

It turns out that the factor of 0,y in g reduces to

gd72

27,

e(u,n) e(u) = ||77|!Oz (]
0
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Theorem 3.4 Under the Assumptions of Lemma 8.1, weakly nonlinear sur-
face waves for the nonlinear model (3.37) (3.39) are governed by a nonlo-
cal amplitude equation of the form (2.30), where Q is related by (2.31) to
K :=2rFY(A) € ' (R?), in which A is defined as in (2.33) by

2, k>0
as(k E) k ’

Ak, 0) = - L ,ao(k) =
i(k+4£)ap(k+10) W k<o,

with ag and af defined in (3.59) (3.60) (3.61) (3.62) below. This kernel A is
well defined because ag # 0. In addition, it satisfies the reality-symmetry-
homogeneity properties in (2.35), and the stability condition (2.36) is equiv-
alent to requiring that a(Re(viRy + 72R;)) and a(Im(y1 Ry + 7y2R5)) be
real, with the linear form defined by (3.63) below.

Proof. Similarly as in the abstract framework of Section 2.3, using the
reformulation (3.56) of the boundary condition in (3.55), we find that for
(3.55) to have a L? solution, the first order solution (p,j, x) of (3.54) must
satisfy

+oo
/ L(k, 2) ma(k, 2, 7) dz + o(k) gi(k, ™) = 0, (3.57)
0
with
my = f[M(ﬂvna pa.]aaEX) : (P,J)] y g1 i= f[g(ﬂa 777P7J767X785X)} ’

3 * +
Lk,z) ==Y ——J M2y k>0,
2 ke 0
L(k,z) == L(—k,z), k<O,
o(k) :==0", k>0, and o(k) := o(k), k <O0.
(The fact that the sum is limited to 7 < 3 comes from o*C(u, n)R}L = 0 for
j >4, see (3.53).)
Substituting w(k, 7) 7(k, z) for F[(p,j)](k, z,7), and w(k, ) s(k) for F[x](k)

in the definition of m; and g1, we can rewrite (3.57) as

+oo
aop(k) O;w(k, ) + / aj(k—0,0) wk—¢,m)w,7)dl =0,
with
“+o0o
ap(k) = /0 L(k,2z)7(k,z)dz + s(k)o(k)e(u,n)e(u), (3.58)

400
@ik, 0) = /0 Lk + €, 2) m®(u, mi b, €, 2) dz + ok + ) e(w, m) (s k, ),
(3.59)
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Arm®(u,n; k, 0, 2) = i(k+£) Qa(u,n)(7(k, 2),7((, 2)) (3.60)
+ilPy(u)(T(k, 2), Fr'| (¢, 2)) + ik Pa(w) (T, 2), F[r'l(k, z))

—SOUBR) N ) (FI)(6 ) — TR IE3(0) Ay ) (FI) (ks 2))
4”7(@; 77;7?75) = 2P2(Q)(?(k70>7?(£7 0)) (3'61)

—k3(k) N(u, n)(F(L,0)) — 163(6) N(u, n)(F(k,0)).,

where Qa(u,n), P2(u), and Pa(u) denote the symmetric bilinear mappings
associated with the quadratic mappings Q(u,n), P(u), and P(u) respec-
tively, and

il Flr')(4, 2) == 0,74, 2)

(unlike what we did in the abstract framework of Section 2.3 we do not insert
the matrix Iy, here). By direct computation we find that ag(k) = ap/k for
k> 0, and ag(k) = ag/k for k > 0, with

ag = TCwm) RY IRy o"Clun) By 7a(L3)" Ry
' *Ad

(
Bf =60 (L{yAiR © B =0y (L3) AR}
o*Clu,n) Ry n(Ly)" Ry | .
s ’ (L;)fAng +8(1) o"e(w, n)e(u).

(3.62)

(We have used here the observation that (L3 )*R; = 0 and (Lj)*R; =0 for
j=1or j > 3, which is an obvious consequence of the ‘block form’ of these
vectors.) To check whether the number «q is nonzero we recall from (3.46),
(3.49), (3.51), and (3.53) the values of ﬁ]i, Yps (Lj)*Ade and o*C(u,n)
respectively. In particular, we observe that

2au,

2
T

2041

ﬁi‘r_ﬁl_: 2 PR ﬁ;_ﬁ;:

Cr — C

2 )

_rUr

and thus
(LI)ARf = v (85 —B8r), (LI)A'R = —7 (8f — B;).

In addition, going back to the definitions (3.47) and (3.48), we easily com-
pute that
2¢/|77]1*

2 .2
a—uy

(Li) Ry =
which is a positive real number (because ¢ > v?), and similarly,

_ 2cp|all?
2 —v?

(L3)"Ry =
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is a negative real number (because c? > v?2). Therefore, we find that the
first two terms in (3.62) equal to

2] <_V1 vy Y2 ino brc; >
T — — I
Y2 (B =80 (B —6y)?
where 4 e
20[,7‘”””
O = 57— 5
Cir— Vg

Concerning the last term in (3.62) we find the value

i [o]orvy 1]
o (16 + [17l1>v7

i _ .
ol (v2ar + y100) T e o]l =

P ] (|7 + aryo) -

And finally, after computing that
2

211 = J—

— <l - T2
L+)*R = -1 7 and B — (] = ——-,
( 3 1 012—%2 3 1 Ul(le_,UZQ)

we find that the third term in (3.62) equals to

’2 c12 ||77||2 Uy (UZUT||77||2 — 77(%)

- [U]2 Im
Up K [y

with g, == n2+|1]|*0?,. (It can easily be checked that each of these terms

has the dimension of ¢®3?, or equivalently 2%¢~% in the physical space-time

variables.) Observing that, thanks to the dispersion relation (3.50),
o2 = — 115 (wuic; + avpef) € (—o00,0),
we readily find that

Re(ap) = — [v]an 778 (aquic? + arvrc%) <|A/1|2

20rc? UlerﬁHz)
(/6;_65)2 HTU%

‘2 Cl2 Hﬁ”2 v (vyor[77]12—n3)

B [v]2 ‘71 Ur iy Ko ’

« 2 Ov vy |72
Since [v], ayr, 01, and i, are all positive real numbers, we see that Im(ay)
is nonzero (it is of the same sign as [v]). Concerning Re(ayp), it is always
nonzero for [v] > 0, which corresponds to an expansive phase transition
(typically, vaporization), and it is also nonzero for —[v] > 0 and not too big.
To evaluate

—+00

ai(1,0%) = Jim L(14-€,z) m®(u,n; 1,4, z) dz + 0™ e(u, ) v(u,1; 1,0%),
- 0

33



we go back to the definitions (3.60) (3.61) of m® and +, and also to the
definition of s (see Proposition 3.3). We thus see that

+oo *CRJr
lim L1+/4,2)ym®(u,n; 1,4,z dz:—
dig [ L0+ m 1 =
(L+)* < Y20 + Y10y
1 (VR ) + Po(V, 78, R +i—————=N(ws6, R, > )
ﬁ+ ,Bp 2( FYP ) 2( 7]7 §4 ) 770[10] (’YP y4 p)
i [ L+ 62 w1, 2) d oCR;
im +0,z2)m®(u,n;1,0,2)dz = ————x
=0- Jo ! 4r (L) AIRT
(L+)* < Y20 + 1oy
19s(V, +Po(V, B, R,) +i————N 5_3_),
ﬁ+ ﬁp 2( 7p ) 2( pMp p) 770[10] (p D p)

with, as before,
V=mR] +71R;,

and
o (w7 1,04) = Py(V, V) + A TNy
— no(p]
2my(u,m;1,0-) = Py(V, V) + Lo TN Ny o 2O T Gy
- 2n0[p] 2n0[p]

We may observe that yec, + v10q = SV, where S = (—=Sp, Sp) with Sy =
(0,0%_41,—1). Therefore, Hunter’s stability condition (2.36) for phase bound-
aries is equivalent to a(Re(V)) and a(Im(V')) being real, with

*CRJr
;pz_: 200(L]) *AdR+ (3.63)
L+ *
ﬂi )ﬂ (@18, PR Ry 1, 2 Ny )
P SV SR
T 7BV + g G M) g LNV,

O

The condition (3.63) can be tested numerically. We present on Figure
3.4 numerical results in a realistic situation, which show that (3.63) is not
satisfied. This might explain why surface waves are hardly ever observed in
liquid-vapor flows.
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Figure 1: Ratio Im(a(Re(V)))/Re(a(Re(V))) in terms of the mass transfer
flux j for phase transitions in water at 7" = 600K (thermodynamic coeffi-
cients taken from [18]).
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