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Abstract. Visibly pushdown automata (VPAs) express properties on
structures with a nesting relation such as program traces with nested
method calls. In the context of runtime verification, we are interested
in the following problem: given u, the beginning of a program trace,
and A, a VPA expressing a property to be checked on this trace, can
we ensure that any extension uv of u will be accepted by A? We call
this property right-universality w.r.t. u. We propose an online algorithm
detecting at the earliest position of the trace, whether this trace is ac-
cepted by A. The decision problem associated with right-universality is
ExpTime-complete. Our algorithm uses antichains and other optimiza-
tions, in order to avoid the exponential blow-up in most cases. This is
confirmed by promising experiments conducted on a prototype imple-
mentation.

1 Introduction

Program traces describe the control flows of program executions, including sub-
routine calls and returns. Some properties of program traces are specific to the
nesting structure of calls and returns, as for instance reentrant locks [BYBC10].
These properties are not captured by regular languages, but can be expressed
by visibly pushdown languages [AM09]. These latter languages rely on a parti-
tioning of the input alphabet into internal letters, call letters, and return letters,
which naturally fits to program traces. A language over such a partitioned al-
phabet is visibly pushdown if there exists a visibly pushdown automaton (VPA)
recognizing it. VPAs are pushdown automata, where operations on the stack are
driven by the letter type: call letters can only push, return letters can only pop,
while internal letters do not have access to the stack.

Runtime verification amounts to check a property during a program exe-
cution. In this paper we are interested in finding the earliest point during the
execution where the property can be asserted, for properties defined by VPAs.
More formally, given a word u over a partitioned alphabet and a VPA A, we
say that A is right-universal w.r.t. u if, for every possible continuation v of u,
the word uv is accepted by A. Hence, if u is a prefix of the trace w and A is
known to be right-universal w.r.t. u, then it can be asserted that w verifies the
property described by A, without reading w entirely. Our aim is to check right-
universality incrementally after each incoming event of the trace w, as described



Algorithm 1 Checking right-universality incrementally

function Incremental-right-universality(A)
u← ǫ
while trace w is not completely read do

a← next letter of w
u← ua
if A is right-universal w.r.t. u then

return True
end if

end while

return False
end function

in Algorithm 1. By incremental, we mean that some information is propagated
from one event (reading a letter in w) to the next one (reading the next letter in
w), avoiding repeated identical computations. Note that our algorithm will not
store u, but enough information for asserting right-universality of A w.r.t. u.

For safety properties, right-universality allows to know at the earliest time
point, whether the execution is sure, and thus whether controls can be stopped.
This is typically the case for properties looking for a pattern (potentially com-
plicated) that must occur during the execution. For properties to be avoided,
this permits to stop the program before it enters an unsafe configuration, hence
avoiding potential attacks [BJLW08].

These questions started to be addressed in the context of XML through earli-
est query answering of XPath expressions [BYFJ05,GNT09]. Indeed, XML docu-
ments also entail a nesting structure, similarly to program traces, and properties
(or queries) over these documents can be expressed using VPAs. An algorithm
asserting at the earliest time point, whether an XML document is accepted by
a deterministic VPA has been proposed in [GNT09]. This algorithm runs in
polynomial time at each incoming event. For non-deterministic VPAs, however,
the decision problem associated with right-universality (i.e. given A and u, is A
right-universal w.r.t. u?) is known to be ExpTime-complete [GNT09].

Algorithms that incrementally check right-universality of non-deterministic
VPAs are challenging in several aspects. First, VPAs are usually an intermediate
object, resulting from the translation of a property expressed in some logics, like
XPath for XML documents. Such translations rely on non-determinism, as for in-
stance when referring to any call inside a given procedure call (which corresponds
to the descendant axis in XPath). Any VPA can be determinized, but the proce-
dure yields VPAs of exponential size [AM09]. Second, right-universality w.r.t. u
can be considered as a variant of universality, parameterized by u. Recent tech-
niques have been proposed to check universality of non-deterministic VPAs effi-
ciently [TO12,FKL13,BDG13]. Among them, antichains have been successfully
applied to decision problems related to non-deterministic automata: universal-
ity and inclusion for finite word automata [DDHR06], and for non-deterministic
bottom-up tree automata [BHH+08]. Whether these techniques also apply to in-
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crementally check right-universality is an interesting issue. Third, the algorithm
proposed in the deterministic case [GNT09] does not directly generalize to the
non-deterministic case.

Our contributions are the following. We propose an efficient incremental algo-
rithm checking right-universality of a non-deterministic VPA A. This algorithm
relies on the progressive computation of safe sets of configurations, the configu-
ration of a VPA being a state together with a stack content. It avoids to enterily
determinize the given VPA. This algorithm uses antichains in order to get a
compact representation of safe sets of configurations. We also propose efficient
operators and data structures for saving useless computation. We report on some
experiments, performed on randomly generated VPAs, and also on VPAs result-
ing from a translation from XPath expressions. These results exhibit the benefits
of our optimizations.

Verification of traces with a nesting structure has already been addressed,
through different aspects. Let us mention some of them. In [AEM04], the logic
CaRet over words with a nesting structure is introduced, and a model check-
ing algorithm is proposed. An extension is presented in [RCB08], with a cor-
responding monitor synthesis algorithm. VPAs are also sometimes used as an
intermediate model to express properties on program traces [CA07,FJJ+12].

The paper is structured as follows. In Section 2 we introduce VPAs and right-
universality. Safe sets of configurations are defined in Section 3. Our antichain-
based algorithm is described in Section 4, and further optimizations in Section 5.
Experiments are reported in Section 6. Proofs are provided in Appendix.

2 Visibly Pushdown Automata and Right-Universality

Visibly pushdown automata (VPAs) are pushdown automata working on a par-
titioned alphabet where only call symbols can push, return symbols can pop, and
internal symbols can fire transitions without considering the stack [AM04,AM09].

In this paper, we consider trees, instead of words with a nesting structure
(i.e. their linearization). Such a mapping is illustrated in Figure 1. Each call and
its matching return are mapped to a node, and the calls and returns directly
nested under this call correspond to the children of this node. These trees are
unranked, as the number of children of a node is not determined by its label. We
use VPAs as unranked tree acceptors, operating on their linearization [GNR08].
In particular these VPAs do not use internal symbols.

2.1 Unranked Trees

We here recall the standard definition of unranked trees, as provided for instance
in [CDG+07]. Let Σ be a finite alphabet, and Σ∗ (resp. Σ+) be the set of all
words (resp. non empty words) over Σ. The empty word is denoted by ǫ. Given
two words v, w ∈ Σ∗ over Σ, v is a prefix (resp. proper prefix ) of w if there exists
a word v′ ∈ Σ∗ (resp. v′ ∈ Σ+) such that vv′ = w.
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Fig. 1: Representation of a program trace as a tree t.

An unranked tree t over Σ is a tree such that its nodes are labeled by a letter
of Σ and have an arbitrary number of children (the children are ordered from
left to right). We call a-node a node with label a ∈ Σ. The set of all unranked
trees over Σ is denoted by TΣ. A hedge h over Σ is a finite sequence (empty or
not) of unranked trees over Σ. The empty hedge is denoted by ǫ, and the set of
all hedges over Σ is denoted by HΣ .

Trees can be described by well-balanced words which correspond to a depth-
first traversal of the tree. An opening tag is used to notice the arrival on a node
and a closing tag to notice the departure from a node. For each a ∈ Σ, let a
itself represent the opening tag and a the related closing tag. The linearization
[t] of t ∈ TΣ is the well-balanced word over Σ ∪ Σ, with Σ = {a | a ∈ Σ},
inductively defined by: [t] = a [t1] · · · [tn] a, with a is the label of the root and
t1, . . . , tn are its n subtrees (from left to right). The linearization is extended to
hedges as follows. Let h = t1 · · · tn be the sequence of trees ti, 1 ≤ i ≤ n. Then
[h] = [t1] · · · [tn]. We denote by [TΣ ] (resp. [HΣ ]) the set of linearizations of all
trees in TΣ (resp. hedges in HΣ). Consider for instance the tree t in Figure 1:
its linearization is the word [t] = ggggffgg. Let Pref (TΣ) denote the set of all
prefixes of [TΣ ]: Pref (TΣ) = {u ∈ (Σ ∪Σ)∗ | ∃v ∈ (Σ ∪Σ)∗, uv ∈ [TΣ ]}.

2.2 Visibly Pushdown Automata

Definition 1. A visibly pushdown automaton A over a finite alphabet Σ is a
tuple A = (Q,Σ, Γ,Qi, Qf , ∆) where Q is a finite set of states containing initial
states Qi ⊆ Q and final states Qf ⊆ Q, a finite set Γ of stack symbols, and a

finite set ∆ of rules. Each rule in ∆ is of the form q
a:γ
−−→ q′ with a ∈ Σ ∪ Σ,

q, q′ ∈ Q, and γ ∈ Γ .

The left-hand side of a rule q
a:γ
−−→ p ∈ ∆ is (q, a) if a ∈ Σ, and (q, a, γ) if

a ∈ Σ. A VPA is deterministic if it has at most one initial state, and it does not
have two distinct rules with the same left-hand side. We provide an example of
deterministic VPA in Figure 2a.

A configuration of a VPA A is a pair (q, σ) where q ∈ Q is a state and
σ ∈ Γ ∗ a stack content. A configuration is initial (resp. final) if q ∈ Qi (resp.

q ∈ Qf) and σ = ǫ. For a ∈ Σ ∪ Σ, we write (q, σ)
a
−→ (q′, σ′) if there is a

transition q
a:γ
−−→ q′ in ∆ verifying σ′ = γ · σ if a ∈ Σ, and σ = γ · σ′ if a ∈ Σ.

We extend this notation to words u = a1 · · ·an, by writing (q0, σ0)
u
−→ (qn, σn)
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(a) VPA A over alphabet Σ = {f, g}.
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(b) Run of A on [t]

Fig. 2: An automaton and one of its runs.

whenever there exist configurations (qi, σi) such that (qi−1, σi−1)
ai−→ (qi, σi) for

all 1 ≤ i ≤ n.
A run of a VPA A on a linearization [t] = a1 · · ·an of t ∈ TΣ is a sequence

(q0, σ0) · · · (qn, σn) of configurations such that (q0, σ0) is initial, and for every

1 ≤ i ≤ n, (qi−1, σi−1)
ai−→ (qi, σi). Such a run is accepting if (qn, σn) is final.

A tree t is accepted by A if there is an accepting run on its linearization [t].
The set of accepted trees is called the language of A and is written L(A).3 For
instance, given a tree t, the VPA of Figure 2a checks whether t has a g-node
with an f -child. An accepting run on [t] for the tree t of Figure 1, is depicted in
Figure 2b.

2.3 Universality and Right-Universality

We conclude the section of preliminaries with the notions of universality4 and
right-universality, that we will study in the remainder of the paper.

Definition 2. A VPA A over Σ is said universal if A accepts all trees t ∈ TΣ,
i.e. L(A) = TΣ. Let u ∈ Pref (TΣ) \ {ǫ} be a non empty prefix of [t0] for some
tree t0 ∈ TΣ. The VPA A is said right-universal w.r.t. u if for all trees t ∈ TΣ,
if u is a prefix of [t], then t is accepted by A.

In other words, right-universality w.r.t. u allows to assert that any tree lin-
earization beginning with u is accepted by the automaton. In this definition,
notice that when u = [t0], then A is right-universal w.r.t. u iff t0 is accepted by
A. Moreover, as a universal VPA is right-universal w.r.t. all non empty words
u ∈ Pref (TΣ), we assume in the sequel that VPAs are not universal.

In this article, our objective is to propose an incremental algorithm for right-
universality of a VPA A, in the sense described in the introduction (see Algo-
rithm 1). More precisely, the linearization [t0] of a given tree t0 is read letter

3 VPAs considered in this article are tree acceptors, with acceptance on empty stack.
4 This notion of universality is different from the one proposed for usual VPAs, where
a VPA is universal if it accepts all words of (Σ ∪Σ)∗ (and not only linearizations of
trees).
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by letter5, and while A is not right-universal w.r.t. the current read prefix u of
[t0], the next letter of [t0] is read. When processing a new letter, we try to reuse
prior computations as much as possible. In the sequel t0 always refers to this
particular tree.

We recall that the right-universality problem is ExpTime-complete for VPAs,
but in PTime for deterministic VPAs [GNT09]. A dual problem to right-univer-
sality w.r.t. u is to ask whether every word starting with u is rejected by a
given VPA. This problem is in PTime, even when the VPA is not deterministic.
Indeed, this amounts to check whether no configuration reached after reading u
can reach a final configuration.

2.4 Towards an Algorithm

In this section we consider several approaches for addressing right-universality of
VPAs, and justify our choice of considering safe sets of configurations. Readers
not familiar with the related litterature can skip this section at first reading.
As explained in the introduction, we discard the naive approach consisting in
determinizing the VPA and then applying the algorithm in [GNT09], in order
to avoid state-space explosion.

The algorithm given in [GNT09] for deterministic VPAs is a progressive com-
putation of safe states, with the property that the VPA is right-universal w.r.t.
u iff the state reached after reading u is safe. Note that safe states cannot be
determined statically: a state can be safe at some position of the word, but not
at another one. A first idea for the non-deterministic case is a subset construc-
tion, using sets of safe states instead of safe states, but this direct adaptation is
not correct. Hence, safe sets of configurations will be the basis of our algorithm,
instead of safe states. This point raises new questions, as the configuration space
is infinite, unlike the state space. In fact we will see that at each event, safe sets
of configurations have the same stack height as the depth of the word u leading
to this event, and are thus of finite (but potentially huge) cardinality at each
time point.

Recently, several authors have proposed efficient algorithms to check uni-
versality of VPAs [TO12,FKL13,BDG13]. The method that we give in [BDG13]
computes in an incremental way the set R of accessibility relations for all hedges
(i.e. {relh | h ∈ HΣ} in the present paper, also called summaries in [AM04]).
It uses antichains to get smaller objects to manipulate (in particular to limit
R to a strict smaller subset) and to avoid an explicit determinization step. It
can be easily adapted for checking right-universality of VPAs [BDG12, Section
3.4]. However we face the problem of computing the whole set R (instead of a
strict subset): experiments indicate that this step is too much time consuming
[BDG13]. For this reason we do not follow this approach, but use antichains over
safe sets of configurations rather than accessibility relations. This approach is
developed in the next section.

5 [t0] is the trace w of Algorithm 1.
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3 Safe Sets of Configurations

In this section, [t0] is a fixed tree whose linearization is read letter by letter,
and u denotes the current read prefix. We introduce the new notion of safe set
of configurations related to u. We show how safe sets of configurations can be
defined from such sets associated to smaller prefixes u′ of [t0]. This property will
be useful to derive an incremental algorithm for checking right-universality of
a VPA.

3.1 A Notion of Safety for Right-Universality

Definition 3. Let A be a VPA and C ⊆ Q × Γ ∗ be a non empty set of config-
urations. Let u ∈ Pref (TΣ) \ {ǫ} be a non empty prefix of t0.

– C is safe for u if for every v such that uv ∈ [TΣ ], there exist (q, σ) ∈ C and

p ∈ Qf such that (q, σ)
v
−→ (p, ǫ) in A.

– C is leaf-safe for u if for every v = av′ with a ∈ Σ such that uv ∈ [TΣ], there

exist (q, σ) ∈ C and p ∈ Qf such that (q, σ)
v
−→ (p, ǫ) in A.6

Let Safe(u) = {C | C is safe for u} and LSafe(u) = {C | C is leaf-safe for u}.

Intuitively, as stated in Theorem 1 below, if C is the set of configurations
reached in A after reading u, then A is right-universal w.r.t. u iff C is safe for u.
Indeed, for every possible v, one can find in C at least one configuration leading
to an accepting configuration after reading v. Before stating this theorem, let
us give the next definition. Let Reach(u) denote the set of configurations (q, σ)

such that (q0, σ0)
u
−→ (q, σ) for some initial configuration (q0, σ0) of A.

Theorem 1. A is right-universal w.r.t. u iff Reach(u) ∈ Safe(u).

Let us illustrate this on the VPA A depicted in Figure 2a. Recall that this
VPA checks that the tree has a g-node with an f -child. After opening a g-root,
the set of safe configurations is Safe(g) = {{(q2, γ1)}, {(q2, γ0)}}, which does
not contain the set of reached configurations, as Reach(g) = {(q1, γ0)}. Indeed,
A is not right-universal w.r.t. g, as no f -node has been encountered yet un-
der a g-node. For the word gf , as expected, the situation differs: Safe(gf) =
{{(q2, γ1γ0)}, {(q2, γ0γ0)}}, and Reach(gf) = {(q2, γ0γ0)} is a safe set of config-
urations. By Theorem 1, A is right-universal w.r.t. gf .

Hence, an algorithm computing both Reach(u) and Safe(u) can decide right-
universality w.r.t. u. The set Reach(u) is easy to compute, just by firing tran-
sitions of the VPA. In Sections 3.2-3.4, we detail how the set Safe(u) can be
defined from the set Safe(u′) with u′ a proper prefix of u. In this way, while
reading the linearization [t0] of a given tree t0, the set Safe(u) with u 6= ǫ prefix
of [t0], can be incrementally defined. In Section 4, we turn this approach into an
algorithm.

6 The name “leaf-safe” comes from the fact that we only consider suffixes starting
with a Σ symbol, and thus continuations of the tree that do not add children to the
current node.
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3.2 Starting Point

We begin with Safe(a) with a ∈ Σ, for which we recall the definition.

Safe(a) = {C ⊆ Q×Γ ∗ | ∀h∈HΣ , ∃qf∈Qf , ∃(q, σ)∈C : (q, σ)
ha
−→ (qf , ǫ)} (1)

3.3 Reading a Letter a ∈ Σ

Suppose that we are reading an a ∈ Σ and we have to compute Safe(ua). Two
cases occur : either ua 6= [t0], or ua = [t0]. Let us study these two cases and
show how to manage them from an algorithmic point of view.

If ua 6= [t0], we can retrieve safe sets configurations from prior computed
such sets: Safe(ua) = Safe(u′) where u′ 6= ǫ is the unique prefix of u such
that u = u′a[h], with h ∈ HΣ . Indeed as shown by Lemma 1 below, we have
Safe(u′a[h]a) = Safe(u′). Hence, from an algorithmic point of view, we just have
to use a stack S to store these safe sets of configurations. When opening a, we
put Safe(u′) on the stack, and when closing a, we pop it. As h is a hedge, the
stack before reading a is exactly the stack after reading a.

Lemma 1. If h ∈ HΣ, then Safe(u[h]) = Safe(u) and LSafe(u[h]) = LSafe(u).

If ua = [t0], the previous argument is no longer correct since u′ = ǫ and
Safe(u′) is not defined for the empty word. Nevertheless, by definition Safe(ua) =
{C ⊆ Q× Γ ∗ | ∃(q, ǫ) ∈ C with q ∈ Qf}. Therefore we can again use stack S as
described before if it is initialized with the set

Init = {C ⊆ Q × Γ ∗ | ∃(q, ǫ) ∈ C with q ∈ Qf }. (2)

3.4 Reading a Letter a ∈ Σ

Let us now consider the much more involved case of sets Safe(ua) with a ∈ Σ.
When reading an a ∈ Σ, two successive steps are performed, with leaf-safe sets
of configurations as intermediate object:

Safe(u)
Step 1
−−−−→ LSafe(ua)

Step 2
−−−−→ Safe(ua)

For this purpose, we introduce the notion of predecessor. Let C ,C ′ be two
sets of configurations, let a ∈ Σ and h ∈ HΣ .

– C is an a-predecessor of C ′ if ∀(q′, σ′) ∈ C ′, ∃(q, σ) ∈ C , (q, σ)
a
−→ (q′, σ′).

– C is a h-predecessor of C ′ if ∀(q′, σ′) ∈ C ′, ∃(q, σ) ∈ C , (q, σ)
[h]
−−→ (q′, σ′).

Let Preda(C
′) = {C | C is an a-predecessor of C ′} and Predh(C

′) = {C |
C is a h-predecessor of C ′}.

The next proposition can be used to perform Step 1 and Step 2. It states
that safe sets of configurations are only among predecessors of prior safe sets of
configurations.

8



Proposition 1. Let ua ∈ Pref (TΣ).

C ∈ LSafe(ua) ⇐⇒ ∃C
′ ∈ Safe(u), C ∈ Preda(C

′) (3)

C ∈ Safe(ua) ⇐⇒ ∀h ∈ HΣ, ∃C
′ ∈ LSafe(ua), C ∈ Predh(C

′) (4)

However, to get an algorithm, we face the problem that the number of hedges
to consider in Equivalence (4) is infinite. We use relations to overcome this.
Also the size of Safe(u) may be huge and not all configurations of Safe(u) are
crucial for checking right-universality w.r.t. u. We use antichains to get a compact
representation of Safe(u). These two concepts are explained in the following
section.

4 An Antichain-Based Algorithm for Right-Universality

In this section, we give an antichain-based algorithm for incrementally checking
right-universality of a VPA, that uses the approach given in Sections 3.2-3.4.

Let us summarize this approach. Let [t0] be the linearization of a given tree
t0. We initialize a stack S with set Init defined in (2) and we start by computing
Safe(u) with u being the first letter of [t0] (see (1)). Suppose that Safe(u) has
been computed from the current read prefix u of [t0]. Then, if the next letter
read in [t0] is a ∈ Σ, we compute Safe(ua) from Safe(u) by Steps 1 and 2, and we
put Safe(u) on the stack S. If the next letter read in [t0] is a ∈ Σ, then we pop
the stack S. The element that has been popped is the set Safe(u′) = Safe(ua)
where u′ is the unique prefix of u such that u = u′a[h] (except if ua = t0 in
which case the popped set is equal to Init = Safe(ua)), see Section 3.3. At each
computation of Safe(u), we check whether Reach(u) ∈ Safe(u) (see Theorem 1).

4.1 Finite Number of Hedges

We begin by showing that only a finite number of hedges has to be considered
in Equivalence (4). The reason is that a hedge h does not change the stack of

a configuration during a run of a VPA, that is (q, σ)
[h]
−−→ (q′, σ). So h can be

considered as a function mapping each state q to the set of states obtained when
traversing h from q. Formally, for every h ∈ HΣ , relh is the function from Q

to 2Q such that q′ ∈ relh(q) iff (q, σ)
[h]
−−→ (q′, σ) for some σ ∈ Γ ∗. The number

of such functions is finite, and bounded by |Q| · 2|Q|. These functions naturally
define an equivalence relation of finite index over HΣ :

h ∼ h′ ⇐⇒ relh = relh′ .

Let us note H for a subset containing one hedge per ∼-class. We have |H | ≤
|Q| · 2|Q|. The next lemma indicates that the computation of h-predecessors can
be limited to h ∈ H .

Lemma 2. For every h ∈ HΣ, C is a h-predecessor of C ′ iff there exists h′ ∈ H
with h ∼ h′, such that C is a h′-predecessor of C ′.

The set H can be computed by a saturation method based on the VPA rules,
as described by Algorithm 3 in Appendix B.2.

9



4.2 Antichains

Let us now introduce antichains. Consider the set 2Q×Γ∗

of all sets of configura-
tions, with the ⊆ operator. An antichain is a set of pairwise incomparable sets
of configurations with respect to ⊆. Given a set α of sets of configurations, we
denote by ⌊α⌋ the ⊆-minimal elements of α. The set α is ⊆-upward closed if for
all C ∈ α and C ⊆ C ′, we have C ′ ∈ α. From their definition, it is immediate
that Safe(u), LSafe(u), Preda(C ) and Predh(C ) are ⊆-upward closed sets.

The idea is to compute the antichain ⌊Safe(u)⌋ (resp. ⌊LSafe(u)⌋) instead of
the whole ⊆-upward closed set Safe(u) (resp. LSafe(u)). The next corollary of
Theorem 1 indicates that such a limited computation is enough to check whether
a VPA A is right-universal w.r.t. u.

Corollary 1. A is right-universal w.r.t. u iff there exists C∈⌊Safe(u)⌋ such that
C⊆Reach(u).

Moreover, we show in Appendix B.3 that the antichains ⌊Safe(u)⌋ and ⌊LSafe(u)⌋
are finite and only contain finite sets C of configurations such that C ⊆ Q×Γ k

for some k. We now try to use these antichains at the starting point, and in
Steps 1 and 2 of our approach.

4.3 Starting Point with Antichains

Let us explain how to compute Safe(a). Clearly, by definition of H and using
(1) (see Section 3.2), we can compute ⌊Safe(a)⌋ as follows:

⌊Safe(a)⌋ =
⌊{

C | ∀h ∈ H, ∃qf ∈ Qf , ∃(q, σ) ∈ C : (q, σ)
ha
−→ (qf , ǫ)

}⌋

. (5)

4.4 Step 1 with Antichains: from ⌊Safe(u)⌋ to ⌊LSafe(ua)⌋

For the two steps, the goal is to adapt Proposition 1 so that it uses ⌊Safe(.)⌋
instead of Safe(.), and ⌊LSafe(.)⌋ instead of LSafe(.). We begin with Step 1.
Implication (⇒) of Equivalence (3) can be directly adapted.

C ∈ ⌊LSafe(ua)⌋ =⇒ ∃C
′ ∈ ⌊Safe(u)⌋ , C ∈ Preda(C

′). (6)

Implication (6) gives us a way to compute ⌊LSafe(ua)⌋ from ⌊Safe(u)⌋: it
suffices to take all a-predecessors of elements of ⌊Safe(u)⌋ and then limit to
those predecessors that are ⊆-minimal. We can even only consider minimal a-
predecessors of ⌊Safe(u)⌋ in the following sense: C is a minimal a-predecessor of
C

′ if for all C
′′ a-predecessor of C

′, C
′′ ⊆ C =⇒ C

′′ = C . We finally obtain:

⌊LSafe(ua)⌋ = ⌊{C | C is a minimal a-predecessor of C
′ ∈ ⌊Safe(u)⌋}⌋ . (7)
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4.5 Step 2 with Antichains: from ⌊LSafe(ua)⌋ to ⌊Safe(ua)⌋

The second step for computing ⌊Safe(ua)⌋ from ⌊Safe(u)⌋ relies on the intro-
duction of antichains in Equivalence (4). Implication (⇒) holds with antichains:

C ∈ ⌊Safe(ua)⌋ =⇒ ∀h ∈ HΣ , ∃C
′ ∈ ⌊LSafe(ua)⌋ , C ∈ Predh(C

′). (8)

Similarly to Implication (6), we can restrict h-predecessors to only consider
minimal ones: C is a minimal h-predecessor of C ′ if for all C ′′ h-predecessor
of C ′, C ′′ ⊆ C =⇒ C ′′ = C . Moreover, by Lemma 2, we can limit the
computations to hedges h ∈ H whereH is the finite set introduced in Section 4.1.
Therefore, we obtain the next equality.

⌊Safe(ua)⌋ =
⌊{

C | C =
⋃

h∈H

Ch with Ch a minimal h-predecessor of C
′ ∈ ⌊LSafe(ua)⌋

}⌋

(9)

4.6 Algorithm

We are now able to give our antichain-based algorithm (see Algorithm 2). It
uses a stack S (initially empty) as recalled at the beginning of this section. The
computation of ⌊H⌋ is considered as a preprocessing, as its value only depends
on A and not on [t0]. The used results are mentioned inside the algorithm.

5 Improvements and Implementation

Section 4 resulted in a first algorithm for incrementally testing whether a VPA
is right-universal. In this section, we show how this algorithm can be improved
by limiting hedges to consider, and optimizing operators and predecessors to be
computed. We also give the improved algorithm in a more detail way than in
Algorithm 2, as well as the underlying data structures.

5.1 Minimal Hedges

A first improvement is obtained by further restricting hedges to consider. Indeed
it suffices to consider minimal hedges wrt their function relh. Formally, let us
write h ≤ h′ whenever relh(q) ⊆ relh′(q) for every q ∈ Q. We denote by ⌊H⌋ the
≤-minimal elements of H . From the definition of h-predecessor, we have:

C h-predecessor of C
′ and h ≤ h′ =⇒ C h′-predecessor of C

′ (10)

This property can be used to replace h ∈ H in (9) by h ∈ ⌊H⌋:

⌊Safe(ua)⌋ =










C | C=

⋃

h∈⌊H⌋

Ch with Ch a minimal h-predecessor of C
′∈⌊LSafe(ua)⌋












(11)
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Algorithm 2 Checking right-universality incrementally with antichains

function Antichain-Based Incremental-Right-universality(A, ⌊H⌋)
Push(S , ⌊Init⌋) % by (2), S being a stack
u← first letter of [t0]
R← 〈Compute Reach(u)〉
α← 〈Compute ⌊Safe(u)⌋〉 % by (5)
if ∃C ∈ α : C ⊆ R then

return True % Corollary 1
end if

while [t0] is not completely read do

a← next letter of [t0]
u← ua
R← 〈Compute Reach(u) from R〉
if a ∈ Σ then

α← Pop(S)
else

Push(S , α)
α← 〈Compute ⌊Safe(u)⌋ from α〉 % by (7) and (9)

end if

if ∃C ∈ α : C ⊆ R then

return True % by Corollary 1
end if

end while

return False
end function

and similarly for the starting point:

⌊Safe(a)⌋ =
⌊{

C | ∀h ∈ ⌊H⌋ , ∃qf ∈ Qf , ∃(q, σ) ∈ C : (q, σ)
ha
−→ (qf , ǫ)

}⌋

(12)

5.2 An Appropriate Operator

Equation (11) expresses that every set of configurations C in ⌊Safe(ua)⌋ is the
union of Ch with h ∈ ⌊H⌋. We introduce a new operator to improve the reada-

bility and find new properties. Let S be a finite set, and A,B ∈ 22
S\{∅}. The set

A ⊔B ∈ 22
S

is defined by

A ⊔B = {a ∪ b | a ∈ A and b ∈ B}.

Operator ⊔ builds sets obtained by taking one set of each of its operands, and
performing their union. It is obviously associative and commutative. Notice that
the elements of A,B are supposed to be non empty sets. This is always the case
in the algorithms using this operator.

When combined with operator ⌊.⌋, operands of the ⊔ operator can be splitted,
so that ⊔ is to be computed on smaller sets:

⌊A ⊔B⌋ = ⌊(A ∩B) ∪ (A \B ⊔ B \A)⌋ (13)
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We experimentally observed that a good strategy to evaluate an expression A1⊔
. . . ⊔ An is to process sets Ai with increasing cardinality.

Equation (11) can now be rewritten in a simpler way as follows.

⌊Safe(ua)⌋ =





⊔

h∈⌊H⌋

{Ch | Ch is a minimal h-predecessor of C
′ ∈ ⌊LSafe(ua)⌋}




 (14)

We can go further by reconsidering the notions of minimal a- and h-pre-
decessor with the new operator ⊔. From the definition of minimal predecessor,
we immediately get that C is a minimal a-predecessor of C ′ iff C belongs to

the set
⌊
⊔

(q′,σ′)∈C ′

{

{(q, σ)} | (q, σ)
a
−→ (q′, σ′)

}⌋

, and similarly for h-minimal

predecessors. We provide in Appendix C.3 a similar improvement for ⌊Safe(a)⌋.

5.3 Using a SAT Solver to Find Minimal Predecessors

The operator ⊔ allows to compute Step 1 and Step 2. Equation (13) accele-
rates these computations. In this section, we propose a method to compute
Step 1 based on a SAT solver (a similar approach also works for Step 2, see
Appendix C.4).

A SAT solver is an algorithm used to efficiently test the satisfiability of a
boolean formula ϕ, that is, to check whether there exists a valuation v of the
boolean variables of ϕ that makes ϕ true. In this case we say that v is a model
of ϕ, denoted by v |= ϕ.

In Step 1, the computation of set ⌊LSafe(ua)⌋ from ⌊Safe(u)⌋ is given in (7):

⌊LSafe(ua)⌋ = ⌊{C | C is an a-predecessor of C
′ ∈ ⌊Safe(u)⌋}⌋ .

We recall that C is an a-predecessor of C
′ if for all (q′, σ′) ∈ C

′, there exists

(q, σ) ∈ C such that (q, σ)
a
−→ (q′, σ′). We also recall that C ∈ ⌊LSafe(ua)⌋ is

a finite object such that C ⊆ Q × Γ k for some k. Let us associate a boolean
variable xc to each configuration c ∈ Q× Γ k.

We consider the following boolean formula ϕa :

ϕa =
∨

C ′∈⌊Safe(u)⌋

∧

c′∈C ′

∨

c
a
−→c′

xc,

Let vC be the valuation such that vC (xc) = 1 iff c ∈ C . We immediately obtain
that:

vC |= ϕa iff C ∈ LSafe(ua) ∩Q× Γ k.

We define an ordering over valuations as follows, in a way to have a notion
of minimal models equivalent to ⊆-minimal elements of LSafe(ua).

Let V be a set of boolean variables, let v and v′ be two valuations over V .
We define v′ ≤ v iff for all variables x ∈ V , v′(x) = 1 =⇒ v(x) = 1. We denote

13



v′ < v if v′ ≤ v and v′ 6= v. Given ϕ a boolean formula over V , we say that a
model v of ϕ is minimal if for all model v′ of ϕ, we have v′ ≤ v =⇒ v′ = v. We
get the next characterization.

Lemma 3. vC is a minimal model of ϕa iff C ∈ ⌊LSafe(ua)⌋.

We can now explain how to compute all the minimal models of formula ϕa.
Let ϕ be a boolean formula over V .
First, we explain, knowing a model v of ϕ, how to compute a model v′ of ϕ such
that v′ < v (if it exists). Consider the next formula ϕ′:

ϕ′ = ϕ ∧ (
∧

x∈V0

¬x) ∧ (
∨

x∈V1

¬x)

where V0 (respectively V1) is the set of all variables x ∈ V such that v(x) = 0
(resp. v(x) = 1). If ϕ′ has a model v′, it follows from the definition of ϕ′ that
v′ is a model of ϕ such that v′ < v. Otherwise, v is a minimal model of ϕ. So
from a model of ϕ we can compute a minimal model of ϕ by repeating the above
procedure.
Second, let us explain how to compute all the minimal models of ϕ. Suppose that
we already know some minimal model v of ϕ, and let V1 be the set of variables
x ∈ V such that v(x) = 1. Consider the formula

ϕ′ = ϕ ∧ (
∨

x∈V1

¬x).

Then a model v′ of ϕ′, if it exists, is a model of ϕ such that neither v′ < v (since
v is minimal) nor v < v′ (by definition of ϕ′). With the previous procedure,
we thus get a minimal model of ϕ that is distinct from v. In this way we can
compute all minimal models of ϕ.

5.4 Improved Algorithm and Data Structures

Let us come back to Algorithm 2 by indicating the underlying data structures
and the improvements resulting from the previous three sections.

As explained in Section 5.1, we restrict the computations to the set ⌊H⌋
of minimal hedges. Notice that Algorithm 3 that computes the set {relh | h ∈
H} (see Appendix) can be easily adapted to compute the set of its ≤-minimal
elements. In the main loop of Algorithm 2, Steps 1 and 2 can be computed either
with the new operator ⊔ or with a SAT solver (see Sections 5.2 and 5.3 resp.).

Efficient data structures are used both for the relations associated to minimal
hedges and for the antichains ⌊H⌋, ⌊Safe(u)⌋ and ⌊LSafe(u)⌋. A relation relh,
with h ∈ ⌊H⌋, is stored as an array of bit-vectors. In this way the composition is
computed efficiently using bit-operations, as well as the number of elements of
the relation. A hash table is used to store each antichain, such that elements with
different weights are stored in different lists. In the case of ⌊H⌋, the weight is the
number of elements of relh ∈ ⌊H⌋. In the case of ⌊Safe(u)⌋ (resp. ⌊LSafe(u)⌋),
the weight is the number of elements of C ∈ ⌊Safe(u)⌋ (resp. C ∈ ⌊LSafe(u)⌋).
In this way, comparing a new element with the elements of the antichain is made
more efficient, by limiting the comparison with elements of the same weight.
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Fig. 3: Space and time consumption for computing ⌊H⌋ on 50 VPAs of various
densities, |Q| = 10, |Σ| = |Γ | = 3, and timeout of 60s.

6 Experiments

We have implemented Algorithm 2 in a prototype tool together with the data
structures and improvements proposed in Section 5 (following both approaches,
using operator ⊔ and a SAT solver). We mainly use Python, with C binding to
the Glucose SAT solver (first ranked in recent SAT competitions) [Glucose].

The experimental tests are performed on two different benchmarks, one com-
posed of randomly generated VPAs, and another one based on the translation of
XPath expressions to VPAs. The experiments were run on a PC equipped with
an Intel i7 2.8GHz processor, 6 GB of RAM and running Linux Ubuntu 3.2.

6.1 Randomly Generated VPAs

During the random generation of VPAs A = (Q,Σ, Γ,Qi, Qf , ∆), |Qi| is fixed
to 1, and several parameters vary: the sizes |Q|, |Σ| and |Γ |, the density of final

states
|Qf |
|Q| , and the transition density7. Our online algorithm for checking right-

universality needs to compute the set ⌊H⌋ of minimal hedges as a preprocessing.
This set can be huge and thus lead to a timeout. In Figure 3a (resp. Figure 3b),
we indicate the average size of ⌊H⌋ (resp. the average execution time to com-
pute it) for randomly generated VPAs with variable transition density (from
1 to 19) and variable final state density. In this test, we distinguish universal
automata from non-universal ones since a universal VPA is right-universal w.r.t
all u ∈ Pref (TΣ) \ {ǫ}. The two figures show that timeout happens for instances
with transition density around 12, and that the density of final states has few
influence.

7 equal to the number of outgoing transitions per state and per symbol.
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|Q| universality right-universality null relh ti
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n
e
)

tr. density: 8 tr. density: 16 8 16 8 16 8 16 8 16
10 12 (0.59/0.01) 40 (1.19/0.01) 22 (16.62/9.36) 44 (11.00/1.10) 52 (0.67/0.01) 0 2 2 2 4
20 13 (9.35/0.01) 29 (0.86/0.01) 14 (20.44/30.85) 41 (5.18/1.07) 46 (9.62/0.01) 0 14 17 3 3
30 9 (20.22/0.01) 34 (13.39/0.01) 11 (21.23/5.85) 34 (27.31/3.43) 40 (1.23/0.01) 0 30 21 0 1

Table 1: Number for each type (universal, right-universal, null relh, timeout)
among 90 instances, with a timeout of 300s, and various number of states and
transition densities. Average (preprocessing/online) time is given in parentheses
(in s).

VPA id Response Time (s.) | ⌊H⌋ | |Reach(u)| | ⌊Safe(u)⌋ |
q20-a02-x02-o16-c16-f0.5-00 right-universal w.r.t. a1 0.03 3 4 33
q20-a02-x04-o16-c16-f0.5-02 right-universal w.r.t. a1 0.07 3 8 53
q20-a02-x04-o16-c16-f0.5-06 right-universal w.r.t. a0 0.06 3 5 54
q20-a03-x02-o16-c16-f0.5-06 right-universal w.r.t. a2 0.13 12 4 32
q20-a03-x03-o16-c16-f0.5-06 right-universal w.r.t. a0 0.37 23 4 59
q20-a03-x03-o16-c16-f0.5-09 right-universal w.r.t. a2a0 1.74 13 14 179
q20-a03-x04-o16-c16-f0.5-07 right-universal w.r.t. a2 1.02 44 5 116
q20-a04-x02-o16-c16-f0.5-03 right-universal w.r.t. a3 0.71 71 5 75
q20-a04-x02-o16-c16-f0.5-07 right-universal w.r.t. a0 1.07 81 5 74
q20-a04-x03-o16-c16-f0.5-03 right-universal w.r.t. a2 15.88 359 5 447

Table 2: Time and data structures size on random VPAs, with transition density
of 16, |Q| = 20, |Σ| = |Γ | ∈ {2, 3, 4}, and timeout of 300s.

In the next experiment, we study the behavior of our algorithm on 90 ran-
dom instances of size 10 (resp. 20, 30), with fixed transition density 8 (resp.
16) and fixed density 0.5 of final states8. The considered tree t0 is a complete
binary tree up to height 3 filled with randomly generated letters of Σ. We only
comment the experiment using a SAT solver since it outperforms the approach
with operator ⊔. We observe several behaviors (see Table 1): many automata are
either universal, or right-universal w.r.t. u with |u| = 1 (except 7 cases where
|u| = 2), or exhibits a hedge h with relh being the null relation9; the number of
timeout increases with |Q|. Table 2 indicates, for some representative VPAs, the
execution time and the sizes of ⌊H⌋, Reach(u) and ⌊Safe(u)⌋.

When it declares that a given VPA is right-universal w.r.t. u, our algorithm
has the nice property that it reproduces the same execution (thus with the same
time) for each tree t0 such that u is prefix of [t0]. This is clearly not the case for
the membership algorithm that computes Reach([t0]) and checks if it contains
a final configuration. For instance, on a random VPA with size |Q| = 20 and
transition density 8, our algorithm consumes less than 5s to declare that the

8 to deal with managable and not too small sets ⌊H⌋.
9 This means that the automaton is never right-universal w.r.t. u, for any proper
prefix u of [t0]. Therefore, in such cases, our algorithm is slower that the membership
algorithm.
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Fig. 4: Average time for computing Safe(u), LSafe(u) and Reach(u) and overall
computation for 15 random trees.

automaton is right-universal w.r.t. a, whereas the membership algorithm takes
more than 300s as soon as the height of a binary tree t0 with an a-root is equal
to 8 (see also Appendix D.1).

6.2 VPAs resulting from XPath translation

Our second benchmark is based on VPAs obtained from queries over XML doc-
uments expressed in the XPath language, and then translated into VPAs. This
translation was performed by the QuiXProc tool, as described in [GN11]. This
family of XPath expressions yields VPAs of linear size increase (VPA with id i
has 16+11i states), and looks for some complex patterns in the tree. In Figure 4
we report the time used by our algorithm on randomly generated trees, for this
family of VPAs. This shows that for real-world VPAs, the size of ⌊H⌋ is outside
the hardness threshold exhibited in Figure 3. For instance, for the VPA with id
9 and size |Q| = 115, ⌊H⌋ is computed in about 120s. Moreover, Figure 4b shows
the efficiency of our online algorithm (less than 0.8s, see also Appendix D.2).
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A Complements to Section 3

A.1 Proof of Theorem 1

(⇒) Assume that A is u-universal. Consider the set C of configurations (q, σ) of
A such that there exists v ∈ (Σ ∪Σ)∗, qi ∈ Qi and qf ∈ Qf verifying uv ∈ [TΣ ]

and (qi, ǫ)
u
−→ (q, σ)

v
−→ (qf , ǫ). We have C ⊆ Reach(u).

Let v be such that uv ∈ [TΣ]. As A is right-universal w.r.t. u, there exists

a configuration (q, σ) ∈ C such that (q, σ)
v
−→ (qf , ǫ) with qf ∈ Qf . Hence

C ∈ Safe(u). As Safe(u) is ⊆-upward closed, we get Reach(u) ∈ Safe(u).
(⇐) Assume now that Reach(u) ∈ Safe(u), and let v be such that uv ∈ [TΣ ].

As Reach(u) ∈ Safe(u), there exists (q, σ) ∈ Reach(u) and p ∈ Qf such that

(q, σ)
v
−→ (p, ǫ). Thus, uv ∈ L(A), and A is right-universal w.r.t. u.

A.2 Proof of Lemma 1

(⊇) Assume C ∈ Safe(u), and let v be such that u[h]v ∈ [TΣ]. As h is a hedge, we

have uv ∈ [TΣ]. As C ∈ Safe(u), there exists (q, σ) ∈ C such that (q, σ)
v
−→ (p, ǫ)

with p ∈ Qf . So C ∈ Safe(u[h]).
(⊆) Conversely, assume C ∈ Safe(u[h]). Let v be such that uv ∈ [TΣ]. We

also have u[h]v ∈ [TΣ], so there exists (q, σ) ∈ C such that (q, σ)
v
−→ (p, ǫ) with

p ∈ Qf . Thus C ∈ Safe(u).
The proof is the same for LSafe(u[h]) = LSafe(u), except that we only con-

sider v of the form av′.

A.3 Proof of Proposition 1

Before giving the proof of Proposition 1, we introduce the Post operator and
Proposition 2. From u ∈ (Σ ∪Σ)∗ and a set of configurations C ⊆ Q × Γ ∗, we
define Postu(C ) as the set

Postu(C ) = {(q ′, σ′) ∈ Q × Γ ∗ | ∃(q, σ) ∈ C , (q, σ)
u
−→ (q ′, σ′)}.

Proposition 2. Let ua ∈ Pref (TΣ) with a ∈ Σ.

C ∈ LSafe(ua) ⇐⇒ Posta(C ) ∈ Safe(u) (15)

C ∈ Safe(ua) ⇐⇒ ∀h ∈ HΣ ,Post[h](C ) ∈ LSafe(ua) (16)

Proof. (15,⇒) Let C ∈ LSafe(ua) and C ′ = Posta(C ). Let us show that C ′ ∈
Safe(u). By Lemma 1, it is sufficient to prove that C ′ ∈ Safe(uaa). Let v such
that uaav ∈ [TΣ]. As C ∈ LSafe(ua) and av starts with a ∈ Σ, there exists

(q, σ) ∈ C and (q′, σ′) such that (q, σ)
a
−→ (q′, σ′)

v
−→ (p, ǫ) for some p ∈ Qf . By

definition of Posta(C ) we have (q′, σ′) ∈ C ′ and thus C ′ ∈ Safe(uaa).
(15,⇐) For the converse, let C ′ = Posta(C ) ∈ Safe(u) = Safe(uaa). Let

us show that C ∈ LSafe(ua). Let v be such that uav ∈ [TΣ ] and v = bv′.
We necessarily have a = b. As C ′ ∈ Safe(uaa), there exists (q′, σ′) ∈ C ′ such
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that (q′, σ′)
v′

−→ (p, ǫ) with p ∈ Qf . By definition of Posta(C ), there also exists

(q, σ) ∈ C such that (q, σ)
a
−→ (q′, σ′) and thus (q, σ)

v=av′

−−−−→ (p, ǫ) with p ∈ Qf .
(16,⇒) Let C ∈ Safe(ua) and h ∈ HΣ . Let us show that C ′ = Post[h](C )

is in LSafe(ua). Let v such that uav ∈ [TΣ ] and v = bv′. We must have a = b.
We also have ua[h]av′ ∈ [TΣ ]. As C ∈ Safe(ua), there exists (q, σ) ∈ C such

that (q, σ)
[h]
−−→ (q′, σ′)

v=av′

−−−−→ (p, ǫ) with p ∈ Qf . By definition of Post[h](C ),
(q′, σ′) ∈ C ′.

(16,⇐) Let us assume that for every hedge h ∈ HΣ , Post[h](C ) ∈ LSafe(ua).
Let us show that C ∈ Safe(ua). Let v be such that uav ∈ [TΣ ]. Then we
have uav = ua[h]av′ for some h ∈ HΣ . As C ′ = Post[h](C ) ∈ LSafe(ua),

av′ starts with a ∈ Σ and uaav′ ∈ [TΣ ], there exists (q′, σ′) ∈ C ′ such that

(q′, σ′)
av′

−−→ (p, ǫ) for some p ∈ Qf . Hence, by definition of Post[h](C ), there also

exists (q, σ) ∈ C such that (q, σ)
[h]
−−→ (q′, σ′)

av′

−−→ (p, ǫ) with p ∈ Qf . ⊓⊔

Predecessors closely relate to the Post operator, in the following sense.

Lemma 4. C is an a-predecessor of Posta (C ). If C ∈ Preda(C
′), then C ′ ⊆

Posta (C ). Both properties also hold for Post[h](C ).

The proof of Proposition 1 is then the following one.

Proof (of Proposition 1). (3,⇒) Let C ∈ LSafe(ua). Then by Proposition 2,
Posta (C ) ∈ Safe(u). Moreover, C is an a-predecessor of Posta (C ) by Lemma 4.

(3,⇐) Let C be an a-predecessor of C
′, with C

′ ∈ Safe(u). By Lemma 4,
C ′ ⊆ Posta(C ). As Safe(u) is ⊆-upward closed, we also have Posta(C ) ∈
Safe(u), so C ∈ LSafe(ua) by Proposition 2.

(4) Same proofs, except that a has to be replaced by h, for all h ∈ HΣ .
⊓⊔

B Complements to Section 4

B.1 Proof of Lemma 2

Let us recall the definition of h-predecessor:C is a h-predecessor of C ′ if ∀(q′, σ) ∈

C ′, ∃(q, σ) ∈ C , (q, σ)
h
−→ (q′, σ). Hence if h ∼ h′, then C is a h-predecessor of

C ′ iff C is a h′-predecessor of C ′.

B.2 Algorithm computing H

We propose an algorithm for computing such a setH from a VPAA. Algorithm 3
is based on the definition of hedges, adapted to their associated functions:

– ǫ is the empty hedge, and relǫ(q) = {q} for every q ∈ Q. We write this
function idQ.

– if h1, h2 are two hedges, then h1h2 is a hedge, and relh1h2
= relh2

◦ relh1
.
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– if h is a hedge and a ∈ Σ, then aha is a hedge, and relaha(q) is the set of
states q′ such that there exists γ ∈ Γ verifying:

(q, ǫ)
a
−→ (p, γ) and (p′, γ)

a
−→ (q′, ǫ) with p′ ∈ relh(p).

Algorithm 3 uses the variables ToProcess and Functions with the following
meaning. Functions contains initially the identity relation idQ; at the end of the
computation, it contains all functions relh, for h ∈ HΣ . ToProcess contains all
the newly constructed functions, and these functions are used to create other
new functions as described in the previous definition by induction.

Algorithm 3 Computing all functions relh, for h ∈ HΣ .

function HedgeFunctions(A)
Functions ← {idQ}
ToProcess ← {idQ}
while ToProcess 6= ∅ do

fct ← Pop(ToProcess)
NewFunctions ← ∅
for f ∈ Functions do

NewFunctions ← NewFunctions ∪ {f ◦ fct , fct ◦ f}
end for

for a ∈ Σ do

f ← f∅ // f∅ maps every q ∈ Q to ∅

for q
a:γ
−−→ p ∈ ∆ and p′

a:γ
−−→ q′ ∈ ∆ with p′ ∈ fct(p) do

f(q)← f(q) ∪ {q′}
end for

NewFunctions ← NewFunctions ∪ {f}
end for

ToProcess ← ToProcess ∪ (NewFunctions \ Functions)
Functions ← Functions ∪NewFunctions

end while

return Functions

end function

Proposition 3. Algorithm 3 computes the set {relh | h ∈ HΣ}.

Proof. Let Functions be the set computed by Algorithm 3. Clearly, Functions ⊆
{relh | h ∈ HΣ}. Assume for contradiction that there exists r = relh with h ∈ HΣ

such that r 6∈ Functions . Clearly, r 6= idQ, and we can suppose wlog that either
r = r′2 ◦ r

′
1 with r′1, r

′
2 ∈ Functions \ {idQ}, or there exists r′ ∈ Functions such

that for all q, r(q) is the set of q′ with q
a:γ
−−→ p ∈ ∆, p′

a:γ
−−→ q′ ∈ ∆ and p′ ∈ r′(p).

Consider the first case. When they have been constructed by Algorithm 3, both
r′1 and r′2 have been added to ToProcess and to Functions. After the last element
(among r′1 and r′2) is popped from ToProcess, then r = r′2 ◦ r′1 is built during
the loop on f ∈ Functions, which leads to a contradiction. We also have a
contradiction in the second case by considering the loop on a ∈ Σ. ⊓⊔
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B.3 Antichains ⌊Safe(u)⌋ and ⌊LSafe(u)⌋ are Finite

Proposition 4. ⌊Safe(u)⌋ and ⌊LSafe(u)⌋ are finite and only contain finite sets
of configurations.

Proof. We begin with the following observation. Let v be such that [uv] ∈ TΣ

and (q, σ)
v
−→ (p, ǫ) with p ∈ Qf . Let u

′ (resp. v′) the word obtained from u (resp.
v) by removing all factors that are linearizations of hedges. Then |u′| = |v′| and
|u′| = |σ|.

Let C ∈ Safe(u). Then by definition

∀v, uv ∈ [TΣ ] =⇒ ∃(q, σ) ∈ C , (q, σ)
v
−→ (p, ǫ) with p ∈ Qf .

If C is ⊆-minimal, then every (q, σ) ∈ C is used for at least one v in the previous
definition. Now by the previous observation, each such (q, σ) belongs to Q×Γ |u′|.
Hence C ⊆ Q× Γ |u′|, and thus both C and ⌊Safe(u)⌋ are finite.

The same arguments hold for proving that ⌊LSafe(u)⌋ is finite and contains
only finite sets of configurations. ⊓⊔

B.4 Proof of Implication (6)

Let C ∈ ⌊LSafe(ua)⌋ and let C ′ = Posta (C ). We know from Proposition 2 that
C ′ ∈ Safe(u). Let C ′

0 ⊆ C ′ such that C ′
0 ∈ ⌊Safe(u)⌋. From the definition of C ′

we get:

∀c′ ∈ C
′, ∃c ∈ C , c

a
−→ c′

We build C0 from these c ∈ C but for c′ ∈ C ′
0:

C0 = {c ∈ C | ∃c′ ∈ C
′
0, c

a
−→ c′}

Figure 5 illustrates the construction. The set C0 is an a-predecessor of C ′
0, so us-

C C
′

C0
C

′
0

a

Fig. 5: Construction of C0

ing Proposition 1, we get C0 ∈ LSafe(ua). Furthermore, C0 ⊆ C ∈ ⌊LSafe(ua)⌋,
so C0 = C , and C is obtained as an a-predecessor of C ′

0 ∈ ⌊Safe(u)⌋.
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B.5 Proof of Implication (8)

The proof is in the same vein as for Implication (6). Let C ∈ ⌊Safe(ua)⌋, and
h ∈ HΣ . Let C ′

h = Post[h](C ). By Proposition 2, C ′
h ∈ LSafe(ua). Let C ′′

h ⊆ C ′
h

such that C ′′
h ∈ ⌊LSafe(ua)⌋. We know that ∀c′ ∈ C ′

h, ∃c ∈ C such that c
[h]
−−→ c′.

We define Ch = {c ∈ C | ∃c′ ∈ C ′′
h , c

[h]
−−→ c′}. For every h ∈ HΣ , Ch is a

h-predecessor of C ′′
h ∈ LSafe(ua). Consider C∪ =

⋃

h∈HΣ
Ch, then C∪ is also a

h-predecessor of C ′′
h . Using Proposition 1, we have C∪ ∈ Safe(ua). As C∪ ⊆ C

and C ∈ ⌊Safe(ua)⌋, we also have that C∪ = C . Hence C verifies that ∀h ∈ HΣ ,
∃C ′′ ∈ ⌊LSafe(ua)⌋ such that C is a h-predecessor of C ′′.

C Complements to Section 5

C.1 Proof of Equation (11)

Let S denote the set
{

C | C =
⋃

h∈H

Ch with Ch a minimal h-predecessor of C
′ ∈ ⌊LSafe(ua)⌋

}

Let C ∈ S. We have: C = Ch1
∪ · · · ∪ Chk

︸ ︷︷ ︸

hi∈⌊H⌋

∪Ch′

1
∪ · · · ∪ Ch′

n
︸ ︷︷ ︸

h′

i
∈H\⌊H⌋

. Let us show that

Ch1
∪ · · · ∪ Chk

∪ Ch′

1
∪ · · · ∪ Ch′

n−1
∈ S (Ch′

n
has been erased). By induction,

this will prove that Ch1
∪ · · · ∪ Chk

∈ S. We have h′
n ∈ H \ ⌊H⌋, so there exists

hi ∈ ⌊H⌋ such that hi ≤ h′
n. As Chi

is a minimal hi-predecessor of an element
C ′ in ⌊LSafe(ua)⌋, it follows from (10) that Chi

is also a minimal h′
n-predecessor

of C ′. So Ch1
∪ · · · ∪ Chk

∪ Ch′

1
∪ · · · ∪ Ch′

n−1
∪ Chi

∈ S.

C.2 Proof of Equation (13)

(⊇) Let C ∈ ⌊(A ∩B) ∪ (A \B ⊔ B \A)⌋. Then C ∈ A⊔B. For contradiction,
let us assume that there exists C ′ ( C such that C ′ ∈ ⌊A ⊔B⌋. If C ′ ∈ A ∩ B,
then C ′ ∈ (A ∩ B) ∪ (A \ B ⊔ B \ A), which contradicts C . So C ′ /∈ A ∩ B,
and assume wlog that C ′ = a ∪ b with a ∈ A \B and b ∈ B (recall that a, b are
non empty sets by definition of ⊔ operator). If b ∈ A, then b ∈ A ∩ B ⊆ A ⊔ B
and b ( C ′, but this contradicts C ′. If b /∈ A, then C ′ ∈ A \ B ⊔ B \ A, so
C ′ ∈ A ∩B ∪ (A \B ⊔ B \A), and C ′ ( C , which contradicts C .

(⊆) Let C ∈ ⌊A ⊔B⌋. Let us first show that C ∈ (A∩B)∪ (A \B ⊔ B \A).
If C ∈ A ∩ B this is direct. Otherwise C = a ∪ b with a ∈ A \ B and b ∈ B
(the other case is symmetric). If b ∈ A then b ∈ A ∩ B ⊆ A ⊔ B and b ( C ,
which contradicts the definition of C . So b ∈ B \ A, and C ∈ A \ B ⊔ B \ A.
Secondly, assume for contradiction that there exists C ′ ( C such that C ′ ∈
⌊(A ∩B) ∪ (A \B ⊔ B \A)⌋. Then, according to (⊇), C

′ ∈ ⌊A ⊔B⌋, which
contradicts the definition of C .

We get the next corollary of Equation (13):

Corollary 2. If A ⊆ B, then ⌊A ⊔B⌋ = ⌊A⌋.
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C.3 Safe(a) and Operator ⊔

The ⊔ operator also simplifies the definition of ⌊Safe(a)⌋.

Proposition 5. ⌊Safe(a)⌋ =
⌊
⊔

h∈⌊H⌋ Ah

⌋

with

Ah =
{

{(q, σ)} | ∃qf ∈ Qf : (q, σ)
ha
−→ (qf , ǫ)

}

.

Proof. We consider ⌊Safe(a)⌋ as defined in Equation (12). Let S denote the set
{

C | ∀h ∈ ⌊H⌋ , ∃qf ∈ Qf , ∃(q, σ) ∈ C : (q, σ)
ha
−→ (qf , ǫ)

}

.

1. Every element of
⊔

h∈⌊H⌋ Ah belongs to S. Thus
⌊
⊔

h∈⌊H⌋ Ah

⌋

⊆ S.

2. Let us show that for each C in S, there exists C ′ ∈
⊔

h∈⌊H⌋ Ah such that

C
′ ⊆ C . Let C ∈ S. By definition of S, for all h ∈ ⌊H⌋ there exists (qh, σh) ∈

C and qf ∈ Qf such that (qh, σh)
ha
−→ (qf , ǫ). Let C ′ = {(qh, σh) | h ∈ ⌊H⌋}.

Then C ′ ⊆ C and C ′ ∈
⊔

h∈⌊H⌋ Ah because {(qh, σh)} ∈ Ah, ∀h.

3. Assume that there exists C∗ ∈
⌊
⊔

h∈⌊H⌋ Ah

⌋

\ ⌊S⌋. By 1., there exists C

in ⌊S⌋ such that C ( C∗; and by 2., there exists C
′ ∈

⊔

h∈⌊H⌋ Ah such

that C ′ ⊆ C ( C∗ in contradiction with the definition of C∗. Therefore⌊
⊔

h∈⌊H⌋ Ah

⌋

⊆ ⌊S⌋.

4. Let C ∈ ⌊S⌋. By 2., there exists C ′ ∈
⌊
⊔

h∈⌊H⌋ Ah

⌋

such that C ′ ⊆ C . By

3., it follows that C = C ′ and thus ⌊S⌋ ⊆
⌊
⊔

h∈⌊H⌋ Ah

⌋

.

In conclusion, ⌊Safe(a)⌋ = ⌊S⌋ =
⌊
⊔

h∈⌊H⌋ Ah

⌋

⊓⊔

C.4 Step 2 with SAT Solvers

The computation of the set ⌊Safe(ua)⌋ from ⌊LSafe(ua)⌋ can be done with a
SAT solver as described in Equation (11) :

⌊Safe(ua)⌋ =











C | C =

⋃

h∈⌊H⌋

Ch with Ch a h-predecessor of C
′ ∈ ⌊LSafe(ua)⌋










 .

The method is the same as for Step 1, with the only difference that we use
the next formula instead of formula ϕa :

∧

h∈⌊H⌋

∨

C ′∈⌊LSafe(ua)⌋

∧

c′∈C ′

∨

c
h
−→c′

xc,

D Complements to Section 6

We provide in this section additional experimental results.
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Fig. 6: Execution time of the membership algorithm for a binary tree t0 of in-
creasing height.

D.1 Randomly Generated VPAs

Figure 6 indicates the execution time of the membership algorithm for a random
complete binary tree t0 of increasing height.

D.2 VPAs resulting from XPath translation

Figure 7 indicates the computation time of our online algorithm for 15 random
trees, with a height bounded by 10, and a number of children by node bounded
by 15.
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Fig. 7: Computation time of the online algorithm for each random tree.
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