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From Two-Way to One-Way Finite State Transducers

Any two-way finite state automaton is equivalent to some one-way finite state automaton. This well-known result, shown by Rabin and Scott and independently by Shepherdson, states that two-way finite state automata (even non-deterministic) characterize the class of regular languages. It is also known that this result does not extend to finite string transductions: (deterministic) two-way finite state transducers strictly extend the expressive power of (functional) one-way transducers. In particular deterministic two-way transducers capture exactly the class of MSO-transductions of finite strings.

In this paper, we address the following definability problem: given a function defined by a two-way finite state transducer, is it definable by a one-way finite state transducer? By extending Rabin and Scott's proof to transductions, we show that this problem is decidable. Our procedure builds a one-way transducer, which is equivalent to the two-way transducer, whenever one exists.

I. INTRODUCTION

In formal language theory, the importance of a class of languages is often supported by the number and the diversity of its characterizations. One of the most famous example is the class of regular languages of finite strings, which enjoys, for instance, computational (automata), algebraic (syntactic congruence) and logical (monadic second order (MSO) logic with one successor) characterizations. The study of regular languages has been very influential and several generalizations have been established. Among the most notable ones are the extensions to infinite strings [START_REF] Büchi | On a decision method in restricted second order arithmetic[END_REF] and trees [START_REF] Thatcher | Generalized finite automata theory with an application to a decision problem of second-order logic[END_REF]. On finite strings, it is well-known that both deterministic and non-deterministic finite state automata define regular languages. It is also wellknown that the expressive power of finite state automata does not increase when the reading head can move left and right, even in presence of non-determinism. The latter class is known as non-deterministic two-way finite state automata and it is no more powerful than (one-way) finite state automata. The proof of this result was first shown in the seminal paper of Rabin and Scott [START_REF] Rabin | Finite automata and their decision problems[END_REF], and independently by Shepherdson [START_REF] Shepherdson | The reduction of two-way automata to one-way automata[END_REF].

The picture of automata models over finite strings changes substantially when, instead of languages, string transductions, i.e. relations from strings to strings, are considered. Transducers generalize automata as they are equipped with a one-way output tape. At each step they read an input symbol, they can append several symbols to the output tape. Their transition systems can be either deterministic or non-deterministic. Functional transducers are transducers that define functions instead This work has been partly supported by the project ECSPER funded by the french agency for research (ANR-09-JCJC-0069), by the project SOSP funded by the CNRS, and by the Faculty of Sciences of University Paris-Est Créteil.

of relations. For instance, deterministic transducers are always functional. In this paper, we are interested in transducers that define functions, but that can be non-deterministic.

As for automata, the reading head of transducers can move one-way (left-to-right) or two-way. (One-way) finite state transducers have been extensively studied [START_REF] Berstel | Transductions and context-free languages[END_REF], [START_REF] Sakarovich | Elements of Automata Theory[END_REF]. Nondeterministic (even functional) one-way transducers (NFTs) strictly extend the expressive power of deterministic one-way transducers (DFTs), because non-determinism allows one to express local transformations that depend on properties of the future of the input string.

Two-way finite state transducers define regular transformations that are beyond the expressive power of one-way transducers [START_REF] Courcelle | The expression of graph properties and graph transformations in monadic second-order logic[END_REF]. They can for instance reverse an input string, swap two substrings or copy a substring. The transductions defined by two-way transducers have been characterized by other logical and computational models. Introduced by Courcelle, monadic second-order definable transductions are transformations from graphs to graphs defined with the logic MSO [START_REF]Monadic second-order definable graph transductions: a survey[END_REF]. Engelfriet and Hoogeboom have shown that the monadic second-order definable functions are exactly the functions definable by deterministic two-way finite state transducers (2DFTs) when the graphs are restricted to finite strings [START_REF] Engelfriet | MSO definable string transductions and two-way finite-state transducers[END_REF]. Recently, Alur and Černý have characterized 2DFT-definable transductions by a deterministic one-way model called streaming string transducers [START_REF] Alur | Expressiveness of streaming string transducers[END_REF] and shown how they can be applied to the verification of list-processing programs [START_REF]Streaming transducers for algorithmic verification of single-pass list-processing programs[END_REF]. Streaming string transducers extend DFTs with a finite set of output string variables. At each step, their content can be reset or updated by either prepending or appending a finite string, or the content of another variable, in a copyless manner. Extending 2DFTs with non-determinism does not increase their expressive power when they define functions: non-deterministic two-way finite state transducers (2NFTs) that are functional define exactly the class of functions definable by 2DFTs [START_REF] Engelfriet | MSO definable string transductions and two-way finite-state transducers[END_REF], [START_REF] Souza | Uniformisation of two-way transducers[END_REF]. To summarize, there is a strict hierarchy between DFT-, functional NFT-and 2DFT-definable transductions.

Several important problems are known to be decidable for one-way transducers. The functionality problem for NFT, decidable in PTime [START_REF] Gurari | A note on finite-valued and finitely ambiguous transducers[END_REF], [START_REF] Béal | Squaring transducers: an efficient procedure for deciding functionality and sequentiality[END_REF], asks whether a given NFT is functional. The determinizability problem, also decidable in PTime [START_REF] Weber | Economy of description for single-valued transducers[END_REF], [START_REF] Béal | Squaring transducers: an efficient procedure for deciding functionality and sequentiality[END_REF], asks whether a given functional NFT can be determinized, i.e. defines a subsequential function. Subsequential functions are those functions that can be defined by DFTs equipped with an additional output function from final states to finite strings, which is used to append a last string to the output when the computation terminates successfully in some final state. Over strings that always end with a unique end marker, subsequential functions are exactly the functions definable by DFTs. For 2NFTs, the functionality problem is known to be decidable [START_REF] Culik | The equivalence problem for singlevalued two-way transducers (on NPDT0L languages) is decidable[END_REF]. Therefore the determinizability problem is also decidable for 2NFTs, since functional 2NFTs and 2DFTs have the same expressive power. In the same line of research, we address a definability problem in this paper.

In particular we answer the fundamental question of NFTdefinability of transductions defined by functional 2NFTs. Theorem 1. For all functional 2NFTs 𝑇 , it is decidable whether the transduction defined by 𝑇 is definable by an NFT.

The proof of Theorem 1 extends the proof of Rabin and Scott [START_REF] Rabin | Finite automata and their decision problems[END_REF] from automata to transducers 1 . The original proof of Rabin and Scott is based on the following observation about the runs of two-way automata. Their shapes have a nesting structure: they are composed of many zigzags, each zigzag being itself composed of simpler zigzags. Basic zigzags are called 𝑧-motions as their shapes look like a 𝑍. Rabin and Scott prove that for automata, it is always possible to replace a 𝑧motion by a single pass. Then from a two-way automaton 𝐴 it is possible to construct an equivalent two-way automaton 𝐵 (called the squeeze of 𝐴) which is simpler in the following sense: accepting runs of 𝐵 are those of 𝐴 in which some 𝑧motions have been replaced by single pass runs. Last, they argue2 that after a number of applications of this construction that depends only on the number of states of 𝐴, every zigzag can be removed, yielding an equivalent one-way automaton.

The extension to 2NFTs faces the following additional difficulty: it is not always possible to replace a 𝑧-motion of a transducer by a single pass. Intuitively, this is due to the fact that 2NFTs are strictly more expressive than NFTs. As our aim is to decide when a 2NFT 𝑇 is NFT-definable, we need to prove that the NFT-definability of 𝑇 implies that of every 𝑧-motion of 𝑇 , to be able to apply the squeeze construction. The main technical contribution of this paper is thus the study of the NFT-definability of 𝑧-motions of transducers. We show that this problem is decidable, and identify a characterization which allows one to prove that the NFT-definability of 𝑇 implies that of every 𝑧-motion of 𝑇 .

This characterization expresses requirements about the output strings produced along loops of 𝑧-motions. We show that when 𝑧-motions are NFT-definable, the output strings produced by the three passes on a loop are not arbitrary, but conjugates. This allows us to give a precise characterization of the form of these output strings. We show that it is decidable to check whether all outputs words have this form. Last, we present how to use this characterization to simulate an NFTdefinable 𝑧-motion by a single pass. Applications By Theorem 1 and since functionality is decid-able for 2NFTs, it is also decidable, given a 2NFT, whether the transduction it defines is definable by a functional NFT. Another corollary of Theorem 1 and the fact that functionality of 2NFTs and determinizability of NFTs are both decidable is the following theorem: Theorem 2. For all 2NFTs 𝑇 , it is decidable whether the transduction defined by 𝑇 is a subsequential function.

A practical application of this result lies in the static analysis of memory requirements for evaluating (textual and functional) document transformations in a streaming fashion. In this scenario, the input string is received as a left-to-right stream. When the input stream is huge, it should not be entirely loaded in memory but rather processed on-the-fly. Similarly, the output string should not be stored in memory but produced as a stream. The remaining amount of memory needed to evaluate the transformation characterizes its streaming space complexity. Streamable transformations are those transformations for which the required memory is bounded by a constant, and therefore is independent on the length of the input stream. It is known that streamable transformations correspond to transformations definable by subsequential (functional) NFTs [START_REF] Filiot | Streamability of nested word transductions[END_REF]. The streamabability problem asks, given a transformation defined by some transducer, whether it is streamable. Therefore for transformations defined by functional NFTs, streamability coincides with determinizability, and is decidable in PTime [START_REF] Weber | Economy of description for single-valued transducers[END_REF], [START_REF] Béal | Squaring transducers: an efficient procedure for deciding functionality and sequentiality[END_REF]. Theorem 2 is a generalization of this latter result to regular transformations, i.e. transformations defined by functional 2NFTs, MSO transducers or streaming string transducers [START_REF] Alur | Expressiveness of streaming string transducers[END_REF]. Other streamability problems have been studied for XML validation [START_REF] Segoufin | Constant-memory validation of streaming XML documents against DTDs[END_REF], [START_REF] Bárány | Regularity problems for visibly pushdown languages[END_REF], XML queries [START_REF] Gauwin | Queries on XML streams with bounded delay and concurrency[END_REF] and XML transformations [START_REF] Filiot | Streamability of nested word transductions[END_REF]. However the XML tree transformations of [START_REF] Filiot | Streamability of nested word transductions[END_REF] are incomparable with the regular string transformations studied in this paper.

Related work

Most of the related work has already been mentioned. To the best of our knowledge, it is the first result that addresses a definability problem between two-way and one-way transducers. In [START_REF] Carton | Two-way transducers with a two-way output tape[END_REF], two-way transducers with a twoway output tape are introduced with a special output policy: each time a cell at position 𝑖 of the input tape is processed, the output is written in the cell at position 𝑖 of the output tape. With that restriction, it is shown that two-way and one-way transducers (NFTs) define the same class of functions. In [START_REF] Anselmo | Two-way automata with multiplicity[END_REF], the result of Rabin and Scott, and Shepherdson, is extended to two-way automata with multiplicities. In this context, two-way automata strictly extend one-way automata.

Organization of the paper Section II introduces necessary preliminary definitions. In Section III, we describe the general decision procedure for testing NFT-definability of functional 2NFTs. We introduce 𝑧-motion transductions induced by 2NFTs and show that their NFT-definability is necessary. The decidability of this necessary condition as well as the construction from 𝑧-motion transducers to NFTs are the most technical results of this paper and are the subject of Section IV. We finally discuss side results and further questions in Section V.

All technical details and omitted proofs can be found in the full version of this paper [START_REF] Filiot | From two-way to one-way finite state transducers[END_REF]. Automata A non-deterministic two-way finite state automaton 3 (2NFA) over a finite alphabet Σ is a tuple 𝐴 = (𝑄, 𝑞 0 , 𝐹, Δ) where 𝑄 is a finite set of states, 𝑞 0 ∈ 𝑄 is the initial state, 𝐹 ⊆ 𝑄 is a set of final states, and Δ is the transition relation, of type Δ ⊆ 𝑄 × Σ × 𝑄 × {+1, -1}. It is deterministic if for all (𝑝, 𝑎) ∈ 𝑄 × Σ, there is at most one pair (𝑞, 𝑚) ∈ 𝑄 × {+1, -1} such that (𝑝, 𝑎, 𝑞, 𝑚) ∈ Δ. In order to see how words are evaluated by 𝐴, it is convenient to see the input as a right-infinite input tape containing the word (starting at the first cell) followed by blank symbols. Initially the head of 𝐴 is on the first cell in state 𝑞 0 (the cell at position 1). When 𝐴 reads an input symbol, depending on the transitions in Δ, its head moves to the left (-1) if the head was not in the first cell, or to the right (+1) and changes its state. 𝐴 stops as soon as it reaches a blank symbol (therefore at the right of the input word), and the word is accepted if the current state is final.

II. ONE-WAY AND TWO-WAY FINITE STATE MACHINES

Words, Languages and Transductions

A configuration of 𝐴 is a pair (𝑞, 𝑖) ∈ 𝑄 × (ℕ -{0}) where 𝑞 is a state and 𝑖 is a position on the input tape. A run 𝜌 of 𝐴 is a finite sequence of configurations. The run 𝜌 = (𝑝 A non-deterministic (one-way) finite state automaton (NFA) is a 2NFA such that Δ ⊆ 𝑄 × Σ × 𝑄 × {+1}, therefore we will often see Δ as a subset of 𝑄 × Σ × 𝑄. Any 2NFA is effectively equivalent to an NFA. It was first proved by Rabin and Scott, and independently by Shepherdson [START_REF] Rabin | Finite automata and their decision problems[END_REF], [START_REF] Shepherdson | The reduction of two-way automata to one-way automata[END_REF]. Transducers Non-deterministic two-way finite state transducers (2NFTs) over Σ extend NFAs with a one-way left-toright output tape. They are defined as 2NFAs except that the transition relation Δ is extended with outputs:

Δ ⊆ 𝑄 × Σ × Σ * × 𝑄 × {-1, +1}. If a transition (𝑞, 𝑎, 𝑣, 𝑞 ′ , 𝑚)
is fired on a letter 𝑎, the word 𝑣 is appended to the right of the output tape and the transducer goes to state 𝑞 ′ . Wlog we assume that for all 𝑝, 𝑞 ∈ 𝑄, 𝑎 ∈ Σ and 𝑚 ∈ {+1, -1}, there exists at most one 𝑣 ∈ Σ * such that (𝑝, 𝑎, 𝑣, 𝑞, 𝑚) ∈ Δ. We also denote 𝑣 by out(𝑝, 𝑎, 𝑞, 𝑚).

A run of a 2NFTs is a run of its underlying automaton, i.e. the 2NFAs obtained by ignoring the output. A run 𝜌 may be simultaneously a run on a word 𝑢 and on a word 𝑢 ′ ∕ = 𝑢. However, when the underlying input word is given, there is a unique sequence of transitions associated with 𝜌. Given a 2NFT 𝑇 , an input word 𝑢 ∈ Σ * and a run 𝜌 = (𝑝 1 , 𝑖 1 ) . . . (𝑝 𝑚 , 𝑖 𝑚 ) of 𝑇 on 𝑢, the output of 𝜌 on 𝑢, denoted by out 𝑢 (𝜌), is the word obtained by concatenating the outputs of the transitions followed by

𝜌, i.e. out 𝑢 (𝜌) = out(𝑝 1 , 𝑢[𝑖 1 ], 𝑝 2 , 𝑖 2 -𝑖 1 ) ⋅ ⋅ ⋅ out(𝑝 𝑚-1 , 𝑢[𝑖 𝑚-1 ], 𝑝 𝑚 , 𝑖 𝑚 -𝑖 𝑚-1 ).
If 𝜌 contains a single configuration, we let out 𝑢 (𝜌) = 𝜖. When the underlying input word 𝑢 is clear from the context, we may omit the exponent 𝑢. The transduction defined by 𝑇 is the relation 𝑅(𝑇 ) = {(𝑢, out 𝑢 (𝜌)) | 𝜌 is an accepting run of 𝑇 on 𝑢}. We may often just write 𝑇 when it is clear from the context. A 2NFT 𝑇 is functional if the transduction it defines is functional. The class of functional 2NFTs is denoted by f2NFT. In this paper, we mainly focus on f2NFTs. The domain of 𝑇 is defined as dom(𝑇 ) = dom(𝑅(𝑇 )). The domain dom(𝑇 ) is a regular language that can be defined by the 2NFA obtained by projecting away the output part of the transitions of 𝑇 , called the underlying input automaton. A deterministic two-way finite state transducer (2DFT) is a 2NFT whose underlying input automaton is deterministic. Note that 2DFTs are always functional, as there is at most one accepting run per input word. A non-deterministic (one-way) finite state transducer (NFT) is a 2NFT whose underlying automaton is an NFA4 . It is deterministic (written DFT) if the underlying automaton is a DFA.

We say that two transducers 𝑇, 𝑇 ′ are equivalent, denoted by 𝑇 ≡ 𝑇 ′ , whenever they define the same transduction, i.e. 𝑅(𝑇 ) = 𝑅(𝑇 ′ ). For all transducer classes 𝒞, we say that a transduction 𝑅 ⊆ Σ * × Σ * is 𝒞-definable if there exists 𝑇 ∈𝒞 such that 𝑅=𝑅(𝑇 ). Given two classes 𝒞, 𝒞 ′ of transducers, and a transducer 𝑇 ∈ 𝒞, we say that 𝑇 is (effectively) 𝒞 ′ -definable if one can construct an equivalent transducer 𝑇 ′ ∈ 𝒞 ′ .

The (𝒞, 𝒞 ′ )-definability problem takes as input a transducer 𝑇 ∈ 𝒞 and asks to decide whether 𝑇 is 𝒞 ′ -definable. If so, one may want to construct an equivalent transducer 𝑇 ′ ∈ 𝒞 ′ . In this paper, we prove that (f2NFT, NFT)-definability is decidable.

It is known that whether an NFT 𝑇 is functional can be decided in PTime [START_REF] Gurari | A note on finite-valued and finitely ambiguous transducers[END_REF]. The class of functional NFTs is denoted by fNFT. Functional NFTs are strictly more expressive than DFTs. For instance, the function that maps any word 𝑢 ∈ {𝑎, 𝑏} + to 𝑎 |𝑢| if 𝑢[|𝑢|] = 𝑎, and to 𝑏 |𝑢| otherwise, is fNFTdefinable but not DFT-definable. This result does not hold for 2NFTs: functional 2NFTs and 2DFTs define the same class of transductions (Theorem 22 of [START_REF] Engelfriet | MSO definable string transductions and two-way finite-state transducers[END_REF]). Examples Let Σ = {𝑎, 𝑏} and # ∕ ∈ Σ, and consider the transductions 1)

𝑅 0 = {(𝑢, 𝑎 |𝑢| ) | 𝑢 ∈ Σ + , 𝑢[|𝑢|] = 𝑎} 2) 𝑅 1 = {(𝑢, 𝑏 |𝑢| ) | 𝑢 ∈ Σ + , 𝑢[|𝑢|] = 𝑏} ∪ 𝑅 0 3) 𝑅 2 = {(#𝑢#, #𝑢#) | 𝑢 ∈ Σ * }.
𝑅 0 is DFT-definable: it suffices to replace each letter by 𝑎 and to accept only if the last letter is 𝑎. Therefore it can be defined by the DFT

𝑇 0 =({𝑞 𝑎 , 𝑞 𝑏 }, 𝑞 𝑏 , {𝑞 𝑎 }, {(𝑞 𝑥 , 𝑦, 𝑎, 𝑞 𝑦 ) | 𝑥, 𝑦 ∈ Σ}).
𝑅 1 is fNFT-definable but not DFT-definable: similarly as before we can define a

DFT 𝑇 ′ 0 = ({𝑝 𝑎 , 𝑝 𝑏 }, 𝑝 𝑎 , {𝑝 𝑏 }, {(𝑝 𝑥 , 𝑦, 𝑏, 𝑝 𝑦 ) | 𝑥, 𝑦 ∈ Σ}) that defines the transduction {(𝑢, 𝑏 |𝑢| ) | 𝑢 ∈ Σ + , 𝑢[|𝑢|] = 𝑏},
and construct an NFT 𝑇 1 as follows: its initial state is some fresh state 𝑝 0 , and when reading 𝑥 ∈ Σ the first time, it non-deterministically goes to 𝑇 0 or 𝑇 ′ 0 by taking the transition (𝑝 0 , 𝑥, 𝑎, 𝑞 𝑥 ) or (𝑝 0 , 𝑥, 𝑏, 𝑝 𝑥 ), and proceeds in either 𝑇 0 or 𝑇 ′ 0 . Even if 𝑅 1 is functional, it is not DFT-definable, as the transformation depends on the property of the last letter, which can be arbitrarily far away from the beginning of the string.

𝑅 2 is 2DFT-definable: it suffices to go to the end of the word by producing 𝜖 each time a letter is read, to go back to the beginning while copying each input letter, and return to the end without outputting anything, and to accept. Hence it is defined by

𝑇 2 = ({𝑞 0 , 𝑞 1 , 𝑞 2 , 𝑞 3 , 𝑞 𝑓 }, 𝑞 0 , {𝑞 𝑓 }, 𝛿 2 )
where states 𝑞 1 , 𝑞 2 , 𝑞 3 denote passes, and 𝛿 2 is made of the transitions

(𝑞 0 , #, 𝜖, 𝑞 1 , +1), (𝑞 1 , 𝑥∈Σ, 𝜖, 𝑞 1 , +1) (during the first pass, move to the right), (𝑞 1 , #, 𝜖, 𝑞 2 , -1), (𝑞 2 , 𝑥∈Σ, 𝑥, 𝑞 2 , -1), (𝑞 2 , #, #, 𝑞 3 , +1), (𝑞 3 , 𝑥∈Σ, 𝜖, 𝑞 3 , +1), (𝑞 3 , #, #, 𝑞 𝑓 , +1).

Crossing Sequences, Loops and Finite-Crossing 2NFTs

The notion of crossing sequence is a useful notion in the theory of two-way automata [START_REF] Shepherdson | The reduction of two-way automata to one-way automata[END_REF], [START_REF] Hopcroft | Introduction to Automata Theory[END_REF], that allows one to pump runs of two-way automata. Given a 2NFA 𝐴, a word 𝑢 ∈ Σ * and a run 𝜌 of 𝐴 on 𝑢, the crossing sequence at position 𝑖, denoted by CS(𝜌, 𝑖) is given by the sequence of states 𝑞 such that (𝑞, 𝑖) occurs in 𝜌. The order of the sequence is given by the order in which the pairs of the form (𝑞, 𝑖) occur in 𝜌. [START_REF] Sakarovich | Elements of Automata Theory[END_REF] and CS(𝜌, 3) = 𝑞 7 . We write CS(𝜌) the sequence CS(𝜌, 1), . . . , CS(𝜌, |𝑢| + 1).

E.g. if 𝜌 = (𝑞 1 , 1)(𝑞 2 , 2)(𝑞 3 , 1)(𝑞 4 , 2)(𝑞 5 , 1)(𝑞 6 , 2)(𝑞 7 , 3) then CS(𝜌, 1) = 𝑞 1 𝑞 3 𝑞 5 , CS(𝜌, 2) = 𝑞 2 𝑞 4 𝑞
Crossing sequences allow one to define the loops of a run. Given a run 𝜌 of the 2NFA 𝐴 on some word 𝑢 of length 𝑛, a pair of positions (𝑖, 𝑗) is a loop 5 

in 𝜌 if (𝑖) 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, (𝑖𝑖) CS(𝜌, 𝑖) = CS(𝜌, 𝑗) and (𝑖𝑖𝑖) 𝑢[𝑖] = 𝑢[𝑗]. Let 𝑢 1 = 𝑢[1..(𝑖 -1)], 𝑢 2 = 𝑢[𝑖..(𝑗 -1)] and 𝑢 3 = 𝑢[𝑗..𝑛]. If (𝑖, 𝑗) is a loop in 𝜌 and 𝑢 ∈ 𝐿(𝐴), then 𝑢 1 (𝑢 2 ) 𝑘 𝑢 3 ∈ 𝐿(𝐴)
for all 𝑘≥0. We say that a loop (𝑖, 𝑗) is empty if 𝑖 = 𝑗, in this case we have 𝑢 2 = 𝜀. The notions of crossing sequence and loop carry over to transducers through their underlying input automata.

Given a 2NFT 𝑇 , 𝑁 ∈ ℕ and a run 𝜌 of 𝑇 on a word of length 𝑛, 𝜌 is said to be 𝑁 -crossing if |CS(𝜌, 𝑖)| ≤ 𝑁 for all 𝑖 ∈ {1, . . . , 𝑛}. The transducer 𝑇 is finite-crossing if there exists 𝑁 ∈ ℕ such that for all (𝑢, 𝑣) ∈ 𝑅(𝑇 ), there is an accepting 𝑁 -crossing run 𝜌 on 𝑢 such that out(𝜌) = 𝑣. In that case, 𝑇 is said to be 𝑁 -crossing. It is easy to see that if 𝑇 is 𝑁crossing, then for all (𝑢, 𝑣) ∈ 𝑅(𝑇 ) there is an accepting run 𝜌 on 𝑢 such that out(𝜌) = 𝑣 and no states repeat in CS(𝜌, 𝑖) for all 𝑖 ∈ {1, . . . , |𝑢|}. Indeed, if some state 𝑞 repeats in some CS(𝜌, 𝑖), then it is possible to pump the subrun between the two occurrences of 𝑞 on CS(𝜌, 𝑖). This subrun has an empty output, otherwise 𝑇 would not be functional. Proposition 1. Any f2NFT with 𝑁 states is 𝑁 -crossing.

III. FROM TWO-WAY TO ONE-WAY TRANSDUCERS

In this section, we prove the main result of this paper, i.e. the decidability of (f2NFT, NFT)-definability.

A. Rabin and Scott's Construction for Automata

The proof of Theorem 1 relies on the same ideas as Rabin and Scott's construction for automata [START_REF] Rabin | Finite automata and their decision problems[END_REF]. It is based on the following key observation: Any accepting run is made of many zigzags, and those zigzags are organized by a nesting hierarchy: zigzag patterns may be composed of simpler zigzag patterns. The simplest zigzags of the hierarchy are those that do not nest any other zigzag: they are called 𝑧-motions. Rabin and Scott described a procedure that removes those zigzags by iterating a construction that removes 𝑧-motions.

A one-step sequence is an indexed sequence

𝑠 = 𝑎 1 , . . . , 𝑎 𝑛 of positions such that 𝑎 𝑖 ∈ {1, 2 . . . , 𝑚}, 𝑎 1 = 1, 𝑎 𝑛 = 𝑚, and |𝑎 𝑖+1 -𝑎 𝑖 | = 1.The sequence 𝑠 is 𝑁 -crossing if for all 𝑥 ∈ {1, 2 . . . , 𝑚} we have |{𝑖 | 𝑎 𝑖 = 𝑥}| ≤ 𝑁 . The reversals of 𝑠 are the indexes 1 < 𝑟 1 < 𝑟 2 < ⋅ ⋅ ⋅ < 𝑟 𝑙 < 𝑛 such that 𝑎 𝑟𝑖+1 = 𝑎 𝑟𝑖-1 .
In the sequel we let 𝑟 0 = 1 and 𝑟 𝑙+1 = 𝑛.

A 𝑧-motion 𝑧 in 𝑠 is a subsequence 𝑎 𝑒 , 𝑎 𝑒+1 , . . . 𝑎 𝑓 such that there is 0 < 𝑖 < 𝑙 with 𝑟 𝑖-1 ≤ 𝑒 < 𝑟 𝑖 < 𝑟 𝑖+1 < 𝑓 ≤ 𝑟 𝑖+2 , and 𝑎 𝑒 = 𝑎 𝑟𝑖+1 and 𝑎 𝑓 = 𝑎 𝑟𝑖 . We may denote 𝑧 by the pair of reversals (𝑟 𝑖 , 𝑟 𝑖+1 ). E.g. the sequences 𝑧 1 = 1, 2, 3, 2, 1, 2, 3 and 𝑧 2 = 4, 3, 2, 3, 4, 3, 2 are 𝑧-motions. The shape of a run 𝜌 is defined as the second projection of 𝜌, written shape(𝜌). A run 𝜌 is a 𝑧-motion run if shape(𝜌) is a 𝑧-motion. When there is no ambiguity, 𝑧-motion runs are just called 𝑧-motions.

𝑞1 • 𝑞2 • 𝑞3 • 𝑞4 • run of 𝑇 =⇒ 𝑅𝑇 (𝑞1, 𝑞2) • • 𝑅𝑇 (𝑞3, 𝑞4) • • 𝑞5 • 𝑞6 • run of 𝑇1 = squeeze(𝑇 ) =⇒ 𝐿𝑇 1 (𝑞5, 𝑞6) • • 𝑞7 • 𝑞8 • run of 𝑇2 = squeeze 2 (𝑇 ) =⇒ 𝐿𝑇 2 (𝑞7, 𝑞8) • • run of 𝑇3 = squeeze 3 (𝑇 )
Fig. 1. Zigzags removal by applications of squeeze.

If 𝑇 is a 2NFA, it is possible to construct a new automaton denoted by squeeze(𝑇 ) such that, for all accepting runs 𝜌 of 𝑇 on some input word 𝑢, there exists a "simpler" accepting run of squeeze(𝑇 ) on 𝑢, obtained from 𝜌 by replacing some 𝑧motions by one-way runs that simulate three passes in parallel. It is illustrated by Fig. 1. For instance at the first step, there are two 𝑧-motions from 𝑞 1 to 𝑞 2 and from 𝑞 3 to 𝑞 4 respectively. Applying squeeze(𝑇 ) consists in non-deterministically guessing those 𝑧-motions and simulating them by one-way runs. This is done by the NFA 𝑅 𝑇 (𝑞 1 , 𝑞 2 ) and 𝑅 𝑇 (𝑞 3 , 𝑞 4 ) respectively. Depending on whether the 𝑧-motions enter from the left or the right, 𝑧-motions are replaced by runs of NFAs 𝑅 𝑇 (., .) (that read the input backwardly) or 𝐿 𝑇 (., .) , as illustrated by the second iteration of squeeze on Fig. 1.

An 𝑁 -crossing run 𝜌 can be simplified into a one-way run after a constant number of applications of squeeze. This result is unpublished so we prove it in this paper. In particular, we show that if 𝜌 is 𝑁 -crossing, then its zigzag nesting depth decreases after 𝑁 steps. Moreover, if 𝜌 is 𝑁 -crossing, then its zigzag nesting depth is also bounded by 𝑁 . Therefore after 𝑁 2 applications of squeeze, 𝜌 is transformed into a simple one-way run. It is sufficient to prove those results at the level of integer sequences. In particular, one can define squeeze(𝑠) the set of sequences obtained from a one-step sequence 𝑠 by replacing some 𝑧-motions of 𝑠 by strictly increasing or decreasing subsequences (for more details see [START_REF] Filiot | From two-way to one-way finite state transducers[END_REF]).

Lemma 2.

Let 𝑠 be an 𝑁 -crossing one-step sequence over {1, . . . , 𝑚}. Then 1, 2, . . . , 𝑚 is in squeeze 𝑁 2 (𝑠).

At the automata level, it is known that for all words 𝑢 accepted by a 2NFA 𝑇 with 𝑁 states, there exists an 𝑁crossing accepting run on 𝑢. Therefore it suffices to apply squeeze 𝑁 2 times to 𝑇 . One gets an equivalent 2NFA 𝑇 * from which the backward transitions can be removed while

• 𝑖1 𝑗1 𝑖2 𝑗2 𝑥0 𝑣1 𝑥1 𝑤1 𝑥2 𝑥4 𝑣2 𝑥3 𝑤2 𝑣3 𝑥5 𝑤3 𝑥6
Fig. 2. Output decomposition in property 𝒫.

preserving equivalence with 𝑇 * , and so 𝑇 .

B. Extension to transducers: overview

The construction used to show decidability of NFTdefinability of f2NFT follows the same ideas as Rabin and Scott's construction. The main difference relies in the transformation of the local transducers defined by 𝑧-motion runs (that we call ZNFTs) into NFTs. Our procedure is built over a ZNFT-to-NFT procedure. It is seen as a black-box in this section, but is the subject of the next section.

Compared to two-way automata, one faces an extra difficulty caused by the fact that 2NFTs (and ZNFTs) are not always NFT-definable. Therefore one defines a necessary condition that has to be tested each time we want to apply squeeze. Let us consider again Fig. 1 when 𝑇 is a 2NFT. One defines from 𝑇 the transductions induced by local 𝑧-motion runs from a starting state 𝑞 1 to an ending state 𝑞 2 , and show that those local transductions must be NFT-definable.

Once this necessary condition is satisfied, the construction squeeze can be applied and works as for Rabin and Scott's construction: the new transducer squeeze(𝑇 ) simulates 𝑇 and non-deterministically may guess that the next zigzag of 𝑇 is a 𝑧-motion run from some state 𝑞 1 to some state 𝑞 2 , and thus can be simulated by a run of some NFT 𝑅 𝑇 (𝑞 1 , 𝑞 2 ) or 𝐿 𝑇 (𝑞 1 , 𝑞 2 ), depending on whether it enters from the left or the right. Then squeeze(𝑇 ) switches to 𝑅 𝑇 (𝑞 1 , 𝑞 2 ) (if it entered from the right) and once 𝑅 𝑇 (𝑞 1 , 𝑞 2 ) reaches an accepting state, it may come back to its normal mode.

C. 𝑧-motion transducers

𝑧-motion transducers are defined like 2NFTs except that they must define functions and to be accepting, a run on a word of length 𝑛 must be of the form 𝜌.(𝑞 𝑓 , 𝑛 + 1) where 𝜌 is a 𝑧-motion run and 𝑞 𝑓 is an accepting state. Note that it implies that shape(𝜌) is always of the form 1, . . . , 𝑛, 𝑛-1, . . . , 1, . . . , 𝑛. The class of 𝑧-motion transducers is denoted by ZNFTs. Note that 𝑧-motion transducers are incomparable with f2NFTs. Indeed, 𝑧-motion transducers can define the transduction 𝑢 ∈ Σ * → 𝑢, which is not f2NFTdefinable as there are no end markers.

Let 𝑇 ∈ ZNFT and 𝜌 = (𝑝 1 , 1) . . . (𝑝 𝑛 , 𝑛) (𝑞 𝑛-1 , 𝑛-1) . . . (𝑞 1 , 1)(𝑟 2 , 2) . . . (𝑟 𝑛+1 , 𝑛 + 1) be a run of 𝑇 on a word of length 𝑛. We let 𝑞 𝑛 = 𝑝 𝑛 and 𝑟 We characterize the NFT-definability of a ZNFT by a property that we prove to be decidable. Intuitively, this property requires that the outputs produced by loops can be produced by a single forward pass: Definition 1 (𝒫-property). Let 𝑇 be a ZNFT. We say that 𝑇 satisfies the property 𝒫, denoted by 𝑇 |= 𝒫, if for all words 𝑢 ∈ dom(𝑇 ), for all accepting runs 𝜌 on 𝑢, and for all pairs of loops (𝑖 1 , 𝑗 1 ) and (𝑖 2 , 𝑗 2 ) of 𝜌 such that 𝑗 1 ≤ 𝑖 2 , there exist 𝛽 1 , 𝛽 2 , 𝛽 3 , 𝛽 4 , 𝛽 5 ∈ Σ * , 𝑓, 𝑔 : 

ℕ 2 → Σ * and constants 𝑐 1 , 𝑐 ′ 1 , 𝑐 2 , 𝑐 ′ 2 ≥ 0 such that 𝑐 1 , 𝑐 2 ∕ = 0 and for all 𝑘 1 , 𝑘 2 ≥ 0, 𝑓 (𝑘 1 , 𝑘 2 )𝑥 0 𝑣 𝜂1 1 𝑥 1 𝑤 𝜂2 1 𝑥 2 𝑤 𝜂2 2 𝑥 3 𝑣 𝜂1 2 𝑥 4 𝑣 𝜂1 3 𝑥 5 𝑤 𝜂2 3 𝑥 6 𝑔(𝑘 1 , 𝑘 2 ) = 𝛽 1 𝛽 𝑘1 2 𝛽 3 𝛽 𝑘2 4 𝛽
𝜌 = 𝜌 1 (𝑞 1 , 𝑖 1 )𝜌 2 (𝑞 2 , 𝑖 2 )𝜌 3 such that 𝑢 2 = 𝑢[𝑖 1 . . . 𝑖 2 ] and • (𝑞 1 , 𝑖 1 )𝜌 2 (𝑞 2 , 𝑖 2 ) is a 𝑧-motion run • out((𝑞 1 , 𝑖 1 )𝜌 2 (𝑞 2 , 𝑖 2 )) = 𝑣 2
𝑧-motions can be of two forms: either they start from the left and end to the right, or start from the right and end to the left. In order to avoid considering these two cases each time, we introduce the notation 𝑇 that denotes the mirror of 𝑇 : it is 𝑇 where the moves +1 are replaced by -1 and the moves -1 by +1. Moreover, the way 𝑇 reads the input tape is slightly modified: it starts in position 𝑛 and a run is accepting if it reaches position 0 in some accepting state. All the notions defined for 2NFTs carry over to their mirrors. In particular, (𝑢, 𝑣) ∈ 𝑅(𝑇 ) iff (𝑢, 𝑣) ∈ 𝑅(𝑇 ). The 𝑧-motion transductions ℛ 𝑇 (𝑞 1 , 𝑞 2 ) and ℒ 𝑇 (𝑞 1 , 𝑞 2 ) are symmetric in the following sense:

ℛ 𝑇 (𝑞 1 , 𝑞 2 ) = ℒ 𝑇 (𝑞 1 , 𝑞 2 ) and ℒ 𝑇 (𝑞 1 , 𝑞 2 ) = ℛ 𝑇 (𝑞 1 , 𝑞 2 ).
Proposition 2. The transductions ℛ 𝑇 (𝑞 1 , 𝑞 2 ) and ℒ 𝑇 (𝑞 1 , 𝑞 2 ) are ZNFT-definable.

Proof: We only consider the case ℒ 𝑇 (𝑞 1 , 𝑞 2 ), the other case being solved by using the equality ℛ 𝑇 (𝑞 1 , 𝑞 2 ) = ℒ 𝑇 (𝑞 1 , 𝑞 2 ). We first construct from 𝑇 a ZNFT 𝑍 ′ 𝑇 (𝑞 1 , 𝑞 2 ) which is like 𝑇 but its initial state is 𝑞 1 , and it can move to an accepting state whenever it is in 𝑞 2 . However 𝑍 ′ 𝑇 (𝑞 1 , 𝑞 2 ) may define input/output pairs (𝑢 2 , 𝑣 2 ) that cannot be embedded into some pair (𝑢, 𝑣) ∈ 𝑅(𝑇 ) as required by the definition of ℒ 𝑇 (𝑞 1 , 𝑞 2 ). Based on Shepherdson's construction, we modify 𝑍 ′ 𝑇 (𝑞 1 , 𝑞 2 ) in order to take this constraint into account.

In the next subsection, we show that ℛ 𝑇 (𝑞 1 , 𝑞 2 ) and ℒ 𝑇 (𝑞 1 , 𝑞 2 ) must necessarily be NFT-definable for 𝑇 to be NFT-definable. For that purpose, it is crucial in Definition 2 to make sure that the 𝑧-motion (𝑞 1 , 𝑖 1 )𝜌 2 (𝑞 2 , 𝑖 2 ) can be embedded into a global accepting run of 𝑇 . Without that restriction, it might be the case that ℒ 𝑇 (𝑞 1 , 𝑞 2 ) or ℛ 𝑇 (𝑞 1 , 𝑞 2 ) is not NFT-definable although the 2NFT 𝑇 is. Indeed, the domain of ℒ 𝑇 (𝑞 1 , 𝑞 2 ) or ℛ 𝑇 (𝑞 1 , 𝑞 2 ) would be too permissive and accept words that would be otherwise rejected by other passes of global runs of 𝑇 . This is another difficulty when lifting Rabin and Scott's proof to transducers, as for automata, the context in which a 𝑧-motion occurs is not important.

D. Decision procedure and proof of Theorem 1

We show that the construction squeeze(𝑇 ) can be applied if the following necessary condition is satisfied. 

Lemma 4. If

𝑢 = 𝑢 1 𝑢 2 𝑢 3 𝑢 4 𝑢 5 with 𝑢 2 = 𝑢[𝑖 1 . . . 𝑗 1 -1] and 𝑢 4 = 𝑢[𝑖 2 . . . 𝑗 2 -1]
. By definition of the transduction ℒ 𝑇 (𝑞 1 , 𝑞 2 ), any word in dom(𝑍) can be extended into a word in dom(𝑇 ). By hypothesis, 𝑇 is NFTdefinable, thus there exists an equivalent NFT 𝑇 ′ . As 𝑇 ′ has finitely many states, it is possible, by iterating the loops (𝑖 1 , 𝑗 1 ) and (𝑖 2 , 𝑗 2 ), to identify an input word of the form

𝑢 ′ = 𝛼𝑢 1 𝑢 𝑐1 2 𝑢 𝑐2 2 𝑢 𝑐3 2 𝑢 3 𝑢 𝑐 ′ 1 4 𝑢 𝑐 ′ 2 4 𝑢 𝑐 ′ 3 4 𝑢 5 𝛼 ′
and a run 𝜌 ′ of 𝑇 ′ on this word which has two loops on the input subwords 𝑢 𝑐2 2 and 𝑢

𝑐 ′ 2 4
. It is then easy to conclude. Construction of squeeze(𝑇 ) Assuming that the necessary condition is satisfied, we now explain how to construct the f2NFT squeeze(𝑇 ). By hypothesis, the transductions ℒ 𝑇 (𝑞 1 , 𝑞 2 ) and ℛ 𝑇 (𝑞 1 , 𝑞 2 ) are NFT-definable for all 𝑞 1 , 𝑞 2 by NFT 𝐿 𝑇 (𝑞 1 , 𝑞 2 ) and 𝑅 𝑇 (𝑞 1 , 𝑞 2 ) respectively (they exist by Proposition 2 and Lemma 3). As already said before, the main idea to define squeeze(𝑇 ) is to non-deterministically (but repeatedly) apply 𝐿 𝑇 (𝑞 1 , 𝑞 2 ), 𝑅 𝑇 (𝑞 1 , 𝑞 2 ), or 𝑇 , for some 𝑞 1 , 𝑞 2 ∈ 𝑄. However when applying 𝑅 𝑇 (𝑞 1 , 𝑞 2 ), the head of squeeze(𝑇 ) should move from the right to the left, so that we have to mirror the transitions of 𝑅 𝑇 (𝑞 1 , 𝑞 2 ).

The transducer squeeze(𝑇 ) has two modes, Z-mode or Tmode. In T-mode, it works as 𝑇 until it non-deterministically decides that the next zigzag is a 𝑧-motion from some state 𝑞 1 to some state 𝑞 2 . Then it goes in Z-mode and runs 𝐿 𝑇 (𝑞 1 , 𝑞 2 ) or 𝑅 𝑇 (𝑞 1 , 𝑞 2 ), in which transitions to an accepting state have been replaced by transitions from 𝑞 2 in 𝑇 , so that squeeze(𝑇 ) returns in T-mode. From those transitions we also add transitions from the initial states of 𝐿 𝑇 (𝑞 2 , 𝑞 3 ) and 𝑅 𝑇 (𝑞 2 , 𝑞 3 ) for all 𝑞 3 ∈ 𝑄, in case squeeze(𝑇 ) guesses that

𝑇 ∈ ZNFT 𝑇 ′ ∈ 𝜖ZNFT 𝑇 ′′ ∈ fNFT 𝑇 |= 𝒫 ⇒ 𝑇 ≡ 𝑇 ′ 𝑇 ′ |= 𝒫 ⇒ 𝑇 ′ ≡ 𝑇 ′′ 𝜖 Fig. 3. From ZNFT to NFT.
the next 𝑧-motion starts immediately at the end of the previous 𝑧-motion (for more details see [START_REF] Filiot | From two-way to one-way finite state transducers[END_REF]).

Proposition 3. Let 𝑇 ∈ f2NFT such that 𝑇 is NFT-definable. Then squeeze(𝑇 ) is defined and equivalent to 𝑇 .

Let 𝑇 ∈ f2NFT. If 𝑇 is NFT-definable, then the operator squeeze can be iterated on 𝑇 while preserving equivalence with 𝑇 , by the latter proposition. By Proposition 1 𝑇 is 𝑁crossing, and therefore, based on Lemma 2, it suffices to iterate squeeze 𝑁 2 times to remove all zigzags from accepting runs of 𝑇 , as stated by the following lemma: Lemma 5. Let 𝑇 be a f2NFT with 𝑁 states. If 𝑇 is fNFTdefinable, then squeeze 𝑁 2 (𝑇 ) is defined and equivalent to 𝑇 , and moreover, for all (𝑢, 𝑣) ∈ 𝑅(𝑇 ), there exists an accepting run 𝜌 of squeeze 𝑁 2 (𝑇 ) on 𝑢 such that out(𝜌) = 𝑣 and 𝜌 is made of forward transitions only.

Proof of Theorem 1

In order to decide whether a f2NFT 𝑇 is NFT-definable, it suffices to test whether squeeze can be applied 𝑁 2 times. More precisely, it suffices to set 𝑇 0 to 𝑇 , 𝑖 to 0, and, while 𝑇 𝑖 satisfies the necessary condition (which is decidable by Lemma 4) and 𝑖 ≤ 𝑁 2 , to increase 𝑖 and set 𝑇 𝑖 to squeeze(𝑇 𝑖-1 ). If the procedure exits the loops before reaching 𝑁 2 , then 𝑇 is not NFT-definable, otherwise it is NFT-definable by the NFT obtained by removing from 𝑇 𝑁 2 all its backward transitions.

IV. FROM ELEMENTARY ZIGZAGS TO LINES

This section is devoted to the proof of Lemma 3 that characterizes NFT-definable ZNFT by the property 𝒫 and states its decidability. Moreover, we give a ZNFT-to-NFT construction when 𝒫 is satisfied.

We first prove that Property 𝒫 is a necessary condition for NFT-definability. To prove the converse, we proceed in two steps. First, we define a procedure that tests whether a given ZNFT 𝑇 is equivalent to a ZNFT that does not output anything on its backward pass (called 𝜖ZNFT), and then define another procedure that tests whether the latter ZNFT is equivalent to an NFT. We show that it is always true whenever 𝑇 |= 𝒫. This approach is depicted in Fig. 3. The two steps are similar, therefore we mainly focus on the first step.

A. Property 𝒫 is a necessary condition

We show that Property 𝒫 only depends on transductions. 

𝑢 4 = 𝑢[𝑖 2 . . . (𝑗 2 -1)], with 𝑢 1 𝑢 𝑘1 2 𝑢 3 𝑢 𝑘2 4 𝑢 5 ∈ dom(𝑇 ′ ) for all 𝑘 1 , 𝑘 2 ≥ 0.
As 𝑇 is equivalent to 𝑇 ′ and has finitely many states, there exist iterations of the loops on 𝑢 2 and 𝑢 4 which constitute loops in 𝑇 on powers of 𝑢 2 and 𝑢 4 . Formally, there exist integers

𝑑 1 , 𝑒 1 , ℎ 1 , 𝑑 2 , 𝑒 2 , ℎ 2 with 𝑒 1 , 𝑒 2 > 0 such that 𝑇 has a run 𝜌 on the input word 𝑢 1 𝑢 𝑑1 2 𝑢 𝑒1 2 𝑢 ℎ1 2 𝑢 3 𝑢 𝑑2 4 𝑢 𝑒2 4 𝑢 ℎ2
4 𝑢 5 which contains a loop on the input subwords 𝑢 𝑒1 2 and 𝑢 𝑒2 4 . We conclude easily by using the fact that 𝑇 |= 𝒫. As a consequence, we obtain that Property 𝒫 is a necessary condition for NFT-definability.

Lemma 7. Let 𝑇 ∈ ZNFT. If 𝑇 is NFT-definable, then 𝑇 |= 𝒫.
Proof: Let 𝑇 ′ be an NFT equivalent to 𝑇 . It is easy to turn 𝑇 ′ into a ZNFT 𝑇 ′′ that performs two additional backward and forward passes which output 𝜀. Consider two loops (𝑖 1 , 𝑗 1 ) and (𝑗 1 , 𝑗 2 ) in a run of 𝑇 ′′ , and let us write the output of this run as depicted on Fig. 2. These loops are also loops of 𝑇 ′ , and thus we can define 𝛽 1 (resp. 𝛽 2 , 𝛽 3 , 𝛽 4 and 𝛽 5 ) as 𝑥 0 (resp. 𝑣 1 , 𝑥 1 , 𝑤 1 and 𝑥 2 ), and 𝑓, 𝑔 as the constant mappings equal to 𝜖. Hence 𝑇 ′′ |= 𝒫, and we conclude by Lemma 6.

B. From ZNFT to 𝜖ZNFT

The goal is to devise a procedure that tests whether the first and second passes (forward and backward) of the run can be done with a single forward pass, and constructs an NFT that realizes this single forward pass. Then, in order to obtain an 𝜖ZNFT, it suffices to replace the first pass of 𝑇 by the latter NFT and add a backward pass that just comes back to the beginning of the word and outputs 𝜖 all the time. The procedure constructs an 𝜖ZNFT, and tests whether it is equivalent to 𝑇 . It is based on the following key property that characterizes the form of the output words of the two first passes of any ZNFT satisfying 𝒫. Intuitively, when these words are long enough, they can be decomposed as words whose primitive roots are conjugate. 

, 𝑤 ′ , 𝑡 1 , 𝑡 2 , 𝑡 3 ∈ Σ * such that 𝑣 ∈ 𝑤𝑡 1 𝑡 * 2 𝑡 3 𝑤 ′ and: out 1 [1, ℓ] = 𝑤 out 2 [1, ℓ] = 𝑡 3 out 1 [ℓ, 𝑛]out 2 [ℓ, 𝑛]∈𝑡 1 𝑡 * 2 out 3 [1, 𝑛 + 1] = 𝑤 ′ |𝑡 𝑖 | ≤ 2𝐾, ∀𝑖 ∈ {1, 2, 3}
This decomposition is depicted in Fig. 4. 𝑇 satisfies property 𝒫 1 , denoted 𝑇 |= 𝒫 1 , if all (𝑢, 𝑣) ∈ 𝑅(𝑇 ) satisfy it. Proof:

• • • • • • • • • • • • • • 𝑢[1] 𝑢[2] 𝑢[𝑖] 𝑢[𝑗] 𝑢[𝑛] input 𝑝1 𝑝2 𝑝𝑖 𝑝𝑗 𝑝𝑛-1 𝑞1 𝑞2 𝑞𝑖 𝑞𝑗 𝑞𝑛-1 𝑝𝑛=𝑞𝑛 output loop 𝑢[𝑖] = 𝑢[𝑗], 𝑞𝑖 = 𝑞𝑗 , 𝑝𝑖 = 𝑝𝑗 𝑥0 𝑣1 𝑥1 𝑣2 𝑥2
• If |out 2 [1, 𝑛 -1]| ≤ 𝐾, then clearly, it suffices to take ℓ = 𝑛, 𝑡 1 = out 2 [𝑛 -1, 𝑛], 𝑡 2 = 𝜀, 𝑡 3 = out 2 [0, 𝑛-1], 𝑤 = out 1 [1, 𝑛] and 𝑤 ′ = out 3 [1, 𝑛 + 1]. • Otherwise, |out 2 [1, 𝑛 -1]| > 𝐾.
Therefore 𝑢 is of length 2.𝑚 3 .|Σ| at least and there exists a (non-empty) loop (𝑖, 𝑗) in 𝜌. We can always choose this loop such that

|out 2 [1, 𝑖]| ≤ 𝐾 and 1 ≤ |out 2 [𝑖, 𝑗]| ≤ 𝐾.
The loop partitions the input and output words into factors that are depicted in Fig. 5 (only the two first passes are depicted). Formally, let

𝑢 = 𝑢 1 𝑢 2 𝑢 3 such that 𝑢 2 = 𝑢[𝑖 . . . (𝑗-1)]. Let 𝑥 0 = out 1 [1, 𝑖], 𝑣 1 = out 1 [𝑖, 𝑗], 𝑥 1 = out 1 [𝑗, 𝑛]out 2 [𝑗, 𝑛], 𝑣 2 = out 2 [𝑖, 𝑗], 𝑥 2 = out 1 [1, 𝑖], 𝑥 3 = out 3 [1, 𝑖], 𝑣 3 = out 3 [𝑖, 𝑗] and 𝑥 4 = out 3 [𝑗, 𝑛 + 1]. In particular, we have |𝑥 2 | ≤ 𝐾, 1 ≤ |𝑣 2 | ≤ 𝐾 and 𝑥 0 𝑣 1 𝑥 1 𝑣 2 𝑥 2 𝑥 3 𝑣 4 𝑥 4 ∈ 𝑇 (𝑢). Since (𝑖, 𝑗) is a loop we also get 𝑥 0 𝑣 𝑘 1 𝑥 1 𝑣 𝑘 2 𝑥 2 𝑥 3 𝑣 𝑘 3 𝑥 4 ∈ 𝑇 (𝑢 1 𝑢 𝑘 2 𝑢
3 ) for all 𝑘 ≥ 0. We then distinguish two cases:

1) If 𝑣 1 ∕ = 𝜖. We can apply Property 𝒫 by taking the second loop empty. We get that for all 𝑘 ≥ 0

𝑓 (𝑘)𝑥 0 𝑣 𝑘𝑐+𝑐 ′ 1 𝑥 1 𝑣 𝑘𝑐+𝑐 ′ 2 𝑥 2 𝑥 3 𝑣 𝑘𝑐+𝑐 ′ 3 𝑥 4 𝑔(𝑘) = 𝛽 1 𝛽 𝑘 2 𝛽 3
where 𝑓, 𝑔 : ℕ → Σ * , 𝑐 ∈ ℕ >0 , 𝑐 ′ ∈ ℕ, and 𝛽 1 , 𝛽 2 , 𝛽 3 ∈ Σ * . Since the above equality holds for all 𝑘 ≥ 0, we can apply Lemma 1 and we get 𝜇(𝑣 1 ) ∼ 𝜇(𝛽 2 ) 𝜇(𝛽 2 ) ∼ 𝜇(𝑣 2 ), and therefore 𝜇(𝑣 1 ) ∼ 𝜇(𝑣 2 ). So there exist 𝑥, 𝑦 ∈ Σ * such that 𝑣 1 ∈ (𝑥𝑦) * and 𝑣 2 ∈ (𝑦𝑥) * . One can show (see [START_REF] Filiot | From two-way to one-way finite state transducers[END_REF]) that 𝑣 1 𝑥 1 𝑣 2 ∈ 𝑥(𝑦𝑥) * . Then it suffices to take ℓ = 𝑖, 𝑤 = 𝑥 0 , 𝑡 1 = 𝑥, 𝑡 2 = 𝑦𝑥 and 𝑡 3 = 𝑥 2 .

2) The second case (𝑣 1 = 𝜖) is more complicated as it requires to use the full Property 𝒫, using two non-empty loops. First, we distinguish two cases whether |out 1 [𝑗, 𝑛]| ≤ 𝐾 or not. For the latter case, we identify a second loop and then apply Property 𝒫.

Construction of an 𝜖ZNFT from a ZNFT We construct an 𝜖ZNFT 𝑇 ′ from a ZNFT 𝑇 such that 𝑅(𝑇 ′ ) = {(𝑢, 𝑣) ∈ 𝑅(𝑇 ) | (𝑢, 𝑣) |= 𝒫 1 }. Intuitively, the main idea is to perform the two first passes in a single forward pass, followed by a non-producing backward pass, and the final third pass is exactly as 𝑇 does. Therefore, 𝑇 ′ guesses the words 𝑡 1 , 𝑡 2 and 𝑡 3 and makes sure that the output 𝑣 is indeed of the form characterized by 𝒫 1 . This can be done in a one-way fashion while simulating the forward and backward passes in parallel and by guessing non-deterministically the position ℓ. In addition, the output mechanism of 𝑇 ′ exploits the special form of 𝑣: the idea is to output powers of 𝑡 2 while simulating the two first passes.

First, let us describe how 𝑇 ′ simulates the forward and backward passes in parallel during the first forward pass. It guesses both the state of the backward pass, and the current symbol (this is needed as the symbol read by the backward transition is the next symbol). The first state (𝑞 * ) guessed for the backward pass needs to be stored, as the last (forward) pass should start from 𝑞 * . The transducer can go from state (𝑝, 𝑞, 𝜎) to state (𝑝 ′ , 𝑞 ′ , 𝜎 ′ ) if the current symbol is 𝜎 and there is a (forward) transition (𝑝, 𝜎, 𝑥, 𝑝 ′ , +1) and a (backward) transition (𝑞 ′ , 𝜎 ′ , 𝑦, 𝑞, -1). Therefore if 𝑄 is the set of states of 𝑇 , 𝑇 ′ uses, on the first pass, elements of 𝑄 × 𝑄 × Σ in its states. The transducer 𝑇 ′ can non-deterministically decide to perform the backward and non-producing backward pass whenever it is in some state (𝑞, 𝑞, 𝜎) and the current symbol is 𝜎. This indeed happens precisely when the forward and backward passes are in the same state 𝑞. If the current symbol is not the last of the input word, then the whole run of 𝑇 ′ is not a 𝑧-motion and therefore it is not accepting.

Second, we describe how the 𝜖ZNFT 𝑇 ′ , with the guess of 𝑡 1 , 𝑡 2 , 𝑡 3 , verifies during its first forward pass that the output has the expected form, and how it produces this output. During the first pass, 𝑇 ′ can be in two modes: In mode 1 (before the guess ℓ), 𝑇 ′ verifies that the output on the simulated backward pass is 𝑡 3 and proceeds as 𝑇 in the first forward pass (it outputs what 𝑇 outputs on the forward pass). Mode 2 starts when the guess ℓ has been made. In this mode, 𝑇 ′ first outputs 𝑡 1 and then verifies that the output of the forward/backward run from and to position ℓ is of the form 𝑡 1 𝑡 * 2 . It can be done by using pointers on 𝑡 1 and 𝑡 2 . There are two cases (guessed by 𝑇 ′ ): either 𝑡 1 ends during the forward pass or during the backward pass (using notations of Fig. 4, either 𝑡 1 is a prefix of 𝑥, or 𝑥 is a prefix of 𝑡 1 ).

In the first case, 𝑇 ′ needs a pointer on 𝑡 1 to make sure that the output of 𝑇 in the forward pass starts with 𝑡 1 . It also needs a pointer on 𝑡 2 , initially at the end of 𝑡 2 , to make sure that the output of 𝑇 on the simulated backward pass is a suffix of 𝑡 * 2 (the pointer moves backward, coming back to the last position of 𝑡 2 whenever it reaches the first position of 𝑡 2 ). Once the verification on 𝑡 1 is done, 𝑇 ′ starts, by using a pointer initially at the first position in 𝑡 2 , to verify that the output of 𝑇 in the forward pass is a prefix of 𝑡 * 2 . Once the forward and the simulated backward passes merge, the two pointers on 𝑡 2 must be at the same position, otherwise the run is rejected.

During this verification, 𝑇 ′ also has to output a power of 𝑡 2 (remind that it has already output 𝑡 1 ). However the transitions of 𝑇 may not output exactly one 𝑡 2 , nor a power of 𝑡 2 , but may cut 𝑡 2 before its end. Therefore 𝑇 ′ needs another pointer ℎ to know where it is in 𝑡 2 . Initially this pointer is at the first position of 𝑡 2 (ℎ = 1). Suppose that 𝑇 ′ simulates 𝑇 using the (forward) transition (𝑝, 𝜎, 𝑥, 𝑝 ′ , +1) and the (backward) transition (𝑞 ′ , 𝜎 ′ , 𝑦, 𝑞, -1). If this step occurs before the end of 𝑡 1 , then 𝑇 ′ outputs 𝑡 𝜔 2 [ℎ . . . (ℎ + |𝑦|)] (𝑡 𝜔 2 is the infinite concatenation of 𝑡 2 ), and the pointer ℎ is updated to

1 + ((ℎ + |𝑦|-1) 𝑚𝑜𝑑 |𝑡 2 |). Otherwise,𝑇 ′ outputs 𝑡 𝜔 2 [ℎ . . . (ℎ+|𝑥|+|𝑦|)] • 𝜖 ℓ1 ℓ2 𝑤 ≤ 3𝐾 𝑣1 𝑣2 ≤ 3𝐾 𝑤 ′ 𝑣1𝑣2 ∈ 𝑡1𝑡 * 2 𝑡3
Fig. 6. Decomposition of the output according to Property 𝒫 2 .

and ℎ is updated to 1 + ((ℎ

+ |𝑥| + |𝑦| -1) 𝑚𝑜𝑑 |𝑡 2 |).
The second case (when 𝑇 ′ guesses that 𝑡 1 ends during the backward pass) is similar. 𝑇 ′ has to guess exactly the position in the output where 𝑡 1 ends. On the first pass it verifies that the output is a prefix of 𝑡 1 , and on the simulated backward pass, it checks that the output is a suffix of 𝑡 * 2 (and outputs as many 𝑡 2 as necessary, like before), until the end of 𝑡 1 is guessed to occur. From that moment it enters a verification mode on both passes.

The main property of this construction is that no wrong output words are produced by 𝑇 ′ , due to the verification and the way the output words are produced, i.e. for all (𝑢, 𝑣) ∈ 𝑅(𝑇 ′ ), we have (𝑢, 𝑣) ∈ 𝑅(𝑇 ). We know that 𝑅(𝑇 ′ ) ⊆ 𝑅(𝑇 ), and since 𝑇 and 𝑇 ′ are both functional, they are equivalent iff dom(𝑇 ) ⊆ dom(𝑇 ′ ). Both domains can be defined by NFAs. Those NFAs simulate the three passes in parallel and make sure that those passes define a 𝑧-motion. Therefore testing the equivalence of 𝑇 and 𝑇 ′ amounts to test the equivalence of two NFAs.

C. From 𝜖ZNFT to NFT

We have seen how to go from a ZNFT to an 𝜖ZNFT. We now briefly sketch how to go from an 𝜖ZNFT to a (functional) NFT. Given an 𝜖ZNFT 𝑇 ′ , we define an fNFT 𝑇 ′′ such that 𝑇 ′ and 𝑇 ′′ are equivalent as soon as 𝑇 ′ |= 𝒫. The ideas are very similar to the previous construction therefore we do not give all the details here.

We exhibit a property on the form of output words produced by an 𝜖ZNFT that verifies 𝒫. Intuitively, apart from the beginning of the first pass, and the end of the second pass, if the two passes produce long enough outputs, then these outputs can be decomposed so as to exhibit conjugate primitive roots. 

1 ≤ ℓ 1 ≤ ℓ 2 ≤ 𝑛 and 𝑤, 𝑤 ′ , 𝑡 1 , 𝑡 2 , 𝑡 3 ∈ Σ * such that: out 1 [1, ℓ 1 ] = 𝑤 |𝑡 𝑖 | ≤ 3.𝐾, ∀𝑖 ∈ {1, 2, 3} out 3 [ℓ 2 , 𝑛 + 1] = 𝑤 ′ |out 1 [ℓ 2 , 𝑛]| ≤ 3.𝐾 out 1 [ℓ 1 , 𝑛]out 3 [1, ℓ 2 ] ∈ 𝑡 1 𝑡 * 2 𝑡 3 |out 3 [1, ℓ 1 ]| ≤ 3.𝐾 This decomposition is depicted in Fig. 6. 𝑇 ′ satisfies property 𝒫 2 , denoted 𝑇 |= 𝒫 2 , if all (𝑢, 𝑣) ∈ 𝑅(𝑇 ′ ) satisfy it.
The proof of the following proposition uses the same structure and techniques as that of Proposition 4. Using a (long) case analysis, we identify loops in runs, and apply Property 𝒫 to show that output words have the expected form.

Proposition 6. Let 𝑇 ′ ∈ 𝜖ZNFT. If 𝑇 ′ |= 𝒫, then 𝑇 ′ |= 𝒫 2 .
We can now sketch the construction of an fNFT 𝑇 ′′ which recognizes the subrelation of 𝑇 ′ defined as {(𝑢, 𝑣) ∈ 𝑅(𝑇 ′ ) | (𝑢, 𝑣) |= 𝒫 2 }. Again, the construction is rather similar and uses the same techniques to that of 𝑇 ′ starting from 𝑇 .

The transducer 𝑇 ′′ simulates, in a single forward pass, the three passes of 𝑇 ′ . Hence it also checks that the run of the ZNFT 𝑇 ′ it simulates is a 𝑧-motion run, which is a semantic restriction of accepting runs of ZNFTs. The fNFT 𝑇 ′′ also guesses positions ℓ 1 and ℓ 2 , and uses three modes accordingly. It also guesses the words 𝑡 1 , 𝑡 2 and 𝑡 3 , and words for out 3 [1, ℓ 1 ] and out 1 [ℓ 2 , 𝑛], which are all of bounded length (see Property 𝒫 2 ). The output of 𝑇 ′′ is produced according to the mode, using pointers to check the guesses, similarly to 𝑇 ′ .

If all the guesses happen to be verified, it outputs the correct output word, otherwise the input word is rejected. As a consequence, 𝑇 ′′ recognizes a subrelation of 𝑇 ′ and thus checking the equivalence of 𝑇 ′ and 𝑇 ′′ amounts to checking the equivalence of their domains (as the two transducers are functional), which is decidable. From Proposition 6 we get: Lemma 9. Let 𝑇 ′ ∈ 𝜖ZNFT. If 𝑇 ′ |= 𝒫, then 𝑇 ′ is equivalent to the fNFT 𝑇 ′′ . Moreover, the latter property is decidable.

Proof of Lemma 3. Lemma 7 states that if 𝑇 is NFT-definable, then 𝑇 |= 𝒫. Conversely, if 𝑇 |= 𝒫, then by Lemma 8, the first construction outputs an equivalent 𝜖ZNFT 𝑇 ′ . By Lemma 6, we have 𝑇 ′ |= 𝒫. By Lemma 9, the second construction outputs an equivalent NFT 𝑇 ′′ . Therefore 𝑇 is NFT-definable by 𝑇 ′′ . In order to decide whether 𝑇 |= 𝒫, it suffices to construct 𝑇 ′ , check that 𝑇 and 𝑇 ′ are equivalent, and then construct 𝑇 ′′ and check whether 𝑇 ′ and 𝑇 ′′ are equivalent. Both problems are decidable by Lemma 8 and 9.

V. DISCUSSION

Complexity The procedure to decide (f2NFT, NFT)definability is non-elementary exponential time and space. This is due to the ZNFT-to-NFT construction which outputs an NFT of doubly exponential size. Indeed, the first step of this construction transforms any ZNFT with 𝑛 states into an 𝜖ZNFT with at least |Σ| 4𝑜𝑛 3 |Σ| states, as the 𝜖ZNFT has to guess words of length 4𝑜𝑛 3 |Σ|, where 𝑜 is the maximal length of an output word of a transition. The 𝜖ZNFT-to-NFT construction also outputs an exponentially bigger transducer.

Therefore the squeeze operation outputs a transducer which is doubly exponentially larger. Since this operation has to be iterated 𝑁 2 times in the worst case, where 𝑁 is the number of states of the initial f2NFT, this leads to a non-elementary procedure. On the other hand, the best lower bound we have for this problem is PSpace (by a simple proof that reduces the emptiness problem of the intersection of 𝑛 DFAs is given in [START_REF] Filiot | From two-way to one-way finite state transducers[END_REF]). Succinctness It is already known that 2DFAs are exponentially more succinct than NFAs [START_REF] Birget | State-complexity of finite-state devices, state compressibility and incompressibility[END_REF]. Therefore this result carries over to transducers, already for transducers defining identity relations on some particular domains. However we show here a stronger result: the succinctness of 2NFTs also comes from the transduction part and not only from the domain part. We can indeed exhibit a family of NFT-definable transductions (𝑅 𝑛 ) 𝑛 that can be defined by 2DFTs that are exponentially more succinct than their smallest equivalent NFT, and such that the family of languages (dom(𝑅 𝑛 )) 𝑛 does not show an exponential blow up between 2DFAs and NFAs. For all 𝑛 ≥ 0, we define 𝑅 𝑛 whose domain is the set of words #𝑢# for all 𝑢 ∈ {𝑎, 𝑏} * of length 𝑛, and the transduction is the mirror transduction, i.e. 𝑅 𝑛 (#𝑢#) = #𝑢#. Clearly, 𝑅 𝑛 is definable by a 2DFT with 𝑂(𝑛) states that counts up to 𝑛 the length of the input word by a forward pass, and then mirrors it by a backward pass. It is also definable by an NFT with 𝑂(2 𝑛 ) states: the NFT guesses a word 𝑢 of length 𝑛 (so it requires 𝑂(2 𝑛 ) states), outputs its reverse, and then verifies that the guess was correct. It is easy to prove that any NFT defining 𝑅 𝑛 needs at least 2 𝑛 states by a pumping argument. On the other hand, the domain of 𝑅 𝑛 can be defined by a DFA with 𝑂(𝑛) states that counts the length of the input word up to 𝑛. Note that the alphabet does not depend on 𝑛.

Further Questions We have shown that (f2NFT, NFT)definability is decidable, however with a non-elementary procedure. We would like to characterize precisely the complexity of this problem. Our procedure works for functional 2NFTs, which are equivalent to 2DFTs. Therefore we could have done our proof directly for 2DFTs. However (functional) nondeterminism was added with no cost in the proof so we rather did it in this more general setting. The extension of our results to relations instead of functions is still open.

Our proof is an adaptation of the proof of Rabin and Scott [START_REF] Rabin | Finite automata and their decision problems[END_REF] to transducers. Alternative constructions based on the proofs of Shepherdson [START_REF] Shepherdson | The reduction of two-way automata to one-way automata[END_REF] or Vardi [START_REF] Vardi | A note on the reduction of two-way automata to one-way automata[END_REF], and alternative models such as streaming string transducers [START_REF] Alur | Expressiveness of streaming string transducers[END_REF] or MSO transformations [START_REF]Monadic second-order definable graph transductions: a survey[END_REF], [START_REF] Engelfriet | MSO definable string transductions and two-way finite-state transducers[END_REF], could lead to better complexity results or refined results. In particular, we believe that our results are highly related to the problem of minimizing the number of variables in a streaming string transducer.

Finally, we plan to study extensions of our results to infinite string tranformations, defined for instance by streaming string transducers [START_REF] Alur | Regular transformations of infinite strings[END_REF], and to tree transformations, following our initial motivation from XML applications.

  1 = 𝑞 1 and define the following shortcuts: for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, out 1 [𝑖, 𝑗] = out((𝑝 𝑖 , 𝑖) . . . (𝑝 𝑗 , 𝑗)), and out 2 [𝑖, 𝑗] = out((𝑞 𝑗 , 𝑗) . . . (𝑞 𝑖 , 𝑖)) and out 3 [𝑖, 𝑗] = out((𝑟 𝑖 , 𝑖) . . . (𝑟 𝑗 , 𝑗)), and out 3 [𝑖, 𝑛 + 1] = out((𝑟 𝑖 , 𝑖) . . . (𝑟 𝑛+1 , 𝑛 + 1)).
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 3 𝒫 1 -property). Let 𝑇 ∈ ZNFT with 𝑚 states, and let (𝑢, 𝑣) ∈ 𝑅(𝑇 ) where 𝑢 has length 𝑛. Let 𝐾 = 2.𝑜.𝑚 3 .|Σ| where 𝑜 = 𝑚𝑎𝑥{|𝑣| | (𝑝, 𝑎, 𝑣, 𝑞, 𝑚) ∈ Δ}. The pair (𝑢, 𝑣) satisfies the property 𝒫 1 , denoted by (𝑢, 𝑣) |= 𝒫 1 , if for all accepting runs 𝜌 on 𝑢, there exist a position 1 ≤ ℓ ≤ 𝑛 and 𝑤
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 54 Fig. 5. Decomposition of the two first passes of a 𝑧-motion run with loop. Proposition 4. Let 𝑇 ∈ ZNFT. If 𝑇 |= 𝒫, then 𝑇 |= 𝒫 1 .
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 58 Let 𝑇 ∈ ZNFT. 𝑅(𝑇 ′ ) = {(𝑢, 𝑣) ∈ 𝑅(𝑇 ) | (𝑢, 𝑣) |= 𝒫 1 }. Let 𝑇 ∈ ZNFT. If 𝑇 |= 𝒫, then 𝑇 is equivalent to the 𝜖ZNFT 𝑇 ′ .Moreover, the latter is decidable. Proof: If 𝑇 |= 𝒫, then by Proposition 4, 𝑇 |= 𝒫 1 . Therefore by Proposition 5, 𝑇 and 𝑇 ′ are equivalent.

  Given a finite alphabet Σ, we denote by Σ * the set of finite words over Σ, and by 𝜖 the empty word. The length of a word 𝑢 ∈ Σ * is its number of symbols, denoted by |𝑢|. For all 𝑖 ∈ {1, . . . , |𝑢|}, we denote by 𝑢[𝑖] the 𝑖-th letter of 𝑢. Given 1 ≤ 𝑖 ≤ 𝑗 ≤ |𝑢|, we denote by 𝑢[𝑖..𝑗] the word 𝑢[𝑖]𝑢[𝑖+1] . . . 𝑢[𝑗] and by 𝑢[𝑗..𝑖] the word 𝑢[𝑗]𝑢[𝑗 -1] . . . 𝑢[𝑖]. We say that 𝑣 ∈ Σ * is a factor of 𝑢 if there exist 𝑢 1 , 𝑢 2 ∈ Σ * such that 𝑢 = 𝑢 1 𝑣𝑢 2 . By 𝑢 we denote the mirror of 𝑢, i.e. the word of length |𝑢| such that 𝑢[𝑖] = 𝑢[|𝑢| -𝑖 + 1] for all 1 ≤ 𝑖 ≤ |𝑢|. The primitive root of 𝑢 ∈ Σ * is the shortest word 𝑣 such that 𝑢 = 𝑣 𝑘 for some integer 𝑘 ≥ 1, and is denoted by 𝜇(𝑢). Two words 𝑢 and 𝑣 are conjugates, denoted by ∼, if there exist 𝑥, 𝑦 ∈ Σ * such that 𝑢 = 𝑥𝑦 and 𝑣 = 𝑦𝑥, i.e. 𝑢 can be obtained from 𝑣 by a cyclic permutation. Note that ∼ is an equivalence relation. We will use this fundamental lemma: Let 𝑢, 𝑣 ∈ Σ * . If there exists 𝑛 ≥ 0 such that 𝑢 𝑛 and 𝑣 𝑛 have a common factor of length at least |𝑢| + |𝑣| -𝑔𝑐𝑑(|𝑢|, |𝑣|), then 𝜇(𝑢) ∼ 𝜇(𝑣). that if 𝜇(𝑢) ∼ 𝜇(𝑣), then there exist 𝑥, 𝑦 ∈ Σ * such that 𝑢 ∈ (𝑥𝑦) * and 𝑣 ∈ (𝑦𝑥) * . A language over Σ is a set 𝐿 ⊆ Σ * . A transduction over Σ is a relation 𝑅 ⊆ Σ * × Σ * . Its domain is denoted by dom(𝑅), i.e. dom(𝑅) = {𝑢 | ∃𝑣, (𝑢, 𝑣) ∈ 𝑅}, while its image {𝑣 | ∃𝑢, (𝑢, 𝑣) ∈ 𝑅} is denoted by 𝑖𝑚𝑔(𝑅). A transduction 𝑅 is functional if it is a function.

	Lemma 1 ([25]). Note

  1 , 𝑖 1 ) . . . (𝑝 𝑚 , 𝑖 𝑚 ) is a run on an input word 𝑢 ∈ Σ * of length 𝑛 if 𝑝 1 = 𝑞 0 , 𝑖 1 = 1, 𝑖 𝑚 ≤ 𝑛 + 1, and for all 𝑘 ∈ {1, . . . , 𝑚 -1}, 1 ≤ 𝑖 𝑘 ≤ 𝑛 and (𝑝 𝑘 , 𝑢[𝑖 𝑘 ], 𝑝 𝑘+1 , 𝑖 𝑘+1 -𝑖 𝑘 ) ∈ Δ. It is accepting if 𝑖 𝑚 = 𝑛 + 1 and 𝑝 𝑚 ∈ 𝐹 . The language of a 2NFA 𝐴, denoted by 𝐿(𝐴), is the set of words 𝑢 such that there exists an accepting run of 𝐴 on 𝑢.

  5 where 𝜂 𝑖 = 𝑘 𝑖 𝑐 𝑖 + 𝑐 ′ 𝑖 , 𝑖 ∈ {1, 2}, and, 𝑥 𝑖 's, 𝑣 𝑖 's and 𝑤 ′ 𝑖 𝑠 are words defined as depicted in Fig. 2. Let 𝑇 ∈ ZNFT. 𝑇 |= 𝒫 iff 𝑇 is NFT-definable. Moreover, 𝒫 is decidable and if 𝑇 |= 𝒫, one can (effectively) construct an equivalent NFT. 𝑞 0 , 𝐹, Δ) be a f2NFT and 𝑞 1 , 𝑞 2 ∈ 𝑄. The transduction ℒ 𝑇 (𝑞 1 , 𝑞 2 ) (resp. ℛ 𝑇 (𝑞 1 , 𝑞 2 )) is defined as the set of pairs (𝑢 2 , 𝑣 2 ) such that there exist 𝑢 ∈ Σ * , two positions 𝑖 1 < 𝑖 2 (resp. 𝑖 2 < 𝑖 1 ), an accepting run 𝜌 of 𝑇 on 𝑢 which can be decomposed as

	The following key lemma is proved in Section IV.
	Lemma 3. Definition 2 (𝑧-motion transductions induced by a f2NFT).
	Let 𝑇 = (𝑄,

  𝑇 is NFT-definable, then so are the transductions ℛ 𝑇 (𝑞 1 , 𝑞 2 ) and ℒ 𝑇 (𝑞 1 , 𝑞 2 ) for all states 𝑞 1 , 𝑞 2 . Moreover, it is decidable whether the transductions ℛ 𝑇 (𝑞 1 , 𝑞 2 ) and ℒ 𝑇 (𝑞 1 , 𝑞 2 ) are NFT-definable. Sketch of proof: We have seen in Lemma 3 that NFTdefinability of an ZNFT is characterized by Property 𝒫. Let 𝑍 ∈ ZNFT that defines ℒ 𝑇 (𝑞 1 , 𝑞 2 ) for some 𝑞 1 , 𝑞 2 , we thus sketch the proof that 𝑍 |= 𝒫. Consider two loops (𝑖 1 , 𝑗 1 ), (𝑖 2 , 𝑗 2 ) of a run 𝜌 of 𝑍 on some word 𝑢, as in the premises of Property 𝒫. They induce a decomposition of 𝑢 as

  Definition 4 (𝒫 2 -property). Let 𝑇 ′ ∈ 𝜖ZNFT with 𝑚 states, and let (𝑢, 𝑣) ∈ 𝑅(𝑇 ′ ) where 𝑢 has length 𝑛. Let 𝐾 = 2𝑜𝑚 3 |Σ| where 𝑜 = 𝑚𝑎𝑥{|𝑣| | (𝑝, 𝑎, 𝑣, 𝑞, 𝑚) ∈ Δ}. The pair (𝑢, 𝑣) satisfies the property 𝒫 2 , denoted by (𝑢, 𝑣) |= 𝒫 2 , if for all accepting runs 𝜌 on 𝑢, there exist two positions

Shepherdson [4] and then Vardi[START_REF] Vardi | A note on the reduction of two-way automata to one-way automata[END_REF] proposed arguably simpler constructions for automata. It is however not clear to us how to extend these constructions to transducers.

[START_REF] Thatcher | Generalized finite automata theory with an application to a decision problem of second-order logic[END_REF] To our knowledge, there is no published proof of this result, thus we prove it in this paper as we use it for transducers.

We follow the definition of Vardi[START_REF] Vardi | A note on the reduction of two-way automata to one-way automata[END_REF], but without stay transitions. This is without loss of generality though.

This definition implies that there is no 𝜖-transitions that can produce outputs, which may cause the image of an input word to be an infinite language. Those NFTs are sometimes called real-time in the literature.

Observe that we include the input letter in the notion of loop. We use this to avoid technical difficulties due to backward transitions (which do not read the local symbol, but its successor).
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