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In this short note, we extend the result of Galluccio, Goddyn, and Hell, which states that graphs of large girth excluding a minor are nearly bipartite. We also prove a similar result for the oriented chromatic number, from which follows in particular that graphs of large girth excluding a minor have oriented chromatic number at most 5, and for the pth chromatic number χp, from which follows in particular that graphs G of large girth excluding a minor have χp(G) ≤ p + 2.

Introduction

The circular chromatic number χ c (G) of a graph G, which is a refinement of its chromatic number, has received much attention recently (see [START_REF] Zhu | Recent developments in circular colouring of graphs[END_REF] for a survey on recent developments).

Recall that the circular chromatic number χ c (G) of a graph G is the infimum of rational numbers n k such that there is a mapping from the vertex set of G to Z n with the property that for adjacent vertices are mapped to elements at distance ≥ k.

In general, graphs of large girth can have arbitrary given circular chromatic number:

Theorem 1 (Nešetřil and Zhu [START_REF] Nešetřil | Construction of graphs with prescribed circular colorings[END_REF]). For any rational r ≥ 2 and any positive integers t, l, there is a graph G of girth at least l such that G has exactly t rcolorings, up to equivalence. In particular, for any r ≥ 2 and for any integer l, there is a graph G of girth at least l which is uniquely r-colorable and hence it has χ c (G) = r.

However, if restricted to special classes of graphs, large girth graphs may be forced to have small circular chromatic number. For instance: Theorem 2 (Galluccio, Goddyn, and Hell [START_REF] Galluccio | High-girth graphs avoiding a minor are nearly bipartite[END_REF]). For any integer n ≥ 4, for any ǫ > 0, there is an integer g such that every K n -minor free graph G with girth at least g has χ c (G) ≤ 2 + ǫ.

The aim of this paper is to extend Theorem 2 to other classes, all with a bounded expansion. Classes with bounded expansion have been introduced in [START_REF] Nešetřil | Linear time low tree-width partitions and algorithmic consequences[END_REF][START_REF]Grad and classes with bounded expansion I. decompositions[END_REF], and are based on the requirement for the graph invariant ∇ r (G) to be bounded in the class for each r.

Denote by V (G) and E(G) the vertex set and the edge set of G. Also denote by

|G| = |V (G)| (resp. G = |E(G)|) the order of G (resp. size).
Let G, H be graphs with V (H) = {v 1 , . . . , v h } and let r be an integer. A graph H is a shallow minor of a graph G at depth r, if there exists disjoint subsets A 1 , . . . , A h of V (G) such that

• the subgraph of G induced by A i is connected and as radius at most r, • if v i is adjacent to v j in H, then some vertex in A i is adjacent in G to some vertex in A j . We denote [START_REF]Grad and classes with bounded expansion I. decompositions[END_REF][START_REF]Sparsity (graphs, structures, and algorithms[END_REF] by G ▽ r the class of the (simple) graphs which are shallow minors of G at depth r, and we denote by ∇ r (G) the maximum density of a graph in G ▽ r, that is:

∇ r (G) = max H∈G ▽ r H |H| The expansion of a class C is the function Exp C : N → R ∪ {∞} defined by Exp C (r) = sup G∈G ∇ r (G). A class C has bounded expansion if Exp C (r) < ∞ for each value of r.
For instance, the class D of all graphs with maximum degree 3 has Exp D (r) = (3/2)2 r , while a class C has uniformly bounded Exp C (that is: Exp C (r) ≤ C for some constant C, independently of r) if and only if there is a graph F that is a minor of no graph in C. The expansion function Exp C is indeed non-decreasing and no other general constraint exists on the grow rate of expansion functions. In particular, for every non-decreasing function f : N → N with f (0) = 2 there exists a class C with Exp C (r) = f (r) (see [START_REF]Sparsity (graphs, structures, and algorithms[END_REF], Exercice 5.1).

However, when studying properties of a class, it is sometimes the case that the frontier between classes that verify the property and those that do not can be (at least approximately) expressed by means of a threshold expansion function (see for instance [START_REF] Dvořák | Small graph classes and bounded expansion[END_REF], where it is proved that every class C with expansion Exp C (r) ≤ c r 1/3-ǫ is small, but that some non-small class C exists, for which Exp C (r) ≤ 6•3 √ r log(r+e) ). In such a setting, Theorem 2 can be restated as the fact that if Exp C (r) ≤ C (for some constant C) then for any ǫ > 0, there is an integer g such that every G ∈ C with girth at least g has χ c (G) ≤ 2 + ǫ. However, such a statement cannot be extended to all classes with bounded expansion, and even to all classes C with exponential expansion: there exists 3-regular graphs with arbitrary large girth and circular chromatic number at least 7/3 [START_REF] Hatami | Random cubic graphs are not homomorphic to the cycle of size 7[END_REF], thus the class D of all graphs with maximum degree 3 (which is such that Exp D (r) = (3/2)2 r ) does not have the property that large girth implies a circular chromatic number arbitrarily close to 2.

We show in this paper (Corollary 1) that exponential expansion is indeed a threshold, in the sense that the condition log Exp C (r)/r = o(1) (as r → ∞) is sufficient to ensure the conclusion of Theorem 2. Hence a natural problem arises, to make this threshold more precise:

Problem 1. What is the maximum real integer c such that for every class C with lim r→∞ log Exp C (r) r ≤ c
and every positive real ǫ > 0 there is an integer g with the property that every graph G ∈ C with girth at least g has χ c (G) ≤ 2 + ǫ?

It follows from [START_REF] Hatami | Random cubic graphs are not homomorphic to the cycle of size 7[END_REF] and Corollary 1 that 0 ≤ c < log 2, and we conjecture c = 0. Other application of our approach are Theorem 5, which concerns the oriented chromatic number and which is the subject of Section 3, and Theorem 7,.which concerns the pth chromatic number χ p and which is the subject of Section 5.

Path-degeneracy

One of the main tools used to address homomorphism properties of graphs (or directed graphs) with high-girth is the notion of path-degeneracy (see for instance [START_REF] Galluccio | High-girth graphs avoiding a minor are nearly bipartite[END_REF][START_REF] Nešetřil | Colorings and girth of oriented planar graphs[END_REF].

Definition 1. A graph G is p-path degenerate if there is a sequence G = G 0 , G 1 , . . . , G t of subgraphs of G such that G t is a forest, and each G i (i > 0) is obtained from G i-1
by deleting the internal vertices of a path of length at least p, all of degree two.

We shall relate path-degeneracy of large girth graphs in a class C to expansion properties of the class C. First we recall a result that will needed for the proof.

Theorem 3 (Diestel and Rempel [START_REF] Diestel | Dense minors in graphs of large girth[END_REF]). Let d be an integer and let G be a graph. If

girth(G) > 6d + 3 and δ(G) ≥ 3 then ∇ 2d (G) ≥ 2 d
We now explicit the connection between path-degeneracy and expansion properties. 

(G ′ ) ≥ 2 d . As (C ▽ (p -1)/2) ▽ 2d ⊆ C ▽ (2dp + (p -1)/2) it holds ∇ ⌈lp/3⌉ (G) ≥ ∇ 2dp+(p-1)/2 (G) ≥ ∇ 2d (G ′ ) ≥ 2 d . Hence it holds log ∇ r (G) r ≥ 1 p • d log 2 2d + 1 > 1 5p
, what contradicts our assumption.

Circular Chromatic Number of Graphs with Large Girth

We shall make use of the following property.

Lemma 2 (Bondy and Hell [START_REF] Bondy | A note on the star chromatic number[END_REF]). For every graph G and integer k, the following are equivalent:

• χ c (G) ≤ 2 + 1 k • G → C 2k+1
Existence of a homomorphism to an odd cycle is also linked to path-degenacy.

Lemma 3 (Galluccio, Goddyn, and Hell [START_REF] Galluccio | High-girth graphs avoiding a minor are nearly bipartite[END_REF]). A p-path degenerate graph G admits a homomorphism to any odd circuit of length at most p + 1.

In other words, a p-path degenerate graph G has

χ c (G) ≤ 2 + 1 ⌊p/2⌋
.

We deduce the following extension of Theorem 2. Then for every positive real ǫ > 0 there is an integer g such that every graph G ∈ C with girth at least g has χ c (G) ≤ 2 + ǫ.

Oriented Chromatic Number of Graphs with Large Girth

Recall that the oriented chromatic number χ o (G) of a (simple) graph G is the minimum k such that every orientation of G admits a homomorphism into some simple digraph with k vertices.

It was proved in [START_REF] Nešetřil | Colorings and girth of oriented planar graphs[END_REF] that there are planar graphs with arbitrarily large girth having oriented chromatic number 5, and that every planar graph with girth at least 16 has oriented chromatic number at most 5. The bound on the girth was reduced to 13 [START_REF] Borodin | Homomorphisms from sparse graphs with large girth[END_REF] (where the result generalized to graphs embeddable on the torus, or the Klein bottle) and then to 12 [START_REF] Borodin | Oriented 5-coloring of sparse plane graphs[END_REF]. In [START_REF] Borodin | Homomorphisms from sparse graphs with large girth[END_REF], it is proved that the considered highgirth graphs not only have oriented chromatic number 5, but that every orientation of these have a homomorphism to the same 5-vertex regular tournament C 2 5 . This tournament is a particular case of the (circular) digraphs C d n , which are defined as the digraphs with vertex set Z n and arcs (i, j) when j -i ∈ 1, . . . , d (mod n).

The following lemma relates p-path degeneracy and existence of homomorphism from a directed graph to C d n . Lemma 4 (Nešetřil, Raspaud, and Sopena [START_REF] Nešetřil | Colorings and girth of oriented planar graphs[END_REF]). Then end-vertices of every oriented path P of length at least (n -1)/(d -1) can be mapped by a homomorphism P → C d n to any pair of (not necessarily distinct) vertices of C d n . We can now relate expansion properties of a class to the oriented chromatic number of large girth graphs in the class. .

Then there is an integer g such that for every orientation G of a graph G in C with girth at least g there exists a homomorphism G → C d n .

Proof. Under the assumptions of the theorem there exists, according to Lemma 1 an integer g such that every graph G ∈ C with girth at least g is (n -1)/(d -1)path degenerate. For every orientation G of G, the existence of a homomorphism f : G → C d n the easily follows by an iterative use of Lemma 4. From this theorem immediately follows: Theorem 6. Let C be a class of graphs such that lim sup

r→∞ log Exp C (r) r ≤ 1 20
Then there is an integer g such that every G ∈ C with girth at least g has oriented chromatic number at most 5 (and actually are homomorphic to the tournament C 2 5 ). Proof. This follows from Theorem 5, by considering d = 2 and n = 5.

In particular, we have Corollary 2. Let C be a proper minor closed class of graphs. Then there is an integer g such that every G ∈ C with girth at least g has χ o (G) ≤ 5.

Centered Coloring of Graphs with Large Girth

Recall that the tree-depth td(G) of a graph G is the minimum height of a rooted forest F such that G is the subgraph of the closure of F . For positive integer p, the pth chromatic number χ p (G) is the least number of colors in a vertex coloring of G such that every i ≤ p colors induce a subgraph with tree-depth at most i. A p-centered coloring of a graph G is a vertex coloring such that, for any (induced) connected subgraph H , either some color c(H) appears exactly once in H, or H gets at least p colors. For detailed properties of tree-depth and χ p we refer the reader to [START_REF]Sparsity (graphs, structures, and algorithms[END_REF]. The χ p invariants are related to p-centered coloring as follows.

Lemma 5 (Nešetřil and Ossona de Mendez [START_REF]Tree depth, subgraph coloring and homomorphism bounds[END_REF]). For every graph G and every integer p, χ p (G) is the minimum number of colors in a (p + 1)-centered coloring of G. Lemma 6. Let G be a graph and let p be a positive integer. If G is 2p-path degenerate, then G has a p-centered coloring with at most p + 1 colors.

Proof. According to the definition of p-degeneracy, there is a sequence

G = G 0 ⊃ G 1 ⊃ • • • ⊃ G t of subgraphs of G such that G t is a forest, and each G i (i > 0) is obtained from G i-1 by
deleting the internal vertices of a path P i of length at least p, all of degree two. For each 0 < i ≤ t select an internal vertex v i of P i at distance at least p (in P i ) from both endvertices of P i . and orient all the edges of P i toward v i . Let C = {v i : 0 < i ≤ t}. Then G -C is a rooted forest, with edges oriented from the roots. Color the vertices G -C with p colors inductively as follows: each root is colored 0, and each other vertex u is colored as (c + 1) mod p, where c is the color assigned to the father of u. Note that this coloring is obviously a p-centered coloring of G -C. Now color the vertices in C with color p. It is easily checked that every path linking two vertices in C already got at least p -1 colors on the internal vertices by the above coloring of G -C. It follows that the every (p -1)-colored connected component of G is either included in G-C (hence has a uniquely colored vertex), or contains exactly one vertex in C, that is exactly one vertex colored p. Thus the defined coloring is a p-centered coloring of G.

The following theorem now easily follows. .

Then there is an integer g such that every graph G in C with girth at least g has χ p (G) ≤ p + 2.

Proof. According to Lemma 1 there is an integer g such that every graph G ∈ C with girth at least g is (2p + 2)-path degenerate thus, according to Lemma 6, such that χ p (G) ≤ p + 2.

In particular, we have Corollary 3. Let C be a proper minor closed class of graphs. Then for every integer p there is an integer g such that every G ∈ C with girth at least g has χ p (G) ≤ p+2.

As χ p (P n ) = p + 1 for sufficiently large n, it follows that the upper bound cannot be lowered under p + 1. The bounds χ 1 (G) ≤ 3 and χ 2 (G) ≤ 4 are optimal, as witnessed by a long odd cycle and the series-parallel graphs depicted below, respectively.

We leave as a problem the question whether the bound p + 2 is tight for every integer p.

Concluding Remarks

Remark that the property of a class that high girth graphs in the class are nearly bipartite or that they have oriented chromatic number at most 5 is not "topological" in the sense that satisfaction (or non-satisfaction) of this property is not preserved when the graphs in the class are subdivided: Consider an arbitrary class of graphs C. Construct the class C ′ as follows: for each graph G ∈ C (with |G| vertices) put in C ′ the |G|-subdivision of G. Then the class C ′ has the property that high girth graphs in the class are nearly bipartite and have oriented chromatic number at most 5, although this does not have to hold for C. In this sense, considering classes defined by a forbidden minor does not seem to be here optimal.

It is possible, from a class C, to construct the sequence (which we call resolution of C) of the classes of shallow minors of graphs in C at increasing depth

C ⊆ {G ▽ 0 : G ∈ C} ⊆ • • • ⊆ {G ▽ r : G ∈ C} ⊆ . . .
and we note that the results we obtained in this paper are expressed by means of the growth rate of the average degrees of the graphs in these classes, as r → ∞.

A related approach consists in considering the growth rate of the clique number of the graphs in these classes, as r → ∞. For a graph G and an integer r define ω r (G) = max{ω(H) : H ∈ G ▽ r}.

Then we have the following connection between the grow rate of ω r and the existence of sublinear vertex separator in a class of graphs: Then the following holds As ω r (G) ≤ 2∇ r (G) + 1, the classes C with lim r→∞ (log Exp C (r))/r = 0, which we considered in this note, satisfy the conditions of Theorem 8. However, the condition on ω r is weaker, as witnessed by classes of d-dimensional meshes with bounded aspect ratio (see [START_REF] Miller | Separators in two and three dimensions[END_REF] for a definition), that are such that sup G∈C ω r (G) grows polynomially with r (see [START_REF] Plotkin | Shallow excluded minors and improved graph decomposition[END_REF]).

We believe that the study of the growth rate of graph parameters on the resolution of a class can be useful to determine threshold where certain class properties stop being true.
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  Lemma 1. Let C be a class of graphs, let p, g ∈ N, and let r = ⌈pg/3⌉. If it holds

	log Exp C (r) r	≤	1 5p	.

Then every graph G in C with girth at least g is p-path degenerate. Proof. Our proof follows similar lines as the proof ([6], Lemma 2.5). Assume for contradiction that C include graphs with girth at least g that are not p-path degenerate, and let G be a minimal such graph. The graph G is 2-connected, since a graph is p-path degenerate if all its blocks are. The graph G is not a circuit since, as l ≥ p + 1, the graph G would be p-path degenerate. Hence G is neither an edge or a circuit. Therefore, there exists a unique graph G ′ with minimum degree at least 3, which is homeomorphic to G. The graph G can be obtained from G ′ by replacing each edge e ∈ E(G ′ ) with a path P (e) of length at least one and at most (p -1). Thus G ′ ∈ C ▽ (p-1)/2. Let d = (g -3)/6. According to Theorem 3, if G ′ has girth greater than l then ∇ 2d
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