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A model of bubble-induced turbulence based on
large-scale wake interactions

Guillaume Riboux1,2, Dominique Legendre1 and Frédéric Risso1,†
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2Escuela Técnica Superior de Ingenieros, Universidad de Sevilla, Av. de los Descubrimientos s/n,

41092 Sevilla, Spain

Navier–Stokes simulations of the agitation generated by a homogeneous swarm of
high-Reynolds-number rising bubbles are performed. The bubbles are modelled by
fixed momentum sources of finite size randomly distributed in a uniform flow. The
mesh grid is regular with a spacing close to the bubble size. This allows us
to simulate a swarm of a few thousand bubbles in a computational domain of
a hundred bubble diameters, which corresponds to a gas volume fraction α from
0.6 % to 4 %. The small-scale disturbances close to the bubbles are not resolved
but the wakes are correctly described from a distance of a few diameters. This
simple model reproduces well all the statistical properties of the vertical velocity
fluctuations measured in previous experiments: scaling as α0.4, self-similar probability
density functions and power spectral density including a subrange evolving as the
power −3 of the wavenumber k. It can therefore be concluded that bubble-induced
agitation mainly results from wake interactions. Considering the flow in a frame
that is fixed relative to the bubbles, the combined use of both time and spatial
averaging makes it possible to distinguish two contributions to the liquid fluctuations.
The first is the spatial fluctuations that are the consequence of the bubble mean
wakes. The second corresponds to the temporal fluctuations that are the result of the
development of a flow instability. Note that the latter is not due to the destabilization
of individual bubble wakes, since a computation with a single bubble leads to a
steady flow. It is a collective instability of the randomly distributed bubble wakes.
The spectrum of the time fluctuations shows a peak around a frequency fcwi, which is
independent of α. From the present results it is possible to determine the origin of
the overall properties of the total fluctuations observed in the experiments. The scaling
of the velocity fluctuation as α0.4 is a combination of the scalings of the spatial and
temporal fluctuations, which are different from each other. As the time fluctuations are
symmetric in the vertical direction, the asymmetry of the probability density function
of the vertical velocity comes from that of the spatial fluctuations. Both contributions
exhibit a k−3 spectral behaviour around the same range of wavenumbers, which
explains why it is observed regardless of the nature of the dominant contribution.
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1. Introduction

Owing to their rising motion under the action of buoyancy, bubbles immersed in
liquid generate an agitation which is sometimes called pseudo-turbulence, because it
shares some properties with shear-induced turbulence, such as its random character,
but also has specific properties, in particular concerning the distribution of energy over
the wavelengths. Because of the great number of engineering applications involving
bubbly flows, many works have been devoted to the study of pseudo-turbulence. It now
appears clear that, depending on the flow configuration, different physical mechanisms
are involved. It is indeed essential to differentiate the generation of liquid agitation by
the bubble motions from the modulation of shear-induced turbulence by the bubbles
(Lance & Bataille 1991). It is also important to distinguish between low-, moderate-
and high-Reynolds-number cases (Cartellier & Rivière 2001).

The present work focuses on the agitation generated by bubbles rising at Reynolds
numbers Re of order 100–1000, typically corresponding to millimetre-size air bubbles
in water. An homogeneous swarm of bubbles rising in a liquid otherwise at rest is very
well suited to the study of this phenomenon. In recent years, several experimental
works have investigated this configuration (Martinez-Mercado, Palacios-Morales &
Zenit 2007; Roig & Larue de Tournemine 2007; Risso et al. 2008; Martinez-Mercado
et al. 2010; Riboux, Risso & Legendre 2010) and determined the main properties of
the bubble-induced liquid agitation for various bubble equivalent diameters d and gas
volume fractions α. Let us summarize them. Each bubble is followed by a short wake
that is considerably shorter than that of a single rising bubble owing to the interaction
with the wakes of the surrounding bubbles. The velocity fluctuations scale as α0.4.
They are anisotropic, large vertical upward fluctuations being more probable that large
downward fluctuations. Their probability density functions (p.d.f.s) remain self-similar
as α is increased. Their integral length scale is Λ= d/Cd, where Cd is the bubble drag
coefficient. The energy spectrum exhibits a k−3 subrange from wavelengths smaller
than Λ.

Several direct numerical simulations (DNS) of a swarm of rising bubbles have also
been carried out. However, individual bubble dynamics at large Reynolds number
is controlled by the vorticity produced at the bubble surface, and its interaction
with the bubble wake is responsible for the zig-zag or helicoidal path (Mougin
& Magnaudet 2007) and bubble migration (Adoua, Legendre & Magnaudet 2009).
Interfacial vorticity is confined in a boundary layer of size δ/d ≈ Re−1/2. Typically for
the bubble size considered in the experimental studies mentioned above (d ∼ 2 mm,
Re ∼ 800), the grid spacing for accurate DNS has to satisfy ∆/d ∼ 0.01. Owing
to the present limitations of computers, predictive DNS of bubbly flows, i.e. with
a significant number of bubbles in a domain large enough to make possible the
development of the integral length scale of the pseudo-turbulence, are only accessible
for grid spacing ∆ = O(d) corresponding to small to moderate bubble Reynolds
numbers. Indeed, DNS of bubbly flows are often limited to moderate bubble Reynolds
numbers (Reb = O(10–100)) for spherical bubbles (Bunner & Tryggvason 2002a,b; Yin
& Koch 2008), nearly spherical bubbles (Esmaeeli & Tryggvason 2005) or ellipsoidal
bubbles (Bunner & Tryggvason 2003). Recently, a Reynolds number of order 1000
was reached by Roghair et al. (2011) who simulated 16 rising bubbles. With 20
Eulerian mesh points on a bubble diameter, they managed to reproduce experimental
p.d.f.s and a k−3 spectral range.

Despite the relatively detailed description of the statistical properties of the bubble-
induced turbulence that has been achieved, the physics is still obscure. Risso et al.

(2008) have proposed a reason for that. The liquid fluctuations induced by the bubbles



involve two contributions of different natures. The first contribution is related to
the spatial variations of the velocity and called spatial fluctuation. Let us assume
that all bubbles rise at the same velocity and generate a steady disturbance in the
liquid. In the frame that moves at the bubble velocity, the flow is laminar and steady.
However, random velocity fluctuations are observed in the laboratory frame. They
are simply due to the spatial inhomogeneity of the flow around the bubbles and
have nothing to do with turbulence. Under a few elementary conditions, Risso (2011)
showed that a superposition of independent random bubble disturbances may generate
a continuous spectrum with a k−3 subrange. The second contribution corresponds
to the genuine temporal fluctuations that develop when the flow becomes unstable
at large Reynolds number. It is named temporal fluctuation. The understanding of
bubble-induced turbulence would benefit greatly if these two contributions could be
separated. However, such a decomposition is difficult to achieve in practical situations
since bubbles do not rise at constant velocity and move relative to each others. Risso
et al. (2008) showed that it can however be accomplished by performing spatial and
temporal averaging of the flow through a fixed array of obstacles. In their case, they
consider an experimental arrangement of solid spheres randomly distributed within a
uniform water flow. In the present work, we will present numerical simulations of the
flow through a random array of fixed bubbles.

Several experimental results – such as the small contribution of the potential
flow to the fluctuating energy, the wake attenuation and the scaling of the integral
length scale – make us think that bubble-induced agitation mainly results from
wake interactions. We thus propose a simple numerical experiment that consists of
assuming that both (i) the motions of the bubbles relative to each other, and (ii) the
flow variations at scales smaller than the bubbles, can be neglected. Each bubble is
modelled by a fixed source of momentum distributed over a few mesh elements. The
flow through a random array of such bubbles is computed by solving Navier–Stokes
equations on a mesh grid size of the same order as the bubble diameter. These
large-scale simulations allow us to overcome the limitations of DNS and to consider
thousands of bubbles in a computational domain of about a hundred bubble diameters,
which corresponds to a gas volume fraction α from 0.6 % to 4 %.

The article is organized as follows. Section 2 details the numerical model for both
a single bubble and a bubble swarm, and shows validations against experimental
results reported by Ellingsen & Risso (2001) and Riboux et al. (2010) for a bubble
of diameter 2.5 mm rising in water. Section 3 presents results for three different
diameters and compares them to experiments by Riboux et al. (2010). Section 4 is
devoted to the analysis and the discussion of the results from the decomposition of
the liquid fluctuation into spatial and temporal fluctuations. Section 6 summarizes the
main conclusions.

2. Model based on large-scale wake interactions

2.1. Model for an individual bubble wake

At large distance z downstream of a body, the wake is known to be proportional
to the drag experienced by the body, to decay as z−1 and to experience a lateral
expansion that exponentially decreases with the body Reynolds number (Batchelor
1967). A wake is thus controlled by two main parameters, the Reynolds number
based on a characteristic length scale of the body and its drag force. From the
observation of bubbles rising in a liquid, the wake development is also affected by
the oscillation of the bubble path (Prosperetti et al. 2003). As shown by Ellingsen
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FIGURE 1. Model description and parameter definition.

& Risso (2001) thanks to accurate bubble trajectory reconstruction, the rising velocity

of a spheroidal bubble is almost aligned with its small axis and performs vertical

oscillations characterized by a maximal inclination θ and a frequency f .

The objective of this section is to propose a simple model able to describe the

main characteristics of the wake of a bubble of equivalent diameter d = 2r rising

at its vertical terminal velocity V . The model is defined with respect to the bubble

Reynolds number, the drag coefficient and the oscillation frequency of the wake. One

of our goals is to minimize the cost of the simulations. For this purpose, the flow

near each bubble is not resolved as it is the case in DNS, our objective being to

correctly reproduce the wake only some distance from of the bubble. This strategy

makes accessible simulations for large bubble Reynolds numbers by choosing a grid

spacing of the same order of magnitude as the bubble size. The wake is generated by

imposing a localized momentum forcing F with components

Fx = Fh0 cos(φ) sin(2πf t + ψ), (2.1a)

Fy = Fh0 sin(φ) sin(2πf t + ψ), (2.1b)

Fz = Fz0, (2.1c)

within a uniform flow, U∞ = −Vez, opposite to the mean vertical bubble velocity. F

is uniformly distributed over the volume δxδyδz where δx, δy and δz are the size of

the forcing along the x-, y- and z-directions respectively. We denote f = F/δxδyδz the

forcing distribution per unit volume. As shown in figure 1, the volume of forcing is

distributed over a small number of grid cells Nx,Ny and Nz. Fz0 is the vertical force

component exerted by the body on the fluid along the z-direction and is linked to the



d V f Re Cd St θ Λ= d/Cd

(mm) (cm s−1) (Hz) (—) (—) (—) (deg.) (mm)

1.6a 33.5 0 540 0.19 0 0 8.4
2.1a 32.0 4.6 670 0.27 0.030 25 7.8
2.5a 30.5 6.3 760 0.35 0.041 28 7.1
2.5b 30.9 5.0 770 0.34 0.051 25 7.4

TABLE 1. Characteristics of a single air bubble rising in a water. d = (6ϑ/π)1/3, bubble
equivalent diameter (ϑ is the bubble volume); V average bubble vertical velocity; f ,
path oscillation frequency; θ maximal inclination of the bubble velocity; Re = ρ dV/µ,
Reynolds number (ρ and µ are the liquid density and viscosity); St = f d/V , Strouhal
number; Cd, drag coefficient. Λ, integral length scale. a Riboux et al. (2010), b Ellingsen &
Risso (2001).

drag coefficient by:

Cd =
2Fz0

ρ V2
πd 2/4

. (2.2)

The horizontal forcing Fh0 is deduced from the vertical drag knowing the maximum
angle of oscillation when rising, θ ,

Fh0 = tan(θ)Fz0. (2.3)

The vertical plane of oscillation is given by the angle φ while ψ is the initial phase
of oscillation. Finally, the wake oscillation is characterized by the Strouhal number
defined as St = fd/V .

Below, the model predictions will be compared with single-bubble experiments by
Ellingsen & Risso (2001) and Riboux et al. (2010). The corresponding values of
Re,Cd, St and θ are given in table 1.

2.2. Numerical solver

We solve numerically the incompressible Navier–Stokes equations for the velocity, U ,
and pressure fields, p,

∇ ·U = 0, (2.4)

ρ

(
∂U

∂t
+ U ·∇U

)
= −∇p + µ∇2U + f , (2.5)

where ρ is the fluid density and µ its dynamic viscosity. Associated with (2.5) is the
volumetric momentum forcing f defined by (2.1), which models the forces exerted by
the bubbles.

The computations reported in this paper were carried out with the JADIM code that
has been already described in detail in previous studies (Magnaudet, Rivero & Fabre
1995; Legendre & Magnaudet 1998). Briefly, the Navier–Stokes equations written in
velocity–pressure variables in a general system of orthogonal curvilinear coordinates
are solved here on a regular Cartesian grid. The discretization makes use of a
staggered grid on which the equations are integrated in space using a finite-volume
method with second-order accuracy. The advection and viscous terms are evaluated
through second-order centred schemes whereas time advancement is achieved
through a second-order time-accurate Runge–Kutta/Crank–Nicolson algorithm. Finally,



incompressibility is satisfied at the end of each time step by solving a Poisson
equation for an auxiliary potential.

Several preliminary simulations (not reported here but presented in Riboux 2007)
have been performed in order to test the various numerical parameters of the
momentum forcing. Various volumes of forcing with different shapes or involving
different numbers of nodes in the vertical and the horizontal directions have been
tested. The simulations reveal that the most efficient way to reproduce the velocity
defect behind the forcing volume is obtained by distributing the forcing within 8 grid
cells, as shown in figure 1, so that ∆z = 2∆x = 2∆y. The characteristic length scale of
the forcing is denoted δ and defined as: δ =∆z.

For most of the simulations reported in this study, the size of the domain is
Nx × Ny × Nz = 64 × 64 × 128. This reference mesh grid is referred to as GRID1 in the
following. The time step imposed for all the simulation is 1t = 0.1δ/V . The transient
evolution of the solution is not considered here and we only focus on results once the
flow is established.

In what follows, in order to facilitate the comparison with the experiments, we will
present the liquid velocity u in a frame where the bubbles are rising: u = U + V ez.

2.3. Validation for a single bubble

With the above definition of our model, the relation between the characteristic length
δ of the forcing volume and the bubble equivalent diameter d is a priori unknown. It
is obtained by comparing the simulated evolution of the velocity downstream of the
bubble to the measurements obtained by Ellingsen & Risso (2001) for an air bubble
of diameter d = 2.5 mm rising in water (cf. table 1). The forcing is located in the
middle of the domain in the horizontal plane and at z = −20∆z from the inlet, where
a uniform velocity is imposed. An outlet condition is imposed at the bottom of the
domain and periodic conditions are imposed on the lateral sides of the domain.

Figure 2 reports the evolution with the vertical distance to the bubble centre of
the maximal vertical and horizontal velocities normalized by V . The effect of the
inclination angle θ is also reported. The best agreement between numerical and
experimental results is found for δ = d/1.52. This value, which is consistent with
our objective of having a grid spacing of the same order as the bubble diameter,
allows the simulation to reproduce well the experimental vertical velocity after a few
diameters downstream of the bubble (figure 2a). We also observe that the value of θ
has a negligible effect on the vertical velocity whereas it has a very strong effect on
the horizontal one (figure 2b). Indeed, with θ = 0◦, no horizontal motion is produced.
For the value θ = 25◦ that corresponds to the vertical inclination of the bubble in the
experiments, the magnitude of the horizontal velocity is not correctly reproduced, a
larger value for θ being required to observe a satisfactory level.

Figure 3 shows an example of instantaneous velocity field generated by the
momentum forcing (2.1) for Re = 760, Cd = 0.35, St = 0.05 and θ = 25◦. The case
without horizontal forcing is also shown for comparison. Although the computed wake
is steady and stable for θ = 0◦, the introduction of periodic horizontal forcing makes
possible the production of an alternating vortex street.

Results of the model for three bubble diameters listed in table 1 are reported
in figure 4. No experiment is available to determine the value of δ for diameters
d = 1.6 mm and d = 2.1 mm. The value δ = d/1.52, which has been determined for
d = 2.5 mm, is used in all cases. As expected the magnitude of the vertical velocity
increases with the diameter since the drag force is increased. The same behaviour is
observed for the horizontal component of the velocity.
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FIGURE 2. (Colour online) Vertical evolution of the vertical (a) and horizontal (b) velocity
in the wake of a single bubble. Numerical results for for Re = 760, Cd = 0.35, St = 0.05 and
various values of θ compared with the experiments by Ellingsen & Risso (2001) (thick grey
line, red online) for an air bubble of d = 2.5 mm rising in water. (Here, z = 0 is the bubble
location.)

2.4. Model for the bubble swarm

Our objective is to determine whether large-scale interactions between wakes are able
to reproduce the statistical properties of the bubble-induced turbulence observed in
experiments. The bubble swarm is thus modelled by randomly distributing a great
number of fixed momentum sources defined by (2.1) within a uniform flow. Except for
a minimum distance of 3δ being imposed between two bubbles, the bubble locations
are statistically independent from each other. To avoid spurious interactions with
the inlet and outlet conditions, the forcing domain starts at nin = 7δ from the inlet
and ends at nout = 25δ from the outlet. The volume of the forcing domain is thus
Ω = (Nz − nin − nout)NxNy∆x∆y∆z. The gas volume fraction α is calculated from the
number N of bubbles inserted in the forcing domain:

N =
6αΩ

π d3
. (2.6)
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(2001) for d = 2.5 mm. (Here, z = 0 is the bubble location.).
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FIGURE 5. Variance of the vertical velocity along the vertical direction for various void
fractions (case d = 2.5 mm).

The vertical plane of oscillation as well as the temporal phase of oscillation, defined
by φ and ψ respectively, are also randomly chosen.

In the experiments of Riboux et al. (2010), the bubbles were injected by means of
capillaries. Owing to this system, the bubble diameters increased as the gas volume
fraction was increased. The evolution of the diameter with the void fraction for this
set-up was characterized by Colombet et al. (2011). Considering the evolutions with
the void fraction of both the bubble diameter and the bubble velocity, it turns out
that the experiments of Riboux et al. (2010) were conducted for an almost constant
Reynolds number, Re = ρd(α)V(α)/µ, and also for an almost constant integral length
scale, Λ = d(α)/Cd(α). In order to follow the experimental conditions, the present
simulations are conducted by keeping constant the values of Re and Cd while changing
α for a given value of d. In all simulations, the values of Re and Cd are thus fixed
according to the experimental results obtained in a homogeneous bubble swarm.

2.5. Results and validation for the bubble-swarm model for d = 2.5 mm

In this section, we present simulations of the bubble swarm for the case d = 2.5 mm
(parameters in table 1), because it is the most documented by Risso & Ellingsen
(2002) and Riboux et al. (2010) and the one from which the value of δ has been
determined.

We first consider the spatial evolution of the fluctuations along the vertical direction
through the whole computational domain. Figure 5 shows the evolution of the variance
of the vertical fluctuation 〈u2

z 〉x,y
averaged in each horizontal plane, for θ = 25◦ and

various values of α. The energy of the fluctuations first increases rapidly from the
beginning of the region where the forcing is applied, then it reaches plateau in
the range −150 6 z/r 6 −40, and finally decreases beyond the end of the forcing
region. As expected from a global momentum balance, the pressure gradient is found
to be constant in the plateau region and directly proportional to both α and the
magnitude of the forcing. We have also checked that the fluctuations are isotropic in
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FIGURE 6. (Colour online) Probability density functions (p.d.f.s) for (a) the vertical and (b)
horizontal velocity fluctuations for d = 2.5 mm and α = 2.5 % and various horizontal forcings
θ . Exp. denotes the experiments by Riboux et al. (2010).

the two horizontal directions. In the following all the statistics will be performed for
−150 6 z/r 6 −65 and the two horizontal directions are not distinguished.

The convergence of the simulations toward a statistically steady state has been
evaluated by comparing the p.d.f.s of the velocity fluctuations at various times from
t = 20δ/V to t = 160 δ/V . It turns out that the p.d.f.s are satisfactorily converged
after the time t = 100 δ/V . Hereafter, all presented results have been obtained for
t > 140 δ/V .

The statistical relevance of the results has been checked by simulating three different
bubble swarms, which only differ by the random choice of the bubble locations and
the values of φ and ψ . The p.d.f.s were found identical for the three cases considered,
which ensures that the statistics are converged.

Figure 6 reports the p.d.f.s for the vertical and horizontal velocity fluctuations for
α = 2.5 % and various θ . The p.d.f.s of the vertical velocity (figure 6a) match very
well the experiments. Moreover, as for the case of the single bubble, the vertical
fluctuations are not influenced by the periodic horizontal forcing. On the other hand,
though the shape of the horizontal p.d.f.s is similar to that of the experiments, their
magnitude depends on the horizontal forcing, and it is only for θ = 50◦ that the
simulated p.d.f.s match the experimental ones.

The one-dimensional average spatial spectrum, Szz, of the vertical fluctuation in
the vertical direction is obtained as follows. We consider the profile of the vertical
velocity uz,i,j(z) = uz(x, y, z) at given x = i∆x and y = j∆y. We compute the discrete
Fourier transform ûi,j(λz) of uz,i,j(z = k∆z). Then Szz is obtained by averaging over the
horizontal plane:

Szz =
1

NiNj

∑

i

∑

j

|ûi,j(λz)|
2
. (2.7)

The one-dimensional average spatial spectrum, Sxx, of the horizontal velocity in the
horizontal direction is obtained in a similar manner. The discrete Fourier transform
ûj,k(λx) is computed from profiles of the horizontal velocity ux and Sxx is obtained
by averaging over j and k. Note that Syy has also been computed and is similar to
Sxx. Figure 7 shows Szz and Sxx for α = 2.5 % and various θ . The simulated vertical
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FIGURE 7. (Colour online) (a) Vertical and (b) horizontal spectra of the liquid velocity
fluctuations normalized by their variances for d = 2.5 mm, α = 2.5 % and various horizontal
forcings θ . Exp. denotes the experiments by Riboux et al. (2010).

spectrum matches well the experiments up to the middle of the k−3 subrange where
it suddenly drops because of the mesh grid limitation. Again, this good agreement at
large scales for the vertical fluctuations does not need any horizontal forcing. On the
other hand, the simulations are not able to reproduce the spectrum of the horizontal
fluctuations. Unlike for the p.d.f.s, increasing θ does not improve the results: it simply
increases the energy at large scales but does not generate a k−3 subrange. This point
will be clarified in § 3.

In order to test the effect of the grid spacing and to extend the spectra to
smaller wavelengths, the grid is now refined in the vertical direction so that
Nx × Ny × Nz = 64 × 64 × 399. This new grid, referred as GRID2, is regular and
the forcing volumes are composed of 16, 4 and 2 cells in the vertical and horizontal
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FIGURE 8. (Colour online) Power spectral densities of (a) the vertical velocity and (b) the
horizontal velocity for d = 2.5 mm, θ = 0◦ and various α for a grid refined in the vertical
direction (Nx × Ny × Nz = 64 × 64 × 399). Exp. denotes the experimental spectrum by Riboux
et al. (2010) for α = 2.5 %.

directions, respectively. The corresponding vertical and horizontal spectra are reported
in figure 8 for θ = 25◦ and various α ranging from 0.6 % to 3.9 %. Concerning Szz,
the agreement with the experiment is significantly improved: the k−3 subrange starts
at Λ ∼ d/Cd and is observed over almost a decade, until the cutoff imposed by the
grid spacing that is now smaller than the bubble size. Concerning Sxx, the agreement
with the experiments is not improved by the grid refinement in the vertical direction.
For both components, it is worth noting that, once normalized by their variance, Sxx

and Szz are independent of the gas volume fraction, which is in agreement with the
experimental observation.

Let us summarize the conclusions obtained from the comparisons between the
present large-scale simulations and previous experiments for the case d = 2.5 mm.



(a) Concerning the vertical fluctuations, both p.d.f.s and spatial spectra are correctly

reproduced without the need of any periodical forcing in the horizontal direction,

which anyway has no effect on them.

(b) Concerning the horizontal fluctuations, while it is possible to get correct p.d.f.s by

using a strong periodical forcing, the spectra are not correctly reproduced whatever

the horizontal forcing or the grid refinement.

In the experiments, except for the asymmetry of the vertical fluctuations and

differences in magnitude, horizontal and vertical fluctuations have similar properties.

This suggests that the same physical mechanisms are acting in both directions.

In the present simulations, the horizontal and vertical fluctuations turn out to be

independent: while the physical mechanisms seem to be correctly reproduced in the

vertical direction, they are not in the horizontal one. This suggests that the momentum

source in the direction of the bubble velocity plays a major role in the production

of bubble-induced agitation whereas the momentum in the transverse direction has no

significant effect. In reality, the direction of the bubble velocity oscillates about the

vertical direction. In the simulations, changing the direction of the momentum source

is therefore not sufficient; the orientation of the incident flow should also be changed,

which is impossible to achieve for each bubble independently.

3. Comparisons with experiments for various bubble diameters

In this section, simulations of the bubble swarm are presented for the three bubble

diameters d = 1.6, 2.1 and 2.5 mm reported in table 1. They are computed by using

the mesh GRID1 and for various gas volume fractions from 0.6 % to 4.3 %.

Figure 9 reports the p.d.f.s of the vertical (a) and horizontal (b) liquid fluctuations

for θ = 50◦. The shapes of the p.d.f.s are well reproduced, especially for the case

d = 2.5 mm. Concerning the vertical p.d.f.s, both the asymmetry and the magnitude

are in reasonably good agreement with the experiments. Concerning the horizontal

direction, only the case d = 2.5 matches the experiments with the chosen of value

θ , which confirms that a periodical horizontal forcing does not model correctly the

production of agitation in the horizontal direction. For both components, two other

important features of the experimental agitation are also well reproduced. First, for a

given diameter, the p.d.f.s become independent of the gas volume fraction provided

the velocity is normalized by α0.4. Second, as revealed on a semi-logarithmic plot (not

reported here), the p.d.f.s decrease exponentially as the velocity fluctuation increases.

The vertical spectra, Szz, of the vertical liquid velocity fluctuations computed without

any horizontal forcing (θ = 0◦) are reported in figure 10. For each of the three

diameters considered, the spectra obtained for the different void fractions collapse onto

the same curve, provided they are normalized by the variance of the fluctuations.

Moreover, the agreement with the experiments of Riboux et al. (2010) is very

satisfactory. It is remarkable that the simulation not only finds a k−3 subrange but

also begins at Λ= d/Cd.

Despite the fact that the value of δ/d (which fixes the length of decay of the wake

of an isolated bubble) has only been adjusted for the case d = 2.5 mm, the present

large-scale simulations are able to reasonably reproduce the p.d.f.s and the spectra of

the vertical velocity fluctuations for two other diameters, d = 1.6 mm and d = 2.1 mm,

for gas volume fractions ranging from 0.4 % to 4 %.
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FIGURE 9. (Colour online) p.d.f. of vertical (a,c,e) and horizontal (b,d,f ) liquid fluctuations

normalized by V (α/α0)
0.4 (α0 = 1 %), for various void fractions ranging from 0.6 % to 3.9 %.

Bubble diameters: (a,b) d = 1.6 mm, (c,d) d = 2.1 mm, and (e,f ) d = 2.5 mm. In all cases,
the horizontal forcing is θ = 50◦. Exp. denotes the experimental p.d.f.s by Riboux et al.
(2010) for α = 2.5 %.

4. The dual nature of the bubble-induced turbulence

4.1. Statistical decomposition of the liquid fluctuations

The objective of this section is to analyse the bubble-induced agitation by making
the distinction between the fluctuations resulting from the local inhomogeneity of the
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velocity field and the fluctuations generated by the development of the flow instability.
Following Risso et al. (2008), we make use of both time averaging (denoted by an
overbar), and spatial averaging (denoted by angle brackets,〈 〉). In the frame in which
the bubbles are rising, the liquid velocity, u(x, t) = U(x, t) − U∞, has a zero spatial
average. This fluctuation is decomposed as

u(x, t)= u(x)+ u′(x, t). (4.1)

The spatial fluctuation, u(x), is obtained from the time averaging u(x, t) of the
instantaneous fluctuations and depends only in the position. On the other hand, the
temporal fluctuation, u′(x, t), depends on both time and space and satisfies u′(x, t)= 0.
The total variance of the velocity fluctuations can thus be decomposed into two
contributions

〈u2〉 = 〈u2〉 + 〈u′2〉. (4.2)

The simulations are computed by using the mesh GRID1 over 2000 time steps
(1t = 0.1 V/d) before starting the time averaging of the velocity over 3000 time
steps. The spatial averaging is made over the central region of the domain where the
flow is statistically homogeneous (see § 2.5). Since the periodic horizontal forcing fails
to model the horizontal fluctuation, θ is set to zero for all the results reported below.

An example of decomposition of the velocity field is shown in figure 11 where
u(x, t), u(x) and u′(x, t) are reported for d = 2.5 mm and α = 2.5 % in a vertical
plane located in the middle of the domain. The respective contributions of the
spatial and temporal fluctuations appear clearly in this figure. Let us consider first
the vertical fluctuation (figure 11a–c). Mean bubble wakes, which are visible in the
total fluctuation, make the major contribution to the spatial fluctuation. On the other
hand, the temporal fluctuation turns out to be very little correlated to the bubble wakes
and is almost homogeneous over the bubble swarm. An important result is the fact
that the flow is unsteady whereas the wake of an isolated bubble computed in the
same domain remains perfectly stable and steady during the whole computational time,
typically 5000 time steps (see figure 3a,b). The time fluctuation therefore results from
the development of a flow instability that implies interactions between the wakes of
the randomly distributed bubbles. The horizontal fluctuations (figure 11d–f ) are much
lower. The contribution of the mean wakes is negligible, as is the spatial fluctuation.
The total fluctuation therefore reduces to the temporal fluctuation, which entirely
results from the collective instability of the wakes in the absence of horizontal forcing.

The p.d.f.s of the different contributions to the vertical fluctuations are plotted in
figure 12 for d = 2.5 and three different volume fractions: α = 0.6 % (a), α = 1.5 % (b)
and α = 2.4 % (c). The widths of the p.d.f.s of the spatial and temporal fluctuations
are of the same order of magnitude, which indicates that both contribute to the total
fluctuation. However, even though the intensity of both contributions increases as α
increases, their relative magnitude changes. At α = 0.6 %, the spatial contribution
is clearly dominant and gives the main contribution to the fluctuations. When α is
increased, the intensity of the temporal fluctuation increases faster than that of the
spatial fluctuation, so that their intensity become comparable at α = 2.4 %. Figure 12
also reveals that the p.d.f.s of the temporal fluctuation are symmetric whereas those
of the spatial fluctuation are asymmetric. The asymmetry of the total fluctuation
therefore results from that of the spatial fluctuation, which is the signature of the mean
wakes of the bubbles. Since the temporal fluctuation is increasing faster with the gas
volume fraction, the asymmetry of the p.d.f. of the total fluctuation is attenuated as
α increases. We have also observed that the length of the mean bubble wake, which
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FIGURE 11. Velocity fluctuations normalized by V for d = 2.5 mm, α = 2.5 % and θ = 0:
(a–c) vertical velocity; (d–f ) horizontal velocity. (a,d) Total instantaneous fluctuation u(x, t),
(b,e) spatial fluctuation u(x) and (c,f ) temporal fluctuation u′(x, t).

is visible from the spatial fluctuation in figure 11, decreases with the gas volume
fraction. This is consistent with the fact that the wake of a body immersed in ambient
turbulence decays faster as the intensity of the turbulence is increased (Wu & Faeth
1995; Bagchi & Balachandar 2004; Legendre, Merle & Magnaudet 2006; Amoura
et al. 2010; Botto & Prosperetti 2012). Note that all the conclusions drawn from
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observation of the p.d.f.s of the case d = 2.5 remain qualitatively the same for the two

other diameters.

The total energy of the fluctuations and the respective contributions of the spatial

and temporal fluctuations are shown in figure 13. The three variances are plotted as

functions of α for the three diameters. To facilitate the comparison, a logarithmic

plot is used and all variances are normalized by the value for the total fluctuation
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at α0 = 1 %. As expected from the fact that the p.d.f.s of the total fluctuations are
self-similar when the velocity is scaled by Vα0.4 (figure 9), the variance of the total
fluctuation broadly evolves as α0.8, though a decrease of the slope is visible for
the two larger diameters at the largest value of α. However, this exponent is not
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velocity.

easy to interpret since the total fluctuation is the sum of the spatial and temporal
fluctuations, each of which follows its own specific scaling. The smallest diameter case
(d = 1.6 mm) has a behaviour that differs from the two others. The variance of the
temporal fluctuation increases much faster, as α2, than that of the spatial fluctuation,
which evolves as α0.8. However, in the considered range of gas volume fractions, the
temporal fluctuation remains always negligible and the total fluctuation is almost equal
to the spatial fluctuation. When increasing the bubble diameter, the relative importance
of the temporal fluctuation increases. A larger Reynolds number and a larger drag
coefficient thus seem to favour the development of the flow instability. For d = 2.1 mm
and d = 2.5 mm, the temporal fluctuation evolves as α whereas the spatial fluctuation
scales as α0.4. Note that it is only for the largest diameter (d = 2.5 mm) and the largest
volume fractions (α ≈ 4 %), that the variance of the temporal fluctuation reaches that
of the spatial fluctuation.

4.2. Description of the collective wake instability

Time records of the vertical and horizontal temporal fluctuation measured at three
different locations within the domain are reported in figure 14 for d = 2.5 mm
and α = 2.5 %. The signals corresponding to the three locations are uncorrelated,
which means that the instability does not involve a global fluctuation of the velocity
synchronized over the whole domain. The instantaneous fluctuation can reach 20 %
of the mean velocity V . Even though the signal is not monochromatic, a dominant
frequency seems to emerge from examination of the figure.

The average time spectra of the vertical, Szt, and the horizontal, Sxt, fluctuations
are computed by averaging the time spectra computed from signals recorded at many
locations within the domain. Figure 15 shows Szt and Sxt for the three diameters
and various gas volume fractions from 0.6 % to 4.3 %. All spectra show a peak at a
particular frequency fcwi, which is the frequency at which the energy generated by the
collective wake instability is injected into the flow. This frequency is independent of
the gas volume fraction and is

fcwi = 0.14V/d. (4.3)

The peak is very narrow for the smallest diameter (d = 1.6 mm) but becomes broader
for the two other diameters (d = 2.1 mm and d = 2.5 mm). The peak is also observed
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to become broader as the volume fraction increases. It thus seems that the peak
width is an increasing function of the intensity of the temporal fluctuation. As the
instability develops, due to the increase of either the Reynolds number or the number
of momentum sources, the range of frequency wherein the energy of the instability is
injected spreads more and more. For the largest diameter (d = 2.5 mm), the spectrum
seems to converge, for sufficiently large volume fractions, towards a master curve,
G(f /fcwi), that is independent of α. Since the variance of the temporal fluctuation has
been shown to be proportional to α, the asymptotic spectrum can be written

Szt(f )= αV2/fcwiG(f /fcwi). (4.4)

4.3. Spacial spectra of temporal and spatial fluctuations

The contributions of the temporal and spatial fluctuations to the spatial spectra, Szz

and Sxx, are now considered. As for the total fluctuation (figure 8), the spectra of
both contributions are also independent of the gas volume fraction when normalized by
their variance. Since the evolution of the variances has been already discussed, we will
only present the spectra computed for a single volume fraction, α = 2.4 %. Figure 16
shows the spectra of the vertical and horizontal velocity components for the three
diameters.

Let us consider first the vertical velocity (figure 16a,c,e). At d = 1.6 mm, the
temporal fluctuation shows a peak, indicating that the energy of the instability is
preferentially injected into a specific range of wavenumbers as it is injected into a
specific range of frequencies. After the peak, the spectrum of the temporal fluctuation
decreases as k−3 before experiencing a sudden cutoff. On the other hand, the spatial
fluctuation shows a more regular evolution not far from a k−3 behaviour in the whole
investigated range. Comparing both fluctuations, the spatial one is dominant at large
and small scales, whereas the temporal one is slightly larger in the region that follows
the peak. In the region where the k−3 subrange is observed for the total fluctuations,
both contribution also follow a k−3 evolution. When increasing the diameter, the shape
of the spectrum of the spatial fluctuation remains unchanged whereas the peak of
the temporal fluctuation disappears. For d = 2.1 mm and d = 2.5 mm, the relative
contribution of the temporal fluctuation becomes predominant on almost the whole
range of wavenumbers, especially in the k−3 subrange of the total fluctuation. It is
only at the very largest scales that the mean bubble wakes can compete with the
flow instability. In the horizontal fluctuation (figure 16b,d,f ), the footprint of the mean
wakes is very small and the temporal fluctuation is the dominant contribution for the
whole range of wavenumbers and for the three diameters. Even though we know that
the horizontal fluctuations are not correctly reproduced by the present simulations, it
is still interesting to note that the spectra of both contributions are close to a k−3

behaviour in the expected range of wavenumbers.
The most striking point is that, even though they are totally different phenomena,

both the spatial fluctuation and the temporal fluctuation show a k−3 subrange. It is
therefore not sufficient to observe a k−3 subrange in a particular dispersed multiphase
flow to know what the dominant contribution is. For the spatial fluctuation, the reason
for such a spectral behaviour has been explained by Risso (2011) who demonstrated
that a superposition of independent velocity disturbances of random sizes can generate
a k−3 subrange. Regarding the temporal fluctuation, the k−3 subrange is a characteristic
of a collective instability of the randomly distributed wakes, which still remains to be
understood.
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5. A posteriori discussion of the model assumptions

The good agreement between the model and the experiments has confirmed our
intuition that large-scale wake interactions are predominant in the generation of bubble-
induced agitation. Let us recall and discuss the model assumptions.

The bubbles are assumed to be immobile relative to each other. In reality, the
bubbles do not have exactly the same average velocity. This causes their spatial
distribution to change. The present model is not able to deal with bubbly flows where
significant variations of gas volume fractions occur. Since we focus on situations
where the bubble distribution remains statistically homogeneous, their relative motions
have no significant consequences on the liquid agitation. Also, the bubble paths



oscillate due to wake instability. It turns out that the mechanisms that generate the
liquid agitation are independent of the bubble agitation. However, changes in bubble
velocity directions probably play a role in the redistribution of the energy between the
vertical and the horizontal liquid fluctuations, which cannot be accounted for by an
horizontal oscillatory drag.

This model reproduces situations with bubbles that all have the same vertical
drag, which is constant with time. Even if the bubbles are not spherical, they keep
an almost constant spheroidal shape: shape oscillations therefore do not influence
significantly the bubble drag. Concerning polydispersity, we have performed additional
simulations in which bubble diameters were randomly distributed in a range of ±2.5 %
around the average value. This had no visible consequence on the statistics of the
velocity fluctuations. The present model is therefore robust with regard to a small
polydispersity.

Another major assumption of the model is that the scales that are smaller than the
bubble diameter do not play a significant role. To discuss this point we need again to
distinguish the spatial and temporal fluctuations. The spatial fluctuations result from
the local spatial heterogeneity of the average flow disturbance around and behind each
bubble. It is therefore expected that most of their energy belongs to scales that are of
the same order as, or larger than, the bubble size. The temporal fluctuations turn out
not to result from the development of flow instability within individual wakes but from
a collective instability of randomly distributed wakes. That probably explains why they
can be reproduced by large-scale simulations, provided that the main characteristics
of the wakes are well described. The smallest scales possibly play a role in the
determination of the precise value of the onset of this instability, but do not have
a significant effect on the statistics of the fluctuations when it is developed. Note
that for both kinds of fluctuations, the fast decay of the fluctuating energy with the
wavenumber, as k−3, reduces the possibility of a feedback from small to large scales.

In order to apply this model to more complex situations, the next step is to allow
the bubbles to move. First, we expect that if the bubble velocity direction oscillates
around the vertical, realistic horizontal liquid velocity fluctuations should be generated.
Second, by implementing a Lagrangian force balance to compute the motion of each
bubble, situations with non-uniform gas volume fractions could be investigated.

6. Concluding remarks

We have proposed a model of bubble-induced agitation based on the interactions
between bubble wakes at scales larger than the bubble size. Two main assumptions
have been made. The first is that flow disturbances generated at scales smaller than
the bubble diameter do not play a significant role. The second consists of neglecting
bubble velocity fluctuations. The flow through a random array of bubbles has thus
been computed by solving the Navier–Stokes equations on a mesh grid with a spacing
of the same order as the bubble size, each bubble being modelled by a fixed source of
momentum distributed over a volume close to the bubble size.

The results of these large-scale simulations have been compared with previous
experimental results obtained for homogeneous swarms of air bubbles rising in water.
Three bubble diameters have been considered (d = 1.6, 2.1 and 2.5 mm), which
correspond to Reynolds numbers between 500 and 800. Gas volume fractions ranging
from 0.6 % to 4 % have been investigated. The simulations are shown to reproduce
remarkably well the statistics of the vertical liquid velocity: variance, probability
density functions and spectra. Horizontal velocity fluctuations are however not well



described, probably because velocity fluctuations are essentially generated in the

direction of the motion of the bubbles, which is fixed in the simulation while it

oscillates in experiments. This effect cannot be accounted for by making the direction

of the momentum sources oscillate.

These results lead to the following conclusions. Large-Reynolds-number bubble-

induced agitation is mainly caused by large-scale wake interactions. Bubble motions

relative to each other can be neglected but bubble velocity oscillations probably play a

major role in the distribution of energy between the vertical and the horizontal velocity

fluctuations.

Taking advantage of the fact that the bubbles are fixed relative to each other,

the fluctuations have been decomposed into a time-averaged spatial fluctuation and

a genuine temporal fluctuation. The spatial fluctuation accounts for the energy of

individual bubble mean wakes. The temporal fluctuation is the result of a collective

instability of the randomly distributed wakes. This instability is observed to inject

energy into the flow around a characteristic frequency fcwi, which is independent of

the gas volume fraction and scales as the ratio between the bubble velocity and

the bubble diameter. In experiments, the fluctuation that is measured is the sum of

the spatial and the temporal fluctuations. Since the evolutions of the energy of the

two fluctuations with the gas volume fraction are different, their contribution to the

total energy depends on α and the scaling of the total variance is the result of the

combination of two different mechanisms. On the other hand, the spectra of both

contributions include a k−3 subrange. The observation of such a spectral behaviour in

the total fluctuations measured in any dispersed two-phase flow is thus not sufficient

to draw conclusions about the nature of the dominant contribution. While a theoretical

derivation of the k−3 subrange has been proposed for the spatial fluctuation (Risso

2011), the mechanism underlying the collective instability of random wakes still needs

to be elucidated.
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