
HAL Id: hal-00946040
https://hal.science/hal-00946040

Submitted on 10 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Defining tools to address over-constrained geometric
problems

Moinet Mireille, Guillaume Mandil, Philippe Serré

To cite this version:
Moinet Mireille, Guillaume Mandil, Philippe Serré. Defining tools to address over-constrained geomet-
ric problems. Computer-Aided Design, 2014, 48, pp.42-52. �10.1016/j.cad.2013.11.002�. �hal-00946040�

https://hal.science/hal-00946040
https://hal.archives-ouvertes.fr


Defining tools to address over-constrained geometric

problems in Computer Aided Design

Mireille MOINETa,∗, Guillaume MANDILb,∗∗, Philippe SERREa

aLaboratoire d’Ingénierie des Systèmes Mécaniques et des MAtériaux EA-2336

SUPMECA

3 rue Fernand Hainaut

93407, Saint-Ouen Cedex

FRANCE
bLaboratoire des sciences pour la conception, l’optimisation et la production

G-SCOP

46, avenue Félix Viallet

38031 Grenoble Cedex 1

FRANCE

Abstract

This paper proposes a new tool for decision support to address geometric
over-constrained problems in Computer Aided Design (CAD). It concerns
the declarative modelling of geometrical problems. The core of the coordi-
nate free solver used to solve the Geometric Constraint Satisfaction Problem
(GCSP) was developed previously by the authors. This research proposes
a methodology based on Michelucci’s witness method to determine whether
the structure of the problem is over-constrained. In this case, the authors
propose a tool for assisting the designer in solving the over-constrained prob-
lem by ensuring the consistency of the specifications. An application of the
methodology and tool is presented in an academic example.

Keywords:
Geometric modelling, Non-Cartesian, Over-constrained, Geometric
constraints, GCSP, Specification

∗tel: +33 1 49 45 25 47 fax: +33 1 49 45 29 29
∗∗tel: +33 4 76 57 47 76 fax: +33 4 76 57 46 95
Email addresses: mireille.moinet@supmeca.fr (Mireille MOINET),

guillaume.mandil@g-scop.eu (Guillaume MANDIL), philippe.serre@supmeca.fr
(Philippe SERRE)

Preprint submitted to Computer Aided Design October 23, 2013

*Manuscript
Click here to view linked References

http://ees.elsevier.com/cad/viewRCResults.aspx?pdf=1&docID=3776&rev=2&fileID=256289&msid={6C33E875-CE2D-40E4-8B9A-7C8AE2CA3592}


1. Introduction

In Computer Aided Design (CAD), the model is the computer represen-
tation of the object being designed. This geometric model is often named
the Digital Mock-Up (DMU) and is now the core of CAD systems. In this
study, the geometric model is the reference model.

There are essentially two strategies for building a digital mock-up in CAD
systems: the procedural approach and the declarative approach [1]. This
paper focuses on declarative approaches because they are often used in the 2D
sketcher and 3D assembly workbenches of CAD systems [2] and because the
authors have already worked on them in [3, 4, 5, 6]. The declarative approach
assumes that the designer first specifies a list of generic geometric objects and,
second, a list of constraints between the objects defined previously. Then,
a software application is used to solve all these constraints and build the
virtual object. In order to obtain a valid object, it is necessary to ensure
that all the specifications (generic objects and constraints) given by the user
are consistent.

Moreover, the DMU is used in many simulations that cause the geometry
to evolve due to changes made to the specifications required by the design
team. It is therefore very important to maintain consistency in the statement
of the problem. In general, problems that present inconsistencies are of two
types: under-constrained problems and over-constrained problems. In this
paper, we focus on over-constrained problems.

At present, when a designer comes across an over-constrained problem,
no plans are available (at best a message is displayed on the screen). They
must unravel it alone. Maintaining the consistency of the digital mock-up
is even harder when several designers are involved in the design process. In
this paper the authors propose to generate relations between the parameters
of specifications in view to guiding users to ensure the consistency of the sets
of parameters used. Therefore this paper will describe how to provide users
with the elements necessary for maintaining the consistency of the geometry
created. How is it possible to help designers to clearly specify their geometry?
In the framework of collaboration, if a geometric problem is over-constrained,
who arbitrates between the values of different specifications? This paper
presents a solution for managing over-constrained geometric problems by
giving users a tool for generating consistent sets of specifications.

2



The authors have already developed a conceptual model based on vec-
torizing the geometry for generic geometric objects. The associated solving
strategy uses a coordinate-free representation. The major advantage of this
approach is that it is unnecessary to take the cartesian reference frame into
account for solving purposes. In 3D space, a geometric object is character-
ized by a Gram matrix that is positive semidefinite and has rank 3. Some
elements of this matrix must have specific values imposed by the user, the
others are unknowns. The geometric problem is solved by obtaining a Gram
matrix H that meets the above conditions. This entails a matrix completion
problem [7, 8]. Indeed, in order to complete a partial matrix it is necessary
to make specific choices of values for the unspecified entries.
The solution proposed by us is to find a transformation T that changes an
initial object into a final object. The G Gram matrix characterizes the initial
object. H Gram matrix characterizes the final object and is defined by the
fundamental relationship (1), as explained in greater detail in [9]:

H = TGTt (1)

More specifically, in our study, T = (I + CX), where C is the topological
connection matrix, X the vertex perturbation matrix and I the Identity.
The authors make use of their previous work to address the problem of con-
sistency. The proposed methodology and tool are applied to a case study
shown in Figure 1. It is a 3D bar structure called ”double banana”. The
lengths of the 18 bars are specified, it can be seen that this system is not
rigid because each banana can rotate about the axis defined by the two end
points A and B connecting them.

A

B

Figure 1: Geometry of the double banana.

We begin in section 2 by giving a series of tools used to describe the geo-

3



metric problem. Section 3 describes the coordinate free formulation applied
to this GCSP 1 and presents the solving method. In section 4, a method
for analyzing whether the geometric problem is overconstrained or not, is
described. Following this, if the problem is declared over-constrained, we
propose a method for assisting a design team to seek a consistent set of con-
straints. Finally, section 5 uses the example of the double banana to illustrate
the application of this methodology.

Remark: the Einstein notation or Einstein summation convention is em-
ployed in this paper. This notation implies the summation over a set of
indexed terms in a formula, thus achieving notational brevity.

2. A coordinate free-model for representing the geometry

This section presents a non-cartesian model that characterizes geometric
objects. We recall here the basics of the method as described in [5]. The
characteristic of this approach is that it is unnecessary to perform cartesian
reference frame, which is a real benefit for the sketching tasks of CAD de-
signers. The principle is that any geometry can be represented as points and
vectors. These are the central elements of our modelling. In the following,
we describe three models that fully describe the design geometry.

2.1. The topological model

The geometry is reduced to a skeleton composed of points and line seg-
ments. An incidence matrix C, establishes the relation between each point
of an object and its edges. It is an n × m matrix, where n and m are the
number of edges and vertices respectively, such that Cj

i = −1 if the edge ei
leaves vertex pj, 1 if it enters vertex pj and 0 otherwise. Figure 2 gives an
example of an incidence matrix. Edges are oriented arbitrarily.

2.2. The geometrical model

The geometrical object is closely related to the topological model. Indeed,
a vector is associated with each edge. Therefore each vector is an oriented
bipoint. Thus the geometrical model is represented by a list of vectors.

Given V a set of n non-normed vectors as V = (v1,v2, ...,vn). The Gram
matrix is the mathematical tool used to represent this vectorial model. Thus

1Geometric Constraint Satisfaction Problem

4



p2

p3

p4

p1

→

p1 p2 p3 p4
e1 -1 0 0 1
e2 0 0 1 -1
e3 0 1 0 -1
e4 -1 0 1 0
e5 -1 1 0 0
e6 0 -1 1 0

Figure 2: Geometric skeleton (left) and associated incidence C matrix (right)

G(V) is defined by: Gij(V) = 〈vi,vj〉 where 〈vi,vj〉 is the scalar product
between vectors vi and vj . This matrix is also noted G in the following.

The Gram matrix of a set of vectors is constructed for each representa-
tion of a sketch. This Gram matrix fully defines the metrics of the object.
It should be noted that this modelling is independent of the Cartesian co-
ordinate system since all the vectors are defined in relation to one another:
the vectors are not represented by their Cartesian co-ordinates but by their
relative scalar products. An advantage of this approach is the possibility of
ensuring specification consistency by verifying the mathematical properties
of the Gram matrix (symmetrical, positive-semidefinite, rank, etc.). For ex-
ample, by calculating specific determinants, it is possible to know whether
or not there is a solution to the problem (see [10]).

2.3. The specification model

For our purpose, it is assumed that a geometric problem is defined by a
skeleton, totally defined by the topological and geometrical models, and by
a list of geometric constraints. In this study, we only focus on the length
of the vectors, called L, or the angle between two vectors called α. All the
specifications are stocked in S. It is a partially filled Gram matrix.
Element Sii is known if the user chooses a specific length for vi, as presented
in equation 2.

Li =
√

Sii (2)

5



Element Sij is defined if the user specifies the angle between vi and vj .
Thus,

cos(αij) =
Sij√

Sii

√

Sjj

(3)

These three models fully characterize the GCSP.

3. A coordinate free formulation of geometric constraints

The previous section presented the geometric model based on a vectorial
representation of the geometric entities and constraints. We now present the
approach developed, based on the transformation of the initial geometry and
using a perturbation matrix (see equation 1). This method is particularly
appropriate for CAD as the users always start by ”drawing” an initial shape
that is gradually modified to obtain the desired object.

3.1. The perturbation of the initial object

To illustrate this method, let us take the trivial object presented in figure
3. For example, v1 has p1 as origin and p4 as end vertex. The G(V) matrix
defines the initial object whereas G(V ′) characterizes the final object. As the

s2

s3

s4

v2

v3
v4

v5
v6

v1

s1
s'2

s'3

s'4

v'2

3

4

v'5
v'6

v

s'1

Figure 3: Vertex displacement

C incidence matrix forms the relation between each point of the object and

6



vectors, we express the edge relation for the initial object in (4).

vi = C
j
i pj (4)

The edge relation for the final object is found in (5).

v′
i = C

j
i p

′
j (5)

It should be noted that the two objects are represented by the same connec-
tion matrix C because the topology is invariant during the tranformation,
The variation p′

i − pi corresponds to the vertex displacement. Here pi and
p′
i are vectors which are the positions of the vertex i before and after trans-

formation. If V is a set of vectors and V ′ a set of vectors obtained after a
transformation from an initial state to a final one, we express the relation
between these two states. We define the vertex variation by (6):

p′
i − pi = X

j
i vj (6)

X
j
i are elements of matrix X, which is called the perturbation matrix from

the initial state of the geometry to the final one. It is an n×m matrix. The
last three equations (4),(5) and (6), make it possible to obtain the relation
between the initial vectors and the final one in (9) using formulas (7) and
(8). Here, δki represents the Kronecker symbol which equals 1 if i = k and, 0
otherwise.

v′
i = C

j
i (X

k
j vk + pj) (7)

v′
i = vi + C

j
iX

k
j vk (8)

v′
i = (δki + C

j
iX

k
j )vk (9)

The aim is to obtain the transformation of an object from its initial shape
to its final one. The Gram matrix H = G(V ′) characterizes the final object.
Indeed,

Hij = 〈v′
i,v

′
j〉 (10)

Hij = 〈(δpi + Ck
i X

p
k)vp, (δ

q
j + Ck

j X
q
k)vq〉 (11)

Hij = (δpi + Ck
i X

p
k)(δ

q
j + Ck

j X
q
k)〈vp,vq〉 (12)

Hij = (δpi + Ck
i X

p
k)(δ

q
j + Ck

j X
q
k)Gpq (13)

This expression written in matrix form is:

H = (I+C X)G(I+C X)t (14)

7



Note T the vectorial transformation I + C X. Due to the rank property:
rank(H) ≤ min(rank(T), rank(G)) H is a matrix of rank r. Formula (14)
above represents the variation of the geometric object. The elements of the
perturbation matrix X are the unknowns of the problem. So far, the Gram
matrix G has only been used to characterize the position and orientation of
all the vectors of the initial sketch. Numerically, this matrix is totally known.

3.2. The specifications

The geometric constraints specified by the user lead to a set of equations
that are presented in the following section. Here we itemize only two types of
specifications (useful as examples) but many other specifications have been
developed by the authors. The reader may refer to [5] and [11] for more
details.

3.2.1. Length equations

By definition, an element of diagonal matrix Gii (Hii for the final one)
represents the squared length of an initial vector (final resp.). The length
specification of vector vi imposed by the designer is denoted Li. Thus:

√

Hii = Li (15)

Given that each final matrix element is expressed as equation 13, and by
developing this latter expression to the 1st order, we obtain (16):

Hij
∼= Gij + (Ck

i X
p
k)Gpj +Gip(C

k
jX

p
k) (16)

In particular, for the formula of the diagonal elements (17) can be used.

Hii
∼= Gii + 2(Ck

i X
p
k)Gpi (17)

And by developing equation (15), it becomes equation (18). This equation
is a set of linear equations in the unknowns Xp

k .

1√
Gii

(Ck
i X

p
k)Gpi

∼= Li −
√

Gii (18)

Terms Li, Gpi, C
k
i and Gii are known. The unknowns of this equation are

elements of X.

8



3.2.2. Line-line angle equations

By definition, element Gij represents the scalar product between vectors
vi and vj. The designer requires the cosine of the angle between vector vi

and vj to satisfy specification αij , resulting in the equation (19) below:

Hij =
√

Hii

√

Hjj cosαij (19)

Rewriting equation (19) to move all the terms of H to the left of the equal
sign gives:

Hij(Hii)
−1/2(Hjj)

−1/2 = cosαij (20)

By developing Hij, Hii and Hjj using equation (16) and by linearization
to the 1st order, the expression of an angular specification is expressed as
follows:
(

Gip −
Gij

Gjj
Gpj

)

Ck
jX

p
k +

(

Gpj −
Gij

Gii
Gpi

)

Ck
i X

p
k
∼=

√

Gii

√

Gjj cosαij −Gij

(21)
Terms Gip, Gpj, Gii, Gij , Gjj, C

k
j , C

k
i and cos(αij) are known. The unknowns

are elements of X. Equation (21) is a set of linear equations in the unknowns
X

p
k .

3.3. Geometric problem solving

In this section, we do not attempt to describe in detail the method used
to solve the equations for the isoconstrained problem. This study was car-
ried out by Moinet in [11] for a different set of equations but it remains
well-adapted to the problem presented in this paper. The geometrical solver
developed with Matlab R© computes the X perturbation matrix of equation
(14) in order to obtain an object that conforms to the specifications given
by the designers. The system to be solved consists of non-linear relations
(15) and (19). The known terms are the elements of the initial Gram ma-
trix G, line-line angle specifications αij , and length specifications Li. For
solving purposes, the equations generated by the above mentioned solver are
linearized to the 1st order. Then it is necessary to find the elements of pertur-
bation matrix Xij to solve the problem. The most frequently used method
to solve this kind of system, F (X) = 0, is the Newton-Raphson method.
However, the algorithm implemented is a variation of the Newton-Raphson
method that has been described in [5]. Then equations (18) and (21), as

9



presented in previous paragraph, can be rewritten and stored in the linear
form presented in (22).

Ax = b (22)

In this equation, all the unknown elements from matrix X are stored in the
column vector noted x. The elements of matrix A and the second member
b (a column vector) are computed from S, G and C. Note that there are
as many elements in b as the number of specifications given by the user.
Indeed, these elements are extracted from matrix S − G(i) at each step i.
In this case, S is the specification given by the designer, whereas G(i) is the
Gram matrix at step i. The initial value, G(0) = G, is given by the measure
of the geometric parameter in the initial sketch. Then, the solving method
can be summed up as in algorithm 1:

10



Algorithm 1: How to solve the GCSP problem

Input:
G is an initial object defined by a Gram matrix of size n× n

C is the connection matrix of size n×m

S are the specifications given by the user, defined by a Gram matrix of
size n× n partially filled.
n: number of vectors
m: number of points in the sketch
d: number of specifications
Result:
A new Gram matrix G of a rank equal to 3 that totally defines the
final object and conforms to the list of specifications
initialization;

G(0) ← G;
X← ∅ (of size m× n) ;
while Not all the specifications are satisfied up to ǫ do

Construct a system in the form Ax = b using this relation:
CXG(i) +G(i)(CX)t = S−G(i)

with:
A matrix (of size d× (nm))
x vector (of size nm× 1); x = vec(Xt)
b vector (of size d× 1) equals to the d elements extracted

from the column vector formed by stacking the lines of S−G(i)

matrix
x← pinv(A)b ; pinv is the pseudo-inverse of Matlab R©
Re-construct X matrix
G(i+1) ← (I+CX)G(i)(I+CX)t

end

This algorithm converges if the GCSP is underconstrained, isoconstrained
or overconstrained with consistent specifications. Therefore in the next sec-
tion the authors present a method that always ensures consistency of the
GCSP.
An application of this algorithm is presented in section 5.

11



4. The Problem Analysis

When, for generic values of the GCSP, the number of solutions is finite
and nonzero (resp. zero, infinity), the problem is said to be well- (resp. over-,
under-) constrained.
Here, we only focus on the overconstrained problem and propose using the
witness method of Michelucci et al. [12, 13, 14] to perform the problem
analysis. The first part of this section will briefly introduce Michelucci’s wit-
ness method. In the second part, we explain how to generate a useful witness
using a coordinate free formulation for the geometric constraint solving prob-
lem. Then, the third part introduces the proposed method to analyse the
chosen witness using the Rouché-Fontené theorem. The fourth part proposes
a method to handle over-constrained problems.

4.1. The Witness method

Michelucci’s witness method proposes studying the generic properties of
a collection of objects by studying one of them that is called a ”witness”.
Up to now this method has always been used in the context of contraints
formulated in a Cartesian framework. In addition, the literature states that
if there is a sketch with the same properties as the solution sought (coinci-
dence, collinearity, coplanarity, etc.) then this is generally a witness. In the
framework of this research, it is always assumed that the user has drawn such
a sketch to describe a problem of geometrical constraints. This is why this
method seems well-adapted to this task. It should be noted that the wit-
ness method has never been applied with non-Cartesian formulations. The
authors therefore felt it pertinent to demonstrate that this method can be
applied in this case.

4.2. Generation of a generic witness

Sometimes the sketch proposed by a designer is not totally representative
of the shape of the desired solution. This occurs when certain geometric
elements are drawn with specific properties (collinearity, coplanarities, etc.)
without representing a real constraint. In this case the sketch cannot be used
as a witness. This situation occurs when the sketch is not generic. A sketch
is considered generic when it remains rigid before and after an infinitesimal
perturbation. Likewise if the sketch was not rigid before the perturbation and
continues not being rigid after it. Details on rigidity and generic frameworks
can be found in [16]. This situation is illustrated in figure 4. The rigid sketch

12



a. Rigid sketch b. Non rigid sketch

Figure 4: Example of rigid and non rigid sketches. [15]

(figure 4.a) is not generic: a small perturbation on the dimensions of the bars
will result in a non rigid sketch like that shown in figure 4.b. On the other
hand the sketch in figure 4.b is generic: if a small perturbation is introduced
in the dimension of this sketch, it will remain non rigid. Usually, non generic
sketches are constituted with line segments that are aligned as presented in
figure 4.a. In the representation chosen (based on Gram matrix) for this
paper, the vectors representing these line segments are collinear or coplanar.
The collinearity of the vectors will lead to an artificial redundancy between
the constraints associated with the collinear vectors. Consequently, before
using the witness method with a coordinate free formulation of the GCSP,
it is necessary to ensure that the sketch used as witness is generic. In order
to ensure that the sketch is generic, the authors have used a naive technique
that consists of the algorithm presented in figure 5. This algorithm has four
steps:

1. The system of equations modelling the GCSP is based on the user’s
sketch. The rank of this system is calculated.

2. The starting point is a random perturbation of the sketch. Then a
second linearised system is generated and its rank calculated.

3. If the rank of the second system is higher than that of the first, the
first sketch is replaced by the second and the second step is reiterated.

4. Otherwise the first sketch is considered generic.

It is important to note that the probability of finding a perturbation at
random that transforms a generic sketch into a non generic sketch is very low.
This means that, apart from exceptional cases, the rank will not be reduced
by the random perturbation. This subject will be discussed in section 6.

13



Generation of the linear system Ax=b

Calculation of rank

As long as the rank increases

Calculation of rank

User's sketch

Random perturbation of the user's sketch

Generation of the linear system Ax=b

Generic witness sketch

Figure 5: Naive algorithm for the generation of a generic sketch

In our case, the initial problem is represented by a matrix of incidence C

and a list of points with their initial positions (described by their Cartesian
coordinates). Thus, to generate a random perturbation of the initial problem,
it is advisable to conserve the matrix of incidence and randomly perturb the
initial coordinates of all the points.

4.3. Analysing the witness

Once the witness has been generated, it can be analysed. In the sec-
ond case of an over-constrained problem, the purpose of this analysis is to
determine which constraints are redundant. Overconstrained problems that
are locally undercontrained do not disturb the proposed methodology of this
article. For example, system (23) holds this characteristic. Furthermore,
the analysis proposed by the authors also permits determining, for each re-
dundant constraint, the relation that links this constraint to those that are
independent. The main steps of the method proposed are presented in figure
6. In this paragraph we assume that the system of equations is written in
linear form: Ax = b (cf. section 3.3). It should be noted that matrix A

has the dimension d × nm. We also assume that this system is composed
of r independent constraints (the matrix A has rank r). As the GCSP is

14



Generation of the linear system Ax=b

Witness sketch maximising the rank

Search for independent constraints

Resolution: calculation of H that conforms to S

Calculation of compatibility equations using

S and the object characterised by H

Search for new target speci�cation S'

Elimination of redundant constraints :

S is all the independent constraints
~

~

Figure 6: Method used to analyse the over-constrained problem

overconstrained, it is additionally assumed that d > r and nm ≥ r.

4.3.1. Search for redundant constraints

To find the redundant constraints, the authors propose using the Gauss
elimination method [17] to obtain a triangular form of the matrix A. This
triangular form is used to identify the redundant constraints by searching
the lines that contain only 0. These redundant constraints are withdrawn
from the problem. The independent specifications are stored in S̃, a partially
filled Gram matrix. Comment: if a column of the matrix does not contain
an elimination value, this means that the value of the unknown associated

15



with this column can be fixed freely.















































x1 + x4 = b1
x2 + x4 = b2
x3 + x4 = b3

x1 + x2 + 2x4 = b4
x2 + x3 + 2x4 = b5

x5 = b6
x6 = b7

x5 + x6 = b8

(23)

For example, the system (23) can be represented by the matrix shown in
(24) figure 7.a. This matrix can be given a triangular form (25) (in figure
7.c) by using the circled values and by performing the sequence of operations
indicated in figure 7.b on its lines: Using this example, we can conclude

























1© 0 0 1 0 0
0 1© 0 1 0 0
0 0 1© 1 0 0
1 1 0 2 0 0
0 1 1 2 0 0
0 0 0 0 1© 0
0 0 0 0 0 1©
0 0 0 0 1 1

























(24)

1. L4 ← L4 − L1

2. L4 ← L4 − L2

3. L5 ← L5 − L2

4. L5 ← L5 − L3

5. L8 ← L8 − L6

6. L8 ← L8 − L7

























1© 0 0 1 0 0
0 1© 0 1 0 0
0 0 1© 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1© 0
0 0 0 0 0 1©
0 0 0 0 0 0

























(25)

a. Initial matrix b. Operations on the
lines

c. Triangular matrix

Figure 7: Illustration of the Gauss elimination method

that equations 4, 5 and 8 are redundant. We can also conclude that the 4th
unknown can be chosen freely since the fourth column of the matrix (25)
does not contain a Gauss value.

4.3.2. Determining the equations of compatibility

If the system Ax = b is over-constrained the Rouché-Fontené theorem
[17, 18] indicates that for a solution to exist, the second member b must
confom to d − r conditions. In the following, these conditions will be called
equations of compatibility. It is always possible to rewrite the system without

16



loss of generality so that the first r lines and the first r columns are indepen-
dent. This amounts, on the one hand, to writing the redundant constraints
on the last lines, and on the other hand, to rewriting the unknowns that
can be fixed freely at the end (which corresponds to the last columns of the
matrix). Thus the system Ax = b will take the form presented in equation
(26). Then, the expression of each compatibility equation is given by hq = 0.
The expression of hq is given in equation (27) with q ∈ {1, ..., d− r}.



















A1
1 ... Ar

1 Ar+1
1 ... Anm

1
...

. . .
...

...
. . .

...
A1

r ... Ar
r Ar+1

r ... Anm
r

A1
r+1 ... Ar

r+1 Ar+1
r+1 ... Anm

r+1
...

. . .
...

...
. . .

...
A1

d ... Ar
d Ar+1

d ... Anm
d



















×



















x1
...
xr

xr+1
...

xnm



















=



















b1
...
br
br+1
...
bd



















(26)

hq =

∣

∣

∣

∣

∣

∣

∣

∣

∣

b1 A1
1 ... Ar

1
...

...
. . .

...
br A1

r ... Ar
r

br+q A1
r+q ... Ar

r+q

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (27)

It is important to note that in equation (27) variables Aj
i have known numer-

ical values. On the contrary, the objective of this calculation is to obtain a
linear relation that links variables bi in the form presented in equation (28).

hq =
∑

i∈{1,...,r,r+q}

γi
qbi (28)

To explain this relation it is possible to expand the determinant of equation
(27) by the first column. We therefore obtain the value of the coefficients γi

q

by the formula (29).

γi
q =



























































(−1)i+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A1
1 ... Ar

1
...

. . .
...

A1
i−1 ... Ar

i−1

A1
i+1 ... Ar

i+1
...

. . .
...

A1
r ... Ar

r

A1
r+q ... Ar

r+q

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

if i ∈ {1, ..., r, r + q},

0 otherwise

(29)

17



4.4. Handling an over-constrained problem

In the case where the problem is over-constrained, i.e. there is no solution
that conforms to all the specifications S, the authors propose a method to
help designers to find all the consistent specification values bringing them
close to the initial expectations. The idea is to use the compatibility equa-
tions to change the independent specifications so that the redundant spec-
ifications draw close to the value desired. To do this the authors propose
searching a set of new specifications stored in the Gram matrix S′. The
specification values must conform to the compatibility equation (30):

Γt = 0 (30)

We define t, the vector of size(d× 1) equal to the d elements extracted from
the column vector formed by stacking the lines of (S′ −H). The expression
of terms γi

q of matrix Γ is given by equation (29). In a general way, we note
that matrix Γ has size (d − r) × d. In most engineering cases, the number
of compatibility equations is much lower than the number of independent
specifications (d− r < r). When d− r ≥ r the designers must have imposed
a very high number of redundant constraints (d ≥ 2r). In this specific but
improbable case, the designers would be asked to reformulate their problem.
Furthermore, in the general case where d − r < r, matrix Γ will have rank
d − r since the compatibility equations are independent by construction.
Consequently, by using system (30) it is possible to calculate d − r values
of ti among d. If, without loss of generality, the columns of matrix Γ are
re-ordered so that its first d − r columns are independent, system (30) can
be written in the form (31) and (32) by introducing two matrices Γ1 (of size
(d − r) × (d − r)) and Γ2 (of size (d − r) × r). In this form matrix Γ1 is
invertible and we can calculate the values t1 to td−r using the formula (33).







γ1
1 ... γd−r

1
...

. . .
...

γ1
d−r ... γd−r

d−r






×







t1
...

td−r






+







γd−r+1
1 ... γd

1
...

. . .
...

γd−r+1
d−r ... γd

d−r






×







td−r+1
...
td






= 0

(31)

Γ1 ×







t1
...

td−r






+ Γ2 ×







td−r+1
...
td






= 0 (32)

18









t1
...

td−r






= −Γ1

−1Γ2 ×







td−r+1
...
td






(33)

Now the above has been presented, the problem remaining to be solved is to
partition t so that the Γ1 matrix is full rank.

4.4.1. Partitioning the set of target specifications

The technique presented in section 4.3.1 allows determining the redun-
dant constraints. It also provides a set of independent target specifications.
However, in an engineering context, the designer may want to conserve the
initial value for the redundant specification detected by the Gauss elimina-
tion method. In this case, it is necessary to find another partition for the
target specifications. The following proposition does not claim to solve the
problem of partitioning the set of specification parameters. The two ideas
raised here are more the paths to be followed to give a clear framework for
designers to choose a partition of ti. Firstly, the designers may wish to as-
sign priorities or importances to specifications: the solution must meet the
important specifications as precisely as possible, whereas the accuracy for
other specifications can be lower. In this case it is advisable to place the im-
portant specifications in subassembly (td−r+1, · · · , td) and the less important
specifications in subassembly (t1, · · · , td−r) which will be calculated using re-
lation (33). Secondly, it could also be interesting to follow paths suggested
in research works on robust design such as [19]. This study indicates criteria
to help designers to divide their specifications into two parts to minimize
the variation of values (t1, · · · , td−r) that are calculated from (td−r+1, · · · , td)
which is also our aim. Whatever the case, once the designers have chosen a
partition, it is advisable that matrix Γ1 is invertible.

4.4.2. Discussion

On the basis of the compatibility equations (30) generated, the authors
present two paths that should be combined carefully to permit a team of
designers to solve an overconstrained problem. The paths proposed in this
section to calculate the values of the target specifications t using matrix Γ

require relatively basic linear algebra functions. This means that the calcu-
lations necessary to obtain the target specifications t will be fast. A simple
tool for calculating the target specifications used in these two paths could be
developed. Then it would be possible to use this tool during a design review

19



to generate several sets of target specifications. During the same meeting, the
design team and experts could then decide on which target value seems most
pertinent. However, it is important to note that the compatibility equations
were generated using a linearised version of the problem. Consequently, these
equations are only valid in the vicinity of the solution used to generate them.

5. Case study

This section presents a case study with the application of the method to a
double banana configuration. The skeleton of the double banana is composed
of 8 vertices and 18 edges. These 26 elements are declared in the text file
presented in figure 8. The initial geometry is also declared in the same
text fileby the position of 8 points associated with each vertex. This over-
constrained and under-constrained academic example is a good candidate
for illustrating the proposed algorithm. The declaration of the geometrical

Figure 8: Text file - example of the Double Banana geometry.

elements composing the double banana geometry is done as follows.

20



• First, the number indicated after the key word ’VERTICES’ gives the
total number of points in the geometry. Then each line that follows
is used to declare each single point. This declaration starts with the
keyword ’Point’. Then, the name of the point, such as Pt1, Pt2, · · · in
Figure 8 and the initial coordinates of the point must be entered. This
part provides the information needed to fill the initial Gram matrix,
G(0) presented in algorithm 1.

• Second, the number indicated after the key word ’EDGES’ gives the
total number of edges in the geometry. Then each line that follows
is used to declare each single edge. This declaration starts with the
keyword ’Edge’. Then, the name of the edge, such as A1, A2, · · · in
Figure 8 must be entered. Afterwards, the name of the origin point of
the current edge is preceded by a minus sign whereas no sign specifies
the ending point. Consequently, all the edges are oriented. This part
corresponds to providing the C information presented in algorithm 1.

• Third, the number indicated after the key word ’LENGTH SPECI-
FICATIONS’ gives the total number of length constraints declared in
the GCSP. Each constraint is declared using the approach presented
before. In this case, they are named l1 to l18 with their correspond-
ing numerical values specified after the equal sign. This part gives the
specifications contained in the partially filled Gram matrix S.

The figure in Fig.9 is drawn using vertices coordinates (listed in Fig.8); they
do not fullfil length specifications (also in fig.8). The resolution of the GCSP
is assigned to the solver developed by the authors [5]. The result expected
is a geometry that conforms to all the 18 specifications given. As this case
study is over-constrained, the solver is unable to find a geometry that satisfies
the 18 specifications. Consequently, this research proposes to add a numer-
ical problem analysis before solving the GCSP. The result of this analysis
gives a set of compatibility equations required to find a new set of consistent
specifications stored in S′.

5.1. Analysis of the Numerical Problem

The numerical analysis of the problem is performed by adapting the wit-
ness method to the case of the double banana structure. The first part is
to find a generic sketch. A linear system is generated from the initial con-
figuration. Its rank is calculated as 17. The points of the initial sketch are

21



Pt1

Pt4

Pt3

Pt5

Pt2

Pt7

Pt8

Pt6

Figure 9: Example of the Double Banana: initial geometry.

perturbed randomly. A second system is generated and its rank is calculated.
It is also 17. It can therefore be concluded that the initial object is generic.
Furthermore, the rank of matrix A is lower than the number of constraints
(17 < 18); thus we can assume (based on Michelucci results) that the case
is over-constrained. Then two options are offered to the users: either they
reformulate the problem alone, or they leave the algorithm to manage this
overstress. We now describe the second scenario. In this example, an extract
of the matrix A of size 18 × 144 (144 = 18 · 8) is given in (34). The com-
putation of the Gaussian elimination using Matlab rref() function gives the
matrix presented in (35).



































































2.5 2.1578 1.854 -2.5 -2.1578 -1.854 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0

0 0 0 -2.3454 -2.3 -1.7116 2.3454 2.3 1.7116 0 0 0 0 0 0 0 0 0 · · · 0

0 0 0 -2.3568 -2.0017 -1.9667 0 0 0 2.3568 2.0017 1.9667 0 0 0 0 0 0 · · · 0
-1.1957 -1.3623 -1.3575 0 0 0 0 0 0 0 0 0 1.1957 1.3623 1.3575 0 0 0 · · · 0

0 0 0 0 0 0 -1.6612 -1.3705 -1.7222 0 0 0 1.6612 1.3705 1.7222 0 0 0 · · · 0

0 0 0 0 0 0 0 0 0 -2.0754 -2.1397 -1.7289 2.0754 2.1397 1.7289 0 0 0 · · · 0
0 0 0 0 0 0 0 0 0 0 0 0 2.1798 1.4924 1.6768 -2.1798 -1.4924 -1.6768 · · · 0

0 0 0 0 0 0 0 0 0 0 0 0 2.4344 2.271 1.7365 0 0 0 · · · 0

0 0 0 0 0 0 0 0 0 0 0 0 2.4558 2.0012 1.9071 0 0 0 · · · -1.9071
0 0 0 -1.9762 -2.0172 -1.741 0 0 0 0 0 0 0 0 0 0 0 0 · · · 1.741

0 0 0 -1.7689 -1.6297 -1.7538 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0

0 0 0 -1.159 -1.5984 -1.1054 0 0 0 0 0 0 0 0 0 1.159 1.5984 1.1054 · · · 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.41569 0.41832 -0.47819 · · · 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.389 -0.53979 -1.0454 · · · 1.0454

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0.54824
0 0 0 0 0 0 0.67011 1.1941 0.060784 -0.67011 -1.1941 -0.060784 0 0 0 0 0 0 · · · 0

0.98718 0.12051 0.80576 0 0 0 -0.98718 -0.12051 -0.80576 0 0 0 0 0 0 0 0 0 · · · 0

1.754 1.5832 0.83324 0 0 0 0 0 0 -1.754 -1.5832 -0.83324 0 0 0 0 0 0 · · · 0



































































(34)

22



From this point we can first observe that the 18th row is full of 0, meaning
that the 18th specification is redundant. Secondly, it can be seen that the
columns numbered {12, 18, 20, 21, · · · , 144} do not contain any elimination
value which means that the value of unknowns {12, 18, 20, 21, · · · , 144} can be
choosen freely. This second feature is not considered in the method presented.
































































1© 0 0 0 0 0 0 0 0 0 0 -0.54309 0 0 0 0 0 -0.63836 0 -0.87313 · · · 0.904
0 1© 0 0 0 0 0 0 0 0 0 1.5846 0 0 0 0 0 0.74544 0 1.8806 · · · -1.309
0 0 1© 0 0 0 0 0 0 0 0 -1.1119 0 0 0 0 0 0.4288 0 0 · · · -1.2757
0 0 0 1© 0 0 0 0 0 0 0 0 0 0 0 0 0 2.0694 0 4.8563 · · · -2.699
0 0 0 0 1© 0 0 0 0 0 0 0 0 0 0 0 0 -1.1408 0 -4.7575 · · · -0.82269
0 0 0 0 0 1© 0 0 0 0 0 0 0 0 0 0 0 -1.0271 0 0 · · · 3.0168
0 0 0 0 0 0 1© 0 0 0 0 -2.0841 0 0 0 0 0 -0.87694 0 -0.7622 · · · 1.786
0 0 0 0 0 0 0 1© 0 0 0 1.5431 0 0 0 0 0 0.53983 0 0.97193 · · · -1.4089
0 0 0 0 0 0 0 0 1© 0 0 0.78228 0 0 0 0 0 0.75185 0 0 · · · -2.3414
0 0 0 0 0 0 0 0 0 1© 0 0.84097 0 0 0 0 0 0.32545 0 0.67516 · · · -0.8287
0 0 0 0 0 0 0 0 0 0 1© -0.0076529 0 0 0 0 0 -0.096649 0 0.16532 · · · -0.060778
0 0 0 0 0 0 0 0 0 0 0 0 1© 0 0 0 0 -1.5895 0 -3.1882 · · · 1.8921
0 0 0 0 0 0 0 0 0 0 0 0 0 1© 0 0 0 0.70222 0 3.9125 · · · 0.50639
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1© 0 0 1.3099 0 0 · · · -3.9679
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1© 0 0.86343 0 0.66885 · · · -0.67273
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1© -0.28511 0 -1.7211 · · · -0.2056
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1© 1.3945 · · · -0.46582
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0

































































(35)
Consequently to have a well-posed problem, the proposed solution is to re-
lease the 18th constraint. The new reduced problem is therefore composed of
17 specifications which are stored in S̃. This new well-posed problem, is sent
to the solver. A solution is found in 4 iterations. In figure 10, we can see
all the configurations of the objects obtained during the solving. An object

Figure 10: Four iterations of the double banana (left initial, right final object).

can be drawn at each step of the algorithm. Convergence is reached very
quickly. Indeed, the configuration desired is almost obtained after only one
iteration. It is necessary to wait for the 4th stage for an object to reach
standard convergence (ǫ = 1e−6 in algorithm 1).

The solution computed is a set of points called P′, with the same topology
as before. The geometrical solution is illustrated by figure 11. The analysis of
this solution gives the length parameters presented in table 1. It can be seen

23



that the 18th constraint that has been removed is equal to L18 = 27.622761
instead of 32 (the designer’s original goal). This solution is not the exact
desired solution. It is probably just one solution close to the designer’s aims.
The geometrical solver also gives the compatibility equations (in this exam-
ple, only one equation describes the dependence between the 18 parameters)
(there are only 17 independent parameters). The following section describes
the generation of this compatibility equation.

Pt1

Pt2

Pt4

Pt3

Pt5

Pt7
Pt8

Pt6

Figure 11: Example of the Double Banana configuration with (P′
,C, S̃).

5.2. Compatibility equation generation

As we found that there was only one redundant constraint, there is there-
fore only one compatibility equation of the form (28) to be calculated. Thus
we perform the calculation of γi

q presented in (29). Note that q = 1 in this
case.

18
∑

i=1

γi
1bi = 0 (36)

Using equation (36), each element bi can be calculated by a linear combina-
tion of the 17 others.

5.3. Handling the overconstrained problem

For example, let us assume that the value for L18 calculated by the solver
is too far from the designer’s aims and that the value of L9 may be less accu-
rate than its primary specification. The other values are correct. Therefore

24



Length Final measure Initial value
L1 75.000000 94.382202
L2 69.000000 88.865066
L3 59.000000 82.048766
L4 48.000000 48.774994
L5 50.000000 50.418251
L6 51.000000 51.951901
L7 73.000000 78.689262
L8 57.000000 57.323643
L9 45.000000 45.86938
L10 68.000000 90.87904
L11 59.000000 83.600239
L12 74.000000 101.641527
L13 49.000000 59.380131
L14 35.000000 44.271887
L15 23.000000 24.779023
L16 34.000000 34.655447
L17 26.000000 26.248809
L18 27.622761 27.622761

Table 1: Lengths measured

the user wishes to know the new value of L9 which conforms to the consis-
tency of the problem. They can also change more than one value. For the
compatibility equation, the coefficients of γi

1 are the influence factors of each
specification i which ensures the consistency between the 18 length specifi-
cations. As we want to specify L18 and let L9 free, we apply equation (32)
with ti = 0 for i ∈ {1, .., 8, 10, .., 17}. Then,

γ9
1t9 + γ18

1 t18 = 0 (37)

t9 = −
γ18
1

γ9
1

t18 (38)

As t9 = L′
9 − L9 and L9 is equal to

√
H99, we have:

L′
9 = t9 +

√

H99 (39)

25



Parameters Values
γ1
1 0.008951

γ2
1 -0.008535

γ3
1 -0.013538

γ4
1 0.006108

γ5
1 -0.006594

γ6
1 -0.012478

γ7
1 -0.020714

γ8
1 -0.008851

γ9
1 0.039190

γ10
1 0.022958

γ11
1 -0.003612

γ12
1 -0.008140

γ13
1 -0.006937

γ14
1 0.027790

γ15
1 0.010428

γ16
1 0.008528

γ17
1 -0.003392

γ18
1 -0.006685

Table 2: coefficients of the compatibility equations

Length L′
9 can be easily calculated thanks to relation (40).

L′
9 = −

γ18
1

γ9
1

t18 +
√

H99 (40)

With L9 = 45.000000, t18 = 32 − 27.622761,γ9
1 = 0.039190 and γ18

1 =
−0.006685.
After calculus, we find L′

9 = 45.746657.

6. Discussion

The geometric problem is described by a coordinate-free formulation. To
solve the GCSP, the authors obtained the transformation between an initial
configuration and a final one that conformed to the users’ specifications. This
transformation was totally defined when the X matrix was calculated. The
present size of matrix X is m× n, consequently the number of unknowns is

26



nm. As 3n− 6 unknowns are sufficient to position n points in 3D, the alge-
braic problem is underconstrained, so values of some unknowns can be fixed
to zero. This strategy was tested on several examples but was not presented
in this paper.
The authors presented a method to analyze the GCSP. The analysis was per-
formed before the solving process, something not done at present at each step
of the resolution. An improvement is possible: to detect particular proper-
ties of geometric elements during the solving process. It will be interesting to
analyse the algebraic system in it in order to know whether the final sketch
is generic. If the final sketch is not generic, the proposed method cannot be
applied.
When problems are over-constrained, a search is made to identify the redun-
dant constraints by using the Gaussian elimination method. The independent
specifications set depend on the order of the rows in the matrix A. Different
strategies could be studied to sort the rows in A differently.
Finally, the double-banana problem is an academic example with only one
overconstraint. It was chosen for pedagogical reasons. Further applications
must be performed to demonstrate the efficiency of this on industrial prob-
lems with several overconstraints.

7. Conclusion

In this paper we used a non-cartesian formulation for GCSP. We wrote
constraint equations for point-point distance and line-line angles. The effi-
ciency of the witness method for handling problems defined by a coordinate
free formulation was demonstrated and a solution for identifying redundancy
between constraints in over-constrained cases was presented. A set of com-
patibility equations was generated after performing a prior analysis. Finally,
strategies and tools were proposed to assist a team of designers to find a set
of consistent specifications. The complete process was illustrated using the
double banana geometrical configuration.
In the design environment it is increasingly difficult to specify a geometric
problem correctly in a declarative way since designers often work together.
The proposed tools could be used in a collaborative environment, where it is
quite difficult to arbitrate between the different goals of design engineers.

27



References

[1] B. Bettig, C. M. Hoffmann, Geometric Constraint Solving in Parametric
Computer-Aided Design, Journal of computing and information science
in engineering 11 (2011).

[2] K. Haller, A. Lee-St.John, M. Sitharam, I. Streinu, N. White, Body-and-
cad geometric constraint systems, Computational Geometry 45 (2012)
385 – 405. Geometric Constraints and Reasoning.

[3] A. Clément, A. Rivière, P. Serré, A Declarative Approach for Geome-
try and Topology : a New Paradigm for CAD/CAM Systems, in: ed.
Kluwer Academic (Ed.), International Conference on Integrated Design
and Manufacturing in Mechanical Engineering, pp. 199–206.

[4] P. Serré, Cohérence de la spécification d’un objet de l’espace euclidien
à n dimensions, Ph.D. thesis, École Centrale Paris, 2000.

[5] M. Moinet, Descriptions non cartésiennes et résolution de problèmes
géométriques sous contraintes, Ph.D. thesis, École Centrale Paris, 2008.

[6] G. Mandil, Modèle de représentation géométrique intégrant les états
physiques du produit, Ph.D. thesis, École Centrale Paris & Université
de Sherbrooke, 2011.

[7] J. McTigue, R. Quinlan, Partial matrices whose completions all have
the same rank, Linear algebra and its applications 438 (2013) 348–360.

[8] M. Laurent, Matrix completion problems, in: C. Floudas, P. Pardalos
(Eds.), Encyclopedia of Optimization, Springer US, 2001, pp. 1311–
1400.

[9] M. Moinet, P. Serré, A. Rivière, A. Clément, A new approach to trans-
form a constrained geometric object, in: Proceedings of the 20th CIRP
Design Conference, Nantes, France.

[10] P. Serré, A. Ortuzar, A. Rivière, Non-cartesian modelling for analysis
of the consistency of a geometric specification for conceptual design,
International Journal of Computational Geometry & Applications 16
(2006) 549–565.

28



[11] M. Moinet, P. Serré, Declarative modelling and transformation of a
constrained geometric object, Int. J. of Product Development, 13 (2011)
344 – 361.

[12] D. Michelucci, S. Foufou, Geometric constraint solving: The witness
configuration method, Computer-Aided Design 38 (2006) 284 – 299.

[13] D. Michelucci, S. Foufou, L. Lamarque, P. Schreck, Geometric con-
straints solving: some tracks, in: SPM ’06: Proceedings of the 2006
ACM symposium on Solid and physical modeling, ACM,New York, NY,
USA, Cardiff, Wales, United Kingdom, 2006, pp. 185–196.

[14] S. Foufou, D. Michelucci, Interrogating witnesses for geometric con-
straint solving, Information and Computation 216 (2012) 24 – 38. Spe-
cial Issue: 8th Conference on Real Numbers and Computers.

[15] S. E. Thierry, P. Schreck, D. Michelucci, C. Fünfzig, J.-D. Génevaux,
Extensions of the witness method to characterize under-, over- and well-
constrained geometric constraint systems, Computer-Aided Design 43
(2011) 1234 – 1249. Solid and Physical Modeling 2010.

[16] J. Graver., B. Servatius, H. Servatius, Combinatorial Rigidity. Graduate
Studies in Mathematics, Amrerican Mathematical Society, 1993.

[17] S. Balac, F. Sturm, Algèbre et analyse: Cours de mathématiques de
première année avec exercices corrigés, Collection des sciences appliquées
de l’INSA de Lyon, Presses Polytechniques et Universitaires Romandes,
2003.

[18] R. Riedel, Condition nécessaire et suffisante de compatibilité d’un
système linéaire de n équations à p inconnues - Lien avec le Théorème
de Rouché-Fontené - Démonstration nouvelle du Théorème de Rouché-
Fontené, Technical Report, 2011.

[19] S. Caro, F. Bennis, P. Wenger, Tolerance synthesis of mechanisms: a
robust design approach, Journal of Mechanical Design 127 (2005) 86–94.

29


