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A Block Coordinate Variable Metric Forward-Backward

Algorithm

Emilie Chouzenoux, Jean-Christophe Pesquet and Audrey Repetti ∗

Abstract

A number of recent works have emphasized the prominent role played by the Kurdyka-
 Lojasiewicz inequality for proving the convergence of iterative algorithms solving possibly
nonsmooth/nonconvex optimization problems. In this work, we consider the minimization
of an objective function satisfying this property, which is a sum of a non necessarily convex
differentiable function and a non necessarily differentiable or convex function. The latter
function is expressed as a separable sum of functions of blocks of variables. Such an op-
timization problem can be addressed with the Forward-Backward algorithm which can be
accelerated thanks to the use of variable metrics derived from the Majorize-Minimize princi-
ple. We propose to combine the latter acceleration technique with an alternating minimiza-
tion strategy which relies upon a flexible update rule. We give conditions under which the
sequence generated by the resulting Block Coordinate Variable Metric Forward-Backward
algorithm converges to a critical point of the objective function. An application example
to a nonconvex phase retrieval problem encountered in signal/image processing shows the
efficiency of the proposed optimization method.

1 Introduction

In this work, we are interested in the following optimization problem:

Find x̂ ∈ Argmin (G := F +R), (1)

where G : RN → (−∞,+∞] is a coercive function (i.e. lim‖x‖→+∞G(x) = +∞), F is a
differentiable function, R is a proper lower semicontinuous function which is additively block
separable, and Argmin G 6= ∅ denotes the set of minimizers G. More precisely, let (Jj)1≤j≤J

be a partition of {1, . . . , N} into J ≥ 2 subsets, and for every j ∈ {1, . . . , J}, let Nj 6= 0 be
the cardinality of Jj . Any vector x ∈ RN with elements (x(n))1≤n≤N is block-decomposed into(
x(j)

)
1≤j≤J

∈ RN1 × . . .× RNJ , where, for every j ∈ {1, . . . , J}, x(j) =
(
x(n)

)
n∈Jj

∈ RNj . With

this notation, we assume that

(∀x ∈ R
N ) R(x) :=

J∑

j=1

Rj(x
(j)), (2)

where, for every j ∈ {1, . . . , J}, Rj : RNj → (−∞,+∞].
A standard approach for solving (1) in this context consists of using a Block Coordinate

Descent (BCD) algorithm, where, at each iteration ℓ ∈ N, G is minimized with respect to the

∗E. Chouzenoux, J.-C. Pesquet and A. Repetti are with the Université Paris-Est, LIGM, CNRS-
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jℓ block coordinates with jℓ ∈ {1, . . . , J}, while the others remain fixed, leading to the following
iterations:

Let x0 ∈ RN ,
For ℓ = 0, 1, . . .

Let jℓ ∈ {1, . . . , J},
x
(jℓ)
ℓ+1 ∈ Argmin

y∈R
Njℓ

(
Fjℓ(y,x

(ℓ)
ℓ ) +Rjℓ(x

(jℓ))
)
,

x
(ℓ)
ℓ+1 = x

(ℓ)
ℓ .

(3)

In the above algorithm, for every j ∈ {1, . . . , J},  denotes the complementary set of j on
{1, . . . , J}, i.e.  := {1, . . . , J}\{j}, and for every x ∈ RN , x() :=

(
x(1), . . . ,x(j−1),x(j+1), . . . ,x(J)

)
.

Moreover, for a given x() ∈×i∈R
Ni , function Fj(·,x()) : RNj → R is the partial function de-

fined as
(∀y ∈ R

Nj ) Fj(y,x
()) := F (x(1), . . . ,x(j−1),y,x(j+1), . . . ,x(J)). (4)

The BCD method (3) is described in various reference books [8,29,36,48] assuming a cyclic rule,
i.e.

(∀ℓ ∈ N) jℓ − 1 = ℓ mod (J). (5)

In this case, since Algorithm (3) can be viewed as a generalization of the Gauss-Seidel strategy
for solving linear systems [24], it is sometimes also referred to as a nonlinear Gauss-Seidel method
( [8, Chap.2], [36, Chap.7]). Up to the best of our knowledge, one of the most general convergence
results for the BCD algorithm (3) has been established in [45] under the assumptions that (i)
G is quasi-convex and hemivariate regular in each block, (ii) (jℓ)ℓ∈N follows an essentially cyclic
rule (i.e. blocks can be updated in an arbitrary manner as far as each of them is updated at
least once within a given number of iterations) and (iii) either G is pseudoconvex in every pair
of blocks or has at most one minimum with respect to each block. As pointed out in [45], the
last assumption is sharp in the sense that the algorithm may not converge if we only assume
that G is convex w.r.t. each block (see an illustration in [37]). The proximal version of the BCD
algorithm, introduced in [4], allows this limitation to be overcome. It is defined as follows:

Let x0 ∈ RN ,
For ℓ = 0, 1, . . .

Let jℓ ∈ {1, . . . , J},
x
(jℓ)
ℓ+1 ∈ prox

γ−1
ℓ Ajℓ

(xℓ),Fjℓ
(·,x

(ℓ)

ℓ )+Rjℓ

(
x
(jℓ)
ℓ

)
,

x
(ℓ)
ℓ+1 = x

(ℓ)
ℓ ,

(6)

where, for every ℓ ∈ N, γℓ ∈ (0,+∞) and Ajℓ(xℓ) ∈ R
Njℓ

×Njℓ is a symmetric positive definite
(SPD) matrix. Hereabove, proxU,ψ denotes the so-called proximity operator of a proper lower

semicontinuous function ψ : RM → R relative to the metric induced by a SPD matrix U ∈ RM×M

(see Section 2.1). Note that Algorithm (6) has been extended in [7] for Bregman projection
operators, in the case when J = 2, F is a Bregman distance and R1, R2 are convex functions.
Note also that the celebrated POCS (Projection Onto Convex Sets) algorithm [13] can be seen as
a particular case of Algorithm (6) when F ≡ 0 and, for every j ∈ {1, . . . , J}, Rj is the indicator
function of a convex set.

The convergence of the sequence (xℓ)ℓ∈N generated by Algorithm (6) to a solution of (1)
has been established in [4] for a convex Lipschitz differentiable function F and proper lower-
semicontinous convex functions (Rj)1≤j≤J , in the case when (jℓ)ℓ∈N follows a cyclic rule, and
(Ajℓ(xℓ))ℓ∈N are identity matrices. Recently, the convergence of the proximal BCD iterates
to a critical point of G in the case of nonconvex functions F and (Rj)1≤j≤J , has been proved
in [2] when (Ajℓ(xℓ))ℓ∈N are identity matrices, and then generalized in [3] for general SPD
matrices (Ajℓ(xℓ))ℓ∈N, again assuming a cyclic rule. The convergence studies in [2, 3] mainly
rely on the assumption that the objective function G satisfies the Kurdyka- Lojasiewicz (KL)
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inequality [28]. The interesting point is that this inequality holds for a wide class of functions
such as real analytic functions, semi-algebraic functions and many others [9,10,27,28]. Since the
proximal step in (6) is not explicit in general, an inexact version of the proximal BCD method
is also considered in [3], with similar convergence guarantees.

Another strategy to circumvent the difficulty of solving the block subproblems in (6) is to
replace, at each iteration, the proximal step by a Forward-Backward step, thus leading to the
so-called Block Coordinate Variable Metric Forward-Backward (BC-VMFB) algorithm:

Let x0 ∈ RN ,
For ℓ = 0, 1, . . .

Let jℓ ∈ {1, . . . , J},
x
(jℓ)
ℓ+1 ∈ proxγ−1

ℓ Ajℓ
(xℓ),Rjℓ

(
x
(jℓ)
ℓ − γℓ (Ajℓ(xℓ))

−1∇jℓF (xℓ)
)
,

x
(ℓ)
ℓ+1 = x

(ℓ)
ℓ ,

(7)

where, for every x ∈ RN and j ∈ {1, . . . , J}, ∇jF (x) ∈ RNj is the partial gradient of F with
respect to x(j) computed at x. Algorithm (7) was firstly introduced in [15] for the minimization
of the Burg entropy function under linear constraints, and then extended to the more general
case of a smooth function F [30,31]. Recently, the convergence of this algorithm has been studied
in the case of an arbitrary nonsmooth function R under the assumptions that G satisfies KL
inequality and F is Lipschitz differentiable [12, 47]. The convergence of the sequence (xℓ)ℓ∈N
generated by (7) to a critical point of (1) has been proved in [47] in the case when F and R
are respectively convex and convex w.r.t. each block variable, and generalized in [12] when
neither F nor R is necessarily convex. Note that the aforementioned works considered actually
a simplified version of Algorithm (7) where (Ajℓ(xℓ))ℓ∈N are identity matrices and the sequence
(jℓ)ℓ∈N follows a cyclic rule. The BC-VMFB algorithm is then referred to as the Proximal
Alternating Linearized Minimization (PALM) algorithm [12]. An exact (resp. inexact) version
of Algorithm (7) with general SPD matrices (Ajℓ(xℓ))ℓ∈N is studied in [39] (resp. [40]), in the
context of a random rule, i.e., for every ℓ ∈ N, jℓ is a realization of a uniform random variable.
Assuming that F and Rj are convex, the authors establish the convergence of the sequence
(G(xℓ))ℓ∈N in the sense that, for all δ ≥ 0 and ǫ ≥ 0, there exists ℓ0 ∈ N such that the
probability of having G(xℓ0) − G(x̂) ≤ ǫ is greater than 1 − δ. Finally, let us emphasize that,
as already noticed in [38], for carefully chosen matrices (Ajℓ(xℓ))ℓ∈N, the BC-VMFB algorithm
can be viewed as a particular form of the block alternating majorize-minimize (MM) approach
proposed in [21, 42, 44] in the context of image reconstruction. Therefore, some convergence
properties of Algorithm (7) can be deduced from those derived in [26] in the case when Rj are
indicator functions of closed convex subsets of RNj , and in [38] for arbitrary nonsmooth convex
functions Rj . However, it should be noticed that the convergence of (xℓ)ℓ∈N to a solution to (1)
is only proved in [26,38] under specific assumptions, in particular the uniqueness of solutions to
each block subproblem and to the initial problem (1) is required.

In this paper, we consider an inexact version of (7) where the preconditioning matrices
(Ajℓ(xℓ))ℓ∈N are chosen according to MM arguments. The convergence of the proposed algorithm
is established for blocks following an essentially cyclic rule, under weak assumptions on the
involved functions (G is mainly assumed to satisfy KL inequality similarly to [3]). Note that
this convergence study generalizes our previous work [16] (see also [35] for a related approach)
which was restricted to an inexact Variable Metric Forward-Backward algorithm without block
alternation (i.e. J = 1 and N1 = N).

The rest of the paper is organized as follows: Section 2 introduces the assumptions made
in the paper and presents the proposed inexact BC-VMFB strategy. Section 3 investigates the
convergence properties. In particular, the convergence rate of the proposed algorithm is studied.
Finally, Section 4 provides some numerical results and a discussion of the algorithm performance
by means of experiments concerning a large-size image reconstruction problem.
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2 Proposed Optimization Method

2.1 Analysis background

Let us first recall some definitions and the notation that will be used throughout the paper. We
define the weighted norm:

(
∀x ∈ R

N
)

‖x‖U := 〈x,Ux〉1/2 , (8)

where 〈·, ·〉 is the standard scalar product of RN and U ∈ RN×N is some SPD matrix.

Definition 2.1. Let ψ be a function from RN to (−∞,+∞]. The domain of ψ is domψ :={
x ∈ RN : ψ(x) < +∞

}
. Function ψ is proper iff domψ is nonempty. The level set of ψ at

height δ ∈ R is lev≤δ ψ := {x ∈ RN : ψ(x) ≤ δ}.

Definition 2.2. [41, Def. 8.3], [33, Sec.1.3] Let ψ : RN → (−∞,+∞] be a proper function and
let x ∈ domψ. The Fréchet sub-differential of ψ at x is the following set:

∂̂ψ(x) :=



t̂ ∈ R

N : lim inf
y→x
y 6=x

1

‖x− y‖
(
ψ(y) − ψ(x) −

〈
y − x, t̂

〉)
≥ 0



 .

If x 6∈ domψ, then ∂̂ψ(x) = ∅.
The sub-differential of ψ at x is defined as

∂ψ(x) :=
{
t ∈ R

N : ∃yk → x, ψ(yk) → ψ(x), t̂k ∈ ∂̂ψ(yk) → t
}
.

Remark 2.1.

(i) A necessary condition for x ∈ RN to be a minimizer of ψ is that x is a critical point of
ψ, i.e. 0 ∈ ∂ψ(x). Moreover, if ψ is convex, this condition is also sufficient.

(ii) Definition 2.2 implies that ∂ψ is closed [3], that is:
Let (yk, tk)k∈N be a sequence of Graph ∂ψ :=

{
(x, t) ∈ RN × RN : t ∈ ∂ψ(x)

}
. If (yk, tk)

converges to (x, t) and ψ(yk) converges to ψ(x), then (x, t) ∈ Graph ∂ψ.

The proximity operator ( [25, Sec. XV.4], [18] and [3]) is defined as follows:

Definition 2.3. Let ψ : RN → (−∞,+∞] be a proper, lower semicontinuous function, let U ∈
RN×N be a SPD matrix, and let x ∈ RN . The proximity operator of ψ at x relative to the metric
induced by U is defined as

proxU ,ψ(x) := Argmin
y∈RN

ψ(y) +
1

2
‖y − x‖2U . (9)

Remark 2.2.

(i) In the above definition, since ‖ · ‖2U is coercice and ψ is proper and lower semicontinuous,
if ψ is bounded from below by an affine function, then proxU ,ψ is a nonempty set.

(ii) If U is equal to IN , the identity matrix of RN×N , then proxψ ≡ proxIN ,ψ is the proximity
operator employed in [3]. In addition, if ψ is a convex function, then the minimizer of
ψ+ 1

2‖ ·−x‖2U is unique and proxψ ≡ proxIN ,ψ is the proximity operator originally defined
in [34].
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2.2 Assumptions

In the remainder of this paper, we will focus on functions F and R satisfying the following
assumptions:

Assumption 2.1.

(i) For every j ∈ {1, . . . , J}, Rj : RNj → (−∞,+∞] is proper, lower semicontinuous, bounded
from below by an affine function and its restriction to its domain is continuous.

(ii) F : RN → R is differentiable. Moreover, F has an L-Lipschitzian gradient on domR where
L > 0, i.e., (

∀(x,y) ∈ (domR)2
)

‖∇F (x) −∇F (y)‖ ≤ L‖x− y‖.

(iii) G is coercive.

Some comments on these assumptions which will be useful in the rest of the paper are made
below.

Remark 2.3.

(i) Assumption 2.1(ii) is weaker than the assumption of Lipschitz differentiability of F usually
adopted to prove the convergence of the FB algorithm [3, 19]. In particular, if domR is
compact and F is twice continuously differentiable, Assumption 2.1(ii) holds.

(ii) According to Assumption 2.1(ii), domR ⊂ domF = RN . Thus, as a consequence of
Assumption 2.1(i), domG = domR is nonempty.

(iii) Under Assumption 2.1, G is proper and lower semicontinuous, and its restriction to its
domain is continuous. Hence, due to the coercivity of G, for every x ∈ domR, lev≤G(x)G
is a compact set. Moreover, the set of minimizers of G is nonempty and compact.

(iv) If, for every j ∈ {1, . . . , J}, Rj is proper, lower semicontinuous and convex, then Rj is
bounded from below by an affine function.

Assumption 2.2.

Function G satisfies the Kurdyka- Lojasiewicz (KL) inequality i.e., for every ξ ∈ R, and, for every
bounded subset E of RN , there exist three constants κ ∈ (0,+∞), ζ ∈ (0,+∞) and θ ∈ [0, 1)
such that (

∀t ∈ ∂G(x)
)

‖t‖ ≥ κ|G(x) − ξ|θ, (10)

for every x ∈ E such that |G(x) − ξ| ≤ ζ (with the convention 00 = 0).

As emphasized in [1], where this form of KL inequality was used to establish convergence re-
sults, Assumption 2.2 is satisfied for a wide class of functions, such as, in particular, real analytic
and semi-algebraic functions. Note however that a more general local version of Assumption 2.2
can be found in the literature [10, 11].

Some matrices serving to define some appropriate variable metric will play a central role in
the algorithm proposed in this work. More specifically, let jℓ ∈ {1, . . . , J} be the index of the
block selected at iteration ℓ ∈ N of Algorithm (7), let xℓ ∈ domR be the associated iterate
and let Ajℓ(xℓ) ∈ R

Njℓ
×Njℓ be a SPD matrix that fulfills the following so-called majorization

condition:

Assumption 2.3.
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(i) The quadratic function defined as

(∀y ∈ R
Njℓ ) Qjℓ(y,xℓ) := F (xℓ) +

〈
y − x

(jℓ)
ℓ ,∇jℓF (xℓ)

〉

+
1

2

〈
y − x

(jℓ)
ℓ ,Ajℓ(xℓ)(y − x

(jℓ)
ℓ )

〉
,

is a majorant function of Fjℓ(·,x
(ℓ)
ℓ ) at x

(jℓ)
ℓ on domRjℓ, i.e.,

(∀y ∈ domRjℓ) Fjℓ(y,x
(ℓ)
ℓ ) ≤ Qjℓ(y,xℓ).

(ii) There exists (ν, ν) ∈ (0,+∞)2 such that

(∀ℓ ∈ N) νINjℓ
� Ajℓ(xℓ) � νINjℓ

.

Remark 2.4.

(i) Note that it is not necessary to build a quadratic majorant of Fj(·,x()) on domRj, for
every j ∈ {1, . . . , J} and for every x() ∈×i∈ domRi.

(ii) Suppose that, for every x′ ∈ domR, a quadratic majorant function of F on domR is given
by

(∀x ∈ R
N ) Q(x,x′) := F (x′) +

〈
x− x′,∇F (x′)

〉
+

1

2

〈
x− x′,B(x′)(x− x′)

〉
, (11)

where B(x′) ∈ RN×N is a SPD matrix. Then, Assumption 2.3(i) is satisfied for Ajℓ(xℓ) =(
B(xℓ)

(n,n′)
)
(n,n′)∈J2jℓ

, where, for every (n, n′) ∈ {1, . . . , N}2, B(xℓ)
(n,n′) denotes the

(n, n′) element of matrix B(xℓ). Moreover, if there exists (ν, ν) ∈ (0,+∞)2 such that,
for every x′ ∈ domR, νIN � B(x′) � νIN , then Assumption 2.3(ii) is also satisfied.

(iii) If domR is convex, the existence of the majorant function (11) is ensured when F satisfies
Assumption 2.1(ii) (see [16, Lem. 3.1]).

Moreover, in order to ensure that each block is updated an infinite number of times, we make
the following assumption, which is equivalent to the essentially cyclic rule from [45]:

Assumption 2.4.

Let (jℓ)ℓ∈N be the sequence of updated block indices. There exists a constant K ≥ J such that,
for every ℓ ∈ N, {1, . . . , J} ⊂ {jℓ, . . . , jℓ+K−1}.

Note that the blocks do not need to be updated in any specific order.
Finally, we suppose that, for every ℓ ∈ N, the stepsize γℓ involved in Algorithm 7 satisfies

the following assumption:

Assumption 2.5.

One of the following statements holds:

(i) There exists (γ, γ) ∈ (0,+∞)2 such that, for every ℓ ∈ N, γ ≤ γℓ ≤ 1 − γ.

(ii) For every j ∈ {1, . . . , J}, Rj is a convex function and there exists (γ, γ) ∈ (0,+∞)2 such
that, for every ℓ ∈ N, γ ≤ γℓ ≤ 2 − γ.
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2.3 Inexact BC-VMFB algorithm

In general, the proximity operator relative to an arbitrary metric does not have a closed form
expression. To circumvent this difficulty, we propose to solve Problem (1) by introducing the
following inexact version of Algorithm (7):

Let α ∈ (1/2,+∞), β ∈ (0,+∞), and x0 ∈ domR,

For ℓ = 0, 1, . . .


Let jℓ ∈ {1, . . . , J},
Find x

(jℓ)
ℓ+1 ∈ R

Njℓ and r
(jℓ)
ℓ+1 ∈ ∂Rjℓ(x

(jℓ)
ℓ+1) such that

Rjℓ(x
(jℓ)
ℓ+1) +

〈
x
(jℓ)
ℓ+1 − x

(jℓ)
ℓ ,∇jℓF (xℓ)

〉
+ α‖x(jℓ)

ℓ+1 − x
(jℓ)
ℓ ‖2Ajℓ

(xℓ)
≤ Rjℓ(x

(jℓ)
ℓ ),

‖∇jℓF (xℓ) + r
(jℓ)
ℓ+1‖ ≤ β‖x(jℓ)

ℓ+1 − x
(jℓ)
ℓ ‖Ajℓ

(xℓ),

x
(ℓ)
ℓ+1 = x

(ℓ)
ℓ .

(12a)

(12b)

(12c)

Remark 2.5.

As already mentioned, under our working assumptions, Algorithm (12) can be viewed as an
inexact version of Algorithm (7). To see this, let us consider sequences (xℓ)ℓ∈N and (jℓ)ℓ∈N
generated by Algorithm (7).

(i) First, suppose that Assumption 2.5(i) holds. On the one hand, due to the definition of the
proximity operator, we have, for every ℓ ∈ N,

Rjℓ(x
(jℓ)
ℓ+1) +

〈
x
(jℓ)
ℓ+1 − x

(jℓ)
ℓ ,∇jℓF (xℓ)

〉
+
γ−1
ℓ

2
‖x(jℓ)

ℓ+1 − x
(jℓ)
ℓ ‖2Ajℓ

(xℓ)
≤ Rjℓ(x

(jℓ)
ℓ ),

so that the sufficient-decrease condition (12a) holds with α = (1 − γ)−1/2 (as γ−1
ℓ ≥

(1 − γ)−1 > 1). On the other hand, according to the variational characterization of the

proximity operator, there exists r
(jℓ)
ℓ+1 ∈ ∂Rjℓ(x

(jℓ)
ℓ+1) such that

r
(jℓ)
ℓ+1 = −∇jℓF (xℓ) + γ−1

ℓ Ajℓ(xℓ)(x
(jℓ)
ℓ − x

(jℓ)
ℓ+1).

Using Assumptions 2.3(ii) and 2.5(i), we obtain

‖r(jℓ)ℓ+1 + ∇jℓF (xℓ)‖ = γ−1
ℓ ‖Ajℓ(xℓ)(x

(jℓ)
ℓ − x

(jℓ)
ℓ+1)‖ ≤ γ−1

√
ν‖x(jℓ)

ℓ − x
(jℓ)
ℓ+1‖Ajℓ

(xℓ),

which is the inexact optimality condition (12b) with β = γ−1
√
ν.

(ii) Now, suppose that Assumption 2.5(ii) holds. Let ℓ ∈ N. Due to the variational character-

ization of the proximity operator and the convexity of Rjℓ, there exists r
(jℓ)
ℓ+1 ∈ ∂Rjℓ(x

(jℓ)
ℓ+1)

such that

{
r
(jℓ)
ℓ+1 = −∇jℓF (xℓ) + γ−1

ℓ Ajℓ(xℓ)(x
(jℓ)
ℓ − x

(jℓ)
ℓ+1)〈

x
(jℓ)
ℓ+1 − x

(jℓ)
ℓ , r

(jℓ)
ℓ+1

〉
≥ Rjℓ(x

(jℓ)
ℓ+1) −Rjℓ(x

(jℓ)
ℓ ),

which yields

Rjℓ(x
(jℓ)
ℓ+1) +

〈
x
(jℓ)
ℓ+1 − x

(jℓ)
ℓ ,∇jℓF (xℓ)

〉
+ γ−1

ℓ ‖x(jℓ)
ℓ+1 − x

(jℓ)
ℓ ‖2Ajℓ

(xℓ)
≤ Rjℓ(x

(jℓ)
ℓ ),

so that the sufficient-decrease condition (12a) holds with α = (2 − γ)−1 (since γ−1
ℓ ≥ (2 −

γ)−1 > 1/2). The inexact optimality condition (12b) is obtained using similar arguments
as in (i).
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3 Convergence Analysis

3.1 Descent properties

In this section, we provide some technical results concerning the behavior of the sequence(
G(xℓ)

)
ℓ∈N

generated by Algorithm (12), which will be useful in proving the convergence of
the proposed algorithm.

Lemma 3.1. Let (xℓ)ℓ∈N be a sequence generated by Algorithm (12). Under Assumptions 2.1
and 2.3, there exists µ ∈ (0,+∞) such that, for every ℓ ∈ N,

G(xℓ+1) ≤ G(xℓ) −
µ

2
‖x(jℓ)

ℓ+1 − x
(jℓ)
ℓ ‖2 = G(xℓ) −

µ

2
‖xℓ+1 − xℓ‖2. (13)

Proof. Let ℓ ∈ N. We have
G(xℓ+1) = F (xℓ+1) +R(xℓ+1).

On the one hand, according to Assumption 2.3(i),

F (xℓ+1) ≤ F (xℓ) +
〈
x
(jℓ)
ℓ+1 − x

(jℓ)
ℓ ,∇jℓF (xℓ)

〉
+

1

2
‖x(jℓ)

ℓ+1 − x
(jℓ)
ℓ ‖2Ajℓ

(xℓ)
. (14)

On the other hand, using (12c),

R(xℓ+1) = Rjℓ(x
(jℓ)
ℓ+1) +

∑

j∈ℓ

Rj(x
(j)
ℓ+1)

= Rjℓ(x
(jℓ)
ℓ+1) +

∑

j∈ℓ

Rj(x
(j)
ℓ )

= R(xℓ) +
(
Rjℓ(x

(jℓ)
ℓ+1) −Rjℓ(x

(jℓ)
ℓ )

)
.

Then, using (12a), we obtain

R(xℓ+1) ≤ R(xℓ) −
〈
x
(jℓ)
ℓ+1 − x

(jℓ)
ℓ ,∇jℓF (xℓ)

〉
− α‖x(jℓ)

ℓ+1 − x
(jℓ)
ℓ ‖2Ajℓ

(xℓ)
. (15)

Therefore, combining (14) and (15) yields

G(xℓ+1) ≤ G(xℓ) −
(
α− 1

2

)
‖x(jℓ)

ℓ+1 − x
(jℓ)
ℓ ‖2Ajℓ

(xℓ)
. (16)

Finally, (13) is deduced from Assumption 2.3(ii) and the fact that α ∈ (1/2,+∞), by setting
µ = ν(2α− 1), and using (12c).

Let the sequence (χℓ)ℓ∈N be defined as

(∀ℓ ∈ N) χℓ = (xℓ+k+1 − xℓ+k)0≤k≤K−1 ∈ (RN )K , (17)

where (xℓ)ℓ∈N is a sequence generated by Algorithm (12) and K is the integer constant from
Assumption 2.4. Then,

‖χℓ‖2 =

K−1∑

k=0

‖xℓ+k+1 − xℓ+k‖2,

and the following property holds.

Lemma 3.2. Let (xℓ)ℓ∈N be a sequence generated by Algorithm (12). Under Assumptions 2.1,
2.3 and 2.4, for every ℓ ∈ N,

G(xℓ+K) ≤ G(xℓ) −
µ

2
‖χℓ‖2,

where µ ∈ (0,+∞) is the same constant as in Lemma 3.1.
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Proof. Let ℓ ∈ N. According to Lemma 3.1, we have

G(xℓ+K) ≤ G(xℓ+K−1) −
µ

2
‖xℓ+K − xℓ+K−1‖2

≤ G(xℓ+K−2) −
µ

2

(
‖xℓ+K−1 − xℓ+K−2‖2 + ‖xℓ+K − xℓ+K−1‖2

)

...

≤ G(xℓ) −
µ

2

K−1∑

k=0

‖xℓ+k+1 − xℓ+k‖2.

3.2 Convergence theorem

We first state the following two lemmas which will be useful to handle the essentially cyclic rule:

Lemma 3.3. Let (xℓ)ℓ∈N be a sequence of iterates generated by Algorithm (12). Let ℓ0 ∈ N and
let Jℓ0 be a subset of {1, . . . , J} containing jℓ0. Then, under Assumptions 2.1 and 2.3, we have

∑

j∈Jℓ0

‖∇jF (xℓ0+1)+r
(j)
ℓ0+1‖2 ≤ 2

(
L2+β2ν

)
‖xℓ0+1−xℓ0‖2+2

∑

j∈Jℓ0
\{jℓ0}

‖∇jF (xℓ0)+r
(j)
ℓ0

‖2, (18)

where r
(jℓ0 )

ℓ0+1 is defined by Algorithm (12) and, for every j ∈ Jℓ0 \ {jℓ0}, r
(j)
ℓ0+1 ∈ ∂Rj(x

(j)
ℓ0+1) and

r
(j)
ℓ0

∈ ∂Rj(x
(j)
ℓ0

).

Proof. Let ℓ0 ∈ N. According to Jensen’s inequality,

∑

j∈Jℓ0

‖∇jF (xℓ0+1) + r
(j)
ℓ0+1‖2 ≤ 2

∑

j∈Jℓ0

‖∇jF (xℓ0+1) −∇jF (xℓ0)‖2

+ 2
∑

j∈Jℓ0

‖∇jF (xℓ0) + r
(j)
ℓ0+1‖2. (19)

On the one hand, since
J∑
j=1

‖∇jF (xℓ0+1) − ∇jF (xℓ0)‖2 = ‖∇F (xℓ0+1) − ∇F (xℓ0)‖2, Assump-

tion 2.1(ii) leads to

∑

j∈Jℓ0

‖∇jF (xℓ0+1) −∇jF (xℓ0)‖2 ≤ L2‖xℓ0+1 − xℓ0‖2. (20)

On the other hand, since jℓ0 ∈ Jℓ0
∑

j∈Jℓ0

‖∇jF (xℓ0) + r
(j)
ℓ0+1‖2 = ‖∇jℓ0

F (xℓ0) + r
(jℓ0 )

ℓ0+1‖2 +
∑

j∈Jℓ0
\{jℓ0}

‖∇jF (xℓ0) + r
(j)
ℓ0+1‖2.

Moreover, using (12b) and Assumption 2.3(ii), and since, for every j ∈ Jℓ0 \ {jℓ0}, x
(j)
ℓ0+1 = x

(j)
ℓ0

,

∑

j∈Jℓ0

‖∇jF (xℓ0) + r
(j)
ℓ0+1‖2 ≤ β2ν‖xℓ0+1 − xℓ0‖2 +

∑

j∈Jℓ0
\{jℓ0}

‖∇jF (xℓ0) + r
(j)
ℓ0

‖2. (21)

Finally, (18) results from (19), (20) and (21).
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Lemma 3.4. Let (xℓ)ℓ∈N be a sequence of iterates generated by Algorithm (12). Let (ℓ0, ℓ
′
0) ∈ N2

be such that ℓ0 ≤ ℓ′0 and let Jℓ0,ℓ′0 ⊂ {1, . . . , J} be such that, for every ℓ ∈ {ℓ0, . . . , ℓ′0}, jℓ ∈ Jℓ0,ℓ′0.
Then, under Assumptions 2.1 and 2.3, we have

∑

j∈Jℓ0,ℓ
′
0

‖∇jF (xℓ′0+1) + r
(j)
ℓ′0+1

‖2

≤
(
L2 + β2ν

) ℓ′0∑

ℓ=ℓ0

2ℓ
′
0+1−ℓ‖xℓ+1 − xℓ‖2 + 2ℓ

′
0+1−ℓ0

∑

j∈Jℓ0,ℓ
′
0
\{jℓ0}

‖∇jF (xℓ0) + r
(j)
ℓ0

‖2,

where r
(jℓ′0

)

ℓ′0+1
is defined by Algorithm (12), for every j ∈ Jℓ0,ℓ′0 \ {jℓ′0}, r

(j)
ℓ′0+1

∈ ∂Rj(x
(j)
ℓ′0+1

) and,

for every j ∈ Jℓ0,ℓ′0 \ {jℓ0}, r
(j)
ℓ0

∈ ∂Rj(x
(j)
ℓ0

).

Proof. Let (ℓ0, ℓ
′
0) ∈ N2 be such that ℓ0 ≤ ℓ′0. Under the considered assumptions, by applying

successively Lemma 3.3 for ℓ′0, ℓ
′
0 − 1, . . . , ℓ0, we have

∑

j∈Jℓ0,ℓ
′
0

‖∇jF (xℓ′0+1) + r
(j)
ℓ′0+1

‖2

≤
(
L2 + β2ν

)
2‖xℓ′0+1 − xℓ′0‖

2 + 2
∑

j∈Jℓ0,ℓ
′
0
\{jℓ′0

}

‖∇jF (xℓ′0) + r
(j)
ℓ′0

‖2

≤
(
L2 + β2ν

)
2‖xℓ′0+1 − xℓ′0‖

2 + 2
∑

j∈Jℓ0,ℓ
′
0

‖∇jF (xℓ′0) + r
(j)
ℓ′0

‖2

≤
(
L2 + β2ν

)(
2‖xℓ′0+1 − xℓ′0‖

2 + 22‖xℓ′0 − xℓ′0−1‖2
)

+ 22
∑

j∈Jℓ0,ℓ
′
0
\{jℓ′0−1}

‖∇jF (xℓ′0−1) + r
(j)
ℓ′0−1

‖2

≤
(
L2 + β2ν

)(
2‖xℓ′0+1 − xℓ′0‖

2 + 22‖xℓ′0 − xℓ′0−1‖2 + 23‖xℓ′0−1 − xℓ′0−2‖2
)

+ 23
∑

j∈Jℓ0,ℓ
′
0
\{jℓ′0−2}

‖∇jF (xℓ′0−2) + r
(j)
ℓ′0−2

‖2

...

≤
(
L2 + β2ν

) ℓ′0∑

ℓ=ℓ0

2ℓ
′
0+1−ℓ‖xℓ+1 − xℓ‖2 + 2ℓ

′
0+1−ℓ0

∑

j∈Jℓ0,ℓ
′
0
\{jℓ0}

‖∇jF (xℓ0) + r
(j)
ℓ0

‖2.

Some notation will be needed in the remainder. Let j ∈ {1, . . . , J}, let ℓ ∈ N, and let K > 0
be defined by Assumption 2.4. We denote by

kℓ,j = min
{
k ∈ {0, . . . ,K − 1} | jℓ+k = j}, (22)

the first time the j-th block is updated after the ℓ-th iteration of Algorithm (12). Moreover, we
define the permutation σℓ : {1, . . . , J} → {1, . . . , J} ensuring that (kℓ,σℓ(i))1≤i≤J is increasing.

Our main result concerning the asymptotic behavior of Algorithm (12) is given below:

Theorem 3.1. Let (xℓ)ℓ∈N be defined by (12). Under Assumptions 2.1-2.4, the following hold.

(i) The sequence (xℓ)ℓ∈N converges to a critical point x̂ of G.
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(ii) This sequence has a finite length in the sense that

+∞∑

ℓ=0

‖xℓ+1 − xℓ‖ < +∞.

(iii)
(
G(xℓ)

)
ℓ∈N

is a nonincreasing sequence converging to G(x̂).

Proof. According to Lemma 3.1, we have

(∀ℓ ∈ N) G(xℓ+1) ≤ G(xℓ),

thus, (G(xℓ))ℓ∈N is a nonincreasing sequence. In addition, since x0 ∈ domR, by Remark 2.3(iii),
the sequence

(
xℓ
)
ℓ∈N

belongs to the compact subset E = lev≤G(x0)G ⊂ domR and G is lower

bounded. Thus,
(
G(xℓ)

)
ℓ∈N

converges to a real ξ, and
(
G(xℓ)− ξ

)
ℓ∈N

is a nonnegative sequence
converging to 0.
Moreover, by invoking Lemma 3.2, we have

(∀ℓ ∈ N)
µ

2
‖χℓ‖2 ≤ (G(xℓ) − ξ) − (G(xℓ+K) − ξ). (23)

Let us apply to the convex function ψ : [0,+∞) → [0,+∞) : u 7→ u
1

1−θ , with θ ∈ [0, 1), the
gradient inequality

(∀(u, v) ∈ [0,+∞)2) ψ(u) − ψ(v) ≤ ψ̇(u)(u− v),

which, after a change of variables, can be rewritten as

(∀(u, v) ∈ [0,+∞)2) u− v ≤ (1 − θ)−1uθ(u1−θ − v1−θ).

Using the latter inequality with u = G(xℓ) − ξ and v = G(xℓ+K) − ξ leads to

(∀ℓ ∈ N)
(
G(xℓ) − ξ

)
−
(
G(xℓ+K) − ξ

)
≤ (1 − θ)−1

(
G(xℓ) − ξ

)θ
∆ℓ,

where
(∀ℓ ∈ N) ∆ℓ =

(
G(xℓ) − ξ

)1−θ −
(
G(xℓ+K) − ξ

)1−θ
.

Thus, combining the above inequality with (23) yields

(∀ℓ ∈ N) ‖χℓ‖2 ≤ 2µ−1(1 − θ)−1
(
G(xℓ) − ξ

)θ
∆ℓ. (24)

Let us define

(∀ℓ ∈ N) tℓ =
(
∇jF (xℓ) + r

(j)
ℓ

)
1≤j≤J

∈ R
N1 × . . .× R

NJ ,

where, for every j ∈ {1, . . . , J}, r
(j)
ℓ ∈ ∂Rj(x

(j)
ℓ ). Using the differentiation rule for separable

functions, we have rℓ =
(
r
(j)
ℓ

)
1≤j≤J

∈ ∂R(xℓ). Thus, for every ℓ ∈ N,

tℓ ∈ ∂G(xℓ). (25)

Since E is bounded and Assumption 2.2 holds, there exist constants κ > 0, ζ > 0 and θ ∈ [0, 1)
such that (10) holds for every x ∈ E for which the inequality |G(x) − ξ| ≤ ζ is satisfied. Since(
G(xℓ)

)
ℓ∈N

converges to ξ, there exists ℓ∗ ∈ N, such that, for every ℓ ≥ ℓ∗, |G(xℓ) − ξ| < ζ.
Hence, we have

(∀ℓ ≥ ℓ∗) κ|G(xℓ) − ξ|θ ≤ ‖tℓ‖. (26)
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Let K be defined by Assumption 2.4. For every ℓ ∈ N,

‖tℓ+K‖2 =
∥∥
(
∇jF (xℓ+K) + r

(j)
ℓ+K

)
1≤j≤J

∥∥2 =
J∑

j=1

∥∥∇jF (xℓ+K) + r
(j)
ℓ+K

∥∥2.

For every k ∈ {ℓ+kℓ,σℓ(J), . . . , ℓ+K−1}, let r
(jk)
k+1 ∈ ∂Rjk(x

(jk)
k+1) be defined as in Algorithm (12).

Thus, Lemma 3.4 with ℓ0 = ℓ+ kℓ,σℓ(J), ℓ
′
0 = ℓ+K − 1 and Jℓ0,ℓ′0 = {1, . . . , J} leads to

‖tℓ+K‖2 ≤ (L2 + β2ν)
ℓ+K−1∑

k=ℓ+kℓ,σℓ(J)

2ℓ+K−k‖xk+1 − xk‖2

+ 2K−kℓ,σℓ(J)

J∑

j=1
j 6=σℓ(J)

‖∇jF (xℓ+kℓ,σℓ(J)
) + r

(j)
ℓ+kℓ,σℓ(J)

‖2.

Using again Lemma 3.4 on
J∑
j=1

j 6=σℓ(J)

‖∇jF (xℓ+kℓ,σℓ(J)
) + r

(j)
ℓ+kℓ,σℓ(J)

‖2 with ℓ0 = ℓ+ kℓ,σℓ(J−1), ℓ
′
0 =

ℓ+ kℓ,σℓ(J) − 1 and Jℓ0,ℓ′0 = {1, . . . , J} \ {σℓ(J)}, we obtain

‖tℓ+K‖2 ≤ (L2 + β2ν)
ℓ+K−1∑

k=ℓ+kℓ,σℓ(J)

2ℓ+K−k
∥∥xk+1 − xk

∥∥2

+ (L2 + β2ν)

ℓ+kℓ,σℓ(J)−1∑

k=ℓ+kℓ,σℓ(J−1)

2ℓ+K−k
∥∥xk+1 − xk

∥∥2

+ 2K−kℓ,σℓ(J−1)

J∑

j=1
j 6=σℓ(i),i∈{J−1,J}

∥∥∇jF (xℓ+kℓ,σℓ(J−1)
) + r

(j)
ℓ+kℓ,σℓ(J−1)

∥∥2.

Proceeding similarly for i ∈ {1, . . . , J − 2}, we get

‖tℓ+K‖2 ≤ (L2 + β2ν)

ℓ+K−1∑

k=ℓ+kℓ,σℓ(J)

2ℓ+K−k
∥∥xk+1 − xk

∥∥2

+ (L2 + β2ν)
J−1∑

i=1

ℓ+kℓ,σℓ(j+1)−1∑

k=ℓ+kℓ,σℓ(j)

2ℓ+K−k
∥∥xk+1 − xk

∥∥2, (27)

where we have used the fact that {1, . . . , J} \ {σℓ(1), . . . , σℓ(J)} = ∅, thus

J∑

j=1
j 6=σℓ(i),i∈{1,...,J}

∥∥∇jF (xℓ) + r
(j)
ℓ

∥∥2 = 0.

Since kℓ,σℓ(1) = 0 and, for every k ∈ {ℓ, . . . , ℓ + K − 1}, 2ℓ+K−k ≤ 2K , it follows from (17) and
(27) that

‖tℓ+K‖2 ≤ 2K(L2 + β2ν)

ℓ+K−1∑

k=ℓ

∥∥xk+1 − xk
∥∥2 = 2K(L2 + β2ν)‖χℓ‖2. (28)
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Combining (24), (26) and (28) yields

(∀ℓ ≥ max{ℓ∗,K}) ‖χℓ‖2 ≤ 2µ−1(1 − θ)−1κ−12K/2(L2 + β2ν)1/2‖χℓ−K‖∆ℓ.

By using the fact that

(∀(u, v) ∈ [0,+∞)2) (uv)1/2 ≤ 1

2
(u+ v),

and by setting u = ‖χℓ−K‖ and v = 2µ−1(1 − θ)−1κ−12K/2(L2 + β2ν)1/2∆ℓ, we obtain

(∀ℓ ≥ max{ℓ∗,K}) ‖χℓ‖ ≤ 1

2
‖χℓ−K‖ + µ−1(1 − θ)−1κ−12K/2(L2 + β2ν)1/2∆ℓ. (29)

Furthermore, it can be noticed that

+∞∑

ℓ=ℓ∗

∆ℓ =
+∞∑

ℓ=ℓ∗

(
G(xℓ) − ξ

)1−θ −
(
G(xℓ+K) − ξ

)1−θ

=
ℓ∗+K−1∑

ℓ=ℓ∗

(
G(xℓ) − ξ

)1−θ
,

which shows that (∆ℓ)ℓ∈N is a summable sequence. As (‖χℓ‖)ℓ≥max{ℓ∗,K} satisfies inequality (29),
(‖χℓ‖)ℓ∈N is also a summable sequence. According to (17),

(∀ℓ ∈ N) ‖xℓ+1 − xℓ‖ ≤ ‖χℓ‖,

and (‖xℓ+1 − xℓ‖)ℓ∈N is a summable sequence.
Hence, the sequence (xℓ)ℓ∈N satisfies the finite length property. In addition, since this latter

condition implies that (xℓ)ℓ∈N is a Cauchy sequence, it converges towards a point x̂.
It remains us to show that the limit x̂ is a critical point of G. According to (25), we have,

for every ℓ ∈ N,
(xℓ, tℓ) ∈ Graph ∂G.

In addition, since the sequence (‖χℓ‖)ℓ∈N is summable, it converges to 0. Moreover, according
to (28), we have

‖tℓ‖ ≤ 2K/2(L2 + β2ν)1/2‖χℓ−K‖,
hence (xℓ, tℓ)ℓ∈N converges to (x̂,0). Furthermore, according to Remark 2.3(iii), the restriction
of G to its domain is continuous. Thus, as, for every ℓ ∈ N, xℓ ∈ domG, the sequence (G(xℓ))ℓ∈N
converges to G(x̂). Finally, according to the closedness property of ∂G (see Remark 2.1),
(x̂,0) ∈ Graph ∂G i.e., x̂ is a critical point of G.

As a consequence of the previous theorem, the proposed algorithm can be shown to locally
converge to a global minimizer of G:

Corollary 3.1. Suppose that (xℓ)ℓ∈N is a sequence generated by Algorithm (12), and suppose
that Assumptions 2.1-2.4 hold. There exists υ ∈ (0,+∞) such that, if

G(x0) ≤ inf
x∈RN

G(x) + υ,

then (xℓ)ℓ∈N converges to a solution to Problem (1).

Proof. Same proof as in [16, Cor. 3.2].
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3.3 Convergence rate

According to Theorem 3.1, the limit x̂ of a sequence (xℓ)ℓ∈N generated by Algorithm (12) is a
critical point of G, under Assumptions 2.1-2.4. Thus, proceeding similarly to the derivation of
(26), there exists ζ ∈ (0,+∞) such that for every x ∈ RN with G(x) ≤ G(x̂)+ζ, (10) is satisfied
for some κ ∈ (0,+∞) and θ ∈ [0, 1). The number θ is then called a  Lojasiewicz exponent of
G at x̂. Similarly to other algorithms based on Kurdyka- Lojasiewicz inequality [1, 2], the local
convergence rate of the BC-VMFB algorithm depends on this exponent.

The following lemma is instrumental to establish the convergence rate:

Lemma 3.5. [1] Let (Λm)m∈N be a nonnegative sequence of reals decreasing to 0. Assume that
there exist m∗ ∈ N∗ and C ∈ (0,+∞) such that, for every m ≥ m∗,

Λm ≤ (Λm−1 − Λm) + C(Λm−1 − Λm)
1−θ
θ , (30)

where θ ∈ (0, 1).
If θ ∈ (12 , 1), then there exists λ ∈ (0,+∞) such that

(∀m ≥ 1) Λm ≤ λm− 1−θ
2θ−1 .

If θ ∈ (0, 12 ], then there exist λ ∈ (0,+∞) and τ ∈ [0, 1) such that

(∀m ∈ N) Λm ≤ λτm.

Theorem 3.2. Let (xℓ)ℓ∈N be a sequence generated by Algorithm (12) and suppose that As-
sumptions 2.1-2.4 hold. Let θ be a  Lojasiewicz exponent of G at the limit point x̂ of (xℓ)ℓ∈N.
The following properties hold:

(i) If θ ∈ (12 , 1), then there exists (λ′, λ′′) ∈ (0,+∞)2 such that

(∀ℓ > K) ‖xℓ − x̂‖ ≤ λ′
( ℓ
K

− 1
)− 1−θ

2θ−1
, (31)

(∀ℓ > 2K) G(xℓ) −G(x̂) ≤ λ′′
( ℓ
K

− 2
)− 1−θ

θ(2θ−1)
. (32)

(ii) If θ ∈ (0, 12 ], then there exist (λ′, λ′′) ∈ (0,+∞)2 and τ ′ ∈ [0, 1) such that

(∀ℓ ∈ N) ‖xℓ − x̂‖ ≤ λ′(τ ′)ℓ, (33)

G(xℓ) −G(x̂) ≤ λ′′(τ ′)
ℓ
θ . (34)

(iii) If θ = 0, then the sequence (xℓ)ℓ∈N converges in a finite number of steps.

Proof. We use the same notation as in the proof of Theorem 3.1. Let K be given by Assump-
tion 2.4. For every ℓ ∈ N, there exist m ∈ N and k ∈ {0, . . . ,K − 1} such that ℓ = mK + k.
Then, according to the triangle inequality,

‖xℓ − x̂‖ ≤ ‖xmK − x̂‖ + ‖xℓ − xmK‖. (35)

Moreover, using again the triangle inequality, we have

‖xmK − x̂‖ =
∥∥

+∞∑

p=m

(
x(p+1)K − xpK

) ∥∥

=
∥∥

+∞∑

p=m

K−1∑

k′=0

(
xpK+k′+1 − xpK+k′

) ∥∥

≤
+∞∑

p=m

∥∥
K−1∑

k′=0

(
xpK+k′+1 − xpK+k′

) ∥∥, (36)
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and according to Jensen’s inequality and (17),

(∀p ≥ m)
∥∥
K−1∑

k′=0

(
xpK+k′+1 − xpK+k′

) ∥∥2 ≤ K‖χpK‖2. (37)

For every m′ ∈ N, let Λm′ =
+∞∑
p=m′

‖χpK‖ which is finite by Theorem 3.1. Hence, the last two

inequalities yield
‖xmK − x̂‖ ≤

√
KΛm. (38)

Involving again Jensen’s inequality, we have

‖xmK − xℓ‖2 =
∥∥
k−1∑

k′=0

(xmK+k′+1 − xmK+k′)
∥∥2

≤ k

k−1∑

k′=0

∥∥xmK+k′+1 − xmK+k′
∥∥2 ≤ (K − 1)‖χmK‖2. (39)

Altogether, (35), (38), and (39) lead to

(∀ℓ ∈ N) ‖xℓ − x̂‖ ≤
√
KΛm +

√
K − 1‖χmK‖ ≤ 2

√
KΛm. (40)

Using (29), we have, for every m ≥ max{ℓ∗/K, 1},

‖χmK‖ ≤ 1

2
‖χ(m−1)K‖ + µ−1(1 − θ)−1κ−12K/2(L2 + β2ν)1/2∆mK ,

where ∆mK =
(
G(xmK)−G(x̂)

)1−θ−
(
G(x(m+1)K)−G(x̂)

)1−θ
. Thus, since

(
G(xℓ)−G(x̂)

)
ℓ∈N

is a nonnegative sequence converging to 0, we obtain

Λm ≤ (Λm−1 − Λm) + 2µ−1(1 − θ)−1κ−12K/2(L2 + β2ν)1/2
(
G(xmK) −G(x̂)

)1−θ
.

Let us now assume that θ 6= 0. According to (26) and (28), we have

κ (G(xmK) −G(x̂))θ ≤
(
2K(L2 + β2ν)

)1/2 ‖χ(m−1)K‖,

so that (
G(xmK) −G(x̂)

)1−θ ≤ κ−
1−θ
θ
(
2K(L2 + β2ν)

) 1−θ
2θ ‖χ(m−1)K‖

1−θ
θ . (41)

Thus, by defining

C = 2µ−1(1 − θ)−1κ−
1
θ
(
2K(L2 + β2ν)

) 1
2θ , (42)

we get, for every m ≥ max{ℓ∗/K, 1},

Λm ≤ (Λm−1 − Λm) + C‖χ(m−1)K‖ 1−θ
θ ,

and (30) is satisfied.
Thus, according to Lemma 3.5 and (40), if θ ∈ (12 , 1), there exists λ ∈ (0,+∞) such that

(∀ℓ > K) ‖xℓ − x̂‖ ≤ 2
√
Kλm− 1−θ

2θ−1 ≤ 2
√
Kλ
( ℓ
K

− 1
)− 1−θ

2θ−1
,

where m is the lower integer part of ℓ/K. Inequality (31) is thus obtained by setting λ′ = 2
√
Kλ.

Similarly, if θ ∈ (0, 12 ], then there exist λ ∈ (0,+∞) and τ ∈ [0, 1) such that

(∀ℓ > K) ‖xℓ − x̂‖ ≤ 2
√
Kλτm ≤ 2

√
Kλτ ℓ/K−1.
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Hence, if τ 6= 0, (33) is satisfied by setting λ′ = 2
√
Kλ/τ and τ ′ = τ1/K , while (33) also holds

trivially when τ = 0.
In addition, since

(
G(xℓ) −G(x̂)

)
ℓ∈N

is a decreasing sequence, for every ℓ ∈ N,

G(xℓ) −G(x̂) ≤ G(xmK) −G(x̂),

where m still denotes the lower integer part of ℓ/K. Using (41), if m ≥ max{ℓ∗/K, 1}, then

G(xℓ) −G(x̂) ≤ κ−1/θ
(
2K(L2 + β2ν)

) 1
2θ ‖χ(m−1)K‖1/θ

≤ κ−1/θ
(
2K(L2 + β2ν)

) 1
2θ Λ

1/θ
m−1.

So, if θ ∈ (12 , 1), using again Lemma 3.5, there exists λ ∈ (0,+∞) such that, when m > 2,

G(xℓ) −G(x̂) ≤ κ−1/θ
(
2K(L2 + β2ν)

) 1
2θ λ(m− 1)

− 1−θ
θ(2θ−1)

≤ κ−1/θ
(
2K(L2 + β2ν)

) 1
2θ λ
( ℓ
K

− 2
)− 1−θ

θ(2θ−1)
.

Hence, one can find λ′′ ∈ (0,+∞) such that (32) holds for every ℓ > 2K.

If θ ∈ (0, 12 ], there exist λ ∈ (0,+∞) and τ ∈ [0, 1) such that

G(xℓ) −G(x̂) ≤ κ−1/θ
(
2K(L2 + β2ν)

) 1
2θ λτ

m−1
θ

≤ κ−1/θ
(
2K(L2 + β2ν)

) 1
2θ λτ

ℓ/K−2
θ .

Therefore, one can find λ′′ ∈ (0,+∞) such that (34) holds for every ℓ ∈ N.
Let us now prove Property (iii) by assuming that θ = 0. Set L = {ℓ ∈ N |xℓ 6= x̂}, and let

ℓ ≥ max{ℓ∗,K} be in L. According to Lemmas 3.1 and 3.2,

G(xℓ+1) ≤ G(xℓ) −
µ

2
‖xℓ+1 − xℓ‖2 ≤ G(xℓ−K) − µ

2
‖χℓ−K‖2.

Using (28), we obtain

G(xℓ) −G(x̂) − µ

2
‖xℓ+1 − xℓ‖2 ≤ G(xℓ−K) −G(x̂) − µ′

2
‖tℓ‖2,

where µ′ ∈ (0,+∞). Combined with (26), and since θ = 0, this yields

G(xℓ) −G(x̂) − µ

2
‖xℓ+1 − xℓ‖2 ≤ G(xℓ−K) −G(x̂) − µ′

2
κ2|G(xℓ) −G(x̂)|0,

that is,

G(xℓ) −G(x̂) − µ

2
‖xℓ+1 − xℓ‖2 ≤ G(xℓ−K) −G(x̂) − µ′

2
κ2.

Since lim
ℓ→+∞

G(xℓ) = G(x̂), the above inequality implies that L is finite, and (iii) follows.



17

Remark 3.1.

(i) Note that, when G is strongly convex, the  Lojasiewicz exponent θ of G is equal to 1/2. In
this case, x̂ is a global minimizer of G and sequences (‖xℓ − x̂‖)ℓ∈N and (G(xℓ) −G(x̂))ℓ∈N
converge linearly.

(ii) Note that, if θ ∈ (0, 1/2], then, for m large enough, (30) yields

Λm ≤ (1 + C)(Λm−1 − Λm),

so that the constant τ ′ in (33)-(34) can be chosen equal to ((1 + C)/(2 + C))1/K where C
is given by (42).

4 Application

4.1 Optimization problem

In this section, we consider a phase retrieval inverse problem which consists of estimating the
phase of a complex-valued signal from measurements of its modulus and additional a priori
information.

Let z ∈ [0,+∞)S be a degraded signal related to an original unknown signal v ∈ RM through
the model

z = |Hv| + w,

where H ∈ CS×M is an observation matrix with complex elements, |·| denotes the componentwise
modulus operator, and w ∈ [0,+∞)S is a realization of an additive noise. The objective is then
to find an estimate v̂ ∈ RM of the target image v from the observed data z and the observation
operator H.

Such a problem is of paramount importance in numerous areas of applied physics and engi-
neering [6, 14, 20, 43, 46]. Note that unlike many existing works [5, 14, 22, 23], it is not assumed
that H is a Fourier transform matrix.

Set v̂ = Wx̂ where W ∈ RM×N , N ≥ M , is a given frame synthesis operator (e.g. a
possibly redundant wavelet synthesis operator) [32]. Then, following a synthesis approach, the
frame coefficient vector x̂ can be estimated by solving Problem (1) where F is the so-called data
fidelity term of the form:

(∀x ∈ R
N ) F (x) :=

S∑

s=1

ϕ(s)(|[HWx](s)|). (43)

Hereabove, for every s ∈ {1, . . . , S}, ϕ(s) : [0,+∞) → R, and [HWx](s) is the s-th component
of HWx ∈ CS . Moreover, in (1), a penalty function R is employed serving to incorporate a
priori information on the frame coefficients.

We propose to choose, for every s ∈ {1, . . . , S}, ϕ(s) := ϕ
(s)
1 + ϕ

(s)
2 , where

(
∀ω ∈ [0,+∞)

)
ϕ
(s)
1 (ω) :=

1

2

(
ω2 + (z(s))2

)
, (44)

ϕ
(s)
2 (ω) := −z(s)

(
ω2 + δ2

)1/2
, (45)

with δ > 0. Thus, the data fidelity term (43) is split as F = F1 + F2 where

(∀x ∈ RN ) F1(x) :=
S∑
s=1

ϕ
(s)
1 (|[HWx](s)|),

F2(x) :=
S∑
s=1

ϕ
(s)
2 (|[HWx](s)|).

(46)
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For every s ∈ {1, . . . , S}, the second-order derivatives of ϕ
(s)
1 and ϕ

(s)
2 are1

(∀ω ∈ [0,+∞)) ϕ̈
(s)
1 (ω) = 1, (47)

ϕ̈
(s)
2 (ω) = −z(s)δ2(ω2 + δ2)−3/2. (48)

Thus, ϕ
(s)
2 is concave on [0,+∞), while ϕ(s) is nonconvex. Moreover, ϕ(s) is Lipschitz

differentiable, and Assumption 2.1(ii) is satisfied. Note that, in the limit case when δ = 0,
the usual nonconvex nonsmooth least squares data fidelity term [22] is recovered (i.e. F =
1

2
‖|HW · |−z‖2), which shows that the proposed function can be viewed as a smoothed version

of it.
In addition, the following penalization term is employed:

(∀x = (x(n))1≤n≤N ∈ R
N ) R(x) :=

N∑

n=1

ρ(n)(x(n)), (49)

where, for every n ∈ {1, . . . , N},

(∀ω ∈ R) ρ(n)(ω) :=

{
ϑn|ω − ωn|πn if η

n
≤ ω ≤ ηn,

+∞ otherwise,
(50)

and, for every n ∈ {1, . . . , N}, ϑn ∈ (0,+∞), πn ∈ N∗, η
n
∈ [−∞,+∞), ηn ∈ [η

n
,+∞], and

ωn ∈ R. Assumption 2.1 is thus satisfied. Moreover, since for every n ∈ {1, . . . , N}, ρ(n) is a
semi-algebraic function, F is also a semi-algebraic function, and Assumption 2.2 holds.

In the following, in order to simplify the notation, we introduce the linear operator T :=
HW = (T (s,n))1≤s≤S,1≤n≤N ∈ CS×N .

4.2 Construction of the preconditioning matrices

The numerical efficiency of the proposed method relies on the use of quadratic majorants pro-

viding good approximations of Fjℓ(·,x
(ℓ)
ℓ ) at iteration ℓ ∈ N, and whose curvature matrices

(Ajℓ(xℓ))ℓ∈N are simple to compute.

Similarly to (4), let us define, for every ℓ ∈ N, functions F1,jℓ(·,x
ℓ
ℓ ) and F2,jℓ(·,x

ℓ
ℓ ) associated

with F1 and F2, respectively. It has already been noticed that, for every s ∈ {1, . . . , S}, ϕ
(s)
2 is

concave. Hence, for every ℓ ∈ N, F2,jℓ(·,x
ℓ
ℓ ) is majorized by

(∀y ∈ R
Njℓ ) Q2,jℓ(y,xℓ) := F2(xℓ) +

〈
y − x

(jℓ)
ℓ ,∇jℓF2(xℓ)

〉
. (51)

Thus, there remains to find a family of SPD matrices (Ajℓ(xℓ))ℓ∈N such that, for every ℓ ∈ N,

(∀y ∈ R
Njℓ ) Q1,jℓ(y,xℓ) := F1(xℓ) +

〈
y − x

(jℓ)
ℓ ,∇jℓF1(xℓ)

〉

+
1

2

〈
y − x

(jℓ)
ℓ ,Ajℓ(xℓ)(y − x

(jℓ)
ℓ )

〉
, (52)

is a majorant function of F1,jℓ(·,x
ℓ
ℓ ). The following proposition allows us to propose a SDP

matrix B ∈ RN×N for building majorizing approximations of F1 at xℓ for every ℓ ∈ N. Hereafter,
Re{·} (resp. Im{·}) designates the real (resp. imaginary) part of its argument.

1We consider right derivatives at ω = 0.
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Proposition 4.1. Let u ∈ RN . A quadratic majorant of F1 at u is

(∀x ∈ R
N ) Q1(x,u) := F1(u) + 〈x− u,∇F1(u)〉 +

1

2
〈x− u,B(x− u)〉 , (53)

where B := Diag
(
Ω⊤1S

)
+ εIN , where 1S is the unit vector on RS, ε ≥ 0, and

Ω =
(
Ω(s,n)

)
1≤s≤S,1≤n≤N

∈ RS×N is given by

(∀s ∈ {1, . . . , S})(∀n ∈ {1, . . . , N})

Ω(s,n) := |Re{T (s,n)}|
N∑

n′=1

|Re{T (s,n′)}| + |Im{T (s,n)}|
N∑

n′=1

|Im{T (s,n′)}|. (54)

Proof. Let u ∈ RN . For every s ∈ {1, . . . , S}, we have, for every x ∈ RN ,

ϕ
(s)
1

(
|T (s)x|

)
= ϕ

(s)
1

(
|T (s)u|

)
+
〈
x− u,Re{(T (s))∗T (s)}u

〉
+

1

2
|T (s)(x− u)|2,

where T (s) denotes line s of matrix T and (·)∗ is the matrix trans-conjugate operation. Then,
summing over s ∈ {1, . . . , S}, we obtain

(∀x ∈ R
N ) F1(x) = F1(u) + 〈x− u,∇F1(u)〉 +

1

2
|||T (x− u)|||2, (55)

where ||| · ||| is the Hermitian norm of CS .

Let (V
(s,n)
R )1≤s≤S,1≤n≤N ∈ [0,+∞)S×N and (V

(s,n)
I )1≤s≤S,1≤n≤N ∈ [0,+∞)S×N be such that,

for every s ∈ {1, . . . , S},
∑

n∈S
(s)
R

V
(s,n)
R ≤ 1,

∑
n∈S

(s)
I

V
(s,n)
I ≤ 1 where

S(s)
R := {n ∈ {1, . . . , N} : V

(s,n)
R 6= 0} = {n ∈ {1, . . . , N} : Re{T (s,n)} 6= 0},

S(s)
I := {n ∈ {1, . . . , N} : V

(s,n)
I 6= 0} = {n ∈ {1, . . . , N} : Im{T (s,n)} 6= 0}.

Jensen’s inequality yields, for every s ∈ {1, . . . , S},

∣∣∣∣∣

N∑

n=1

T (s,n)(x(n) − u(n))

∣∣∣∣∣

2

=

(
N∑

n=1

Re{T (s,n)}(x(n) − u(n))

)2

+

(
N∑

n=1

Im{T (s,n)}(x(n) − u(n))

)2

=



∑

n∈S
(s)
R

V
(s,n)
R

(
Re{T (s,n)}
V

(s,n)
R

(x(n) − u(n))

)


2

+



∑

n∈S
(s)
I

V
(s,n)
I

(
Im{T (s,n)}
V

(s,n)
I

(x(n) − u(n))

)


2

≤
∑

n∈S
(s)
R

(Re{T (s,n)})2

V
(s,n)
R

(x(n) − u(n))2 +
∑

n∈S
(s)
I

(Im{T (s,n)})2

V
(s,n)
I

(x(n) − u(n))2. (56)

Let us now choose

(∀(s, n) ∈ {1, . . . , S} × {1, . . . , N})

V
(s,n)
R =





0, if Re{T (s,n)} = 0,

|Re{T (s,n)}|
∑N

n′=1 |Re{T (s,n′)}|
, otherwise,

V
(s,n)
I =





0, if Im{T (s,n)} = 0,

|Im{T (s,n)}|
∑N

n′=1 |Im{T (s,n′)}|
, otherwise.
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It follows from (56) that, for every s ∈ {1, . . . , S},

∣∣∣∣∣

N∑

n=1

T (s,n)(x(n) − u(n))

∣∣∣∣∣

2

≤
N∑

n=1

(
|Re{T (s,n)}|

N∑

n′=1

|Re{T (s,n′)}|
)

(x(n) − u(n))2

+
N∑

n=1

(
|Im{T (s,n)}|

N∑

n′=1

|Im{T (s,n′)}|
)

(x(n) − u(n))2.

It can be deduced that

|||T (x− u)|||2 ≤
〈
x− u,Diag

(
Ω⊤1S

)
(x− u)

〉
, (57)

where Ω is defined by (54). Altogether, (55) and (57) lead to the desired majorization.

Combining the above lemma with Remark 2.4(ii) leads to the construction, for every ℓ ∈ N,

of a quadratic majorant of F1,jℓ(·,x
ℓ
ℓ ) at xℓ of the form (52) with

(∀ℓ ∈ N) Ajℓ(xℓ) := Diag
(
Ω⊤
jℓ
1S

)
+ εINjℓ

, (58)

where Ωjℓ ∈ R
S×Njℓ is the matrix obtained by extracting the columns with indices in Jjℓ from

the matrix Ω given by (54). Note that Assumption 2.3(ii) is satisfied for matrices (58) with





ν = ε+ min
n∈Jjℓ

∑S
s=1 Ω(s,n),

ν = ε+ max
n∈Jjℓ

∑S
s=1 Ω(s,n).

(59)

If each column of T is nonzero, then one can choose ε = 0 in (59). Otherwise, we must choose
ε > 0.

4.3 Implementation of the proximity operator of R

Let ℓ ∈ N, let xℓ be the ℓ-th iterate in Algorithm (12) and let jℓ ∈ {1, . . . , J} be the block selected

at iteration ℓ. SinceRjℓ is an additive separable function, and Ajℓ(xℓ) reads Diag(a
(1)
jℓ
, . . . , a

(Njℓ
)

jℓ
),

we have

(∀y = (y(n))n∈Jjℓ ∈ R
Njℓ ) proxγ−1

ℓ Ajℓ
(xℓ),Rjℓ

(y) =

(
prox

γ−1
ℓ a

(n)
jℓ
,ρ(n)(y

(n))

)

n∈Jjℓ

. (60)

For every n ∈ Jjℓ , let ς
(n)
jℓ

:= γℓϑn

(
a
(n)
jℓ

)−1
> 0. According to (50), we have then

(∀υ ∈ R) prox
γ−1
ℓ a

(n)
jℓ
,ρ(n)(υ) = argmin

η
n
≤ω≤ηn

{
ς
(n)
jℓ

|ω − ωn|πn +
1

2
(ω − υ)2

}

= min

{
ηn,max

{
η
n
, prox

ς
(n)
jℓ

|·−ωn|πn
(υ)

}}

= min

{
ηn,max

{
η
n
, ωn + prox

ς
(n)
jℓ

|·|πn
(υ − ωn)

}}
. (61)

Hence, provided that the proximity operator prox
ς
(n)
jℓ

|·|πn
has an explicit form, the exact version

(7) of Algorithm (12) can be used.



21

4.4 Simulation results

We now demonstrate the practical performance of our algorithm on an image reconstruction
problem. In our experiments, W is an overcomplete Haar synthesis operator performed on a
single resolution level. Thus, N = 4M , and, for every x = (x(n))1≤n≤N ∈ RN , (x(n))1≤n≤M
correspond to the approximation frame coefficients, whereas (x(n))pM+1≤n≤(p+1)M with p ∈
{1, 2, 3} correspond to the horizontal, vertical and diagonal detail coefficients, respectively. We
take, for every n ∈ {1, . . . ,M}, (πn, ϑn) = (2, ϑa) and, for every n ∈ {M + 1, . . . , N}, (πn, ϑn) =
(1, ϑd), with (ϑa, ϑd) ∈ (0,+∞)2. Note that, for these choices of (πn)1≤n≤N and (ϑn)1≤n≤N , the
proximity operator (61) has an explicit form [17]. The original image v, with size M = 256×256,
is shown in Figure 1(a). Although the Haar coefficient vector x is not uniquely defined, an
example is displayed in Figure 1(b). The observation matrix is here H = HR + iHI where
[H⊤

R,H
⊤
I ]⊤ ∈ R2S×M models 2S = 92160 distinct projections from 256 parallel acquisition lines

and 360 angles. The magnitude measurement vector |Hv| is then corrupted with an additive
real-valued white zero-mean Gaussian noise with variance equals to 0.1 which is truncated so
as to guarantee the nonnegativity of the observed data. For every n ∈ {1, . . . , N}, (η

n
, ηn, ωn)

are minimal, maximal and mean values, imposed on the sought frame coefficients. In order
to set to zero the coefficients located in a subset E ⊂ {1, . . . , N} corresponding to the object
background, we choose, for every n ∈ E, η

n
= ηn = 0, as illustrated in Figure 1(c), and for

coefficient indices n ∈ {1, . . . , N} \ E, we do not introduce specific range assumption by setting
η
n

= −∞ and ηn = +∞. Moreover, we take ωn = 0.8, for every n ∈ {1, . . . ,M} \ E, ωn = 0

otherwise. Parameters ϑa, ϑd and δ are adjusted so as to maximize the signal-to-noise ratio
(SNR) between the original image v and the reconstructed one v̂, expressed as

SNR := 20 log10

( ‖v‖
‖v̂ − v‖

)
.

(a) (b) (c)

Figure 1: Original image v (a), example of frame coefficient x with approximation coefficients
in top-left (b), and index set E in black (c).

We adopt the essentially cyclic rule described in Assumption 2.4 to update the (K = J)
blocks. Let ℓ ∈ N be an iterate of the BC-VMFB algorithm, and (m, j′) ∈ N × {1, . . . , J} be
such that ℓ = mJ + j′ − 1. Then the block index jℓ is defined as jℓ = σm(j′), where σm is a
random permutation from {1, . . . , J} to {1, . . . , J}, and

(∀j′ ∈ {1, . . . , J}) Jj′ =
3⋃

p=0

{Mp+ (j′ − 1)Q+ 1, . . . ,Mp+ j′Q}, (62)

with (J,Q) ∈ (N∗)2 such that M = JQ. Thus, at each iteration ℓ ∈ N, the updated jℓ block is



22

of constant size Njℓ = 4Q. Figure 2 illustrates two examples of a resulting block index set Jj′

for two different values of Q.

Figure 2: An example of index set Jj′ (black), for Q = 4096 (left) and Q = 64 (right), the frame
coefficients being structured as depicted in Figure 1(b).

Figure 3 (left) shows the reconstructed image with Algorithm (7), using the majorant curva-
ture (58) where ε = 0, Q = 64 and γℓ ≡ 1.9. We also present in Figure 3 (right) the variations of
the reconstruction time with respect to the block-size parameter Q, when performing tests on an
Intel(R) Core(TM) i7-3520M @ 2.9GHz using a Matlab 7 implementation. The reconstruction
time corresponds to the computation time necessary to fulfill the following stopping criterion:

‖xℓ − x̂‖ ≤ 10−3‖x̂‖, (63)

the optimal solution x̂ being precomputed for each experiment, using a large number of itera-
tions. One can observe that the best compromise in terms of convergence speed is obtained for
an intermediate block-size, namely Q = 64. Figure 4 illustrates the variations of

(
G(xℓ) − Ĝ

)
ℓ

and
(
‖xℓ−x̂‖/‖x̂‖

)
ℓ

with respect to the computation time, using either the proposed BC-VMFB
algorithm, BC-FB algorithm or PALM algorithm for the previous optimal block-size. Hereabove,
Ĝ denotes the minimum of the (possibly) different values G(x̂) resulting from each simulation.
Note that BC-FB and PALM algorithms can be viewed as special instances of Algorithm (7)
where the cyclic rule (5) is adopted and the preconditioning matrices are equal to

(∀ℓ ∈ N) Ajℓ(xℓ) = LINjℓ
(64)

(resp. (∀ℓ ∈ N) Ajℓ(xℓ) = LjℓINjℓ
), (65)

where L is a Lipschitz modulus of ∇F (resp., for every j ∈ {1, . . . , J}, Lj a Lipschitz modulus
of ∇jF (x(1), . . . ,x(j−1), ·,x(j+1), . . . ,x(J)) [12]). These results illustrate the fact that the metric
strategy given by (58) leads to a significant acceleration in terms of decay of both the objective
function and the error on the iterates.
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Editions du centre National de la Recherche Scientifique (1963)

[29] Luenberger, D.G.: Linear and Nonlinear Programming. Addison-Wesley, Reading, Mas-
sachusetts (1973)

[30] Luo, Z.Q., Tseng, P.: On the convergence of the coordinate descent method for convex
differentiable minimization. J. Optim. Theory Appl. 72(1), 7–35 (1992)

[31] Luo, Z.Q., Tseng, P.: On the linear convergence of descent methods for convex essentially
smooth minimization. SIAM J. Control Optim. 30(2), 408–425 (1992)

[32] Mallat, S.: A Wavelet Tour of Signal Processing, 3rd edn. Academic Press, Burlington,
MA (2009)

[33] Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. Vol. I: Basic
theory, Series of Comprehensive Studies in Mathematics, vol. 330. Springer-Verlag, Berlin-
Heidelberg (2006)
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