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Abstract

In this paper, we study the existence and uniqueness of traveling wave solution for the

accelerated Frenkel-Kontorova model. This model consists in a system of ODE that describes

the motion particles in interaction. The most important applications we have in mind is

the motion of crystal defects called dislocations. For this model, we prove the existence of

traveling wave solutions under very weak assumptions. The uniqueness of the velocity is also

studied as well as the uniqueness of the profile which used different types of strong maximum

principle. As far as we know, this is the first result concerning traveling waves for accelerated,

spatially discrete system.
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function.

1 Introduction

In the present paper, we study the accelerated Frenkel-Kontorova model (F-K) which describes
a chain of particles interacting by an harmonic potential. Besides its original aim of modeling
crystal dislocations, the (F-K) model has many applications in physics such as the description of
magnetic domain walls, atoms adsorbed on a crystalline surface or superionic conductors (see for
instance the book of Braun and Kivshar [8] for an introduction to this model). The goal of this
work is to prove the existence and the uniqueness of traveling wave as well as the uniqueness of
the velocity. This work is a generalization of the one of Al Haj et al. [1] in which the authors
study the fully overdamped case.

The study of traveling waves in reaction-diffusion equations has been introduced in pioneering
works of Fisher [18] and Kolmogorov, Petrovsky and Piskunov [28]. Existence of traveling waves
solutions has been for instance obtained in [3, 7, 17, 27]. More generally, there is a huge literature
about existence, uniqueness and stability of traveling waves with various non linearities with
applications in particular in biology and combustion and we refer for instance to the references
cited in [6, 11]. There are also several works on discrete or nonlocal versions of reaction-diffusion
equations (see for instance [4, 5, 9, 10, 12, 14, 16, 24, 26, 29, 30, 31, 32, 33] and the references
cited therein) and on damped hyperbolic equation (see [15, 21, 22, 23, 25]) but, as far as we know,
there is no result concerning hyperbolic discrete in space equations.
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1.1 The Frenkel-Kontorova model

The classical Frenkel-Kontorova (F-K) model describes the dynamics of crystal defects. If ui(t)
is the position of the particle i ∈ Z, then the classical (F-K) models is given by the following
dynamics

m0
d2ui
dt2

+
dui
dt

= ui+1 + ui−1 − 2ui − sin(2π(ui − L))− sin(2πL)

where
d2ui
dt2

denotes the acceleration of the ith particle,
dui
dt

is its velocity, m0 denotes the mass

of the particles, − sin(2πL) is a constant driving force which will cause the movement of the chain
of atoms and − sin(2π(ui−L)) describes the force created by a periodic potential whose period is
assumed to be 1. We set

fL(v) = − sin(2π(v − L))− sin(2πL)

and for all i ∈ Z

Ξi(t) = ui(t) + 2m0
dui
dt

(t).

We replace it in equation (1.2) in order to obtain the following monotone system: for i ∈ Z and
t ∈ (0,+∞),

(1.1)











dui
dt

=
1

2m0
(Ξi − ui)

dΞi

dt
= 2(ui+1 + ui−1 − 2ui) + fL(ui) +

1

2m0
(ui − Ξi).

We look for particular traveling wave solution of (1.1), which have the form

(1.2)

{

ui(t) = φ1(i+ c t)
Ξi(t) = φ2(i + c t).

If we replace (1.2) in (1.1), then the profile (φ1, φ2) should satisfy

(1.3)

{

cφ′1(z) = α0(φ2(z)− φ1(z))
cφ′2(z) = 2(φ1(z + 1) + φ1(z − 1)− 2φ1(z)) + 2fL(φ1(z)) + α0(φ1(z)− φ2(z))

with z = i+ c t and α0 =
1

2m0
. We then have the following result.

Theorem 1.1 (Existence and uniqueness of traveling wave solution for Frenkel-Kontorova model).
There exists a constant α∗ (which will be made precised later on assumption (A)) such that for all
α0 ≥ α∗, there exist a unique real c and two functions φ1 : R → R and φ2 : R → R that satisfy

(1.4)























cφ′1(z) = α0(φ2(z)− φ1(z))
cφ′2(z) = 2(φ1(z + 1) + φ1(z − 1)− 2φ1(z)) + 2fL(φ1(z)) + α0(φ1(z)− φ2(z))
φ1, φ2 are non-decreasing over R

φ1(−∞) = 0, φ1(+∞) = 1
φ2(−∞) = 0, φ2(+∞) = 1

in the classical sense if c 6= 0 and almost everywhere if c = 0. Moreover, if c 6= 0, then the two
profiles are unique up to translation.

1.2 Main results for the general case

We now consider a generalization of system (1.3). Given a function F : [0, 1]N+1 → R, we consider
the system

{

c φ′1(z) = α0(φ2(z)− φ1(z))

c φ′2(z) = 2F ((φ1(z + ri))i=0,...,N) + α0(φ1(z)− φ2(z)).

In order to provide our results, we introduce some assumptions on F .
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Assumption (A)

• Regularity of F : F is globally Lipschitz continuous over [0, 1];

• Monotonicity of F : F (X0, ..., XN ) is non-decreasing in Xi for i 6= 0, and

(1.5) 2
∂F

∂X0
+ α0 > 0.

We set F (v, ...., v) = f(v).

Assumption (B)

• Instability: f(0) = 0 = f(1) and there exists b ∈ [0, 1] such that

f(b) = 0, f|(0,b) < 0, f|(b,1) > 0 and f ′(b) > 0.

• Smoothness: F is C1 in a neighborhood of {b}N+1.

We give the first main result concerning the existence of traveling wave.

Theorem 1.2 (Existence of a traveling wave). Under assumptions (A) and (B), there exist a real
c and two functions φ1 : R → R and φ2 : R → R that solves

(1.6)























c φ′1(z) = α0(φ2(z)− φ1(z))
c φ′2(z) = 2F ((φ1(z + ri))i=0,...,N ) + α0(φ1(z)− φ2(z))
φ1, φ2 are non-decreasing over R

φ1(−∞) = 0, φ1(+∞) = 1
φ2(−∞) = 0, φ2(+∞) = 1

in the classical sense if c 6= 0 and almost everywhere if c = 0.

In order to prove the uniqueness of the traveling waves, we require some additional assumptions:

Assumption (C): Inverse monotonicity close to {0}N+1 and E = {1}N+1: There exists
β0 > 0 such that for a > 0, we have

{

F (X + (a, ..., a)) < F (X) for all X,X + (a, ..., a) ∈ [0, β0]
N+1

F (X + (a, ..., a)) < F (X) for all X,X + (a, ..., a) ∈ [1− β0, 1]
N+1

Assumption (D+)

i) All the ri have the same sign: We assume that ri ≤ 0, for all i ∈ {0, ..., N}.

ii) Strict monotonicity: F is increasing in Xi+ with ri+ > 0.

Assumption (D−)

i) All the ri have the same sign: We assume that ri ≥ 0, for all i ∈ {0, ..., N}.

ii) Strict monotonicity: F is increasing in Xi− with ri− < 0.

We give the second main results concerning the uniqueness of the velocity and of the profile.
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Theorem 1.3 (Uniqueness of the velocity and of the profile). We assume (A) and let (c, (φ1, φ2)),
with φ1, φ2 : R → [0, 1], be a solution of

(1.7)















c φ′1(z) = α0(φ2(z)− φ1(z))
c φ′2(z) = 2F ((φ1(z + ri))i=0,...,N ) + α0(φ1(z)− φ2(z))
φ1(−∞) = 0, φ1(+∞) = 1
φ2(−∞) = 0, φ2(+∞) = 1.

Then, we have the following properties.

(a) Uniqueness of the velocity: Under the additional assumption (C), the velocity c is unique.

(b) Uniqueness of (φ1, φ2): If c 6= 0, then under the additional assumption (C) and (D+) i) or
ii) if c > 0 (resp. (D−) i) or ii) if c < 0), (φ1, φ2) is unique (up to translation) and φ1 and
φ2 are increasing.

Remark 1.4. We note that F (X0, X1, X2) = X1 + X2 − 2X0 − sin(2π(X0 − L)) − sin(2πL)
satisfies assumptions (A), (B), (C) , (D+)ii) and (D-)ii). Then Theorem 1.1 is a direct application
of Theorems 1.2 and 1.3.

For this paper, we define

(1.8) r∗ = max
i=0...N

|ri|

and we assume that r∗ > 0 (otherwise, the system reduce to a single ODE).

1.3 Organization of the paper

In Section 2, we give the definition of viscosity solution and of Hull function. We also recall some
basic results about monotone functions. Section 3 is devoted to the proof of existence of traveling
waves, namely Theorem 1.2. In Section 4, we study the question of uniqueness of the velocity by
proving a comparison principal on the half line. Finally, in Section 5, we prove the uniqueness of
the profile using different types of strong maximum principles.

2 Preliminary results

This section is divided into four subsections. The first one is devoted to the extension of the
function F onto R

N+1. In the second subsection, we give the definition of viscosity solution while
the notion of hull functions is recalled in the third one. Finally, we present some results about
monotone functions in the last subsection.

2.1 Extension of F

To construct the traveling waves, we will use the hull functions constructed in [20]. To do that,
as in [1], we will need to extend the function F by F̃ which is defined over RN+1 and satisfied the
following assumption:
Assumption (Ã):
a) Regularity: F̃ is Lipschitz continuous over RN+1.

b) Periodicity: F̃ (X0 + 1, ..., XN + 1) = F̃ (X0, ..., XN ) for every X = (X0, ..., XN ) ∈ R
N+1.

c) Monotonicity: F̃ (X0, ..., XN ) is non-decreasing in Vi for i 6= 0 and

(2.1) 2
∂F̃

∂X0
+ α0 > 0.

Then, we have the following extension of the function F .
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Lemma 2.1. Given a function F defined over Q = [0, 1]N+1 satisfying (A) and F (1, ..., 1) =
F (0, ..., 0), there exists an extension F̃ defined over R

N+1 such that

F̃|Q = F and F̃ satisfies (Ã).

Proof. The construction is made in [1, Lemma 2.1]. The only thing to verify is that F̃ satisfy (2.1)
if F satisfy (1.5), but this is trivial by looking to the way the function F̃ is constructed.

Remark 2.2.
We remark that, if (φ1, φ2) is a traveling wave for equation (1.6) with F replaced by F̃ , then
(φ1, φ2) is also a traveling wave of the same equation. This is a direct consequence of Lemma 2.1
and the fact that











(φ1, φ2) is non-decreasing over R

φ1(−∞) = 0, φ1(+∞) = 1

φ2(−∞) = 0, φ2(+∞) = 1.

Theorem 1.2 is then a direct application of the following result.

Proposition 2.3 (Existence of traveling waves). We assume that F̃ satisfies (Ã) and (B). Then
there exist a real c and two functions φ1, φ2 solutions of

(2.2)























c φ′1(z) = α0(φ2(z)− φ1(z))

c φ′2(z) = 2 F̃ ((φ1(z + ri))i=0,...,N ) + α0(φ1(z)− φ2(z))
φ1, φ2 are non-decreasing over R

φ1(−∞) = 0, φ1(+∞) = 1
φ2(−∞) = 0, φ2(+∞) = 1

in the classical sense if c 6= 0 and almost everywhere if c = 0.

Proof of Theorem 1.2. The proof of Theorem 1.2 is a direct consequence of Remark 2.2 and Propo-
sition 2.3.

For simplicity of presentation, we call F̃ as F in the rest of this section and in Section 3.

2.2 Viscosity solution

In this subsection, we give the definition of viscosity solution. We first recall the definition of the
upper and the lower semi-continuous envelopes u∗ and u∗ :

u∗(y) = lim sup
x→y

u(x)

u∗(y) = lim inf
x→y

u(x).

Definition 2.4 (Viscosity solution). Let c ∈ R and F be defined over R
N+1. Let u1 : R → R

and u2 : R → R be two locally bounded and upper semi-continuous functions. (u1, u2) is called a
sub-solution on an open set Ω ⊂ R of

(2.3)

{

c u′1(z) = α0(u2(z)− u1(z))
c u′2(z) = 2F ((u1(z + ri))i=0,...,N ) + α0(u1(z)− u2(z))

if for any test function ψ ∈ C1(Ω) such that (u1 − ψ) (resp (u2 − ψ)) reaches a local maximum at
a point z ∈ Ω then we have

{

c ψ′(z) ≤ α0(u2(z)− u1(z))
(

resp. c ψ′(z) ≤ 2F ((u1(z + ri))i=0,...,N ) + α0(u1(z)− u2(z))
)

.

5



Let u1 : R → R and u2 : R → R be two locally bounded and lower semi-continuous functions.
(u1, u2) is called a super-solution of (2.3) on Ω if for any test function ψ ∈ C1(Ω) such that (u1−ψ)
(resp (u2 − ψ)) reaches a local minimum at a point z ∈ Ω then we have

{

c ψ′(z) ≥ α0(u2(z)− u1(z))
(

resp. c ψ′(z) ≥ 2F ((u1(z + ri))i=0,...,N ) + α0(u1(z)− u2(z))
)

.

Finally, a locally bounded functions (u1, u2) is called a viscosity solution of (2.3) if ((u1)
∗, (u2)

∗)
is a sub-solution and ((u1)∗, (u2)∗) is a super-solution.

2.3 Hull fonction

We present the notion of hull function for (1.3). This result has been proved in [20, Theorem 1.10].

Proposition 2.5 (Existence of hull functions). Let F be a given function satisfying (Ã) and let
p > 0. Then there exists a unique λp ∈ R such that there exists two locally bounded functions
hp : R → R and gp : R → R satisfying (in the viscosity sense):

(2.4)































λph
′
p(x) = α0(gp(x) − hp(x))

λpg
′
p(x) = 2F ((hp(x + p ri))i=0...n) + α0(hp(x) − gp(x))

hp(x+ 1) = hp(x) + 1
gp(x+ 1) = gp(x) + 1
h′p(x) ≥ 0
g′p(x) ≥ 0.

We then define

(2.5)

{

φ1p(x) = hp(p x)
φ2p(x) = gp(p x)

and cp =
λp
p
.

We now give some properties of the function (φp1, φ
p
2).

Lemma 2.6 (Properties of (φp1, φ
p
2)). We assume that F satisfies (Ã). Then the function (φp1, φ

p
2)

defined in (2.5) satisfies in the viscosity sense

(2.6)















































cp(φ
1
p)

′ = α0(φ
2
p − φ1p)

cp(φ
2
p)

′ = 2F ((φ1p(x+ p ri)i=0,...,N)) + α0(φ
1
p − φ2p)

φ1p

(

x+
1

p

)

= φ1p(x) + 1, φ2p

(

x+
1

p

)

= φ2p(x) + 1

(φ1p)
′(x) ≥ 0, (φ2p)

′(x) ≥ 0.

Moreover, if cp 6= 0 then there exists M > 0 independent on p such that

(2.7) |(φpi )
′| ≤

M

|cp|
for 0 < p <

1

r∗
and i = 1, 2.

Proof of Lemma 2.6. Equation (2.6) is obtained by the change of variables (2.5) in (2.4).
We now prove (2.7). We fix p > 0 such that

1

p
≥ r∗.
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We first remark that the function ψ defined by ψ(x) = α0(φ
2
p(x) − φ1p(x)) is bounded (because ψ

is continuous and periodic) then there exists M1 > 0 such that

|ψ(x)| ≤M1.

This implies that

|(φp1)
′| ≤

M1

|cp|
.

On the other side, since φ1p is non-decreasing, we have























∣

∣φ1p(x + ri)− φ1p(x)
∣

∣ ≤

∣

∣

∣

∣

φ1p

(

x+
1

p

)

− φ1p(x)

∣

∣

∣

∣

= 1 if ri ≥ 0

∣

∣φ1p(x + ri)− φ1p(x)
∣

∣ ≤

∣

∣

∣

∣

φ1p

(

x−
1

p

)

− φ1p(x)

∣

∣

∣

∣

= 1 if ri ≤ 0.

Moreover, using that F ∈ Lip(RN+1), we get

∣

∣F ((φ1p(x+ ri))i=0,...,N )− F ((φ1p(x))i=0,...,N )
∣

∣ ≤ L

∣

∣

∣

∣

∣

∣

∣

1
...
1

∣

∣

∣

∣

∣

∣

∣

=: L1.

On the other hand, f is bounded (because f is Lipschitz continuous and periodic). Therefore

∣

∣F ((φ1p(x+ ri)i=0,...,N ))
∣

∣ ≤ L1 + |f |L∞(R)

and
∣

∣2F ((φ1p(x))i=0,...,N ) + α0(φ
2
p(x)− φ1p(x))

∣

∣ ≤ 2(L1 + |f |L∞(R)) +M1 =:M2.

This implies that

|(φp2)
′| ≤

M2

|cp|
.

Taking M = max(M1,M2), we get the desired result.

2.4 Useful results for monotone functions

In this subsection, we recall some results about monotone function that will be used later for
the proof of Proposition 2.3. We state Helly’s Lemma and the equivalence between viscosity and
almost everywhere solution.

First we recall Helly’s Lemma which gives the convergence of subsequence in the almost everywhere
sense.

Lemma 2.7 (Helly’s Lemma). Let (gn)n∈N be a sequence of non-decreasing functions on [a, b]
verifying |gn| ≤ C. Then there exists a subsequence (gnj

)j∈N such that

gnj
→ g a.e. on [a, b]

where g is non-decreasing on [a, b] and |g| ≤ C.
Moreover, if (gn)n∈N is a sequence of non-decreasing functions on a bounded interval I and if

gn → g a.e. on I

with g constant on I̊ , then for every closed subset interval I ′ ⊂ I̊ ,

gn → g uniformly on I ′.

7



Proof. The first part of this lemma is the classical Helly’s Lemma and a proof can be found in [2,
Section 3.3, p. 70] while the second part is proved in [1, Lemma 2.10].

Finally, after the use of Lemma 2.7 we often need to apply the following lemma (which proof is
very similar to the one of [1, Lemma 2.11]) in order to get a solution in the viscosity sense.

Lemma 2.8 (Equivalence between viscosity and a.e. solutions). We assume that F satisfies (Ã).
Then φ1 and φ2 are viscosity solutions of

(2.8)

{

0 = α0(φ2(x) − φ1(x)),
0 = 2 F ((φ1(x+ ri))i=0....N ) + α0(φ1(x)− φ2(x))

if and only if φ1 and φ2 are solutions in the almost everywhere sense of the same equation.

3 Construction of a traveling wave

This section is divided into two subsections. In the first one, we control the velocity of propagation
and give some properties on the plateau of the profiles. The second subsection is devoted to the
proof of Proposition 2.3.

3.1 Preliminary results

We begin to show that the velocity cp is uniformly bounded in p.

Lemma 3.1 (Velocity cp is bounded). Under the assumption (Ã) and (B), let cp be the velocity
given by (2.5). Then there exists C > 0 such that

|cp| ≤ C for 0 < p <
1

r∗
with r∗ = max

i=0,...,N
|ri| .

Proof. We consider the functions φ1p and φ2p given by (2.5) and satisfying (2.6). Let cp be the

associated velocity given by (2.5). We assume by contradiction that when p→ p0 ∈ [0,
1

r∗
]

lim
p→p0

cp = +∞

(the case cp → −∞ being similar). Let φ̄1p = φ1p(cp x) and φ̄
2
p = φ2p(cp x) solution of

(3.1)







(φ̄1p)
′ = α0(φ̄

2
p − φ̄1p)

(φ̄2p)
′ = 2F ((φ̄1p(x +

ri
cp

))i=0,...,N ) + α0(φ̄
1
p − φ̄2p).

According to (2.7), we have
{

∣

∣(φ̄1p)
′
∣

∣ =
∣

∣cp(φ
1
p)

′
∣

∣ ≤M
∣

∣(φ̄2p)
′
∣

∣ =
∣

∣cp(φ
2
p)

′
∣

∣ ≤M

for M independent of p. Since (3.1) is invariant by space translation, we assume that

φ̄1p(0) = b− ε.

for ε small enough. Using Ascoli theorem and diagonal extraction argument, we have, up to
extract a subsequence, that

{

φ̄1p → φ̄1

φ̄2p → φ̄2.

8



Moreover, by stability of viscosity solutions, φ̄1 and φ̄2 satisfy
{

(φ̄1)′(x) = α0(φ̄
2(x) − φ̄1(x))

(φ̄2)′(x) = 2F ((φ̄1(x))i=0,...,N ) + α0(φ̄
1(x)− φ̄2(x))

and
φ̄1(0) = b− ε.

Since (φ̄1p)
′ ≥ 0, (φ̄2p)

′ ≥ 0, we have (φ1)′ ≥ 0, (φ2)′ ≥ 0. This implies that

{

α0(φ̄
2(x) − φ̄1(x)) ≥ 0

2 f(φ̄1(x)) + α0(φ̄
1(x) − φ̄2(x)) ≥ 0.

Therefore
2 f(φ̄1(x)) ≥ 0.

In particular, 2 f(φ̄1(0)) = 2 f(b − ε) ≥ 0, which is a contradiction since f(b − ε) < 0 (see
assumption (B)).

We continue with some properties on the plateau of the profiles. The following lemma shows that
if one of the profile have a large enough plateau then the other profile has the same plateau.

Lemma 3.2 (Properties on the plateau of the profiles). Let (φ1, φ2) be solution of

(3.2)











cφ′1(x) = α0(φ2(x)− φ1(x))

cφ′2(x) = 2 F ((φ1(x+ ri))i=0,...,N ) + α0(φ1(x)− φ2(x))

φ′1 ≥ 0, φ′2 ≥ 0.

We assume that there exists a constant C, a point x0 ∈ R and a > r∗ such that

φ1(x) = C ∀x ∈ (x0 − a, x0 + a) or φ2(x) = C ∀x ∈ (x0 − a, x0 + a).

Then
φ1(x) = φ2(x) = C ∀x ∈ (x0 − a, x0 + a).

Proof. If φ1(x) = C ∀x ∈ (x0 − a, x0 + a), then φ′1(x) = 0 ∀x ∈ (x0 − a, x0 + a) and the first
equation of (3.2) implies the result.

Let us then assume that

φ2(x) = C ∀x ∈ (x0 − a, x0 + a).

We set

ψ1(x) = (φ1)∗(x + a)− (φ1)
∗(x− a) and ψ2(x) = (φ2)∗(x + a)− (φ2)

∗(x− a).

Then (ψ1, ψ2) is solution of

(3.3)







cψ′
1(x) ≥ α0(ψ2(x)− ψ1(x))

cψ′
2(x) ≥ 2 [F (((φ1)∗(x+ a+ ri))i=0,...,N)− F (((φ1)

∗(x− a+ ri))i=0,...,N)]
+α0(ψ1(x) − ψ2(x)).

Since φ1 and φ2 are non-decreasing, we have ψ1 ≥ 0 and ψ2 ≥ 0. Moreover, ψ2(x0) = 0. Hence,
x0 is a point of minimum of ψ2 and the second equation of (3.3) implies that

0 ≥2 [F (((φ1)∗(x0 + a+ ri))i=0,...,N)− F (((φ1)
∗(x0 − a+ ri))i=0,...,N)] + α0ψ1(x0)

≥2 [F (((φ1)
∗(x0 − a) + ψ1(x0), (φ1)

∗(x0 − a+ ri))i=1,...,N)− F (((φ1)
∗(x0 − a+ ri))i=0,...,N )]

+α0ψ1(x0)
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where we have used the monotony of F for the second inequality. We set

G(x) = 2F (((φ1)
∗(x0 − a) + x, (φ1)

∗(x0 − a+ ri))i=1,...,N ) + α0x.

Then, by assumption (1.5), G is strictly increasing. Using that

0 ≥ G(ψ1(x0))−G(0),

we deduce that ψ1(x0) = 0 (recall that ψ1 ≥ 0). This implies that φ1 is constant over (x0−a, x0+a)
and by the first equation of (3.2), this constant is also equal to C.

In the proof of Proposition 2.3, we will need to pas to the limit for (φ1p, φ
2
p). This is the goal

of the following lemma.

Lemma 3.3 (Passing to the limit for (φ1p, φ
2
p)). For every n ∈ N, let (cn, φn1 , φ

n
2 ) be a solution of

(3.4)











cn(φn1 )
′(x) = α0(φ

n
2 (x)− φn1 (x))

c(φn2 )
′(x) = 2 F ((φn1 (x + ri))i=0,...,N) + α0(φ

n
1 (x)− φn2 (x))

(φn1 )
′ ≥ 0, (φn2 )

′ ≥ 0

satisfying














φn1 (x+ 1) ≤ φn1 (x) + 1
φn2 (x+ 1) ≤ φn2 (x) + 1
|cn| ≤M0

|cn(φn1 )
′| ≤M1, |c

n(φn2 )
′| ≤M2

where M0,M1 and M2 are positive constant. We also assume that there exists M3 > 0 and x∗ ∈ R

such that |φn1 (x
∗)| ≤M3.

Then there exists (c, φ1, φ2) such that, up to extract a subsequence, cn → c, φn1 → φ1 and
φn2 → φ2 a.e. and (c, φ1, φ2) is a viscosity solution of

(3.5)











cφ′1(x) = α0(φ2(x)− φ1(x))

cφ′2(x) = 2 F ((φ1(x+ ri))i=0,...,N ) + α0(φ1(x)− φ2(x))

φ′1 ≥ 0, φ′2 ≥ 0

Proof. Up to translate φ1, we assume that x∗ = 0. Since |cn| ≤M0, up to extract a subsequence,
we can assume that

cn → c as n→ +∞.

We study two cases for c.

Case 1: c 6= 0. For n large enough, we have |cn| ≥
|c|

2
6= 0. Hence for n large enough, we have

|(φn1 )
′| ≤

2M1

|c|
and |(φn2 )

′| ≤
2M2

|c|
.

Using Ascoli’s Theorem and the diagonal extraction argument, we can assume, up to a subse-
quence, that (φn1 )n and (φn2 )n converge locally uniformly on R respectively to φ1 and φ2. By
stability, φ1 and φ2 satisfy in the viscosity sense

(3.6)







cφ′1(x) = α0(φ2(x)− φ1(x))
cφ′2(x) = 2 F ((φ1(x+ ri))i=0,...,N ) + α0(φ1(x) − φ2(x))
φ′1 ≥ 0, φ′2 ≥ 0.
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Case 2: c = 0. We have φn1 (1 + x) ≤ φn1 (x) + 1. This implies, using the fact that φn1 (0) ≤ M3,
that

(3.7)

{

φn1 (x) ≤ ⌈x⌉+M3 for x ≥ 0
φn1 (x) ≥ −⌈|x|⌉ −M3 for x ≤ 0

Using also the fact that 0 ≤ |cn(φn1 )
′| ≤M1, we get

(3.8)







φn2 (x) ≤ ⌈x⌉+
M1

α0
+M3 for x ≥ 0

φn2 (x) ≥ −⌈|x|⌉ −M3 for x ≤ 0

Using Helly’s Lemma (Lemma 2.7), up to extract a subsequence, we have φn1 → φ1 a.e. and
φn2 → φ2 a.e.. This implies that

{

cn
∫ b2

b1
(φn1 )

′(x)dx = α0

∫ b2

b1
(φn2 (x) − φn1 (x))dx

cn
∫ b2

b1
(φn2 )

′(x)dx = 2
∫ b2

b1
F ((φn1 (x+ ri))i=0,...,N )dx+ α0

∫ b2

b1
(φn1 (x)− φn2 (x))dx.

for every b1 ≤ b2. That is

{

cn(φn1 (b2)− φn1 (b1)) = α0

∫ b2

b1
(φn2 (x) − φn1 (x))dx

cn(φn2 (b2)− φn2 (b1) = 2
∫ b2

b1
F ((φn1 (x+ ri))i=0,...,N )dx+ α0

∫ b2

b1
(φn1 (x)− φn2 (x))dx.

We have










α0(φ
n
2 (x)− φn1 (x)) → α0(φ2(x) − φ1(x)) a.e.

2 F ((φn1 (x + ri))i=0,...,N) + α0(φ
n
1 (x) − φn2 (x)) → 2 F ((φ1(x+ ri))i=0,...,N )+

α0(φ1(x) − φ2(x)) a.e.

and (because of (3.7) and F is Lipschitz continuous and f is bounded)

|α0(φ
n
2 (x) − φn1 (x))| ≤M1

|F ((φn1 (x+ ri))i=0,...,N)| ≤ C(1 + |x|),

i.e.
|F ((φn1 (x+ ri))i=0,...,N ) + α0(φ

n
1 (x) − φn2 (x))| ≤ C(1 + |x|) +M1.

Thus, using Lebesgue’s dominated convergence Theorem, we pass to the limit as n→ +∞ and we
get

{

0 = α0

∫ b2

b1
(φ2(x) − φ1(x))dx

0 = 2
∫ b2

b1
F ((φ1(x+ ri))i=0,...,N )dx + α0

∫ b2

b1
(φ1(x)− φ2(x))dx.

which implies that

{

0 = α0(φ2(x) − φ1(x)) a.e.

0 = 2F ((φ1(x+ ri))i=0,...,N ) + α0 (φ1(x)− φ2(x)) a.e.

Since (φn1 )
′ ≥ 0, (φn2 )

′ ≥ 0, we get φ′1 ≥ 0, φ′2 ≥ 0 and so Lemma 2.8 implies

(3.9)















0 = α0(φ2(x) − φ1(x))
0 = 2F ((φ1(x+ ri))i=0,...,N ) + α0 (φ1(x)− φ2(x))
φ′1 ≥ 0
φ′2 ≥ 0

in the viscosity sense.
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We finish this subsection with the following proposition which help us to identify the value of
the plateau of the profiles.

Proposition 3.4 (The value of the plateau of the profile are close to the zero of f). We assume
that F satisfies (Ã) and let a > r∗. For every ε > 0, there exists δ = δ(ε) such that for all function
(c, φ1, φ2) solution of







































cφ′1(x) = α0(φ2(x)− φ1(x))

cφ′2(x) = 2 F ((φ1(x+ ri))i=0,...,N ) + α0(φ1(x)− φ2(x))

φ′1 ≥ 0, φ′2 ≥ 0

φ1(x+ 1) ≤ φ1(x) + 1, φ2(x+ 1) ≤ φ2(x) + 1

|c| ≤M0

|cφ′1| ≤M1, |cφ
′
2| ≤M2

and for all x0 ∈ R satisfying

(φ1)∗(x0 + a)− (φ1)
∗(x0 − a) ≤ δ(ε) or (φ2)∗(x0 + a)− (φ2)

∗(x0 − a) ≤ δ(ε),

we have
dist(α1, {0, b}+ Z) < ε for all α1 ∈ [(φ1)∗(x0), (φ1)

∗(x0)]

and
dist(α2, {0, b}+ Z) < ε for all α2 ∈ [(φ2)∗(x0), (φ2)

∗(x0)].

Proof. The proof is decomposed into three steps.

Step 1: Construction of a sequence. We assume by contradiction that there exists ε > 0
such that for all δn → 0 and (cn, φn1 , φ

n
2 ) solution of

(3.10)































cn(φn1 )
′(x) = α0(φ

n
2 (x) − φn1 (x))

cn(φn2 )
′(x) = 2 F ((φn1 (x+ ri))i=0,...,N) + α0(φ

n
1 (x)− φn2 (x))

(φn1 )
′ ≥ 0, (φn2 )

′ ≥ 0
φn1 (x + 1) ≤ φn1 (x) + 1, φn2 (x+ 1) ≤ φn2 (x) + 1
|cn| ≤M0

|cn(φn1 )
′| ≤M1, |c

n(φn2 )
′| ≤M2

and there exists (xn)n ⊂ R satisfying

(3.11) (φn1 )∗(xn + a)− (φn1 )
∗(xn − a) ≤ δn → 0 or (φn2 )∗(xn + a)− (φn2 )

∗(xn − a) ≤ δn → 0

and αn
1 ∈ [(φn1 )∗(xn), (φ

n
1 )

∗(xn)] such that

(3.12) dist (αn
1 , {0, b}+ Z) ≥ ε > 0

or αn
2 ∈ [(φn2 )∗(xn), (φ

n
2 )

∗(xn)] such that

(3.13) dist (αn
2 , {0, b}+ Z) ≥ ε > 0.

Up to translate the profile, we assume that

(3.14)

{

xn ≡ 0
φn1 (0) ∈ [0, 1) for all n.
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Step 2: Passing to limit n→ +∞. Using Lemma 3.3, we deduce that there exists (c, φ1, φ2)
such that, up to extract a subsequence, cn → c, φn1 → φ1 and φn2 → φ2 a.e. and (c, φ1, φ2) is
solution of

(3.15)











cφ′1(x) = α0(φ2(x) − φ1(x))

cφ′2(x) = 2 F ((φ1(x + ri))i=0,...,N) + α0(φ1(x)− φ2(x))

φ′1 ≥ 0, φ′2 ≥ 0

Step 3: Getting a contradiction. We pass to the limit in (3.11) with xn = 0. This implies
that

(3.16) (φ1)∗(a) ≤ (φ1)
∗(−a) or (φ2)∗(a) ≤ (φ2)

∗(−a).

Since φ1 and φ2 are non-decreasing, we have φ1 = K1 on [−a, a] or φ2 = K1 on [−a, a]. Using
Lemma 3.2 we then get that

φ2 = φ1 = K1 on [−a, a].

Using (3.15), we deduce that for x = 0

0 = F ((φ1(x+ ri))i=0,...,N ) = F ((K1)i=0,...,N ) = f(K1).

Hence K1 ∈ {0, b} + Z. Although, since αn
1 ∈ [(φn1 )∗(0), (φ

n
1 )

∗(0)] then αn
1 → α1 ∈ {K1}. But,

passing to the limit in (3.12), yields

dist (α1, {0, b}+ Z) ≥ ε > 0,

which is a contradiction. Similarly, if we pass to the limit in (3.13), we then get

dist (α2, {0, b}+ Z) ≥ ε > 0,

which is also a contradiction.

3.2 Proof of Proposition 2.3

We are now able to give the proof of Proposition 2.3.

Proof of Proposition 2.3.

Step 0: Introduction. Let p > 0 and (φ1p, φ
2
p) (given by (2.5)) be two non-decreasing functions

solution of

(3.17)

{

cp (φ
1
p)

′

(x) = α0(φ
2
p(x) − φ1p(x))

cp (φ2p)
′

(x) = 2F ((φ1p(x+ ri))i=0,...,N ) + α0(φ
1
p(x) − φ2p(x)).

with

(3.18) φ1p

(

x+
1

p

)

= 1 + φ1p(x) and φ2p

(

x+
1

p

)

= 1 + φ2p(x).

Up to translate φ1p, we assume that

(3.19)

{

(φ1p)∗(0) ≤ b
(φ1p)

∗(0) ≥ b.

Our goal is to pass to the limit as p tends to zero.

13



Step 1: Passing to the limit p → 0. We want to apply Lemma 3.3. The only thing we have
to show is that φ1p(0) is bounded. From (3.18) and (3.19), we deduce that

b− 1 ≤ φ1p

(

−
1

2p

)

≤ (φ1p)∗(0) ≤ b ≤ (φ1p)
∗(0) ≤ φ1p

(

1

2p

)

≤ b+ 1.

Thus
b− 1 ≤ φ1p(0) ≤ b+ 1.

Using Lemma 3.3, we then deduce that there exists (c, φ1, φ2) such that, up to extract a subse-
quence, cp → c, φ1p → φ1 and φ2p → φ2 a.e. and (c, φ1, φ2) is solution of

(3.20)











cφ′1(x) = α0(φ2(x) − φ1(x))

cφ′2(x) = 2 F ((φ1(x + ri))i=0,...,N) + α0(φ1(x)− φ2(x))

φ′1 ≥ 0, φ′2 ≥ 0.

We also note that (φ1)∗(0) ≤ b and (φ1)
∗(0) ≥ b.

Step 2 : Properties of the limit (φ1, φ2).

Step 2.1: The oscillation of (φ1, φ2) is bounded. Let R > 0. For every p such that R ≤
1

2p
we have

φ1p(R)− φ1p(−R) ≤ φ1p

(

1

2p

)

− φ1p

(

−1

2p

)

= 1.

Passing to the limit as p→ 0, we get

φ1(R)− φ1(−R) ≤ 1.

Sending R→ +∞, we deduce that

φ1(+∞)− φ1(−∞) ≤ 1.

We get in the same way that
φ2(+∞)− φ2(−∞) ≤ 1.

Step 2.2: φ1(±∞) ∈ Z ∪ (b± Z) and φ2(±∞) = φ1(±∞). We define

φ1n(x) = φ1(x− n), and φ2n(x) = φ2(x − n).

Since (3.20) is invariant by translation, we get that (φ1n, φ
2
n) is still solution of (3.20). Moreover,

since (φ1, φ2) is non-decreasing and bounded, (φ1n, φ
2
n) is also non-decreasing and bounded. Thus

(φ1n, φ
2
n) converges as n → +∞ and we denote by (φ1(−∞), φ2(−∞)) its limit. By stability of

viscosity solution, we then get that

{

0 = α0(φ
2(−∞)− φ1(−∞))

0 = 2F (((φ1(−∞))i=0,...,N ) + α0(φ
1(−∞)− φ2(−∞)).

The first equation implies that φ1(−∞) = φ2(−∞) while the second implies that f(φ1(−∞)) = 0
and so φ1(−∞) ∈ Z ∪ (b + Z).
In the same way, we get φ1(+∞) ∈ Z ∪ (b+ Z) and φ1(+∞) = φ2(+∞).
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Step 3: φ1(±∞) /∈ {b}+ Z. Since

φ1(+∞)− φ1(−∞) ≤ 1 and

{

(φ1)∗(0) ≤ b

(φ1)∗(0) ≥ b,

we obtain that φ1(−∞) ∈ {b − 1, 0, b} and φ1(+∞) ∈ {b, 1, b + 1}. If φ1(+∞) = b + 1 then
φ1(−∞) = b and if φ1(−∞) = b − 1 then φ1(+∞) = b. Thus, it is sufficient to exclude the cases
φ1(±∞) = b. At the end, this will prove that that φ1(+∞) = 1 and φ1(−∞) = 0 (and so by step
2.2, φ2(+∞) = 1 and φ2(−∞) = 0).
By contradiction, we assume that

φ1(+∞) = b.

(the case φ1(−∞) = b being similar). Let x0 = 2 r∗, where r∗ = max
i=0,...,N

|ri|. Since

b = φ1(+∞) ≥ (φ1)∗(0) ≥ b

then φ1(x) = b for all x > 0. Hence

φ1(x0) = φ1(x0 ± a) = b

for r∗ < a < 2 r∗.

Step 3.1: Introduce zp and yp. For any ε > 0 small enough (ε < min(b, 1 − b)/2), let
zp and yp ∈ R such that

(3.21)

{

(φ1p)∗(zp) ≤ b+ ε

(φ1p)
∗(zp) ≥ b+ ε

and

{

(φ1p)∗(yp) ≤ b− ε

(φ1p)
∗(yp) ≥ b− ε.

Let
ψ1
p(x) = (φ1p)∗(x+ a)− (φ1p)

∗(x − a)

ψ2
p(x) = (φ2p)∗(x + a)− (φ2p)

∗(x− a).

Note that (ψ1
p, ψ

2
p) is lower semi-continuous and solution of

(3.22)







cp(ψ
1
p)

′

(x) ≥ α0(ψ
2
p(x) − ψ1

p(x))

cp(ψ
2
p)

′

(x) ≥ 2 (F (((φ1p)∗(x+ a+ ri))i=0,...,N)− F (((φ1p)
∗(x− a+ ri))i=0,...,N ))

+α0(ψ
1
p(x)− ψ2

p(x)).

Moreover, we have

b+ ε ∈ [(φ1p)∗(zp), (φ
1
p)

∗(zp)] such that dist (b+ ε, {0, b}+ Z) ≥ ε.

Then there exists δ(ε) (given by Proposition 3.4) independent of p such that (for a > r∗)

(3.23) ψ1(zp) ≥ δ(ε) > 0 and ψ2(zp) ≥ δ(ε) > 0.

Similarly, we get that

(3.24) ψ1(yp) ≥ δ(ε) > 0 and ψ2(yp) ≥ δ(ε) > 0.

Using the uniform convergence of φ1p to φ1 (see the second part of Lemma 2.7 if c = 0), we also
get that

φ1p(x0) → b

and
ψ1
p(x0) = (φ1p)∗(x0 + a)− (φ1p)

∗(x0 − a) → 0 as p→ 0.
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Step 3.2: Equation satisfied by (ψ1, ψ2) at its point of minimum. Since

{

zp → +∞ as p→ +∞

yp ≤ 0,

we have x0 ∈ [yp, zp] for p small enough. We define

m1
p = min

x∈[yp,zp]
ψ1
p(x) = ψ1

p(x
1
p) ≥ 0 with x1p ∈ [yp, zp]

m2
p = min

x∈[yp,zp]
ψ2
p(x) = ψ2

p(x
2
p) ≥ 0 with x2p ∈ [yp, zp].

Note that

(3.25) m1
p = ψ1

p(x
1
p) ≤ ψ1

p(x0) → 0 as p→ 0.

Since, by (3.23) and (3.24),

ψ1
p(yp) ≥ δ(ε) > 0, ψ1

p(zp) ≥ δ(ε) > 0,

we have
x1p ∈ (yp, zp)

and from (3.22), we get that

0 = cp(ψ
1
p)

′

(x1p) ≥ α0(ψ
2
p(x

1
p)− ψ1

p(x
1
p)).

This gives that
m1

p = ψ1
p(x

1
p) ≥ ψ2

p(x
1
p) ≥ m2

p ≥ 0.

Thus
m2

p → 0 as p→ 0.

Using that
ψ2
p(yp) ≥ δ(ε) > 0 and ψ2

p(zp) ≥ δ(ε) > 0,

we then get

(3.26) x2p ∈ (yp, zp).

Then by (3.22), we have
(3.27)






0 = cp(ψ
1
p)

′

(x1p) ≥ α0(ψ
2
p(x

1
p)− ψ1

p(x
1
p))

0 = cp(ψ
2
p)

′

(x2p) ≥ 2(F (((φ1p)
∗(x2p + a+ ri))i=0,...,N )− F (((φ1p)

∗(x2p − a+ ri))i=0,...,N ))
+α0(ψ

1
p(x

2
p)− ψ2

p(x
2
p)).

Using that
α0(ψ

1
p(x

2
p)− ψ2

p(x
2
p)) ≥ α0(ψ

1
p(x

1
p)− ψ2

p(x
1
p)) ≥ 0,

we deduce that

(3.28) 0 ≥ F (((φ1p)
∗(x2p + a+ ri))i=0,...,N )− F (((φ1p)

∗(x2p − a+ ri))i=0,...,N ).
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Step 3.3: ψ1
p(x

2
p + ri) ≥ ψ1

p(x
1
p) = m1

p for all i. Using (3.26) we get

(3.29) b− ε ≤ (φ1p)
∗(yp) ≤ φ1p(x

2
p) ≤ (φ1p)∗((zp) ≤ b+ ε.

Using Lemma 3.3, we deduce that there exists φ10 and φ20 such that

φ1p(x
2
p + ·) → φ10 and φ2p(x

2
p + ·) → φ20 a.e. on R

and (φ10, φ
2
0) is solution of

(3.30)

{

c (φ10)
′(z) = α0(φ

2
0(z)− φ10(z))

c (φ20)
′(z) = 2F ((φ10(z + ri))i=0,...,N ) + α0(φ

1
0(z)− φ20(z)).

Using that

(3.31) 0 ≤ (φ2p)∗(x
2
p + a)− (φ2p)

∗(x2p − a) = ψ2
p(x

2
p) ≤ ψ2

p(x
1
p) ≤ ψ1

p(x
1
p) = m1

p → 0 as p→ 0

we deduce that φ20 = K1 on (−a, a). Using Lemma 3.2, we deduce that φ10 = K1 on (−a, a) with
K1 ∈ (b − ε, b+ ε) (by (3.29)).

The second equation of (3.30) implies that f(K1) = 0, which gives K1 = b. We then deduce
(using the uniform Lipschitz continuity or Helly’s Lemma in the case c = 0), that

sup
(x2

p−a+δ,x2
p+a−δ)

∣

∣φ1p(x)− b
∣

∣→ 0 for all δ > 0,

which implies

(3.32) (φ1p)∗(x
2
p + a− δ), (φ1p)

∗(x2p − a+ δ) → b as p→ 0

Using (3.21), we deduce, taking δ small enough (0 < δ ≤ a− r∗), that

yp ≤ x2p + ri ≤ zp for all i

which gives that

(3.33) ψ1
p(x

2
p + ri) ≥ ψ1

p(x
1
p) = m1

p.

Step 3.4: Getting a contradiction. In this step, we assume that m1
p > 0 and we want to get

a contradiction. Set

ki =

{

(φ1p)∗(x
2
p + ri + a) if ri ≤ 0

(φ1p)
∗(x2p + ri − a) if ri > 0

and note that
ki ∈ [(φ1p)

∗(x2p − a), (φ1p)∗(x
2
p + a)]

which implies that ki → b as p→ 0 (by (3.32)).
Hence from (3.28),(3.33) and using the monotonicity of F , we get

0 ≥ F ((ai)i=0,...,N )− F ((ci)i=0,...,N )

where

ai =

{

ki if ri ≤ 0
ki +m1

p if ri > 0

and

ci =

{

ki −m1
p if ri ≤ 0

ki if ri > 0.

Therefore from the fact that ki → b and m1
p → 0, we deduce that

ai → b and ci → b as p→ 0.
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Since F is C1 near {b}n+1 and ci + t (ai − ci) = ci + tm1
p, we have

0 ≥

∫ 1

0

dt

N
∑

i=0

(ai − ci)

(

∂F

∂Xi

(cj + t(aj − cj)j=0,...,N )

)

=

∫ 1

0

dt
N
∑

i=0

m1
p

(

∂F

∂Xi

((cj + t m1
p)j=0,...,N )

)

.

Using that m1
p > 0, we get

0 ≥

∫ 1

0

dt

N
∑

i=0

∂F

∂Xi

((cj + t m1
p)j=0,...,N )

= f ′(b) +

∫ 1

0

dt

(

N
∑

i=0

∂F

∂Xi

((cj + t m1
p)j=0,...,N )−

N
∑

i=0

∂F

∂Xi

(b, ..., b)

)

.

But F is C1 near {b}N+1 and ci + tm1
p → b for all i, thus

∫ 1

0

dt

(

N
∑

i=0

∂F

∂Xi

((cj + t m1
p)j=0,...,N )−

N
∑

i=0

∂F

∂Xi

(b, ..., b)

)

→ 0 as p→ 0.

This implies that
0 ≥ f ′(b) > 0

which is a contradiction with assumption (B).

Step 5: m1
p > 0. We split this step into two cases:

Case 1: F is strongly increasing in some direction. We assume that F satisfies

(3.34)
∂F

∂Xi1

≥ δ0 > 0.

We assume by contradiction that m1
p = 0. Thus

ψ1
p(x

1
p) = (φ1p)∗(x

1
p + a)− (φ1p)

∗(x1p − a) = 0.

Since φ1p is non-decreasing, we get

φ1p|(x1
p−a,x1

p+a)
= φ1p(x

1
p) = b.

The first equation of (3.17) implies that

φ2p|(x1
p−a,x1

p+a)
= b.

Let d1 ≥ x1p + a be the first real number such that

φ1p(d1 + η1) > b for every η1 > 0.

We choose 0 < η1 < ri1 and set
x1 = d1 + η1 − ri1 .

From the definition of d1, we deduce that

φ1p = φ2p = b on a neighborhood of x1.
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hence (φ2p)
′

(x1) = 0. Moreover, we have

{

φ1p(x1 + ri) ≥ b for all i 6= i1

φ1p(x1 + ri1 ) = φ1p(d1 + η1) > b for i = i1.

Thus, the second equation of (3.17) implies that

0 = c (φ2p)
′

(x1) =2F ((φ1p(x1 + ri))i=0,....,N )

≥2F (b, ..., φ1p(x1 + ri1 ), ...., b)

≥f(b) + δ0(φ
1
p(d1 + η1)− b)

=δ0(φ
1
p(d1 + η1)− b) > 0.

This is a contradiction.

Case 2: Create the monotonicity. In fact, we can always assume (3.34) for a modification
Fp of F , where

Fp(X0, X1, ..., XN ) = F (X0, X1, ..., XN ) + p(Xi1 −X0).

Then the whole construction works for F replaced by Fp with the additional monotonicity property
(3.34) with δ0 = p. Once we pass to the limit p→ 0, we still get the same contradiction as in Step
3.4 and we recuperate the construction of traveling wave (φ1, φ2) of (1.6) for the function F.

4 Uniqueness of the velocity c

In the first subsection, we prove a comparison principle on (−∞, r∗]) and then another one on
[−r∗,+∞)). These two comparison principles will be used in the second subsection to prove the
uniqueness of the velocity.

4.1 Comparison principle on the half-line

Theorem 4.1 (Comparison principle on (−∞, r∗]). Let F : [0, 1]N+1 → R satisfying (A) and
assume that

(4.1)







there exists β0 > 0 such that if :

Y = (Y0, ...., YN ), Y + (a...., a) ∈ [0, βN+1
0 ]

then F (Y + (a, ..., a)) < F (Y ) if a > 0.

Let (u1, u2) and (v1, v2) : (−∞, r∗]2 → [0, 1]2 be respectively a sub and a super-solution of

(4.2)

{

c u′1(z) = α0(u2(z)− u1(z)) on (−∞, 0)
c u′2(z) = 2F ((u1(z + ri))i=0,...,N ) + α0(u1(z)− u2(z)) on (−∞, 0)

We suppose that

{

u1 ≤ β0 on (−∞, 2r∗]

u2 ≤ β0 on (−∞, 2r∗]
and

{

u1 ≤ v1 on [0, r∗]

u2 ≤ v2 on [0, r∗].

Then
{

u1 ≤ v1 on (−∞, r∗]

u2 ≤ v2 on (−∞, r∗].
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Corollary 4.2 (Comparison principle on [− r∗,+∞)). Let F : [0, 1]N+1 → R satisfying (A) and
assume that

(4.3)







there exists β0 > 0 such that if :
Y = (Y0, ...., YN ), Y + (a, ...., a) ∈ [1− β0, 1]

N+1

then F (Y + (a, ..., a)) < F (Y ) if a > 0.

Let (u1, u2) and (v1, v2) : [−r
∗,+∞)2 → [0, 1]2 be respectively a sub and a super-solution of (4.2)

on (0,+∞). We assume that

{

v1 ≥ 1− β0 on [−2r∗,+∞)

v2 ≥ 1− β0 on [−2r∗,+∞)
and

{

u1 ≤ v1 on [−r∗, 0]

u2 ≤ v2 on [−r∗, 0].

Then
{

u1 ≤ v1 on [−r∗,+∞]

u2 ≤ v2 on [−r∗,+∞].

Lemma 4.3 (Transformation of a solution of (4.2)). Let (u1, u2), (v1, v2) : (−∞, r∗]2 → [0, 1]2 be
respectively a sub and a super-solution of (4.2).Then

{

û1(x) = 1− u1(−x)

û2(x) = 1− u2(−x)
and

{

v̂1(x) = 1− v1(−x)

v̂2(x) = 1− v2(−x)

are respectively a super and a sub-solution of (4.2) on (0+∞) with F, c, ri (for all i ∈ {0, ..., N})
replaced by F̂ , ĉ and r̂, given by

(4.4)







F̂ (X0, ...., XN ) = −F (1−X0, ...., 1−XN )
ĉ = −c
r̂i = −ri

with F̂ : [0, 1]N+1 → R satisfying (A), (B) and (C), where b and f are replaced by

{

b̂ = 1− b

f̂(v) = −f(1− v).

Proof. Let (u1, u2) : (−∞, r∗]2 → [0, 1]2 be a sub-solution of (4.2) and set

û1(x) = 1− u1(−x), û2(x) = 1− u2(−x).

We have
{

c û′1(x) = c u′1(−x) ≤ α0(u2(−x)− u1(−x))

c û′2(x) = c u′2(−x) ≤ −2F ((u1(−x+ ri))i=0,...,N ) + α0(u1(−x)− u2(−x))

thus
{

ĉ û′1(x) ≥ α0(û2(x)− û1(x))

ĉ û′2(x) ≥ 2F ((1− û1(x− ri))i=0,...,N ) + α0(û2(x) − û1(x)).

Hence (û1, û2) is a super-solution of (4.2) on (0,+∞). Similarly, we prove that (v̂1, v̂2) is a sub-
solution of the same equation on (0,+∞).

The proof of Corollary 4.2 is now very easy.
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Proof of Corollary 4.2. Let (u1, u2), (v1, v2) : [−r
∗,+∞)2 → [0, 1]2 be a sub and a super-solution

of (4.2) on (0,+∞) such that v1 ≥ 1− β0 and v2 ≥ 1− β0 on [−2r∗,+∞). We set

û1(x) = 1− u1(−x), û2(x) = 1− u2(−x), v̂1(x) = 1− v1(−x) and v̂2(x) = 1− v2(−x).

Thus v̂1, v̂2 ≤ β0 on (−∞, 2r∗] and by Lemma 4.3 (û1, û2) and (v̂1, v̂2) are respectively a super
and a sub-solution of (4.2). Since F satisfies (4.3), we deduce that F̂ satisfies (4.1). By Theorem
4.1, we then get that

{

v̂1 ≤ û1 on (−∞, r∗]

v̂2 ≤ û2 on (−∞, r∗].

This implies that
{

u1 ≤ v1 on [−r∗,+∞)

u2 ≤ v2 on [−r∗,+∞).

We now go back to the proof of Theorem 4.1

Proof of Theorem 4.1. Let (u1, u2) and (v1, v2) : (−∞, r∗]2 → [0, 1]2 be respectively a sub and a
super-solution of (4.2) such that

{

u1 ≤ β0 on (−∞, 2r∗]

u2 ≤ β0 on (−∞, 2r∗]
and

{

u1 ≤ v1 on [0, r∗]

u2 ≤ v2 on [0, r∗]

Step 0: Introduction. Let
{

v̄1 = min(v1, β0)

v̄2 = min(v2, β0)

According to (4.1) we have
F (β0, ..., β0) ≤ 0.

Therefore the constant β0 is a super-solution of (4.2) and then (v̄1, v̄2) is a super-solution of
(4.2) on (−∞, 0) with u1 ≤ v̄1, u2 ≤ v̄2 on [0, r∗]. Moreover, since v̄1 ≤ v1 and v̄2 ≤ v2, it
is sufficient to prove the comparison principle (Theorem 4.1) between (u1, u2) and (v̄1, v̄2) with
u1, v̄1, u2, v̄2 ∈ [0, β0]. For simplicity, we note (v̄1, v̄2) as (v1, v2).

Step 1: Doubling the variables. We assume by contradiction that

M = sup
x∈(−∞,r∗]

max(u1(x) − v1(x), u2(x) − v2(x)) > 0

Let 0 < ε, α < 1 and we define

ψ1(x, y) = u1(x)− v1(y)−
|x− y|2

2ε
+ αx

ψ2(x, y) = u2(x)− v2(y)−
|x− y|

2

2ε
+ αx

and
Mε,α = sup

x,y∈(−∞,r∗]

max(ψ1(x, y), ψ2(x, y))

Since the function ψ1 and ψ2 are upper semi-continuous and satisfy ψ1(x, y), ψ2(x, y) → −∞
as |(x, y)| → +∞, we deduce that ψ1 and ψ2 reach their maximum respectively at (x1ε, y

1
ε) and

(x2ε, y
2
ε) ∈ (−∞, r∗]2. We also denote by (xε, yε, iε) ∈ (−∞, r∗]2 × {1, 2} such that

Mε,α = ψiε(xε, yε).
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Moreover, for α small enough, we get that

Mε,α ≥
M

2
> 0.

Using also the fact that u1(x
1
ε)− v1(x

1
ε) ≤ β0 and u2(x

2
ε)− v2(x

2
ε) ≤ β0, we get then

(4.5)
|xε − yε|

2

2ε
− αxε ≤ β0.

Step 2: for all α and ε small enough, we have xε, yε ∈ (−∞, 0). By contradiction, assume
that there exists α small enough and ε → 0 such that xε ∈ [0, r∗] or yε ∈ [0, r∗] and iε = i.
We suppose that xε ∈ [0, r∗] (the case yε ∈ [0, r∗] being similar). Using (4.5), we deduce that
ȳε ∈ [−

√

2(β0 + r∗)ε, r∗]. Then xε and yε converge to x0 ∈ [0, r∗] as ε→ 0. We deduce that

0 <
M

2
≤ lim sup

ε→0
(ui(xε)− vi(yε)) ≤ ui(x0)− vi(y0) ≤ 0

which is a contradiction.

Step 3: Viscosity inequalities. Using that x 7→ ψ1(x, y
1
ε) reaches a maximum at point x1ε, we

get that

c

(

x1ε − y1ε
ε

+ α

)

≤ α0(u2(x
1
ε)− u1(x

1
ε)).

In the same way, we have

c

(

x1ε − y1ε
ε

)

≥ α0(v2(y
1
ε)− v1(y

1
ε)).

Subtracting the two inequalities, we deduce that

(4.6) cα ≤ α0

(

(u2(x
1
ε)− v2(y

1
ε))− (u1(x

1
ε)− v1(y

1
ε))
)

In the same way (using ψ2) we get that

cα ≤2
[

(F ((u1(x
2
ε + ri))i=0,...,N)− F ((v1(y

2
ε + ri))i=0,...,N )

]

(4.7)

+ α0((u1(x
2
ε)− v1(y

2
ε ))− (u2(x

2
ε)− v2(y

2
ε))

Step 4: Passing to the limit ε, α → 0. We set

uε,kj,i = uj(x
k
ε + ri), and vε,kj,i = vj(x

k
ε + ri).

The proof is split into two cases:

Case 1: ∃ ε, α → 0 such that iε = 1. In that case, equation (4.6) implies that

ψ2(x
2
ε, y

2
ε) ≥ ψ2(x

1
ε, y

1
ε) ≥ ψ1(x

1
ε, y

1
ε) +

cα

α0
≥
M

2
+
cα

α0
≥
M

4

for α small enough. Hence, using classical arguments, we deduce that

(4.8)

∣

∣x2ε − y2ε
∣

∣

2

2ε
, αx2ε → 0 as ε, α→ 0.

Moreover, using that ψ1(x
2
ε + ri, y

2
ε + ri) ≤ ψ1(x

1
ε, y

1
ε), we have

uε,21,i ≤ vε,21,i +mε + δεi
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where mε = u1(x
1
ε)− v1(y

1
ε), and δ

ε
i =

|x2
ε−y2

ε |
2

2ε −α(x2ε + ri) (note that αx
1
ε ≤ 0). Since uε,kj,i , v

ε,k
j,i ∈

[0, β0] and
M1

2 ≤ mε ≤ β0, we deduce that as ε, α→ 0


















uε,kj,i → uk1,i
vε,kj,i → vk1,i
mε → m0 = u11,0 − v11,0
δεi → 0

with ukj,i, v
k
j,i ∈ [0, β0], 0 <

M1

2 ≤ m0 ≤ β0 and

u21,i ≤ v21,i +m0.

Passing to the limit in (4.7) implies that

0 ≤ 2 (F ((u21,i)i=0,...,N )− F ((v21,i)i=0,...,N )) + α0((u
2
1,0 − v21,0)− (u22,0 − v22,0)).

We define m̄ = m0 − (u21,0 − v21,0) ≥ 0. Thus, using the monotony (1.5), we get

0 ≤ 2 (F (u21,0 + m̄, (u21,i)i=1,...,N)− F ((v21,i)i=0,...,N)) + α0((u
1
1,0 − v11,0)− (u22,0 − v22,0)).

Passing to the limit in (4.6) and using the fact that u12,0 − v12,0 ≤ u22,0 − v22,0, we get that

α0((u
1
1,0 − v11,0)− (u22,0 − v22,0)) ≤ 0.

Thus, up to redefine u21,0 by u21,0 + m̄ ∈ [0, β0], we get

(4.9) 0 ≤ F (u21,0, (u
2
1,i)i=1,...,N)− F ((v21,i)i=0,...,N).

with ukj,i, v
k
j,i ∈ [0, β0], 0 <

M1

2 ≤ m0 ≤ β0,

u21,i ≤ v21,i +m0 and u21,0 = v21,0 +m0.

Case 2: ∃ ε, α→ 0 such that iε = 2. Using that ψ1(x
2
ε + ri, y

2
ε + ri) ≤ ψ2(x

2
ε, y

2
ε), we get that

uε,21,i ≤ vε,21,i +mε + δεi

where mε = u2(x
2
ε) − v2(y

2
ε ), and δεi = −αri. Since uε,kj,i , v

ε,k
j,i ∈ [0, β0] and

M1

2 ≤ mε ≤ β0, we
deduce that as ε, α→ 0



















uε,kj,i → uk1,i
vε,kj,i → vk1,i
mε → m0 = u22,0 − v22,0
δεi → 0

with ukj,i, v
k
j,i ∈ [0, β0], 0 <

M1

2 ≤ m0 ≤ β0 and

u21,i ≤ v21,i +m0.

Passing to the limit in (4.7) implies that

0 ≤ 2 (F ((u21,i)i=0,...,N )− F ((v21,i)i=0,...,N )) + α0((u
2
1,0 − v21,0)− (u22,0 − v22,0)).

We define m̄ = m0 − (u21,0 − v21,0) ≥ 0. Thus, using the monotony (1.5), we get

0 ≤2 (F (u21,0 + m̄, (u21,i)i=1,...,N )− F ((v21,i)i=0,...,N)) + α0((u
2
1,0 − v21,0)− (u22,0 − v22,0) + m̄)

=2 (F (u21,0 + m̄, (u21,i)i=1,...,N )− F ((v21,i)i=0,...,N))

Thus, up to redefine u21,0 by u21,0 + m̄ ∈ [0, β0], we get

(4.10) 0 ≤ F ((u21,i)i=0,...,N )− F ((v21,i)i=0,...,N).

with ukj,i, v
k
j,i ∈ [0, β0], 0 <

M1

2 ≤ m0 ≤ β0,

u21,i ≤ v21,i +m0 and u21,0 = v21,0 +m0.

23



Step 5: Getting a contradiction. We claim that for all i, there exists li, l
′
i ≥ 0 such that

(4.11) u21,i + li = v21,i − l′i +m0,

and
{

u21,i := u21,i + li ≤ β0

v21,i := v21,i − l′i ≥ 0.

Recall that for all i ∈ {0, ..., N}, we have











u21,i, v
2
1,i ∈ [0, β0]

u21,i ≤ v21,i +m0

u21,0 − v21,0 = m0 ≤ β0.

If for some i, u21,i = v21,i+m0, then it suffices to take li = l′i = 0. Assume then that u21,i < v21,i+m0.

Case 1: u21,i, v
2
1,i ∈ (v21,0, u

2
1,0). Set li = u21,0 − u21,i and l

′
i = v21,i − v21,0. Then

{

u21,i = u21,i + li = u21,0 ≤ β0

v21,i = v21,i − l′i = v21,0 ≥ 0,

and u21,i = v21,i +m0.

Case 2: u21,i > u21,0 and v21,i > v21,0. Since u21,i − v21,0 > m0, then there exists l′i < v21,i − v21,0
such that

u21,i = v21,i − l′i +m0

and v21,i = v21,i − l′i > v21,0 ≥ 0. Thus, it is sufficient to take li = 0.

Case 3: u21,i < u21,0 and v21,i < v21,0. This case can be treated as Case 2 by taking l′i = 0 and

li < u21,0 − u21,i.

Finally, going back to (4.9) or (4.10), since F is non-decreasing, we deduce that

0 ≤ F ((u21,i)i=0,...,N )− F ((v21,i)i=0,...,N)

≤ F ((u21,i)i=0,...,N )− F ((v21,i)i=0,...,N)

= F ((u21,i)i=0,...,N )− F ((u21,i −m0)i=0,...,N)

< 0.

Last inequality takes place since F verifies (4.1) for u21,i, u
2
1,i−m0 ∈ [0, β0] and m0 > 0. Therefore,

we get a contradiction.

4.2 Uniqueness of the velocity

In this subsection, we use Theorem 4.1 and Corollary 4.2 in order to prove the uniqueness of the
velocity c.

Proposition 4.4 (Uniqueness of the velocity). Under assumptions (A), we consider the function
F defined on [0, 1]N+1. Let (c1, (φ11, φ12)) and (c2, (φ21, φ22)) be two solutions of (1.7), with
φ11, φ12, φ21, φ22 : R → [0, 1]. If F satisfies in addition (C), then c1 = c2.
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Proof. Assume that (c1, (φ11, φ12)) and (c2, (φ21, φ22)) are solutions of (1.7) and assume by con-
tradiction that c1 < c2. We have

{

φ11(−∞) = 0, φ11(+∞) = 1

φ12(−∞) = 0, φ12(+∞) = 1.
and

{

φ21(−∞) = 0, φ21(+∞) = 1

φ22(−∞) = 0, φ22(+∞) = 1.

We set δ = min(β0,
1
4 ) where β0 is given in assumption (C) and up to translate (φ11, φ12) and

(φ21, φ22), we assume that
{

φ11(x) ≥ 1− δ ∀ x ≥ −2r∗

φ12(x) ≥ 1− δ ∀ x ≥ −2r∗

and
{

φ21(x) ≤ δ ∀ x ≤ 2r∗

φ22(x) ≤ δ ∀ x ≤ 2r∗.

This implies that
{

φ21(x) ≤ φ11(x) over [−r∗, r∗]

φ22(x) ≤ φ12(x) over [−r∗, r∗].

Moreover, since c1 < c2, we have

{

c1 (φ21)
′(x) ≤ c2 (φ21)

′(x) = α0(φ22(x)− φ21(x))

c1 (φ22)
′(x) ≤ c2 (φ22)

′(x) = 2F ((φ21(x− ri)i=0,...,N) + α0(φ21(x)− φ22(x)).

Thus (c1, (φ21, φ22)) is a sub-solution of (1.7). Using Corollary 4.2, we deduce that

{

φ21 ≤ φ11 over [−r∗,+∞)

φ22 ≤ φ12 over [−r∗,+∞).

Similarly, using Theorem 4.1, we get that

{

φ21 ≤ φ11 over (−∞, r∗]

φ22 ≤ φ12 over (−∞, r∗].

Therefore
{

φ21 ≤ φ11 over R

φ22 ≤ φ12 over R.

We set


















u1(t, x) = φ11(x+ c1t)

u2(t, x) = φ12(x+ c1t)

u3(t, x) = φ21(x+ c2t)

u4(t, x) = φ22(x+ c2t).

Then for i = 1, j = 2 and i = 3, j = 4, we have

(4.12)

{

∂tui(t, x) = α0(uj(t, x)− ui(t, x))
∂tuj(t, x) = 2F ((ui(t, x+ ri))i=0,...,N ) + α0(ui(t, x)− uj(t, x)).

Moreover, at time t = 0,

(4.13)

{

u1(0, x) = φ11(x) ≥ φ21(x) = u3(0, x) over R
u2(0, x) = φ12(x) ≥ φ22(x) = u4(0, x) over R.
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Then, applying the comparison principle for equation (4.12), we get

{

u1 ≥ u3 ∀ t ≥ 0 ∀x ∈ R

u2 ≥ u4 ∀ t ≥ 0 ∀x ∈ R.

Taking x = y − c1 t, yields

{

φ11(y) ≥ φ21(y + (c2 − c1)t) ∀t ≥ 0, ∀y ∈ R

φ12(y) ≥ φ22(y + (c2 − c1)t) ∀t ≥ 0, ∀y ∈ R.

Using that c1 < c2 and passing to the limit t→ +∞, we get

{

φ11(y) ≥ φ21(+∞) = 1 ∀y ∈ R

φ12(y) ≥ φ22(+∞) = 1 ∀y ∈ R.

But φ11(−∞) = 0 and φ12(−∞) = 0, hence a contradiction. Therefore c1 ≥ c2. Similarly, we
prove that c2 ≥ c1. Thus c1 = c2.

5 Uniqueness of the profile

This section is devoted to the proof of the uniqueness of the profiles (under assumption (D±))
using tow different types of strong maximum principle.

5.1 Different types of strong maximum principle

Lemma 5.1 (Half Strong Maximum Principle). Let F : [0, 1]N+1 → R satisfying assumption (A)
and let (φ11, φ12) and (φ21, φ22) be respectively a viscosity sub and super-solution of (1.7), with
φ11, φ12, φ21, φ22 : R → [0, 1]. We assume that



















φ21 ≥ φ11 on R

φ22 ≥ φ12 on R

φ21(0) = φ11(0)

φ22(0) = φ12(0).

If c > 0 (resp. c < 0), then

{

φ11 = φ21 for all x ≤ 0 (resp. x ≥ 0)

φ12 = φ22 for all x ≤ 0 (resp. x ≥ 0).

Proof. We do the proof in the case where c > 0. By contradiction, assume that there exists x0 < 0
such that

φ21(x0) > φ11(x0) or φ22(x0) > φ12(x0).

Let w1(x) = φ21(x)− φ11(x) and w2(x) = φ22(x)− φ12(x). A simple computation gives that
(5.1)
{

cw′
1(x) ≥ α0 (w2(x) − w1(x))

cw′
2(x) ≥ 2(F ((φ21(x+ ri))i=0,...,N )− F ((φ11(x+ ri))i=0,...,N ) + α0 (w1(x)− w2(x)) .

Using that F is non-decreasing w.r.t. Xi for all i 6= 0, we get







cw′
1(x) ≥ α0 (w2(x)− w1(x)) ,

c w′
2(x) ≥ 2 (F (φ11(x) + w1(x), (φ11(x+ ri))i=1,...,N)− F (φ11(x), (φ1(x+ ri))i=1,...,N ))

+α0 (w1(x) − w2(x))
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Let w(x) = w1(x) + w2(x). Then

cw′(x) ≥ 2 (F (φ11(x) + w1(x), (φ11(x+ ri))i=1,...,N )− F (φ11(x), (φ11(x+ ri))i=1,...,N ))

Since F is globally Lipschitz continuous (we denote by L its Lipschitz constant), we have

(5.2) w′(x) ≥ −
2L

c
w1(x) ≥ −

2L

c
w(x).

We note that y(x) := w(x0) exp

(

−
2L (x− x0)

c

)

satisfied (5.2) for all x0 ∈ R. Using the

comparison principle, we deduce that

(5.3) w(x) ≥ w(x0) exp

(

−
2L (x− x0)

c

)

for all x ≥ x0.

Since w1(x0) > 0 or w2(x0) > 0, we have

w(x0) > 0.

This implies that
w(x) > 0 for all x ≥ x0.

In particular, for x = 0, we get

w1(0) > 0 or w2(0) > 0,

i.e.
φ21(0) > φ11(0) or φ22(0) > φ12(0),

which is a contradiction.

We now use Lemma 5.1 in order to get a Strong Maximum Principle under assumption (D±)
ii).

Lemma 5.2 (Strong Maximum Principle under (D±) ii)). Let F : [0, 1]N+1 → R satisfying (A).
Let (φ11, φ12) and (φ21, φ22), with φ11, φ12, φ21, φ22 : R → [0, 1], be respectively a viscosity sub and
super-solution of (1.7) such that



















φ21 ≥ φ11 on R

φ22 ≥ φ12 on R

φ21(0) = φ11(0)

φ22(0) = φ12(0).

a) If F is increasing w.r.t. Xi0 for a certain i0 6= 0 then

{

φ21(k ri0 ) = φ11(k ri0 ) for all k ∈ N

φ22(k ri0 ) = φ12(k ri0 ) for all k ∈ N.

b) If we suppose moreover that F satisfies (D+) ii) if c > 0 or (D−) ii) if c < 0 then

{

φ21(x) = φ11(x) for all x ∈ R

φ22(x) = φ12(x) for all x ∈ R.
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Proof. a) We assume for simplicity of notation that i0 = 1. As in the proof of Lemma 5.1, we
define w1(x) = φ21(x) − φ11(x) and w2(x) = φ22(x)− φ12(x) which satisfy

(5.4)

{

cw′
1(x) ≥ α0(w2(x) − w1(x))

cw′
2(x) ≥ 2(F ((φ21(x+ ri))i=0,...,N )− F ((φ11(x+ ri))i=0,...,N )) + α0(w1(x)− w2(x)).

Using that w1(0) = 0, w2(0) = 0 and w1, w2 ≥ 0 on R (hence 0 is a point of minimum of w1 and
w2), we deduce that

{

0 ≥ α0(w2(0)− w1(0))

0 ≥ 2(F ((φ21(ri))i=0,...,N )− F ((φ11(ri))i=0,...,N )) + α0(w1(0)− w2(0)).

Thus
0 ≥ 2 (F ((φ21(ri))i=0,...,N )− F ((φ11(ri))i=0,...,N )) .

Using the fact that φ21(0) = φ11(0) and that F is monotone w.r.t. Xi for all i 6= 0, we get

F ((φ21(ri))i=0,...,N) = F ((φ11(ri))i=0,...,N ).

Since F is increasing w.r.t. X1, we deduce that

φ21(r1) = φ11(r1),

i.e. w1(r1) = 0. Hence r1 is a point of minimum of w1. The first equation of (5.4) then implies

0 ≥ w2(r1)− w1(r1) = w2(r1).

Since w2 ≥ 0, we deduce that w2(r1) = 0, i.e.

φ22(r1) = φ12(r1).

Repeating the above argument replacing 0 by r1, we get that

φ21(k r1) = φ11(k r1) and φ22(k r1) = φ12(k r1) for all k ∈ N.

b) We assume that c > 0 and that F satisfies (D+) ii) (the other case where c < 0 being similar).
By contradiction, we suppose that there exists x ∈ R, such that

φ21(x) > φ11(x) or φ22(x) > φ12(x).

Let k ∈ N big enough such that k ri+ > x. Using Lemma 5.1, and the fact that

{

φ11(k ri+) = φ21(k ri+)

φ12(k ri+) = φ22(k ri+).

We get that
{

φ21(x) = φ11(x)

φ22(x) = φ12(x).

which is a contradiction.

Lemma 5.3 (Comparison Principle under (D±) i)). We assume that c > 0 (resp. c < 0) and
let F satisfying (A) and (D+) i) (resp. (D−) i)). Let (φ11, φ12) and (φ21, φ22) be two solutions of
(1.7), with φ11, φ12, φ21, φ22 : R → [0, 1]. We assume that φ11, φ21 ∈ C2 and φ12, φ22 ∈ C1 and
that

φ11(0) = φ21(0) and φ12(0) = φ22(0).
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Suppose moreover that

{

φ21(x) ≥ φ11(x) on [−r∗, 0] (resp. on [0, r∗])

φ22(x) ≥ φ12(x) on [−r∗, 0] (resp. on [0, r∗])

then
{

φ21(x) ≥ φ11(x) for all x ≥ −r∗ (resp. x ≤ r∗)

φ22(x) ≥ φ12(x) for all x ≥ −r∗ (resp. x ≤ r∗).

Proof. We assume that c > 0 (the case c < 0 being similar). We define the functions w1(x) =
φ11(x)− φ21(x) and w2(x) = φ12(x) − φ22(x) which satisfy

(5.5)

{

cw′
1(x) = α0(w2(x) − w1(x))

cw′
2(x) = 2(F ((φ11(x+ ri))i=0,...,N )− F ((φ21(x+ ri))i=0,...,N )) + α0(w1(x) − w2(x)).

By the first equation, we then deduce that

w′
2 = w′

1 +
c

α0
w′′

1 .

The second equation then implies that

c2

α0
w′′

1 + 2cw′
1 = 2(F ((φ11(x+ ri))i=0,...,N )− F ((φ21(x+ ri))i=0,...,N )).

Since φ11 ≤ φ21 on [−r∗, 0] and ri ≤ 0 for all i 6= 0, then for all x ∈ [0,min
i6=0

(−ri)], we have

φ11(x+ ri) ≤ φ21(x+ ri) for i 6= 0. This implies that

c2

α0
w′′

1 + 2cw′
1 ≤2(F (φ21(x) + w1(x), (φ21(x+ ri))i=1,...,N )− F (φ21(x), (φ21(x+ ri))i=1,...,N ))

≤2L |w1(x)|

where L is the Lipschitz constant of F . Moreover, w1(0) = 0, w′
1(0) =

α0

c
(w2(0)−w1(0)) = 0 and

y = 0 is a solution of c2

α0
y′′ + 2cy′ = 2Ly, then using the comparison principle, we deduce that

w1 ≤ 0 for all x ∈ [0,min
i6=0

(−ri)]

i.e.
φ11 ≤ φ21 for all x ∈ [0,min

i6=0
(−ri)].

Using the second equation of (5.5) and the fact that φ11(x + ri) ≤ φ21(x + ri) for i 6= 0 for all
x ∈ [0,min

i6=0
(−ri)], we deduce that

cw′
2(x) ≤2(F (φ21(x) + w1(x), (φ21(x + ri))i=1,...,N)− F (φ21(x), (φ21(x+ ri))i=1,...,N ))

+ α0(w1(x) − w2(x))

=G(w1(x))−G(0)− α0w2(x)

where G(t) = 2F (φ21(x)+ t, (φ21(x+ri))i=1,...,N)+α0t. Using that G is non-decreasing (see (1.5))
and w1(x) ≤ 0, we deduce that

cw′
2(x) ≤ −α0w2(x).

Using again that w2(0) = 0 and y = 0 is a solution of w′(x) = −α0

c
w2(x), we deduce by the

comparison principle that
w2 ≤ 0 for all x ∈ [0,min

i6=0
(−ri)].
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We repeat the above argument several times, each on the new extended interval. We deduce that

{

φ11 ≤ φ21 for all x ≥ − r∗

φ12 ≤ φ22 for all x ≥ − r∗.

We use Lemma 5.1 and Lemma 5.3 in order to prove the Strong Maximum principle under
(D±) i).

Lemma 5.4 (Strong Maximum Principle under (D±) i)). We assume that c > 0 (resp. c < 0)
and F satisfies (A) and (D+) i) (resp. (D−) i)). Let (φ11, φ12) and (φ21, φ22) be respectively a
viscosity sub and a super-solution of (1.7), with φ11, φ12, φ21, φ22 : R → [0, 1]. We assume that
φ11, φ21 ∈ C2 and φ12, φ22 ∈ C1 and that



















φ21 ≥ φ11 on R

φ22 ≥ φ12 on R

φ21(0) = φ11(0)

φ22(0) = φ12(0).

Then
{

φ11(x) = φ21(x) for all x in R

φ12(x) = φ22(x) for all x in R.

Proof. Let c > 0 . Using Lemma 5.1, we deduce that

{

φ11 = φ21 for all x ≤ 0

φ21 = φ22 for all x ≤ 0.

By Lemma 5.3, we then deduce that

{

φ11 ≥ φ21 for all x ≥ −r∗

φ12 ≥ φ22 for all x ≥ −r∗.

which gives the result.

Lemma 5.5 (Ordering two solutions of (2.3) up to translation). We assume that c 6= 0 and let
F : [0, 1]N+1 → R satisfiyng (A) and (C). Let (φ11, φ12) and (φ21, φ22) be respectively a viscosity
sub and super-solution of (1.7), with φ11, φ12, φ21, φ22 : R → [0, 1]. There exists a shift a∗ ∈ R and
some x0 ∈ [−r∗, r∗] such that



















φa
∗

21 ≥ φ11 on R

φa
∗

22 ≥ φ21 on R

φa
∗

21(x0) = φ11(x0)

φa
∗

22(x0) = φ12(x0),

where
{

φa
∗

21(x) = φ21(x+ a∗)

φa
∗

22(x) = φ22(x+ a∗).

Proof. The idea of the proof is to translate (φ21, φ22) and then to compare it with (φ11, φ12).
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Step 1: Family of solutions above (φ11, φ12). For a ∈ R, we define

{

φa21(x) = φ21(x + a)

φa22(x) = φ22(x + a).

For some a > 0 large enough, we have

{

φā21 ≥ φ11 on [−2r∗, 2r∗] for all ā > a

φā22 ≥ φ12 on [−2r∗, 2r∗] for all ā > a.

Using the comparison principle (Theorem 4.1 and Corollary 4.2 ), we deduce that for all ā ≥ a,
we have

{

φā21 ≥ φ11 on R

φā22 ≥ φ12 on R.

Step 2: There exists a∗ such that φa
∗

21 and φ11 touch at x0 ∈ [−r∗, r∗] , φa
∗

22 and φ12 touch
at x0 ∈ [−r∗, r∗]. Let

{

a∗1 = inf{a ∈ R, φā21 ≥ φ11 on R for all ā ≥ a}

a∗2 = inf{a ∈ R, φā22 ≥ φ12 on R for all ā ≥ a}.

We set a∗ = max(a∗1, a
∗
2). We define k1(x) = φa

∗

21(x) − φ11(x) and k2(x) = φa
∗

22 (x) − φ12(x) which
satisfy

(5.6)

{

c k′1(x) ≥ α0(k2(x)− k1(x))

c k′2(x) ≥ 2(F ((φa
∗

21 (x+ ri))i=0,...,N )− F ((φ11(x+ ri))i=0,...,N )) + α0(k1(x)− k2(x)).

We now prove that a∗2 = a∗1. By contradiction, assume that a∗2 6= a∗1 If a∗2 > a∗1, we have











φa
∗

21(x) > φ11(x)

φa
∗

22(x) ≥ φ12(x)

φa
∗

22(x0) = φ12(x0).

Since F is non-decreasing in Xi for i 6= 0, we have

F ((φa
∗

21(x + ri))i=0,...,N) ≥F (φa
∗

21 (x), (φ11(x+ ri))i=1,...,N )

≥F (φ11(x) + k1(x), (φ11(x+ ri))i=1,...,N)

Thus (since x0 is a point of minimum of k2 and k2(x0) = 0)

(5.7) 0 ≥ 2(F (φ11(x0) + k1(x0), (φ11(x0 + ri))i=1,...,N)− F ((φ11(x0 + ri))i=0,...,N )) + α0k1(x0)

We define G : R → R by

(5.8) G(y) = 2F (φ11(x0) + y, (φ11(x0 + ri))i=1...N ) + α0 y.

Then
0 ≥ (G(k1(x0)−G(0)).

But k1(x0) > 0 and, by assumption (1.5), G′(y) > 0, so we get a contradiction.

If a∗1 > a∗2, then










φa
∗

22(x) > φ12(x)

φa
∗

21(x) ≥ φ11(x)

φa
∗

21(x0) = φ11(x0).
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Since k1(x0) = 0 and k1(x) ≥ 0, we deduce that x0 is a point of minimum of k1 and so by the first
equation of (5.6), we get

0 ≥ α0 k2(x0) > 0

wich is a contradiction.

Thus a∗1 = a∗2 = a∗ and so


















φa
∗

21(x) ≥ φ11(x)

φa
∗

22(x) ≥ φ12(x)

φa
∗

21(x0) = φ11(x0)

φa
∗

22(x0) = φ12(x0).

Lemma 5.6 (Monotonicity of the profiles). Assume that c > 0 (resp. c < 0) and let F :
[0, 1]N+1 → R satisfying (A), (C) and (D+) i) or ii). Let φ1, φ2 : R → [0, 1] be a solution
of (1.7). Then φ1 and φ2 are increasing on R.

Proof. Assume that c > 0 (the proof when c < 0 being similar) and let (φ1, φ2) be a solution of
(1.7).

Step 1: (φ1, φ2) are non-decreasing. The goal is to show that φ1(x+ a) ≥ φ1(x) and φ2(x+
a) ≥ φ2(x) for all a ≥ 0. As in the proof of Lemma 5.5, we deduce that for a ≥ 0 large enough
and for all a ≥ a, we have

φa1(x) := φ1(x+ a) ≥ φ1(x) and φa2(x) := φ2(x+ a) ≥ φ2(x) on [−2r∗, 2r∗].

Thus using the comparison principle (Theorem 4.1 and Corollary 4.2), we deduce that for all
a ≥ a, we have

φa1(x) ≥ φ1(x) and φa1(x) ≥ φ1(x) on R.

Let
{

a∗1 = inf{a ∈ R, φā21 ≥ φ11 on R for all ā ≥ a}

a∗2 = inf{a ∈ R, φā22 ≥ φ12 on R for all ā ≥ a}.

As in the proof of Lemma 5.5, we can prove that a∗1 = a∗2 = a∗. We want to prove that a∗ = 0. By
definition of a∗, there exists some x0 such that

(5.9)























φa
∗

1 ≥ φ1 on R

φa
∗

2 ≥ φ2 on R

φa
∗

1 (x0) = φ1(x0)

φa
∗

2 (x0) = φ2(x0).

Then, using the Strong Maximum Principle Lemma 5.2 or Lemma 5.4 (note that, since c 6= 0,
φ1, φ2 ∈ C1 and so the first equation of (1.7) gives that φ1 ∈ C2, then we can apply Lemma 5.4),
we get that φa

∗

1 = φ1, i.e., φ1 is periodic of period a∗. But φ1(−∞) = 0 and φ1(+∞) = 1, thus
a∗ = 0.

Step 2: (φ1, φ2) are increasing. Let a > 0, we want to show that φ1(x + a) > φ1(x) and
φ2(x+ a) > φ2(x). From Step 1, we have φ1(x+ a) ≥ φ1(x) and φ2(x+ a) ≥ φ2(x). Assume that
there exists x0 such that

φ1(x0 + a) = φ1(x0) or φ2(x0 + a) = φ2(x0).

As in the proof of Lemma 5.5, we can prove that

φ1(x0 + a) = φ1(x0) and φ2(x0 + a) = φ2(x0).
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Using the Strong Maximum Principle (Lemma 5.2 or Lemma 5.4), we get that a = 0, which is a
contradiction. Thus

φ1(x+ a) > φ1(x) and φ2(x+ a) > φ2(x) on R for any a > 0.

Proof of Theorem 1.3. The proof of the uniqueness of the velocity is a direct consequence of Propo-
sition 4.4. For the uniqueness of the profiles, it suffices to use Lemma 5.5 and the Strong Maximum
Principle (Lemma 5.2 or Lemma 5.4). Note that, since c 6= 0, φ1, φ2 ∈ C1 and so the first equation
of (1.7) gives that φ1 ∈ C2, then we can apply Lemma 5.4. Finally the strict monotonicity of φ1
and φ2 follows from Lemma 5.6.
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