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Abstract. The impact approximation used in the modelling of Stark profiles

is examined when a magnetic field is present. Motivated by tokamak plasma

spectroscopy, we calculate line shapes and S-matrix elements for the first Lyman lines

of hydrogen with two models proposed for retaining simultaneously Stark and Zeeman

effects in the impact limit. An evaluation of the accuracy of the two approaches is

made with the help of a numerical simulation.

1. Introduction

Detailed line shapes are of interest for accurate plasma diagnostics in magnetic fusion [1].

A renewal of interest in the modelling of Stark broadening has been provided recently in

the context of radiation transport simulations for tokamak divertor physics. In divertors

operating at high density regimes (up to 1015 cm−3 and higher: Alcator C-Mod [2] and

soon ITER [3]), the plasma close to the wall contains a sufficiently large amount of

neutrals so as to be optically thick to the first Lyman lines of the hydrogen isotopes.

Coupled plasma-radiation-neutrals simulations have indicated the possibility for a shift

of the ionization-recombination balance induced by the photoabsorption, in particular

due to the Ly-α transition [4]. The need for reliability in these simulations has led to

the development of accurate models for the spectral profiles which are involved in the

photon emission and absorption rates appearing in the equation of radiative transfer.

Efforts have been carried out in order to properly describe the ion dynamics on the

Stark shape in the atoms’ frame of reference [5]. The latter reference discusses in details

the formation of Ly-α and includes the combined action of the Zeeman effect and the

fine structure, which can be of the same order of magnitude (e.g. [6, 7] for early works).

This paper deals with Stark broadening at plasma conditions such that the impact

approximation can be used for ions. In a recent work [8], a collision operator model

accounting for the Zeeman degeneracy removal of the energy levels has been developed in

the framework of the standard impact theory (Griem-Baranger-Kolb-Oertel or GBKO-

model [9]), hereafter referred to as ST. An application to the Lorentz triplet of Ly-α

(strong field regime) has indicated the possibility for having the lateral components
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much narrower than the central component. In a work published last year ([10], note

added in proof), it has been mentioned that the use of the ST leads to an overestimate

of the “primary, adiabatic” and “secondary, nonadiabatic” contributions. Details have

been published at the same time in [11]. We review in this paper the main features of

the ST and of the alternative impact theory referred to as “generalized theory” (GT)

in Refs. [10, 11]. The GT uses a different interaction representation than the ST and

avoids the use of a cut-off for small impact parameters. In this work, we perform a

detailed comparison between the two approaches, and discuss their respective accuracy

in the treatment of strong collisions. We propose a way for a fair comparison between

these approaches, and calculate the two resulting line shapes. Other comparisons are

made for the S-matrix and line broadening cross section, for which the two models are

also confronted to a numerical simulation enabling an evaluation of their accuracy. Since

the GT is designed for parabolic states, our calculations neglect fine structure. Section

2 gives an introduction to the impact formalism, Sec. 3 and Sec. 4 present the ST and

the GT, respectively, and Secs. 5, 6 report on comparisons with simulations. Details

and clarifications for a meaningful comparison of the two approaches are given in the

Appendix.

2. Ion impact broadening: setting up the formalism

The spectral profile of an atomic line, I(ω), is given by the Fourier transform of the

atomic dipole autocorrelation function C(t):

I(ω) =
1

π
Re

∫ +∞

0
dtC(t)eiωt, (1)

C(t) =
{

Tr(ρud⃗⊥ · U †
l (t)d⃗⊥Uu(t))

}

. (2)

Here, d⃗⊥ is the dipole operator projected into the polarization plane; U(t) is the evolution

operator; ρ is the density operator; the brackets {...} stand for a statistical average over

the perturbers’ states and the trace Tr(...) is performed over the atomic states. The

subscripts u and l refer to the restriction of operators in the subspace corresponding

to the upper and lower energy levels of the transition, respectively. For the sake of

simplicity when examining the ST and the GT we will neglect the broadening of the

lower levels (strictly speaking this is applicable to Lyman lines in the absence of fine

structure and neglecting quenching interactions), so that Ul(t) can be replaced by 1l, the

identity matrix in the lower levels’ subspace. A more general treatment, accounting for

the lower levels, would consist in replacing all operators by super-operators acting in the

Liouville “line” space [12]. Since all of the development done hereafter will exclusively

concern the upper levels’ subspace, we will not write the subscript u anymore. For

notational simplicity we will use SI-atomic units (me = e = h̄ = a0 = 1, ε0µ0c
2 = 1,

[13]).

Within the impact approximation for ions, the evolution operator is given by

U(t) = exp[(−iH0−Φ)t] where H0 is the atomic Hamiltonian accounting for the Zeeman



Accuracy of impact broadening models in low-density magnetized hydrogen plasmas 3

effect, i.e. H0 = Hat − µ⃗ · B⃗ with µ⃗, B⃗ being respectively the magnetic moment and the

magnetic field; and Φ is the ion collision operator {the electron contribution is neglected

since weaker by a factor (2me/mi)
1/2 at equal temperatures, me, mi being the electron

and ion masses, respectively [8]}. Its matrix elements denote typical collision frequencies

and provide the width and the shift of the line under consideration, of Lorentzian shape.

This operator is defined by

Φ = N
∫ +∞

0
dvf(v)v

∫ λD

0
db2πb

{

1− S (⃗b, v⃗)
}

angle
, (3)

where the integrals are done over the velocity (module) v and the impact parameter

(module) b, N and f stand for the perturbers’ density and velocity distribution function,

the brackets denote an angular average and S is the scattering matrix corresponding

to a binary collision. The emitter motion is accounted for through a reduced mass

model. The upper bound λD is the Debye length, which accounts phenomenologically

for the screening of the Coulomb field due to the electrons. In the following we consider

the cross section operator σ(v) =
∫ λD

0 db2πb
{

1− S (⃗b, v⃗)
}

angle
and its matrix elements

⟨α|σ(v)|α′⟩ ≡ σαα′ .

3. Standard impact theory

In the standard theory (ST) [9], the S-matrix is calculated in the interaction picture

defined by the unitary transformation |ψ(t)⟩ → |ψ̃(t)⟩ = exp(iH0t)|ψ(t)⟩. This leads to
a time-ordered exponential

S = T exp
[

−i
∫ +∞

−∞
dtV (t)

]

= 1− i
∫ +∞

−∞
dtV (t)−

∫ +∞

−∞
dtV (t)

∫ t

−∞
dt′V (t′) + ... (4)

where V (t) = −˜⃗
d(t) · E⃗(t) is the Stark term in the interaction picture corresponding to

a binary interaction with an ion [i.e. E⃗(t) = −(⃗b+ v⃗t)/(b2 + v2t2)3/2]. Following [9], we

separate the b-integral in Eq. (3) into two parts, which correspond to two regimes. (i)

Weak collisions: The time-integrated perturbation is sufficiently small so that a second

order approximation can be used. A condition on (⃗b, v⃗), which ensures the validity of

this approximation, may be formulated as |{S(2)
αα}angle| ≤ 1, where S(2) stands for the

second order term of the S-matrix (with the convention S = S(0) +S(1) +S(2) + ...) and

α refers to the state |α⟩. (ii) Strong collisions: When the second order approximation

cannot be applied, the S-matrix becomes a strongly oscillating function of b, so that its

integral over b can be neglected compared to the integral of the identity matrix (such

a treatment is appropriate in particular when the contribution due to weak collisions is

dominant, e.g. [14] for a detailed discussion). For each state |α⟩, the two regimes (i) and

(ii) correspond to impact parameters large and small compared to the strong collision

radius bstα , respectively. The latter is defined by the following transcendental equation
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[8]

bstα = bWα







[

K//
α +K⊥

αAST

(

bstα
bm

)]2

+

[

K ′⊥
α BST

(

bstα
bm

)]2






1/4

, (5)

where bWα = (2/3)1/2n2
α/v is the Weisskopf radius (nα is the principal quantum number);

bm = 2v/B is the magnetic cut-off; K//
α , K⊥

α , K
′⊥
α are atomic constants defined by

K//
α =

1

n4
α

∑

α′

|zα′α|2, (6)

K⊥
α =

1

n4
α

∑

α′

[

|x+α′α|2 + |x−α′α|2
]

, (7)

K ′⊥
α =

1

n4
α

∑

α′

[

|x+α′α|2 − |x−α′α|2
]

, (8)

with the convention x± = (x± iy)/
√
2; and AST(s) = s2[K2

0(s) +K2
1(s)] and BST(s) =

s2[K0(s)I0(s)−K1(s)I1(s)] with I0,1 and K0,1 being the modified Bessel functions.

In the following bstα ≤ λD will be assumed. We can write the diagonal matrix

elements of the cross section operator as follows:

σαα =
∫ bstα

0
db2πb+

∫ λD

bstα

db2πb
{

1− S(0)
αα (⃗b, v⃗)− S(1)

αα (⃗b, v⃗)− S(2)
αα (⃗b, v⃗)

}

angle

= π
(

bstα
)2 −

∫ λD

bstα

db2πb
{

S(2)
αα (⃗b, v⃗)

}

angle
. (9)

Here we have used S(0) = 1 and {S(1)}angle = 0 (isotropic medium). The angle average

and the integral over b present in the second term of the right-hand side can be performed

analytically. An explicit calculation leads to [8]

σαα = π
(

bstα
)2
+2πb2Wα

{

K//
α ln

(

λD
bstα

)

+
[

K⊥
α aST(s)− iK ′⊥

α bST(s)
]s=bstα /bm

s=λD/bm

}

,(10)

where aST(s) = sK0(s)K1(s) and bST(s) = π/2− πsK0(s)I1(s) are the GBKO functions

(s > 0). In accordance with the model, there is a separation between the strong

collisions (first term of the right-hand side) and the weak collisions (second term).

The strong collisions are described by a Lorentz-Weisskopf term of characteristic radius

bstα . The latter is calculated from Eq. (5). It accounts for the Zeeman degeneracy

removal and reduces to bWα (up to a factor dependent on the quantum numbers) when

B → 0. The weak collision term is split into two parts, which correspond to the

electric field component parallel (//) and perpendicular (⊥) to B⃗. The magnetic field

leads to a reduction of the perpendicular contribution. In the particular case where

bstα ≪ bm ≪ λD, aST(s)|s=bstα /bm
s=λD/bm

behaves as ln(bm/b
st), indicating that the effective range

of the perpendicular electric field is reduced from λD to bm (see [8] for an interpretation

with classical mechanics). In practice, such a reduction leads to a narrowing of the

Zeeman components. As a particular example consider the lateral components of the

Zeeman-Lorentz triplet of hydrogen Ly-α, which are broadened due to the perpendicular

contribution only. Figure 1 shows the blue component calculated assuming degenerate
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Figure 1. Blue lateral component of the Zeeman-Lorentz triplet of the Lyman-α line,

obtained using the standard impact theory neglecting (dashed line) and retaining the

degeneracy removal (solid line). A strong reduction of the line width, by more than a

factor of two, is present. A shift is also visible.

levels [i.e. formally setting bm → ∞ in Eqs. (5), (10)] and assuming finite bm, at

Ne = 1013 cm−3, Te = Ti = 3 eV, and B = 4 T. As can be seen, the model predicts a

component much narrower (by more than a factor of two) than expected when neglecting

the Zeeman degeneracy removal. The component is also shifted to larger frequencies

[this stems from the presence of an imaginary part in Eq. (10)].

4. Generalized theory

The GT is based on an interaction picture different from that introduced above. We

follow the synthesis presented in [15] (details on the derivation of formulas can be found

in [16]). All matrix elements refer to the parabolic base. The unitary transformation is

done by including the contribution of the electric field parallel to B⃗ in the unperturbed

Hamiltonian, namely |ψ(t)⟩ → |ψ̃(t)⟩ = exp[iH0t − i
∫ t
−∞ dt′d//E//(t

′)]|ψ(t)⟩ ≡
Q†(t)|ψ(t)⟩. This leads to the following expression for the S-matrix

S = SaT exp
[

i
∫ +∞

−∞
dtQ†(t)d⃗⊥ · E⃗⊥(t)Q(t)

]

, (11)

Sa = exp
[

i
∫ +∞

−∞
dtd//E//(t)

]

. (12)
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The quantity Sa denotes the solution that would be obtained in the B = 0-case if time-

ordering was neglected (adiabatic approximation). If B is finite, Sa corresponds to the

solution that would be obtained if the virtual transitions between the Zeeman energy

sublevels (i.e., the inelastic collisions) were neglected. Using Eqs. (11) and (12), S can

be decomposed into Sa + Sna, where the non-adiabatic contribution Sna is given by

Sna = Sa

{

T exp
[

i
∫ +∞

−∞
dtQ†(t)d⃗⊥ · E⃗⊥(t)Q(t)

]

− 1
}

. (13)

Accordingly, the cross section operator also splits into two parts σ = σa + σna. In the

GT, Sa is calculated exactly and a second-order approximation is done concerning Sna.

No distinction is made between the weak and strong collisions, i.e., the integral over

b is carried out from 0 to λD even though the second-order expansion is not valid for

small values of b. In [15, 16], this procedure is justified by the fact that the integral

over b converges without the need for a cut-off. Physically, this convergence is due to

the dressing of the energy levels by E//(t). Collisions with small impact parameters

lead to a strong degeneracy removal of the energy levels, so that the effect of E⃗⊥ is

reduced in such a way that the cross section remains finite. However, this does not

guarantee that the second-order approximation provides a reliable estimate of Sna, since

the contribution of higher order terms is in principle not negligible. We will see in the

next section that ignoring these higher order terms leads to overestimate the strong

collision contribution and, eventually, the line width.

The adiabatic cross section operator is given by

σa =
∫ λD

0
db2πb{1− Sa}angle. (14)

It is diagonal in the parabolic base. The corresponding cross section reads

σa = 2π
(

2zαα
v

)2

I

(

vλD
2zαα

)

, (15)

I(s) =
1

6

[

3s2 − 2s3 sin
(

1

s

)

− s2 cos
(

1

s

)

+ s sin
(

1

s

)

− Ci
(

1

s

)]

, (16)

where Ci is the cosine integral function. I(s) has the following asymptotic behavior for

large s:

I(s) ∼ 11

36
− γ

6
+

1

6
ln s, (17)

where γ ≃ 0.577 is Euler’s constant. In this expression the logarithm corresponds to

the weak collisions.

The non-adiabatic cross section operator is given by

σna = −
∫ λD

0
db2πb{Sna}angle, (18)

and the corresponding cross section reads

σna
αα′ =

4π

3v2
∑

α′′

[

x+αα′′x−α′′α′ + x−αα′′x+α′′α′

]

∫ λD/bm

0

ds

s
C±(χ, Y, s), (19)
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where χ = zαα/δz with δz = (zαα − zα′′α′′), and Y = δz/vbm. In the integral, C± is the

so-called broadening function, given by [15]

C±(χ, Y, s) =
3

4

∫ ∞

−∞
dx
∫ x

−∞
dx′ [w(x)w(x′)]

3
eis(x−x′)

×
{

j0(ε) + (2xx′ − 1)
j1(ε)

ε
+
[

(1− xx′)σ2
1 − (x+ x′)σ1σ2

] j2(ε)

ε2

}

,(20)

ε =
√

σ2
1 + σ2

2, (21)

σ1 =
Y

s
[xw(x)± x′w(x′) + 1± 1− 2χ] , (22)

σ2 =
Y

s
[w(x)± w(x′)χ] , (23)

w(x) = (1 + x2)−1/2. (24)

Here j0, j1, j2 denote the first spherical Bessel functions. The upper signs correspond to

the nondiagonal matrix elements (α′ ̸= α) and the lower signs correspond to the diagonal

matrix elements (α′ = α). In the limiting case B → 0, C± reduces to AST + iBST, the

integral Eq. (19) diverges at the lower bound s = 0, and the upper bound tends to 0.

In this case, a cut-off denoting separation between the weak and strong collisions (as

in the ST) is used. At finite B, the virtual transitions between the Zeeman sublevels

mitigate the role of the non-adiabatic contribution. This leads to a narrowing of the

line components. This point is illustrated in Fig. 2. The blue lateral component of

Ly-α obtained within the GT is superimposed to the result obtained at B = 0, at the

same conditions as in the previous section. In this particular case, the line broadening

is given by the non-adiabatic contribution only. As can be seen, the model predicts

a component narrower than expected when neglecting the Zeeman degeneracy removal

and the component is shifted to larger frequencies. The width reduction is weaker than

that predicted with the ST, with only 40% instead of a factor larger than two.

5. Comparison of the two models to a simulation

We have compared the GT and ST to the result of a fully numerical calculation

of the collision operator. In this method, the S-matrix is calculated for a set

of impact parameters b⃗ and velocities v⃗ chosen in such a way that the perturber

follows a straight line in the Debye sphere surrounding the atom, in agreement with

the straight line trajectory assumption done both within the GT and the ST. The

algorithm used for the integration of the Schrödinger equation uses the infinitesimal

evolution operator U(t + ∆t, t), i.e. we evaluate S ≃ U(T/2,−T/2) for large T by

iterating the relation U(t + ∆t,−T/2) = U(t + ∆t, t)U(t,−T/2). The infinitesimal

evolution operator is approximated as U(t + ∆t, t) ≃ exp[−i∆tV (t)], taking ∆t ≪√
b2 + v2t2/v, 1/ωS, 1/ωZ (with ωS, ωZ being the typical Stark and Zeeman frequencies

estimated from matrix elements of −d⃗ · E⃗(t) and −µ⃗ · B⃗, respectively). The matrix
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Figure 2. The non-adiabatic contribution is mitigated by the Zeeman degeneracy

removal, which leads to line narrowing. Here, plot of the blue lateral component of

Lyman-α obtained using the generalized theory neglecting (dashed line) and retaining

the degeneracy removal (solid line). As in the previous section, a shift is also visible.

exponential is evaluated using the scaling-squaring method, i.e. we use the identity

exp[−i∆tV (t)] ≡ {exp[−i∆tV (t)/m]}m with m integer and we choose m sufficiently

large so that the matrix elements of ∆tV (t)/m are small in absolute value (details on the

scaling-squaring method can be found in [17] and Refs. therein). Then, the exponential

is approximated by a low-order expansion. The angle average is performed by Monte-

Carlo integration. We have examined the matrix element ⟨211|{S (⃗b, v⃗)}angle|211⟩, which
is affected by the non-adiabatic contribution exclusively (here a notation in terms of

the spherical base quantum numbers is used). Figure 3 shows a plot of the real and

imaginary part in terms of b (atomic units), assuming v =
√

2Ti/mi, at Ne = 1013 cm−3,

Te = Ti = 3 eV and B = 4 T, obtained from the numerical calculation and compared

to the ST and the GT. The broadening function involved in the GT has been evaluated

following Eq. (20). Here, χ = 0. The double integral has been calculated by Monte-

Carlo method, interpreting [w(x)w(x′)]3 as a joint probability density function for x, x′.

As can be seen, both the ST and the GT agree well with the numerical result at impact

parameters larger than ∼ 200, which roughly corresponds to the strong collision radius

bst as defined in Eq. (5). Below this radius the numerical solution oscillates around zero,

with an increasing frequency as b decreases. This reinforces the choice of a cut-off made

by the ST as described in Sec. 2. The GT yields a solution much different from the
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Figure 3. Real and imaginary parts of ⟨211|{S(⃗b, v⃗)}angle|211⟩, obtained within the

ST and the GT, and compared to a simulation. For impact parameters larger than

the strong collision radius bst (of the order of 200), the ST and the GT agree well with

the numerical calculation. The presence of oscillations at impact parameters smaller

than bst corresponds to strong collisions which, within the ST, are accounted for by a

cut-off procedure. In this domain the GT overestimates the real and imaginary parts

in absolute value.
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Figure 4. Real and imaginary parts of ⟨211|σ|211⟩, obtained within the ST and the

GT, and compared to the simulation. vT =
√

4Ti/mi stands for the relative thermal

velocity. The GT systematically overestimates the cross section, which results in an

overestimate of the Stark width and shift.

numerical one, with a strong overestimate of the real and imaginary parts in absolute

value (in particular the real part obtained with the GT diverges when b→ 0). This may

lead to an overestimate of the Stark width and shift. This point is illustrated in Fig.

4, where plots of the real and imaginary parts of the cross section are presented. The

result of the GT is always larger than that of the numerical calculation. A calculation

of the integral Eq. (3) shows that the GT overestimates the line width and shift by 60%

and 20%, respectively, whereas the ST never deviates from the simulation by more than

10%.
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Figure 5. Real part of ⟨311|{S(⃗b, v⃗)}angle|311⟩ and the corresponding cross section,

obtained within the ST and the GT, and compared to a simulation. The S-matrix

obtained within the GT is not unitary at small impact parameters. The cross section

is not overestimated here because of the presence of oscillations.

6. States with permanent dipoles

The particular case χ = 0 considered above denotes broadening of a parabolic state

with spherical symmetry (i.e., zαα = 0 in the parabolic base). For hydrogen lines

other than Ly-α, the non-adiabatic contribution also involves states with a permanent

dipole moment. We have examined such states by confronting the ST and the GT to

simulations. Figure 5 shows a plot of the real part of ⟨311|{S (⃗b, v⃗)}angle|311⟩ and the

corresponding cross section at the same conditions as in the previous section. This case

involves the parabolic kets |011⟩ and |101⟩, i.e. states with a permanent dipole moment

(e.g. [18] for details on the parabolic states). As can be seen, the GT yields oscillations

at small impact parameters, with increasing amplitude as b decreases. Although the

S-matrix resulting from the GT is no longer unitary in this regime, the presence of

oscillations prevents from the overestimation discussed above and eventually leads to a

cross section similar to that obtained either within the ST or the numerical calculation.

In general, the spherical states contribute to the broadening in addition to those with a

permanent dipole, so that serious misestimates of the line width should still be expected

a priori when using the GT. For example, an application to the blue lateral component of

H-α (which involves the spherical state |322⟩) shows that the GT already overestimates

the width obtained by simulation by 70% when the broadening of the lower level is

neglected, whereas deviations no larger than 10% are obtained with the ST.

7. Conclusion

The work presented in this paper provides a complement to previous investigations

in Stark profile modelling for magnetic fusion plasmas. Two models for ion impact

broadening - namely, the standard theory (ST) and the generalized theory (GT) - have

been examined and compared to simulations. In general, the ST provides accurate
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results whereas the GT systematically overestimates the width and the shift of the

Zeeman components because of an inconsistent use of the perturbation theory involved in

the non-adiabatic part of the collision operator. In particular, a second-order expansion

is used for the strong collisions, i.e., precisely, where a perturbative treatment does not

apply. Although such collisions are not frequent (since bst ≪ r0 is assumed in the impact

theory, r0 being the mean interparticle distance), the failure of the perturbation theory

yields a sufficiently large error so as to globally affect the line shape. This suggests

a subsequent refinement of this theory, either based on a cut-off procedure or on an

analytical extension of the Dyson series expansion up to higher orders. Our conclusion

is in agreement with previous studies regarding the GT at zero magnetic field [19]. The

broadening function used in the GT involves a multiple integral of strongly oscillating

functions, not suitable for fast numerical evaluation. A further refinement of the GT

should consist in establishing a simple, CPU-convenient approximation for this integral.

In magnetic fusion plasmas, the typical densities are sufficiently low so that the fine

structure can be in competition both with the Stark and Zeeman effects. Another

refinement of the GT should also address this issue. For opacity calculation purposes,

accurate and analytical expressions are required for line shapes, so that the ST (and

derived approaches accounting for non-impact effects, e.g., the unified theory [20, 21])

presently seems to be the best approach.
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Appendix

In [10, 11], it is mentioned that the ST overestimates the adiabatic contribution “by up

to two orders of magnitude”. We have examined the relevance of this statement. The

largest deviation claimed in [11] concerns the (102)− (101) component of the Paschen-

α line (parabolic numbers), hence here we focus our analysis on this transition. The

calculation of the ratio σST
αα/σ

GT,a
αα in Ref. [11] is inconclusive for two reasons: (i) Both

the broadening of the lower level and interference effects have been retained in σGT,a
αα {cf.

the definition of Xαβ in [11], Eq. (A.1)} whereas not in σST
αα. These effects, absent on

Lyman lines, become important as the lower principal quantum number of the transition

increases. A meaningful comparison between the two theories should involve, or not,

the broadening of the lower level and the interference effects, at the same time. In the

presentation of the ST done above as well as in that reported in [8], we have not retained

the interference effects, but they can be easily treated within the Liouville line space

formalism. (ii) K//
α ≡ 1 has been used for calculating the ST formulas. This is a very

drastic approximation. For the upper level of the transition, n = 4, n1 = 1, n2 = 0,
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m = 2, so that K//
α = 9/64 ≃ 0.14. A straightforward use of the formulas given by Eqs.

(10) and (15) shows that

σST
αα =

32π

v2

[

3

16
+ ln

(

vλD

2
√
6

)]

, (25)

σGT,a
αα =

48π

v2

[

11

6
− γ + ln

(

vλD
12

)]

, (26)

so that, at Ne = 1013 cm−3 and Te = Ti = 4 eV (plasma conditions assumed in [11]), one

has σST
αα/σ

GT,a
αα ≃ 0.65. The magnitude of this deviation falls in the typical uncertainty

range expected by the use of the GT and presented in the present paper.
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