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Abstract

An investigation of spectral line broadening in plasmas is carried out within a kinetic-theory

approach, based on the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. The model

employs a resummation procedure to account for correlated emitter-perturber collisions. Appli-

cations to hydrogen lines indicate that such collisions strongly affect the width and the shape in

the core region. This argument is supported by comparisons to numerical simulations. It is also

shown that the usual collision operator models, based on a binary description of emitter-perturber

collisions, can be extremely inaccurate. The present model, in a better agreement with numerical

simulations, is suggested as an extension suitable for the design of fast and accurate numerical

routines for plasma diagnostics.
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I. INTRODUCTION

The Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy provides a valuable ap-

proach to the study of dilute medium such as gases or plasmas. The typical scheme for ob-

taining a kinetic equation consists in writing a closure relation based on suitable assumptions

for the two-particle correlation function, and inserting this relation in the first equation of

the hierarchy. This approach has been successfully used in the past for describing transport

effects in plasmas (e.g., [1] for a review). In this work, we consider an adaptation of the

BBGKY formalism to the description of Stark line shapes for plasma spectroscopy purposes

and we focus on an extension devoted to retain correlated collisions between an emitter and

the surrounding perturbers. Plasma spectroscopy is of general interest for diagnostics, given

that the light naturally emitted from the atomic species (including multi-charged ions) con-

tains information on the plasma parameters (N , Te, etc.) [2–5]. Detailed line shapes are also

of interest for radiative transfer simulations, where they serve in transport codes as cross

sections for the photon absorption and emission processes [6, 7]. It has been a long-standing

challenge for plasma spectroscopy to accurately describe Stark-broadened line shapes [8].

The problem consists in a correct description of the atomic dipole autocorrelation function

in the presence of the plasma microscopic electric field. The latter is created by numer-

ous charged particles, so that one is confronted with a statistical time-dependent quantum

problem which, even today, has no general analytical solution. A basic description of a

line shape, sometimes referred to as the “standard model”, consists in assuming the ions

motionless during the dipole correlation time (or time “of interest”) τdd and, at the same

time, assuming the electrons moving rapidly. This short-time assumption for the electrons

allows one to describe their contribution through a non-Hermitian part in the Hamiltonian,

usually referred to as “collision operator”. This quantity can be calculated using standard

perturbation approaches, either semi-classical [9] or fully quantum-mechanical [10], using a

binary atom-electron interaction model (impact approximation). The ionic contribution is

described for its part with a constant Stark effect term in the Hamiltonian, and a statisti-

cal average over the ionic electric field is then performed using an appropriate probability

density function. As a rule, deviations to the standard model are expected if the ordering

τe ≪ τdd ≪ τi is not satisfied. Here, τe and τi denote the electron and ion collision times,

estimated as r0/ve, r0/vi with ve, vi being the electron and ion thermal velocities, respec-
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tively, and r0 = N−1/3 being the characteristic scale for the mean interparticle distance. Ion

dynamics effects (that arise, for instance, if τi ∼ τdd) have been observed [11] and have been

extensively investigated, using numerical simulations [4, 12–15] or ad hoc models based on

the statistical properties of the electric field (such as the model microfield method “MMM”

[16, 17] or the frequency fluctuation model “FFM” [18–20]). Incomplete electron collisions

(that are expected when τe ≪ τdd is not satisfied) have also been investigated, in particular

by using refined models for the collision operator, either based on kinetic theory (such as

the “unified theory” [21, 22]) or semiempirical procedures (e.g. using the Lewis cutoff [23]).

Such models reproduce the result of the impact approximation at the line center (i.e., with

the frequency detuning ∆ω = 0) and yield an asymptotic behavior identical to that ex-

pected within the quasi-static approximation. Several works in the past have been devoted

to generalizations of the collision operator models, able to account for non-impact effects,

e.g. [24–26]. A major issue concerns the modeling of correlated collisions between the emit-

ter and the charged particles surrounding it. An interpretation of the correlated collisions

is that an emitter suffering a binary collision also “feels” the presence of the other particles.

They are important when the characteristic collision frequency becomes of the same order

as or larger than the inverse correlation time of the emitter-perturber interaction potential

[27, 28]. The latter is of the order of the inverse plasma frequency ω−1
p , and the collision

frequency can be estimated as Nb2Wv ln(λD/bW ), where N is the particle density, v is the

thermal velocity of the perturbers, λD is the Debye length, and bW = h̄n2/mev is the so-

called Weisskopf radius (here n is the principal quantum number of the upper level). It

determines an effective cross section which corresponds to collisions yielding coherence loss

of the atomic wavefunction (strong collisions). The usual binary models assume that there

are no simultaneous strong collisions, i.e. that the parameter g = Nb3W is small compared to

unity. In general, correlated collisions concern both strong and weak collisions and, hence,

may be important even for small g. In this work, we address the problem of modeling cor-

related collision effects on the line broadening with a first-principles approach inspired from

the unified theory. The theoretical development makes extensive use of kinetic equations of

BBGKY-type and follows early works reported on in the seventies [27, 28]. A preliminary

attempt to retain correlated collisions has been performed by using a generalization of the

Kirkwood truncature hypothesis to quantum operator [29]. Here, we follow a more rigorous

approach based on a partial resummation of the correlation terms that arise in the BBGKY
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hierarchy. This procedure amounts to a renormalization of the atomic energy levels involved

in the collision operator, accounting for their perturbation due to collisions. The method

is designed for regimes where g <∼ 1 and is suitable either for electron or ion collisions. We

introduce the general formalism in Sec. II and, for the sake of simplicity, we specify it to

one-component plasma in the weak coupling limit. This assumption allows one to consider

the perturbers as non-interacting quasi-particles evolving on straight lines (ideal gas) and

generating a Debye electric field. The resummation procedure is presented in Sec. III. We

show that the collision operator is determined by a nonlinear equation and we examine an

iterative scheme for solving it numerically. In order to examine the role of correlated colli-

sions, we perform calculations in ideal cases and compare the results to the unified theory

(Sec. IV). Comparisons with numerical simulations are also made. Finally, Sec. V reports

on applications to realistic cases in the framework of magnetic fusion research.

II. FORMALISM

We give here a brief overview of the BBGKY approach to the line broadening problem,

following the early works reported on in [21, 27, 28]. An atom immersed in a set of N

charged particles is considered. For simplicity, we assume one-component plasma and we

consider the particles evolving along straight lines and generating a Debye electric field. A

generalization accounting for correlations between the perturbers in a rigorous way can be

developed following [27]. A Stark line shape I(ω) is written as

I(ω) =
1

π
Re

∑
ε

⟨⟨d · ε|Φ̃0(−iω)|ρd · ε⟩⟩. (1)

Here, the double ket notation for Liouville space |...⟩⟩ has been used, ρ is the atomic den-

sity operator, d · ε is the dipole projected onto the polarization vector ε, and Φ̃0(−iω) =∫+∞
0 dteiωtΦ0(t) is the Laplace transform of the evolution operator averaged over the per-

turber trajectories (classical path assumption). The latter is obtained from the following

definition with p = 0

Φs(1...p; t) =
∫
d(p+ 1)...dN fN (1...N )U(1...N ; t). (2)

Here, 1...N stand for the phase space coordinates (r1,v1...rN ,vN ) of the perturbers, d1...dN

are the corresponding volume elements, fN is the N -particle phase space distribution, and
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U is the atomic evolution operator. It obeys the Liouville equation ∂

∂t
+ iL0 +

N∑
j=1

[
vj ·

∂

∂rj
+ iV (j)

]U = 0, (3)

with the initial condition U(t = 0) = 1. All the quantities present in Eq. (3) are operators

acting in the atomic Liouville space formed by the dyadics |ab⟩⟩ ≡ |a⟩|b⟩. The term L0 is the

Liouvillian accounting for the atomic energy level structure and V (j) = V (rj) = −d ·E(rj)

denotes the Stark term resulting from the electric field due to the j-th perturber.

Equation (2) provides generalizations of the reduced phase space distributions, which

account for the presence of the atom. It is customary to introduce a cluster expansion (t is

not written explicitly)

Φ1(1) = f1(1)Φ0 + Γ1(1)

Φ2(1, 2) = f2(1, 2)Φ0 + f1(1)Γ1(2) + f1(2)Γ1(1) + Γ2(1, 2)

Φ3(1, 2, 3) = f3(1, 2, 3)Φ0 + f2(1, 2)Γ1(3) + f2(1, 3)Γ1(2) + f2(2, 3)Γ1(1)

+f1(1)Γ2(2, 3) + f1(2)Γ2(1, 3) + f1(3)Γ2(1, 2) + Γ3(1, 2, 3)

...

(4)

This decomposition allows one to write a hierarchy of equations for the correlations ∂

∂t
+ iL0 +

p∑
j=1

[
vj ·

∂

∂rj
+ iV (j)

]Γp(1...p)

= −i
p∑

j=1

f1(j)V (j)Γp−1(1...j − 1, j + 1...p)− iN
∫

d(p+ 1)V (p+ 1)Γp+1(1...p+ 1), (5)

with the initial condition Γp(1...p; t = 0) = 0 for p ≥ 1. It has been assumed that the phase

space distributions are space independent and factorize as fp(1...p) = f1(1)...f1(p). Also,

the thermodynamic limit (N → ∞, V → ∞, N /V = cst with V being the volume of the

system) is assumed. In Eq. (5), by convention Γ0 ≡ Φ0 and Γ−1 ≡ 0.

Originally, the unified theory was developed for applications in cases where the collisions

are uncorrelated. The treatment involves equations for Φ0 and Γ1 only, setting Γ2 ≡ 0:(
∂

∂t
+ iL0

)
Φ0 = −iN

∫
d1V (1)Γ1(1), (6)

and [
∂

∂t
+ iL0 + v1 ·

∂

∂r1
+ iV (1)

]
Γ1(1) = −if1(1)V (1)Φ0. (7)
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Equation (7) can be solved formally by using the propagator of the atom under the influence

of one perturber, Q(1, t). It obeys the following equation[
∂

∂t
+ iL0 + iV (r1 + v1t)

]
Q(1, t) = 0, (8)

with the initial conditionQ(1, t = 0) = 1, and it is proportional to a time-ordered exponential

(Dyson series)

Q(1, t) = e−iL0tT exp
[
−i
∫ t

0
dτeiL0τV (r1 + v1τ)e

−iL0τ
]
, (9)

T being the time-ordering operator. The correlation Γ1 is obtained from a convolution

Γ1(1; t) = −if1(1)
∫ t

0
dτQ(r1 − v1τ,v1, τ)V (r1 − v1τ)Φ0(t− τ). (10)

Inserting the solution Eq. (10) into the right-hand side of Eq. (6) provides a closed, integro-

differential equation for the averaged evolution operator Φ0(t). Its solution takes a simple

form in the Laplace space:

Φ̃0(s) = [s+ iL0 +K(s)]−1 . (11)

Inserting this relation in Eq. (1) provides an analytical expression for the line shape. Decom-

posing the double bra and kets onto an appropriate base of the Liouville space indicates that

the line shape can be written as a sum of generalized Lorentzian functions, whose widths

are frequency-dependent and given by matrix elements of K(s = −iω). The latter quantity

is a collision operator that accounts for incomplete collisions. It is completely determined

in terms of the propagator Q and the interaction term V :

K(s) = N
∫ ∞

0
dte−st

∫
d1V (r1 + v1t)Q(1, t)V (1)f1(1). (12)

III. CORRELATED COLLISIONS

The assumption Γ2 ≡ 0 considered in the unified theory is not valid in regimes where

correlated collisions are present. Such correlations occur if, during the characteristic time

for a binary collision (estimated as λD/v ∼ ω−1
p ), another perturber affects the atomic

wavefunction. Such a perturbation occurs at a time scale of the order of the inverse matrix

elements of the collision operator. A complete treatment of correlated collisions involving the

infinite hierarchy Eq. (5) seems out of reach. To proceed further we propose a simplification
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that uses the singular role of the p + 1-th particle in the p + 1-correlation present in the

integral term of Eq. (5). The approach is inspired from diagrammatic techniques used in

kinetic theory (“ring approximation”, e.g. [30]). For all p ≥ 1, we assume that p-correlations

are created or destroyed due to the p-th particle only. Therefore, the sums involving V in

Eq. (5) are replaced by their last term. The following evolution equation is obtained ∂

∂t
+ iL0 +

p∑
j=1

vj ·
∂

∂rj
+ iV (p)

Γp(1...p)

= −if1(p)V (p)Γp−1(1...p− 1)− iN
∫
d(p+ 1)V (p+ 1)Γp+1(1...p+ 1). (13)

To solve this system (p ≥ 1) it is practical to use operator techniques in the Laplace space.

We define the resolvent

Gp(z) =

z − L0 + i
p∑

j=1

vj ·
∂

∂rj
− V (p)

−1

, (14)

the inversion being taken in the operator sense, and we introduce two operators A and P

acting on the correlations

(AΓ̃p−1)(1...p) = Gp(is)f1(p)V (p)Γ̃p−1(1...p− 1), (15)

(P Γ̃p+1)(1...p) = Gp(is)N
∫
d(p+ 1)V (p+ 1)Γ̃p+1(1...p+ 1). (16)

These operators can be interpreted as creating and destroying correlations, respectively. The

evolution equation (13) can be written in the Laplace space in a compact form

Γ̃p = AΓ̃p−1 + P Γ̃p+1. (17)

We solve this equation using the ansatz P Γ̃p+1 = CΓ̃p where C depends on A and P . This

relation stems from the fact that limp→+∞ Γp = 0 is assumed. A recurrence relation for Γ̃p

is obtained

Γ̃p = (1− C)−1AΓ̃p−1. (18)

This leads to a formal solution of Eq. (17):

Γ̃p = [(1− C)−1A]pΦ̃0. (19)

Here we have again used the convention Γ̃0 ≡ Φ̃0. The latter quantity is obtained from Eq.

(17) with p = 0, AΓ̃−1 ≡ iG0(is), using that P Γ̃1 = CΦ̃0

Φ̃0 = i(1− C)−1G0(is). (20)
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A closed relation for C is obtained from Eq. (18), multiplying on the left by P and again

using the ansatz (P Γ̃p = CΓ̃p−1):

C = P (1− C)−1A. (21)

This equation is transcendental because P is not invertible. A resolution should therefore

involve an iterative scheme.

The collision operator is obtained from Eq. (20), performing algebraic manipulations and

identifying with the terms in Eq. (11)

K(s) = iG−1
0 (is)C0. (22)

Here, C0 denotes a restriction of C such that CΦ0 ≡ C0Φ0. This quantity is determined

using the recurrence relation (p ≥ 0)

Cp = Pp(1− Cp+1)
−1Ap+1, (23)

which stems from Eq. (21) and where Ap, Pp are restrictions of A and P such that AΓp ≡

Ap+1Γp and PΓp ≡ Pp−1Γp. We define a set of operators K0, K1, K2... generalizing the

collision operator, in such a way that the following property is satisfied

Kp(1...p; s) = iG−1
p (is)Cp. (24)

These operators obey the following recurrence relation (the dependence on 1...p, p+1 is not

written explicitly)

Kp(s) = iG−1
p (is)Pp [1 + iGp+1(is)Kp+1(s)]

−1 Ap+1, (25)

or, using the explicit definition of Ap+1 and Pp and making elementary algebra

Kp(s) = iN
∫
d(p+ 1)V (p+ 1)

[
G−1

p+1(is) + iKp+1(s)
]−1

V (p+ 1)f1(p+ 1). (26)

We simplify this relation by using the ansatz Kp(1...p; s) = K(s +
∑p

j=1 vj · ∂/∂rj), which

stems from the presence of is + i
∑p

j=1 vj · ∂/∂rj in the denominator. Setting p ≡ 0 in Eq.

(26) yields a closed equation for the collision operator

K(s) = iN
∫

d1V (1)Ḡ1(is)V (1)f1(1), (27)
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where Ḡ1 is a modified resolvent

Ḡ1(z) =

[
z − L0 + iv1 ·

∂

∂r1
− V (1) + iK

(
−iz + v1 ·

∂

∂r1

)]−1

. (28)

The latter can be interpreted as a propagator involving energy levels “dressed” by the pres-

ence of the other particles, through the presence of the collision operator as a non-Hermitian

part in the Liouvillian L0. In the case where the correlated collisions are neglected, Ḡ1 ≡ G1

and the collision operator reduces to that obtained within the binary approximation, Eq.

(12). The set of equations (27) and (28) is nonlinear. It is practical to define an effective

propagator Qeff(1, t), satisfying the dressed one-particle Schrödinger equation[
∂

∂t
+ iL0 + iV (r1 + v1t)

]
Qeff(1, t) +

∫ t

0
dτM(τ)Qeff(1, t− τ) = 0, (29)

with the initial condition Qeff(1, t = 0) = 1. Here M(t) is the inverse Laplace transform

of the collision operator. Equation (29) is interpretable as describing the evolution of the

atom under the influence of one collision represented by the interaction term V , given a set

of collisions occurring in its past history. These collisions act accumulatively and are taken

into account by the kernel M(t). The absence of this term in the unified theory [Eq. (8)]

stems from the assumption Γ2 ≡ 0. The latter is valid provided the characteristic evolution

time for Qeff be much shorter than the time between two collisions. In the case of weakly

correlated plasma, the evolution time is of the order of λD/v, so that a validity criterion

is provided by the relation λDγ/v ≪ 1 where γ is a typical matrix element of the collision

operator, e.g. estimated as γ = Nb2Wv ln(λD/bW ). This result is in agreement with the

analysis reported on in [27, 28] and it indicates that the present extension of the unified

theory allows one to explore regimes where correlated collisions are present. In terms of the

adimensional parameter h = Nb2WλD ln(λD/bW ), such regimes correspond to h >∼ 1. The

collision operator accounting for correlated collisions can be written in a fashion similar to

that obtained within the unified theory:

K(s) = N
∫ ∞

0
dte−st

∫
d1V (r1 + v1t)Qeff(1, t)V (1)f1(1). (30)

The substitution of Q by Qeff denotes a renormalization of the atomic energy levels induced

by the correlated collisions. This stems from the structure of the modified resolvent Eq.

(28). This is also illustrated by rewriting Eq. (29) in the Fourier and Laplace domain:

˜̂
Qeff(k1,v1, s) = [s+iL0+K(s)]−1

[
(2π)3δ(k1)− i

∫ d3k2
(2π)3

V̂ (k2)
˜̂
Qeff(k1 − k2,v1, s− ik2 · v1)

]
.

(31)
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Here the convention F̂ (k) =
∫
d3re−ik·rF (r) has been used for any function of space F (r). As

can be seen, the collision operator appears in the denominator as a non-Hermitian contribu-

tion to the Liouvillian. Equation (31) presents similarities with the result of the resonance

broadening theory used for plasma turbulence [31, 32], where the quasi-linearized Vlasov

equation plays a role similar to Eq. (29). In this theory, the coupling between the one-

particle distribution function and the plasma’s electric field is described through a diffusion

coefficient in the velocity space and the latter obeys a nonlinear equation as does our colli-

sion operator. Resonance broadening models have also been used in solid state physics for

the calculation of dielectric functions (e.g., [33]).

In practice, a calculation of the collision operator from Eq. (30) should be done by

iterations. A simplification, practical for numerical applications, is provided by assuming

K(s) ≃ K(−iω0) ≡ K0 (with ω0 being the central frequency of the line under consideration)

in Eq. (31), using that the collision operator is governed by the values of
˜̂
Qeff near the

resonance. This amounts to setting M(t) ≡ K0δ(t) in Eq. (29), and it leads to a simple

expression for Qeff , with a structure similar to that in the binary case Eq. (9):

Qeff(1, t) = e(−iL0−K0)tT exp
[
−i
∫ t

0
dτeiL0τV (r1 + v1τ)e

−iL0τ
]
. (32)

A simple expression of the collision operator for hydrogen Lyman lines, suitable for small

r0/λD, is derived in Appendix A. Figure 1 shows the convergence of the iterations in a

specific case. The diagonal element of the collision operator for Ly-α is plotted in terms

of the number of iterations for r0/λD = 0.1, assuming bW/r0 = 0.5. These conditions

correspond to h ≃ 7.5, i.e. a regime such that correlated collisions are present. As can be

seen, the calculation converges after only a few iterations.

IV. COMPARISONS

We have applied the collision operator formula Eq. (30) to calculations of hydrogen line

shapes in ideal cases. The effective propagator has been estimated from Eq. (32) and the

simplification presented in Appendix A [Eq. (A4)] has been used. Figure 2 presents a plot of

the Lyman-α line (n = 2 → 1) broadened due to ions at r0/λD = 0.1, assuming bW/r0 = 0.2

(a) and 0.5 (b), obtained using the unified theory (binary approximation) and compared to

that obtained within the renormalized model. These cases correspond to h ≃ 1.6 and 7.5,
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FIG. 1: Diagonal matrix element of K0 for Ly-α in terms of the number of iterations for r0/λD =

0.1, assuming bW /r0 = 0.5. The calculation converges after only a few iterations.

respectively. A numerical result from an ab initio simulation code is also shown in the figure.

This code uses the “collision-time technique”, which has been developed and designed in

the past so as to provide correct statistics at regimes where bW/r0 ≪ 1 [34] (in particular, it

avoids the bias induced by some prescribed boundary conditions). The technique assumes

particles moving along straight lines, in agreement with the quasi-particle model used in

the collision operator model. As can be seen, the binary model overestimates the width

and predicts a different shape structure, with a dip at the center that increases with bW/r0.

This dip is a consequence of the inadequacy of the binary model. Correlated collisions are

important in this region because they govern the average atomic evolution operator at long

times, hence, by virtue of the Laplace transform, at small frequency detuning. The typical

range for the dip corresponds to frequencies smaller than the matrix elements of K (see

discussion in Appendix B). The renormalized model gives a much better result, with no dip

and with an overestimate of the width no larger than 10% at bW/r0 = 0.5. Practically, this

better result stems from the presence of K into the denominator in Eq. (31). The small

discrepancy remaining at the center is due to the part of the correlations that is not retained

in the resummation procedure. This discrepancy increases with the ratio bW/r0.
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FIG. 2: Profile of Ly-α at bW /r0 = 0.2 (a) and 0.5 (b), i.e. when correlated collisions are present.

The binary model overestimates the width and predicts a different shape, with a dip at the center

that increases with bW /r0. The renormalized model gives a much better result, with no dip and

with an overestimate of the width no larger than 10% at bW /r0 = 0.5.

V. APPLICATION TO REALISTIC CASES

We consider an application of the model to realistic cases in the framework of mag-

netic fusion research. Observations of spectral lines with a high upper principal quantum

number (typically n > 7, and up to n = 20 in some cases) have been reported on in ex-

periments involving recombining plasmas, in Alcator C-Mod [35–38], in ASDEX Upgrade

[39], in NAGDIS-II [40–42], in JET [43], and in NSTX [44, 45]. For such lines, the ratio

bW/r0 for the electrons can be as high as 0.5 and the h parameter can be of the order of

unity. This makes the binary approximation questionable. We have calculated the profile

of the Ly20 transition (n = 20 → 1) at Ne = 4 × 1013 cm−3 and Te = Ti = 0.2 eV (typical

conditions of divertor recombining plasmas), using the binary approximation and the renor-

malized model. The ionic contribution has been retained through statistical average over
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the microscopic electric field (quasi-static model). Practically, this amounts to making the

formal substitution

L0 → L0 − d · Ei ≡ L0 − dzEi, (33)

I(ω) → I(ω,Ei), (34)

and to calculate the total line shape from the following integral

Itot(ω) =
∫ ∞

0
dEiW (Ei)I(ω,Ei), (35)

where W (Ei) is the probability density function of the ionic electric field. For the latter, we

have used the Hooper model [46], which is suitable for moderately coupled plasmas such as

those of magnetic fusion experiments. The profile obtained within the binary approximation

again differs from that obtained within the renormalized model. The dip present at the center

stems from the neglect of correlated collisions. The typical frequency range is given by the

matrix elements of −iK − dzE0 (with E0 being the Holtsmark microfield). In a diagnostic

context, this means that the use of the binary unified theory could lead to significant errors

in the interpretation of spectra. We have also applied the model to the ion broadening

of Ly-α in the atom’s frame of reference (i.e. without Doppler broadening), motivated by

opacity calculations for ITER modeling (e.g. [47, 48]). The plasma conditions expected in

the ITER divertor are such that the ions are in a “near impact” regime, with bW/r0 <∼ 0.5

[49]. The typical magnetic field is so strong that the Zeeman effect splits the line into well

separated components. Figure 4 shows a plot of the central component obtained with the

two models at Ne = 2 × 1015 cm−3 and Te = Ti = 1 eV. Here again, the use of the binary

approximation yields an incorrect result with a dip at the center. The influence of correlated

collisions on Stark broadening is not specific to Lyman lines. We have applied the model

to the H-α transition (n = 3 → 2), a line in the visible range. Figure 5 shows a plot of the

spectral profile in the atom’s frame of reference at Ne = 1015 cm−3 and Te = Ti = 1 eV.

Only the transition 3d → 2p is presented in the figure, and no magnetic field is retained.

The profile has been compared to numerical simulations. As can be seen, the binary theory

strongly overestimates the width and again provides a dip. The renormalized model is in a

much better agreement, with a discrepancy not larger than 10%.
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FIG. 3: Profile of Ly20 in recombining divertor plasma conditions. The dip present at the center

stems from the neglect of correlated collisions. No dip is present if the renormalized model is used.

VI. CONCLUSION

We have investigated the role of correlated collisions on Stark-broadened line shapes in

plasmas using a kinetic-theory approach. Correlated collisions occur if the collision frequency

becomes of the same order as or larger than the plasma frequency. In the model, the average

atomic evolution operator is obtained from a hierarchy of equations similar to BBGKY.

The presence of correlated collisions results in a renormalization of the atomic energy levels

considered in a binary model. The results of the present model are in a very good agreement

with numerical simulations. In contrast, the use of a binary model at conditions such that

correlated collisions are present yields an erroneous line shape structure, with a dip present

at the center. The method presented in this work provides an important correction to

the usual models based on collision operators. The renormalization gives a structure of

the new collision operator convenient for physical interpretation and suitable for numerical

calculations, in particular for an implementation in line shape codes that use a binary

collision operator (e.g. [20, 50]). The model can be applied either to ions or electrons, and

it can be generalized to isolated lines. Also, the kinetic theory treatment is transposable to

quantum plasma [51].
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FIG. 4: Profile of Ly-α, without Doppler broadening, in plasma conditions relevant to the ITER

divertor. Only the central Zeeman component is shown here. The binary model again overestimates

the width and predicts a different shape.
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APPENDIX A

We derive here a simplification of the collision operator formula applicable to the hydrogen

Lyman lines in the limit of small r0/λD. We assume that collisions with a small impact

parameter (strong collisions) give no significant contribution to the integrals in Eq. (30).

On the other hand, we consider that the atomic wavefunction is not sensitive to perturbers

located at large distance. In this framework, an approximation for the evolution operator is
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provided by

Q(1, t) ≃

 0 if r1 < rm

e−iL0t otherwise
, (A1)

where rm is a characteristic radius that remains to be determined. A possible approach

consists in estimating the matrix elements of the integral
∫ t
0 dτe

iL0τV (r1 + v1τ)e
−iL0τ that

appears in the Dyson series and comparing them to unity [52]. Such a procedure yields the

following relation

rm =

 bW1 if bW1 < v1t
√
bW1v1t otherwise

, (A2)

where bW1 = h̄n2/mev1 is the Weisskopf radius specific to velocity v1. This relation exhibits

the separation between the short and long time regimes, which correspond to incomplete and

complete collisions, respectively. The interaction term has been estimated as V (r1+v1τ) ∼

H(rm/v1−τ)bW1v1/r
2
m, H being the Heaviside function. From the approximation Eq. (A1),

the space integral in Eq. (30) can be calculated analytically, in a fashion similar to what is

done for the electric field autocorrelation function (e.g. [53]). We assume a Coulomb field

and retain Debye screening through a cut-off at λD. Hence,∫
d3r1V (r1 + v1t)Qeff(1, t)V (1)
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=
4π(bW1v1)

2

3(n2ea0/h̄)2
d · e(−iL0−K0)td×


(1/rm − 1/λD) if v1t ≤ rm ≤ λD

(1/v1t− 1/λD) if rm ≤ v1t ≤ λD

0 otherwise

. (A3)

The time integral in Eq. (30) can be evaluated analytically. The matrix element γ(s) =

⟨n10|K(s)|n10⟩, which provides the line width and shift of Lyman lines, is given by

γ(s) =
4πN(bWv)2

3(n2ea0)2
∑
lm

|⟨n10|d|nlm⟩|2

×


[
erf

(
bW
λD

)
− 2√

π

bW
λD

e−(bW /λD)2
] √ π

s′bWv
erf

√λ2
Ds

′

bWv

− 1− e−λ2
Ds′/bW v

λDs′


+
∫ ∞

bW v/λD

dv1F (v1)

[√
π

s′bWv
erf

(√
s′bWv

v1

)
+

1

v1
E1

(
s′bWv

v21

)
− 1

v1
E1

(
λDs

′

v1

)

− 1− e−λDs′/v1

λDs′

]}
, (A4)

where bW is the Weisskopf radius evaluated at the thermal velocity v =
√
2kBT/µ (µ is the

reduced mass of the emitter-perturber system), s′ = −i∆ω + ⟨nlm|K0|nlm⟩ with ∆ω being

the frequency detuning, F (v1) = 4(v1/v)
2 exp[−(v1/v)

2]/(v
√
π) is the Maxwellian velocity

distribution function, and erf, E1 are the error and first exponential integral functions,

respectively. The Hilbert space formalism is used here, i.e. the bras, kets, and operators

refer to atomic states instead of dyadics in the Liouville space. Equation (A4) is suitable for

numerical calculations. The binary approximation (“usual” unified theory) corresponds to

setting s′ ≡ −i∆ω, and the complete collision approximation (“impact” theory) corresponds

to setting s′ → 0. An explicit calculation for bW ≪ λD yields

γ(s) ≃ 4
√
πNb2Wv

3(n2ea0)2
∑
lm

|⟨n10|d|nlm⟩|2
2 + E1

(bW
λD

)2
 , (A5)

which corresponds to the standard result for hydrogen [9]. In the case where a static electric

field is present (Sec. V), the substitution Eq. (33) leads to the presence of a static Stark

effect term in the Liouvillian in Eq. (A3). This term can be accounted for in the formula Eq.

(A4) by using a decomposition onto the parabolic base. This procedure yields the following

substitutions ∑
lm

... →
∑
lmn1

|⟨nlm|n1n2m⟩|2 × ... (A6)

s′ → s′ − i⟨n1n2m|dzE|n1n2m⟩/h̄, (A7)
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where n1, n2 are the parabolic quantum numbers. A similar procedure can be applied to the

other matrix elements of the collision operator, which are required if a static Stark effect

term is present.

APPENDIX B

An analysis of the failure of the binary model when correlated collisions are present can

be performed from an estimate using a simplification of the collision operator formula Eq.

(A4). We ignore the velocity average, so that F (v1) can be replaced by δ(v1 − v), and we

assume b′W ≪ λD. We also ignore the imaginary part and we focus on frequencies much

smaller than v/bW and larger than v/λD, in such a way to investigate a region dominated

by incomplete weak collisions. With these orderings the diagonal matrix elements of the

binary collision operator can be evaluated as follows

γ(∆ω) ≃ γ0 ln
(

v

bW∆ω

)
, (B1)

γ0 =
4πNb2Wv

3(n2ea0)2
∑
lm

|⟨n10|d|nlm⟩|2. (B2)

This expression is similar to the Lewis model [23]. The line shape is given by

I(∆ω) = C
γ(∆ω)

π

1

∆ω2 + γ(∆ω)2
, (B3)

where C is a normalization constant. A dip occurs if the line shape has extrema at a finite

value for ∆ω, larger than v/λD. The resolution of the equation dI(∆ω)/d∆ω = 0 shows that

this occurs for ∆ω = γ(∆ω)/
√
(1 + 2 ln(v/bW∆ω)). The right-hand side of this expression

can be estimated taking a constant value Λ of the order of unity for the logarithm. This

provides a position for the local maximum of the line shape and a criterion for the presence

of a dip. If Λ is estimated such that Λ/
√
(1 + 2Λ) = ln(λD/bW ), this criterion reduces to

h >∼ 1 where h is the parameter introduced in the main text.
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