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Members of the plant NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER 13	
  

(NRT1/PTR) family display protein sequence homology with the 14	
  

SLC15/PepT/PTR/POT family of peptide transporters in animals. Compared to 15	
  

their animal and bacterial counterparts, these plant proteins transport a wide 16	
  

variety of substrates: nitrate, peptides, amino acids, dicarboxylates, 17	
  

glucosinolates, IAA, and ABA. The phylogenetic relationship of the members 18	
  

of the NRT1/PTR family in 31 fully sequenced plant genomes allowed the 19	
  

identification of unambiguous clades, defining 8 sub-families. The 20	
  

phylogenetic tree was used to determine a unified nomenclature of this family 21	
  

named NPF, for NRT1/PTR FAMILY. We propose that the members should be 22	
  

named accordingly: NPFX.Y, where X denotes the subfamily and Y the 23	
  

individual member within the species. 24	
  

 25	
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 1	
  

Plant NRT1/PTR proteins display homology with proteins from other kingdoms 2	
  

In plants, a group of membrane proteins belonging to the NITRATE TRANSPORTER 3	
  

1/PEPTIDE TRANSPORTER (NRT1/PTR) family display sequence homology with 4	
  

proteins ubiquitously present across all major kingdoms of life [1] such as bacteria 5	
  

[2], fungi [3], and animals [4, 5]. In these organisms, several family names are used 6	
  

to describe these proteins: PROTON-COUPLED OLIGOPEPTIDE TRANSPORTER 7	
  

(POT), PEPTIDE TRANSPORTER (PepT/PTR) or SOLUTE CARRIER 15 (SLC15). 8	
  

These membrane proteins display a predicted conserved structural arrangement of 9	
  

12 transmembrane domains connected by short peptide loops. The three-10	
  

dimensional arrangement of these domains was recently characterized for two 11	
  

bacterial homologs (PepTSo and PepTSt) in both open and closed conformations [2, 12	
  

6]. Most non-plant members of this family are involved in nitrogen acquisition in the 13	
  

form of di- and tripeptides [7]. For example, the human PepT1 and PepT2 proteins 14	
  

are involved in dietary nitrogen uptake. These proteins are also involved in the 15	
  

transport of β-lactam antibiotics [7]. The rather high substrate selectivity of the above 16	
  

mentioned transporters is not shared by their plant counterparts. 17	
  

The first plant member discovered, known as AtNRT1.1 or CHL1, was 18	
  

identified in Arabidopsis (Arabidopsis thaliana) as a nitrate transporter [8]. The fifteen 19	
  

years following this identification were punctuated by the cloning of other nitrate 20	
  

transporters in different plants [9], but also by the demonstration that some plant 21	
  

NRT1/PTR family members could behave as dipeptide transporters [10]. As a 22	
  

consequence, the presence of nitrate transporters was believed to be a specific 23	
  

feature of this family in plants. But several studies in the last few years demonstrate 24	
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that an even wider range of molecules are transported by some family members [11, 1	
  

12]. Auxin, ABA and glucosinolates are three new NRT1/PTR substrates [13-16]. 2	
  

Furthermore, some members are able to transport two different substrates: 3	
  

nitrate/IAA, nitrate/ABA, nitrate/glucosinolates or peptides/amino acids. The role of 4	
  

specific members is described below. 5	
  

 6	
  

Phylogenetic relationship is the basis of the unified nomenclature 7	
  

To date, the different family members were mainly named according to their first 8	
  

identified substrate: NRT1/nitrate, PTR/peptide, AIT/ABA, GTR/glucosinolate. But, as 9	
  

discussed above several members transport more than one substrate. Furthermore, 10	
  

sequence homologies do not correlate with substrate selectivity.  We have therefore 11	
  

decided to develop a unified nomenclature for this protein family (Table 1). The first 12	
  

step was to identify a unique name for these proteins. An open and fruitful discussion 13	
  

was conducted within the research community and NPF (for NRT1 PTR FAMILY) 14	
  

was the consensus name agreed upon for this family.  15	
  

The next step was to establish the phylogenetic relationships between the 16	
  

different family members. To that end, we first identified the amino acid sequence of 17	
  

all members of this family within the 31 fully sequenced genomes and two outgroups 18	
  

(Physcomitrella patens and Selaginella moellendorffii, two primitive non-seed plants), 19	
  

using the BigPlant phylogenomic pipeline [17]. Briefly, proteins from all species were 20	
  

queried against each other, using BLAST, to determine the level of homology, if any, 21	
  

between them. The BLAST e-value was used as a proxy for distance to cluster the 22	
  

proteins, using OrthoMCL [18], and identify gene families across 33 genomes (Figure 23	
  

1 and Figure S1 in the supplementary material online). This fully autonomous 24	
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clustering algorithm grouped all known NPF members from Arabidopsis thaliana into 1	
  

a single protein family containing 2,398 sequences from 33 genomes. In each of 2	
  

these sequenced genomes, there are between 51 (in Capsella rubella) and 139 (in 3	
  

Malus domestica) unique members of this family (Figure S1 in the supplementary 4	
  

material online). All sequences were aligned using MAFFT [19] and the alignment 5	
  

was used to perform a parsimony analysis in PAUP* [20] according to this automated 6	
  

phylogenomic pipeline [17].  7	
  

This analysis allows the identification of eight unambiguous clades in the 8	
  

family. We assigned a number (from 1 to 8) for each clade and designated them as 9	
  

subfamilies. Within the clades, a second number identifies each member, according 10	
  

to their position in the phylogenetic tree (Figure 1). This number does not imply 11	
  

relationship, chromosomal location or order of characterization. Of the 2,398 protein 12	
  

sequences, 14 were left out of all clades due to poor alignments to other family 13	
  

members and are hence placed outside the major clades in the phylogenetic tree. 14	
  

These sequences show a significant similarity to the NPF members, but align poorly 15	
  

with the other members. These sequences could represent proteins that have 16	
  

recently lost function and are in the process of degradation or alternately represent 17	
  

chimeric gene models. Each of the remaining 2,384 sequences in the analysis 18	
  

belongs to one of the clades and is assigned a specific two-number code (Table S1 19	
  

in the supplementary material online).  20	
  

We recommend that future numbering of newly identified members should 21	
  

take into account this convention, with two or three letters to identify the species, 22	
  

followed by NPF, followed by the clade number, and finally the specific number 23	
  

according to the order in which they are identified. Consequently, this second number 24	
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is used to differentiate genes within the species and does not reflect orthologous 1	
  

relationships, meaning that GmNPF6.1 is not necessarily closer to OsNPF6.1 than to 2	
  

OsNPF6.4. A similar rule was adopted in other nomenclatures such as for ATP-3	
  

BINDING CASSETTE (ABC) proteins [21] and HIGH AFFINITY POTASSIUM 4	
  

TRANSPORTER (HKT) proteins [22] to avoid constant renumbering of members 5	
  

within a species. 6	
  

   7	
  

Subfamilies NPF1 to NPF8: from structure to function 8	
  

 9	
  

NPF1 (192 members) 10	
  

In this subfamily, one member, MtNPF1.7 previously named NIP/LATD (NUMEROUS 11	
  

INFECTIONS AND POLYPHENOLICS/LATERAL ROOT-ORGAN DEFECTIVE), from 12	
  

Medicago truncatula has been characterized [23] and behaves as a high-affinity 13	
  

nitrate transporter with a second unknown function [24, 25]. MtNPF1.7 is involved in 14	
  

nodulation and root architecture [23]. 15	
  

 16	
  

NPF2 (365 members) 17	
  

This subfamily contains well-established nitrate and glucosinolates transporters. 18	
  

Members of this family show a wide range of tissue and developmental specificity in 19	
  

Arabidopsis. Nitrate influx and efflux transporters belong to the NPF2 subfamily. In 20	
  

Arabidopsis, AtNPF2.1 to AtNPF2.7 were assigned to the same subgroup [26]. The 21	
  

efflux transporter AtNPF2.7 (NAXT1, [26]) is expressed in the cortex of mature roots, 22	
  

whereas AtNPF2.9 (NRT1.9, [27]) is expressed in root companion cells where it is 23	
  

involved in phloem loading. Nitrate-dependent early embryo development requires 24	
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the expression of the low affinity nitrate transporter AtNPF2.12 (NRT1.6, [28]). 1	
  

Source-to-sink nitrogen remobilization is an important physiological process, 2	
  

mediated by different forms of organic nitrogen forms and also by nitrate itself; the 3	
  

AtNPF2.13 protein (NRT1.7, [29]) is responsible for phloem loading in the source 4	
  

leaves.  5	
  

Five Arabidopsis NPF members are capable of transporting glucosinolates: 6	
  

AtNPF2.9 (NRT1.9), 2.10 (GTR1), 2.11 (GTR2/NRT1.10), 2.13 (NRT1.7) and 2.14. 7	
  

Two of these NPF members, AtNPF2.10 (GTR1) and AtNPF2.11 (GTR2/NRT1.10), 8	
  

are nitrate transporters [15]. 9	
  

 10	
  

 11	
  

NPF3 (109 members) 12	
  

This is the smallest subfamily. The first characterized member was Cucumis sativus 13	
  

CsNPF3.2 (CsNitr1). The CsNPF3.2 gene gives rise to two splice isoforms, the 14	
  

longer of which (CsNitr1-L) encodes a protein with a chloroplast targeting signal and 15	
  

inner chloroplastic membrane localization. The shorter isoform of CsNPF3.2 16	
  

(CsNitr1-S) expressed in yeast (Saccharomyces cerevisiae) causes reduced nitrite 17	
  

accumulation [30]. This led to the suggestion that CsNitr1-L functions as a chloroplast 18	
  

nitrite uptake transporter to remove toxic nitrite from the cytosol [30]. The Arabidopsis 19	
  

AtNPF3.1 and Vitis vinifera VvNPF3.2 orthologs do not possess predicted chloroplast 20	
  

targeting signals and AtNPF3.1 is a plasma membrane localized protein (L. David 21	
  

and F. Daniele-Vedèle, unpublished results). AtNPF3.1 and VvNPF3.2 mediate 22	
  

nitrate and nitrite uptake into Xenopus oocytes with similar low affinities (S. Pike and 23	
  

W. Gassmann, unpublished).  24	
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 1	
  

NPF4 (350 members) 2	
  

AtNPF4.6 (NRT1.2/ AIT1) was the second nitrate transporter to be characterized in 3	
  

plants [31]. Members of this subfamily have recently been demonstrated to be ABA 4	
  

importers [14]. When expressed in yeast, AtNPF4.1 (AIT3) transported GA (GA3) as 5	
  

well as ABA [14]. 6	
  

 In rice (Oryza sativa), OsNPF4.1 (SP1, [32]) regulates the development of 7	
  

inflorescences. However, expression and analysis in Xenopus oocytes and yeast did 8	
  

not support a function of this protein in the transport of nitrate, dipeptide, or histidine. 9	
  

Sequence homology of OsNPF4.1 to Arabidopsis ABA transporters (Figure 1 and 10	
  

Table S1 in the supplementary material online) and the developmental role it plays 11	
  

suggests that it might be involved in ABA transport. 12	
  

 13	
  

 14	
  

NPF5 (663 members) 15	
  

This is the largest subfamily accounting for 25% of the sequences. Surprisingly, only 16	
  

one member has been functionally characterized, AtNPF5.2 (PTR3, [33]). Another 17	
  

member, OsNPF5.5, did not show di- or tri-peptide uptake activity when expressed in 18	
  

yeast (OsPTR3, [34]). 19	
  

  20	
  

 21	
  

NPF6 (227 members) 22	
  

This subfamily includes the first identified member of NRT1/PTR family: NRT1.1 [8], 23	
  

now named AtNPF6.3. This protein is the first transceptor identified in plants [35-38]: 24	
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it is a dual affinity nitrate influx transporter and a nitrate sensor. The nitrate-1	
  

dependent lateral root phenotype of a chl1 mutant is due to its ability to transport 2	
  

auxin [37]. Nitrate efflux activity by AtNPF6.3 (and AtNPF6.2) was also demonstrated 3	
  

[39].   4	
  

 Three other members have been demonstrated to be nitrate transporters: 5	
  

AtNPF6.2 (AtNRT1.4, [40]) AtNPF6.4 (AtNRT1.3, [41]) and MtNPF6.8 (MtNRT1.3, 6	
  

[42]). Expression of MtNPF6.8 in Xenopus oocytes showed that the encoded protein 7	
  

is a dual affinity nitrate transporter [42]. The same study provided evidence for the 8	
  

involvement of MtNPF6.8 in the mediation of the effect of nitrate on primary root 9	
  

elongation in Medicago truncatula seedlings. Future studies will have to show 10	
  

whether or not these members operate as transceptors too. 11	
  

 12	
  

 13	
  

NPF7 (206 members) 14	
  

Three proteins in this subfamily have been functionally characterized. Two different 15	
  

substrates have been identified: nitrate for AtNPF7.2 (NRT1.8 [43]) and AtNPF7.3 16	
  

(NRT1.5, [44, 45]); as well as dipeptides for OsNPF7.3 (OsPTR6, [34]). Furthermore, 17	
  

AtNPF7.3 is a bidirectional transporter involved in nitrate influx and efflux. 18	
  

 Expression of two other members in yeast, OsNPF7.1 (OsPTR4) and 19	
  

OsNPF7.4 (OsPTR5), did not confer di- or tri-peptide uptake activity [34]). 20	
  

 21	
  

 22	
  

NPF8 (273 members) 23	
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In Arabidopsis, subfamily 8 contains dipeptide transporters: AtNPF8.1 (PTR1, [46]), 1	
  

AtNPF8.2 (PTR5, [46]) and AtNPF8.3 (PTR2). AtNPF8.3 is also able to transport 2	
  

histidine in yeast [47-49]. AtNPF8.4 (PTR4) and AtNPF8.5 (PTR6) are tonoplast-3	
  

localized transporters, which have been resistant to functional characterization in 4	
  

yeast and Xenopus oocytes [50]. 5	
  

In rice OsNPF8.9 (OsNRT1/OsNRT1.1 [51]) is a low-affinity nitrate transporter. 6	
  

Expression of another member in yeast and Xenopus oocytes, OsNPF8.20 7	
  

(OsPTR9), did not confer nitrate, di- or tri-peptide uptake activity [52]. 8	
  

 9	
  

Concluding remarks 10	
  

It was the increasing recognition of the importance of the NPF proteins in 11	
  

Arabidopsis, as well as in other plants, that prompted us to propose our unified 12	
  

nomenclature. Besides the need to understand the specific role of each transporter, it 13	
  

is important to understand the molecular basis for their different selectivities. This will 14	
  

provide the foundation for future investigations into the relationship between function 15	
  

and phylogenetic position. Moreover, the phylogenetic analysis now provides a 16	
  

framework to inspire functional experimentation. 17	
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Table	
  1:	
  Revised	
  nomenclature	
  for	
  the	
  characterized	
  NPF	
  membersa	
  

Species	
   Previous	
  Name	
   New	
  Name	
   Locus	
  identification	
  
number	
  

Substrates	
   Refs.	
  

Arabidopsis	
  thaliana	
   NRT1.11	
   AtNPF1.2	
   AT1G52190.1	
   Unknown	
   [27]	
  

NAXT1	
   AtNPF2.7	
   AT3G45650.1	
   Nitrate	
   [26]	
  

NRT1.9	
   AtNPF2.9	
   AT1G18880.1	
   Nitrate/glucosinolates	
   [15,	
  27]	
  

GTR1	
   AtNPF2.10	
   AT3G47960.1	
   Glucosinolates/nitrate	
   [15]	
  

GTR2/NRT1.10	
   AtNPF2.11	
   AT5G62680.1	
   Glucosinolates/nitrate	
   [15]	
  

NRT1.6	
   AtNPF2.12	
   AT1G27080.1	
   Nitrate	
   [28]	
  

NRT1.7	
   AtNPF2.13	
   AT1G69870.1	
   Nitrate/glucosinolates	
   [15,	
  29]	
  

Nitr	
   AtNPF3.1	
   AT1G68570.1	
   Nitrate/nitrite	
   [30]	
  

AIT3	
   AtNPF4.1	
   AT3G25260.1	
   Aba/ga3	
   [14]	
  

AIT4	
   AtNPF4.2	
   AT3G25280.1	
   Unknown	
   [14]	
  

NRT1.14	
   AtNPF4.3	
   AT1G59740.1	
   Unknown	
   Unpublished	
  

NRT1.13	
   AtNPF4.4	
   AT1G33440.1	
   Unknown	
   Unpublished	
  

AIT2	
   AtNPF4.5	
   AT1G27040.1	
   Unknown	
   [14]	
  

NRT1.2/AIT1	
   AtNPF4.6	
   AT1G69850.1	
   Nitrate/ABA	
   [14,	
  31]	
  

PTR3	
   AtNPF5.2	
   AT5G46050.1	
   Dipeptides	
   [33]	
  

NRT1.16	
   AtNPF5.13	
   AT1G72125.1	
   Nitrate	
   Unpublished	
  

NRT1.15	
   AtNPF5.14	
   AT1G72120.1	
   Nitrate	
   Unpublished	
  

NRT1.4	
   AtNPF6.2	
   AT2G26690.1	
   Nitrate	
   [40]	
  

NRT1.1	
   AtNPF6.3	
   AT1G12110.1	
   Nitrate/IAA	
   [8,	
  37]	
  

NRT1.3	
   AtNPF6.4	
   AT3G21670.1	
   Nitrate	
   [41]	
  

NRT1.8	
   AtNPF7.2	
   AT4G21680.1	
   Nitrate	
   [43]	
  

NRT1.5	
   AtNPF7.3	
   AT1G32450.1	
   Nitrate	
   [44]	
  

PTR1	
   AtNPF8.1	
   AT3G54140.1	
   Dipeptides	
   [46]	
  

PTR5	
   AtNPF8.2	
   AT5G01180.1	
   Dipeptides	
   [46]	
  

PTR2/NTR1	
   AtNPF8.3	
   AT2G02040.1	
   Dipeptides	
   [47]	
  

PTR4	
   AtNPF8.4	
   AT2G02020.1	
   Unknown	
   [50]	
  

PTR6	
   AtNPF8.5	
   AT1G62200.1	
   Unknown	
   [50]	
  
Medicago	
  truncatula	
   NIP/LATD	
   MtNPF1.7	
   Medtr1g009200.1	
   Nitrate/unknown	
   [23]	
  

MtNRT1.3	
   MtNPF6.8	
   Medtr5g085850.1	
   Nitrate	
   [42]	
  
Oryza	
  sativa	
   OsPTR2	
   OsNPF2.2	
   Os12g44100.1	
   Unknown	
   [34]	
  

SP1	
   OsNPF4.1	
   Os11g12740.1	
   Unknown	
   [32]	
  

OsPTR3	
   OsNPF5.5	
   Os10g33210.1	
   Unknown	
   [34]	
  

OsPTR5	
   OsNPF7.4	
   Os04g50940.1	
   Unknown	
   [34]	
  

OsPTR6	
   OsNPF7.3	
   Os04g50950.1	
   Unknown	
   [34]	
  

OsPTR4	
   OsNPF7.1	
   Os07g41250.1	
   Unknown	
   [34]	
  

OsPTR9	
   OsNPF8.20	
   Os06g49250.1	
   Unknown	
   [52]	
  

OsNTR1.1	
   OsNPF8.9	
   Os03g13274.2	
   Nitrate	
   [51]	
  

OsPTR8	
   OsNPF8.5	
   Os03g51050.1	
   Unknown	
   [34]	
  

OsPTR1	
   OsNPF8.2	
   Os07g01070.1	
   Unknown	
   [34]	
  

OsPTR7	
   OsNPF8.1	
   Os01g04950.1	
   Unknown	
   [34]	
  
Cucumis	
  sativus	
   CsNitr1	
   CsNPF3.2	
   Cucsa.337560.1	
   Nitrite	
   [30]	
  

aThe	
  NPF	
  members	
  with	
  an	
  affected	
  previous	
  name	
  are	
  listed	
  with	
  their	
  new	
  name,	
  locus	
  identification	
  number	
  and,	
  if	
  known,	
  substrate(s).	
  	
  1	
  
 2	
  

  3	
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Legends 1	
  

Figure 1. Phylogenetic tree of the NPF gene family in plants. Parsimony analysis of 2	
  

the 2,398 sequences from 33 fully sequenced genomes (Listed in Table S1 in the 3	
  

supplementary material online) identifies 8 clades in the NRT1/PTR family. A 4	
  

graphical view of the tree has been generated using FigTree (the software can be 5	
  

freely downloaded, http://tree.bio.ed.ac.uk/software/figtree/). The NPF tree file is 6	
  

available in the supplementary material online.  7	
  

 8	
  

 9	
  


