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1 Ecole Centrale de Nantes, LUNAM Université, GeM UMR CNRS 6183, 1 rue de la Noe, 44321

Nantes, France

email: anthony.nouy@ec-nantes.fr
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This paper presents new results allowing an unknown non-Gaussian positive matrix-valued

random field to be identified through a stochastic elliptic boundary value problem, solving

a statistical inverse problem. A new general class of non-Gaussian positive-definite matrix-

valued random fields, adapted to the statistical inverse problems in high stochastic dimen-

sion for their experimental identification, is introduced and its properties are analyzed. A

minimal parametrization of discretized random fields belonging to this general class is pro-

posed. Using this parametrization of the general class, a complete identification procedure

is proposed. New results of the mathematical and numerical analyzes of the parameterized

stochastic elliptic boundary value problem are presented. The numerical solution of this

parametric stochastic problem provides an explicit approximation of the application that

maps the parameterized general class of random fields to the corresponding set of random

solutions. This approximation can be used during the identification procedure in order

to avoid the solution of multiple forward stochastic problems. Since the proposed general

class of random fields possibly contains random fields which are not uniformly bounded, a

particular mathematical analysis is developed and dedicated approximation methods are

introduced. In order to obtain an algorithm for constructing the approximation of a very

high-dimensional map, complexity reduction methods are introduced and are based on the

use of low-rank approximation methods that exploit the tensor structure of the solution

which results from the parametrization of the general class of random fields.
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Notations

A lower case letter, y, is a real deterministic variable.

A boldface lower case letter, y = (y1, . . . , yN ) is a real deterministic vector.

An upper case letter, Y , is a real random variable.



2 A. NOUY AND C. SOIZE

A boldface upper case letter, Y = (Y1, . . . , YN ) is a real random vector.

A lower (or an upper) case letter between brackets, [a] (or [A]), is a real deterministic

matrix.

A boldface upper case letter between brackets, [A], is a real random matrix.

E: Mathematical expectation.

MN,m(R): set of all the (N ×m) real matrices.

Mm(R): set of all the square (m×m) real matrices.

MS
n(R): set of all the symmetric (n× n) real matrices.

M+
n (R): set of all the symmetric positive-definite (n× n) real matrices.

MSS
m (R): set of all the skew-symmetric (m×m) real matrices.

MU
n (R): set of all the upper triangular (n×n) real matrices with strictly positive diagonal.

O(N): set of all the orthogonal (N ×N) real matrices.

Vm(RN ): compact Stiefel manifold of (N ×m) orthogonal real matrices.

tr: Trace of a matrix.

< y , z >2: Euclidean inner product of y with z in Rn.

‖y‖2: Euclidean norm of a vector y in Rn.

‖A‖2: Operator norm subordinated to Rn: ‖A‖2 = sup‖y‖2=1 ‖Ay‖2.
‖A‖F : Frobenius norm of a matrix such that ‖A‖2F = tr{[A]T [A]}.
[Im,n]: matrix in Mm,n(R) such that [Im,n]ij = δij .

[Im]: identity matrix in Mm(R).

1 Introduction

The experimental identification of an unknown non-Gaussian positive matrix-valued ran-

dom field, using partial and limited experimental data for an observation vector related to

the random solution of a stochastic elliptic boundary value problem, stays a challenging

problem which has not received yet a complete solution, in particular for high stochastic

dimension. An example of a challenging application concerns the identification of random

fields that model at a mesoscale the elastic properties of complex heterogeneous materials

that can not be described at the level of their microscopic constituents (e.g. biological

materials such as the cortical bone), given some indirect observations measured on a col-

lection of materials samples (measurements of their elastic response e.g. through image

analysis or other displacement sensors). Even if many results have already been obtained,

additional developments concerning the stochastic representations of such random fields

and additional mathematical and numerical analyzes of the associated stochastic elliptic

boundary value problem must yet be produced. This is the objective of the present paper.

Concerning the representation of random fields adapted to the statistical inverse prob-

lems for their experimental identification, one interesting type of representation for any

non-Gaussian second-order random field is based on the use of the polynomial chaos

expansion [69, 8] for which an efficient construction has been proposed in [26, 27, 18],

consisting in coupling a Karhunen-Loève expansion (allowing a statistical reduction to be

done) with a polynomial chaos expansion of the reduced model. This type of construction

has been extended for an arbitrary probability measure [70, 39, 41, 56, 67, 21] and for

random coefficients of the expansion [58].
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Concerning the identification of random fields by solving stochastic inverse problems,

works can be found such as [16, 35, 36, 63] and some methods and formulations have

been proposed for the experimental identification of non-Gaussian random fields [17,

28, 13, 71, 14, 42, 62, 2] in low stochastic dimension. More recently, a more advanced

methodology [59, 60] has been proposed for the identification of non-Gaussian positive-

definite matrix-valued random fields in high stochastic dimension for the case for which

only partial and limited experimental data are available.

Concerning the mathematical analysis of stochastic elliptic boundary value problems

and the associated numerical aspects for approximating the random solutions (the for-

ward problem), many works have been devoted to the simple case of uniformly elliptic

and uniformly bounded operators [15, 3, 4, 43, 24, 5, 68, 50, 40]. For these problems, ex-

istence and uniqueness results can be directly obtained using Lax-Milgram theorem and

Galerkin approximation methods in classical approximation spaces can be used. More

recently, some works have addressed the mathematical and numerical analyzes of some

classes of non uniformly elliptic operators [25, 29, 46, 10], including the case of log-normal

random fields.

For the numerical solution of stochastic boundary value problems, classical non adapted

choices of stochastic approximation spaces lead to very high-dimensional representations

of the random solutions, e.g. when using classical (possibly piecewise) polynomial spaces

in the random variables. For addressing this complexity issue, several complexity re-

duction methods have been recently proposed, such as model reduction methods for

stochastic and parametric partial differential equations [48, 49, 7], sparse approximation

methods for high-dimensional approximations [65, 47, 11, 6, 53], or low-rank tensor ap-

proximation methods that exploit the tensor structure of stochastic approximation spaces

and also allow the representation of high-dimensional functions [19, 37, 51, 9, 22, 23, 44].

In this paper, we present new results concerning:

(i) the construction of a general class of non-Gaussian positive-definite matrix-valued

random fields which is adapted to the identification in high stochastic dimension,

presented in Section 2,

(ii) the parametrization of the discretized random fields belonging to the general class

and an adapted identification strategy for this class, presented in Section 3,

(iii) the mathematical analysis of the parameterized stochastic elliptic boundary value

problems whose random coefficients belong to the parameterized general class

of random fields, and the introduction and analysis of dedicated approximation

methods, presented in Section 4.

Concerning (i), we introduce a new class of matrix-valued random fields {[K(x)],x ∈
D} indexed on a domain D that are expressed as a nonlinear function of second order

symmetric matrix-valued random fields {[G(x)],x ∈ D}. More precisely, we propose and

analyze two classes of random fields that use two different nonlinear mappings. The first

class, which uses a matrix exponential mapping, contains the class of (shifted) lognormal

random fields (when [G] is a Gaussian random field) and can be seen as a generalization

of this classical class. The second class contains (a shifted version of) the class SFE+
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of positive-definite matrix-valued random fields introduced in [57] which arises from a

maximum entropy principle given natural constraints on the integrability of random

matrices and their inverse.

Concerning (ii), and following [59], we introduce a parametrization of the second order

random fields [G] using Karhunen-Loeve and Polynomial Chaos expansions, therefore

yielding a parametrization of the class of random fields in terms of the set of coefficients

of the Polynomial Chaos expansions of the random variables of the Karhunen-Loeve

expansions. Second order statistical properties of [G] are imposed by enforcing orthog-

onality constraints on the set of coefficients, therefore yielding a class of random fields

parametrized on the compact Stiefel manifold. It finally results in a parametrized class of

random fields K = {[K(·)] = F(·,Ξ, z); z ∈ R
ν}, where the parameters z are associated

with a parametrization of the compact Stiefel manifold, and where Ξ is the Gaussian

germ of the Polynomial Chaos expansion. A general procedure is then proposed for the

identification of random fields in this new class, this procedure being an adaptation for

the present parametrization of the procedure described in [60]. The parametrization of the

Stiefel manifold, some additional mathematical properties of the resulting parametrized

class of random fields and the general identification procedure are introduced in Section

3.

The numerical solution of the parameterized stochastic boundary value problems pro-

vides an explicit approximation of the application u : D×R
Ng ×Rν → R that maps the

parameterized general class of random fields to the corresponding set of random solutions

{u(·,Ξ, z); z ∈ Rν}. This explicit map can be efficiently used in the identification proce-

dure in order to avoid the solution of multiple stochastic forward problems. Concerning

(iii), the general class of random fields possibly contain random fields which are not uni-

formly bounded, which requires a particular mathematical analysis and the introduction

of dedicated approximation methods. In particular, in Section 4, we prove the existence

and uniqueness of a weak solution u in the natural function space associated with the

energy norm, and we propose suitable constructions of approximation spaces for Galerkin

approximations. Also, since the solution of this problem requires the approximation of

a very high-dimensional map, complexity reduction methods are required. The solution

map has a tensor structure which is inherited from the particular parametrization of

the general class of random fields. This allows the use of complexity reduction methods

based on low-rank or sparse tensor approximation methods. The applicability of these

reduction techniques in the present context is briefly discussed in Section 4.3. Note that

this kind of approach for stochastic inverse problems has been recently analyzed in [54]

in a particular Bayesian setting with another type of representation of random fields,

and with sparse approximation methods for the approximation of the high-dimensional

functions.
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2 General class of non-Gaussian positive-definite matrix-valued random

fields

2.1 Elements for the construction of a general class of random fields

Let d � 1 and n � 1 be two integers. Let D be a bounded open domain of Rd, let ∂D be

its boundary and let D = D ∪ ∂D be its closure.

Let C+
n be the set of all the random fields [K] = {[K(x)],x ∈ D}, defined on a

probability space (Θ, T ,P), with values in M
+
n (R). A random field [K] in C+

n corresponds

to the coefficients of a stochastic elliptic operator and must be identified from data, by

solving a statistical inverse boundary value problem. The objective of this section is to

construct a general representation of [K] which allows its identification to be performed

using experimental data and solving a statistical inverse problem based on the explicit

construction of the solution of the forward (direct) stochastic boundary value problem.

For that, we need to introduce some hypotheses for random field [K] which requires the

introduction of a subset of C+
n .

In order to normalize random field [K], we introduce a function x �→ [K(x)] from D

into M+
n (R) such that, for all x in D and for all z in Rn,

k 0‖z‖22 � < [K(x)] z , z >2 � n−1/2k̃ 1‖z‖22 , (2.1)

in which k 0 and k̃ 1 are positive real constants, independent of x, such that 0 < k 0 <

k̃ 1 < +∞. The right inequality means that ‖K(x)‖2 � n−1/2k̃ 1 and using ‖K(x)‖F �√
n ‖K(x)‖2 yields ‖K(x)‖F � k̃ 1. Since 0 � [K(x)]jj and [K(x)]2jj � ‖K(x)‖2F , it can

be deduced that

tr[K(x)] � k 1 , (2.2)

in which k 1 is a positive real constant, independent of x, such that k 1 = n k̃ 1.

We then introduce the following representation of the lower-bounded random field [K]

in C+
n such that, for all x in D,

[K(x)] =
1

1 + ε
[L(x)]T {ε[ In] + [K0(x)]} [L(x)] , (2.3)

in which ε > 0 is any fixed positive real number, where [ In] is the (n × n) identity ma-

trix and where [L(x)] is the upper triangular (n × n) real matrix such that, for all x in

D, [K(x)] = [L(x)]T [L(x)] and where [K0] = {[K0(x)],x ∈ D} is any random field in C+
n .

For instance, if function [K] is chosen as the mean function of random field [K], that is

to say, if for all x in D, [K(x)] = E{[K(x)]}, then Eq. (2.3) shows that E{[K0(x)]} must

be equal to [ In], what shows that random field [K0] is normalized.

Lemma 1 If [K0] is any random field in C+
n , then the random field [K], defined by

Eq. (2.3), is such that

(i) for all x in D,

‖K(x)‖F �
k 1

1 + ε
(
√
n ε+ ‖K0(x)‖F ) a.s . (2.4)
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(ii) for all z in Rn and for all x in D,

k ε‖z‖22 � < [K(x)] z , z >2 a.s , (2.5)

in which k ε = k 0 ε/(1 + ε) is a positive constant independent of x.

(iii) for all x in D,

‖[K(x)]−1‖F �

√
n (1 + ε)

ε
tr[K(x)]−1 a.s , (2.6)

which shows that, for all integer p � 1, {[K(x)]−1,x ∈ D} is a p-order random

field, i.e., for all x in D, E{‖[K(x)]−1‖pF } < +∞ and in particular, is a second-

order random field.

Proof (i) Taking the Frobenius norm of the two members of Eq. (2.3), using ‖L(x)‖F
= ‖[L(x)]T ‖F =

√
tr[K(x)] and taking into account Eq. (2.2), we obtain Eq. (2.4).

(ii) Eq. (2.5) can easily be proven using Eq. (2.3) and the left inequality in Eq. (2.1).

(iii) We have ‖[K(x)]−1‖F � ‖[L(x)]−1‖F ‖[L(x)]−T ‖F ‖[Kε(x)]
−1‖F in which [Kε(x)] =

(ε[ In] + [K0(x)])/(1 + ε). Since [K0(x)] is positive definite almost surely, for x fixed in

D, we can write [K0(x)] = [Φ(x)] [Λ(x)] [Φ(x)]T in which [Λ(x)] is the diagonal random

matrix of the positive-valued random eigenvalues Λ1(x), . . . , Λn(x) of [K0(x)] and [Φ(x)]

is the orthogonal real random matrix made up of the associated random eigenvectors.

It can then be deduced that [Kε(x)]
−1 = (1 + ε) [Φ(x)] (ε[In] + [Λ(x)])−1 [Φ(x)]T and

consequently, for x in D, ‖[Kε(x)]
−1‖2F = tr{[Kε(x)]

−2} = (1+ε)2
∑n

j=1(ε+Λj(x))
−2 �

(1 + ε)2n/ε2. Since ‖[L(x)]−1‖F ‖[L(x)]−T ‖F = tr[K(x)]−1, we deduce Eq. (2.6).

Lemma 2 If [K0] is any random field in C+
n , such that, for all x in D,

(i) ‖K0(x)‖F � β0 < ∞ almost surely, in which β0 is a positive-valued random vari-

able independent of x, then the random field [K], defined by Eq. (2.3), is such that,

for all x in D,

‖K(x)‖F � β < +∞ a.s , (2.7)

in which β is the positive-valued random variable independent of x such that β =

k 1(
√
n ε+ β0)/(1 + ε).

(ii) E{‖K0(x)‖2F } < +∞, then [K] is a second-order random field,

E{‖K(x)‖2F } < +∞ . (2.8)

Proof Eqs. (2.7) and (2.8) are directly deduced from Eq. (2.4).

Remark 2.1 If β0 is a second-order random variable, then Eq. (2.7) implies Eq. (2.8).

However, if Eq. (2.8) holds for all x in D, then this equation does not imply the existence

of a positive random variable β such that Eq. (2.7) is verified and a fortiori, even if β

existed, this random variable would not be, in general, a second-order random variable.
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2.2 Representations of random field [K0] as transformations of a

non-Gaussian second-order symmetric matrix-valued random field [G]

Let C2,S
n be the set of all the second-order random fields [G] = {[G(x)],x ∈ D}, defined

on probability space (Θ, T ,P), with values in MS
n(R). Consequently, for all x in D, we

have E{‖G(x)‖2F} < +∞.

In this section, we propose two representations of random field [K0] belonging to C+
n ,

yielding the definition of two different subsets of C+
n :

• Exponential type representation. The first type representation is written as [K0(x)] =

expM([G(x)]) with [G] in C2,S
n and where expM denotes the exponential of symmetric

square real matrices. It should be noted that random field [G] is not assumed to

be Gaussian. If [G] were a Gaussian random field, then [K0] would be a log-normal

matrix-valued random field.

• Square type representation. The second type representation is written as [K0(x)] =

[L(x)]T [L(x)] in which [L(x)] is an upper triangular (n × n) real random matrix, for

which the diagonal terms are positive-valued random variables, and which is written

as [L(x)] = [L([G(x)])] with [G] in C2,S
n and where [G] �→ [L([G])] is a well defined

deterministic mapping from MS
n(R) into the set of all the upper triangular (n×n) real

deterministic matrices. Again, random field [G] is not assumed to be Gaussian. If for

all 1 � j � j′ � n, [G]jj′ are independent copies of a Gaussian random field and for

a particular definition of mapping [L([G])], then [K0] would be the set SFG+ of the

Non-Gaussian matrix-valued random field previously introduced in [57].

These two representations are general enough, but the mathematical properties of each

one will be slightly different and the computational aspects will be different.

2.2.1 Exponential type representation of random field [K0]

It should be noted that for all symmetric real matrix [A] in M
S
n(R), [B] = expM([A]) is

a well defined matrix belonging to M
+
n (R). All matrix [A] in M

S
n(R) can be written as

[A] = [Φ] [µ] [Φ]T in which [µ] is the diagonal matrix of the real eigenvalues µ1, . . . , µn

of [A] and [Φ] is the orthogonal real matrix made up of the associated eigenvectors. We

then have [B] = [Φ] exp
M
([µ])[Φ]T in which exp

M
([µ]) is the diagonal matrix in M+

n (R)

such that [exp
M
([µ])]jk = eµj δjk .

For all random field [G] belonging to C2,S
n , the random field [K0] = expM([G]) defined,

for all x in D, by

[K0(x)] = expM([G(x)]) , (2.9)

belongs to C+
n . If [K0] is any random field given in C+

n , then there exists a unique random

field [G] with values in the M
S
n(R) such that, for all x in D,

[G(x)] = logM([K0(x)]) . (2.10)

in which logM is the reciprocity mapping of expM which is defined on M+
n (R) with values

in MS
n(R), but in general, this random field [G] is not a second-order random field and

therefore, is not in C2,S
n . The following lemma shows that, if a random field [K0] in C+

n ,

satisfies additional properties, then there exists [G] in C2,S
n such that [K0] = expM([G]).
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Lemma 3 Let [K0] be a random field belonging to C+
n such that for all x ∈ D,

E{‖K0(x)‖2F } < +∞ , E{‖[K0(x)]
−1‖2F } < +∞ . (2.11)

Then there exists [G] belonging to C2,S
n such that [K0] = exp

M
([G]).

Proof For x fixed in D, we use the spectral representation of [K0(x)] introduced in

the proof of Lemma 1. The hypotheses introduced in Lemma 3 can be rewritten as

E{‖K0(x)‖2F } =
∑n

j=1 E{Λj(x)
2} < +∞ and E{‖[K0(x)]

−1‖2F } =
∑n

j=1 E{Λj(x)
−2} <

+∞. Similarly, it can easily be proven that E{‖G(x)‖2F } =
∑n

j=1 E{(log Λj(x))
2}. Since

n is finite, the proof of the lemma will be complete if we prove that, for all j, we have

E{(log Λj(x))
2} < +∞ knowing that E{Λj(x)

−2} < +∞ and E{Λj(x)
2} < +∞. For j

and x fixed, let P (dλ) be the probability distribution of the random variable Λj(x). We

have E{(log Λj(x))
2} =

∫ 1

0
(logλ)2 P (dλ) +

∫ +∞
1

(logλ)2 P (dλ). For 0 < λ < 1, we have

(log λ)2 < λ−2, and for 1 < λ < +∞, we have (logλ)2 < λ2. It can then be deduced

that E{(log Λj(x))
2} <

∫ 1

0
λ−2 P (dλ)+

∫ +∞
1

λ2 P (dλ) <
∫ +∞
0

λ−2 P (dλ)+
∫ +∞
0

λ2 P (dλ)

= E{Λj(x)
−2}+ E{Λj(x)

2} < +∞.

Remark 2.2 The converse of Lemma 3 does not hold. If [G] is any random field in C2,S
n ,

in general, the random field [K0] = expM([G]) is not a second-order random field.

Proposition 1 Let [G] be a random field belonging to C2,S
n and let [K0] be the ran-

dom field belonging to C+
n such that, for all x in D, [K0(x)] = expM([G(x)]). Then the

following results hold:

(i) For all x in D,

‖K0(x)‖F �
√
n e‖G(x)‖F a.s , (2.12)

E{‖K0(x)‖2F } � nE{e2‖G(x)‖F } , (2.13)

E{‖ logM[K0(x)]‖2F } < +∞ . (2.14)

(ii) If ‖G(x)‖F � βG < +∞ almost surely, in which βG is a positive random variable

independent of x, then ‖K0(x)‖F � β0 < +∞ almost surely, in which β0 is the

positive random variable, independent of x, such that β0 =
√
n eβG.

Proof For (i), we have ‖ expM(G(x))‖2 � e‖G(x)‖2. Since [K0(x)] = expM(G(x)) and

since ‖K0(x)‖F �
√
n ‖K0(x)‖2, it can then be deduced that ‖K0(x)‖F �

√
n e‖G(x)‖F

and then E{‖K0(x)‖2F } � nE{e2‖G(x)‖F }. Since [G] is a second-order random field, the

inequality (2.14) is deduced from Eq. (2.10). For (ii), the proof is directly deduced from

the inequality (2.12).

2.2.2 Square type representation of random field [K0]

Let g �→ h(g; a) be a given function from R in R+, depending on one positive real

parameter a. For all fixed a, it is assumed that:



Random fields representations for statistical inverse boundary value problems 9

(i) h(.; a) is a strictly monotonically increasing function on R, which means that

h(g; a) < h(g′; a) if −∞ < g < g′ < +∞;

(ii) there are real numbers 0 < ch < +∞ and 0 < ca < +∞, such that, for all g in R,

we have h(g; a) � ca + ch g
2.

It should be noted that ca � h(0, a). In addition, from (i) it can be deduced that, for

g < 0, we have h(g; a) < h(0, a) � ca < ca + ch g
2. Therefore, the inequality given in

(ii), which is true for g < 0, allows the behavior of the increasing function g �→ h(g; a)

to be controlled for g > 0. Finally, the introduced hypotheses imply that, for all a > 0,

g �→ h(g; a) is a one-to-one mapping from R onto R
+ and consequently, the reciprocity

mapping, v �→ h−1(v; a), is a strictly monotonically increasing function from R+ onto R.

The square type representation of random field [K0] belonging to C+
n is then defined as

follows. For all x in D,

[K0(x)] = L([G(x)]) , (2.15)

in which {[G(x)],x ∈ D} is a random field belonging to C2,S
n and where [G] �→ L([G]) is

a measurable mapping from MS
n(R) into M+

n (R) which is defined as follows. The matrix

[K0] = L([G]) ∈ M+
n (R) is written as

[K0] = [L]T [L] , (2.16)

in which [L] is an upper triangular (n× n) real matrix with positive diagonal, which is

written as

[L] = L([G]) , (2.17)

where [G] �→ L([G]) is the measurable mapping from MS
n(R) into MU

n (R) defined by

[L([G])]jj′ = [G]jj′ , 1 � j < j′ � n , (2.18)

[L([G])]jj =
√

h([G]jj ; aj) , 1 � j � n , (2.19)

in which a1, . . . , an are positive real numbers.

If [K0] is any random field given in C+
n , then there exists a unique random field [G]

with values in the MS
n(R) such that, for all x in D,

[G(x)] = L
−1([K0(x)]) , (2.20)

in which L−1 is the reciprocity function of L, from M+
n (R) into MS

n(R), which is explicitly

defined as follows. For all 1 � j � j′ � n,

[G(x)]jj′ = [L−1([L(x)])]jj′ , [G(x)]j′j = [G(x)]jj′ . (2.21)

in which [L] �→ L−1([L]) is the unique reciprocity mapping of L (due to the existence of

v �→ h−1(v; a)) defined on MU
n (R), and where [L(x)] follows from the Cholesky factoriza-

tion of random matrix [K0(x)] = [L(x)]T [L(x)] (see Eqs. (2.15) and (2.16)).

Example of function h

Let us give an example which shows that there exists at least one such a construc-

tion. For instance, we can choose h = hAPM, in which the function hAPM is defined
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in [57] as follows. Let be s = δ/
√
n+ 1 in which δ is a parameter such that 0 <

δ <
√
(n+ 1)/(n− 1) and which allows the statistical fluctuations level to be con-

trolled. Let be aj = 1/(2 s2) + (1 − j)/2 > 0 and hAPM(g; a) = 2 s2 F−1
Γa

(FW (g/s)) with

FW (w̃) =
∫ w̃

−∞
1√
2π

exp(− 1
2w

2) dw and F−1
Γa

(u) = γ the reciprocal function such that

FΓa
(γ) = u with FΓa

(γ) =
∫ γ

0
1

Γ(a) t
a−1 e−t dt and Γ(a) =

∫ +∞
0 ta−1 e−t dt. Then, for

all j = 1, . . . , n, it can be proven [57] that g �→ hAPM(g; aj) is a strictly monotonically

increasing function from R into R
+ and there are positive real numbers ch and caj

such

that, for all g in R, we have hAPM(g; aj) � caj
+ ch g

2. In addition, it can easily be seen

that the reciprocity function is written as hAPM−1
(v; a) = s F−1

W (FΓa
(v/(2s2)).

Proposition 2 Let [G] be a random field belonging to C2,S
n and let [K0] be the random

field belonging to C+
n such that, for all x in D, [K0(x)] = L([G(x)]). We then have the

following results:

(i) There exist two real numbers 0 < γ0 < +∞ and 0 < γ1 < +∞ such that, for all x

in D, we have

‖K0(x)‖F � γ0 + γ1‖G(x)‖2F a.s , (2.22)

E{‖K0(x)‖F } < +∞ , (2.23)

If E{‖G(x)‖4F} < +∞ , then E{‖K0(x)‖2F } < +∞ . (2.24)

(ii) If ‖G(x)‖F � βG < +∞ a.s, in which βG is a positive random variable independent

of x, we then have ‖K0(x)‖F � β0 < +∞ almost surely, in which β0 is the positive

random variable, independent of x, such that β0 = γ0 + γ1 β
2
G.

Proof (i) Since [K0(x)] = [L(x)]T [L(x)], we have ‖K0(x)‖F � ‖L(x)‖2F with ‖L(x)‖2F =∑
j h([G(x)]jj ; aj) +

∑
j<j′ [G(x)]2jj′ . Therefore, ‖K0(x)‖F �

∑
j caj

+ max{ch, 1/2}∑
j,j′ [G(x)]2jj′ which yields inequality (2.22) with γ0 =

∑
j caj

and γ1 = max{ch, 1/2}.
Taking the mathematical expectation yields E{‖K0(x)‖F } � γ0+γ1E{‖G(x)‖2F} < +∞
because [G] is a second-order random field. Taking the square and then the mathematical

expectation of Eq. (2.22) yields Eq. (2.24).

(ii) The proof is directly deduced from Eq. (2.22).

2.3 Representation of any random field [G] in C2,S
n

As previously explained, we are interested in the identification of the random field [K]

which belongs to C+
n , by solving a statistical inverse problem related to a stochas-

tic boundary value problem. Such an identification is carried out using the proposed

representation of [K] (defined by Eq. (2.3)) as a function of the random field [K0]

which is written either as [K0(x)] = expM([G(x)]) (see Eq. (2.9)) or as [K0(x)] =

[L([G(x)])]T [L([G(x)])] (see Eqs. (2.16) and (2.17)). In these two representations, [G] is

any random field in C2,S
n , which has to be identified (instead of [K] in C+

n ). Consequently,

we have to construct a representation of any random field [G] in C2,S
n . Since any [G] in

C2,S
n is a second-order random field, a general representation of [G], adapted to its iden-
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tification, is the polynomial chaos expansion for which the coefficients of the expansion

constitutes a family of functions from D into MS
n(R).

It is well known that a direct identification of such a family of matrix-valued functions

cannot easily be done. An adapted representation must be introduced consisting in choos-

ing a deterministic vector basis, then representing [G] on this deterministic vector basis

and finally, performing a polynomial chaos expansion of the random coefficients on this

deterministic vector basis. The representation is generally in high stochastic dimension.

Consequently, the identification of a very large number of coefficients must be done. It

is then interesting to use a statistical reduction and thus to choose, for the deterministic

vector basis, the Karhunen-Loève vector basis. Such a vector basis is constituted of the

family of the eigenfunctions of the compact covariance operator of random field [G].

2.3.1 Covariance operator of random field [G] and eigenvalue problem

Let [G0(x)] = E{[G(x)]} be the mean function of [G], defined on D with values in

MS
n(R). The covariance function of random field [G] is the function (x,x′) �→ CG(x,x′),

defined on D×D, with values in the space MS
n(R)⊗MS

n(R) of fourth-order tensors, such

that

CG(x,x′) = E{([G(x)]− [G0(x)]) ⊗ ([G(x′)]− [G0(x
′)])} . (2.25)

It is assumed that [G0] is a uniformly bounded function on D, i.e.

‖G0‖∞ := ess supx∈D‖G0(x)‖F < +∞ (2.26)

and that function CG is square integrable on D×D. Consequently, the covariance oper-

ator CovG, defined by the kernel CG, is a Hilbert-Schmidt, symmetric, positive operator

in the Hilbert space L2(D,MS
n(R)) equipped with the inner product,

≪ [Gi] , [Gj ] ≫=

∫

D

tr{[Gi(x)]
T [Gj(x)]} dx , (2.27)

and the associated norm |||[Gi]||| =≪ [Gi] , [Gi] ≫1/2. The eigenvalue problem related to

the covariance operator CovG, consists in finding the family {[Gi(x)],x ∈ D}i�1 of the

normalized eigenfunctions with values in M
S
n(R) and the associated positive eigenvalues

{σi}i�1 with σ1 � σ2 � . . . → 0 and
∑+∞

i=1 σ2
i < +∞, such that

∫

D

CG(x,x′) : [Gi(x
′)] dx′ = σi [Gi(x)] , i � 1 , (2.28)

in which {CG(x,x′) : [Gi(x
′)]}kℓ =

∑
k′ℓ′{CG(x,x′)}kℓk′ℓ′ {[Gi(x

′)]}k′ℓ′ . The normalized

family {[Gi(x)],x ∈ D}i�1 is a Hilbertian basis of L2(D,MS
n(R)) and consequently,

≪ [Gi] , [Gj ] ≫= δij . It can easily be verified that

E{‖G(x)‖2F } = ‖G0(x)‖2F +
+∞∑

i=1

σi ‖Gi(x)‖2F < +∞ , ∀x ∈ D , (2.29)

∫

D

E{‖G(x)‖2F } dx = |||G0|||2 +
+∞∑

i=1

σi < +∞ . (2.30)
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We now give some properties which will be useful later. Since CG is a covariance func-

tion, we have ||CG(x,x′)||2 � tr{CG(x,x)}× tr{CG(x′,x′)} in which ||CG(x,x′)||2 =∑
kℓk′ℓ′{CG(x,x′)}2kℓk′ℓ′ and tr{CG(x,x)} =

∑
kℓ{CG(x,x)}kℓkℓ � 0. We can then de-

duce the following Lemma.

Lemma 4 If x �→ tr{CG(x,x)} is integrable on D, then CG is square integrable on

D ×D. If x �→ tr{CG(x,x)} is bounded on D, then CG is bounded on D ×D (and thus

square integrable on D ×D) and the eigenfunctions x �→ [Gi(x)] are bounded functions

from D into MS
n(R). For i � 1, we then have ‖Gi‖∞ = ess supx∈D‖Gi(x)‖F < +∞.

Using additional assumptions about the kernel CG, more results concerning the decrease

rate of eigenvalues {σi}i�1 can be obtained.

Lemma 5 We have the following results for d = 1 and for d � 2.

(a) For d = 1, it is proven (see Theorem 9.1 of Chapter II of [72]) that, if for a given

integer µ � 1 and for all integer α such that 1 � α � µ, the functions (x, x′) �→
∂αCG(x, x′)/∂x′α are bounded functions on D×D, then

∑+∞
i=1 σ

ζ+2/(2µ+1)
i < +∞

for any ζ > 0.

(b) For d � 2 (finite integer), a useful result is given by Theorem 4 of [38]. Let us

assume that D has a sufficiently smooth boundary ∂D. For x in D, let h be such

that x + h and x + 2h belong to D. We then define the difference operator ∆h

such that, for all x′ fixed in D, ∆hCG(x,x′) = CG(x+h,x′)−CG(x,x′) and ∆2
h

is defined as the second iterate of ∆h. For all x′ fixed in D, for a given positive

integer µ such that µ � 1 and for a given real ζ such that 0 < ζ � 1, let be

‖CG(·,x′)‖µ =
∑

|α|�µ

sup
x∈D

‖DαCG(x,x′)‖+
∑

|α|=µ

sup
x,h

‖∆2
hDαCG(x,x′)‖

‖h‖µ+ζ
,

in which DαCG(x,x′) = ∂|α|CG(x,x′)/∂xα1
1 . . . ∂xαd

d with |α| = α1 + . . . + αd.

Therefore, if CG is continuous on D ×D such that supx′∈D ‖CG(·,x′)‖µ < +∞,

we then have the following decrease of eigenvalues: σi = O(i−1−(µ+ζ)/d).

(c) For d � 2 (finite integer), a similar result to (b) in Lemma 5 can be found in

[45] under hypotheses weaker than those introduced above, but in practice, it seems

much more difficult to verify these hypotheses for a given kernel CG.

Comment about the eigenvalue problem

Any symmetric (n×n) real matrix [G] can be represented by a real vectorw of dimension

nw = n(n + 1)/2 such that [G] = G(w) in which G is the one-to-one linear mapping

from Rnw in MS
n(R), such that, for 1 � i � j � n, one has [G]ij = [G]ji = wk with

k = i+ j(j − 1)/2. Let L2
nw

be the set of all the Rnw -valued second-order random fields

{W(x),x ∈ D} defined on probability space (Θ, T ,P). Consequently, any random field

[G] in C2,S
n can be written as

[G] = G(W), W = G−1([G]), (2.31)
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in which W is a random field in L2
nw

. The eigenvalue problem defined by Eq. (2.28) can

be rewritten as ∫

D

[CW(x,x′)]wi(x′) dx′ = σi w
i(x) , i � 1, (2.32)

in which [CW(x,x′)] = E{(W(x)−w0(x))(W(x′)−w0(x′))T } and wherew0 = G−1([G0]).

For i � 1, the eigenfunctions [Gi] are then given by [Gi] = G(wi).

2.3.2 Chaos representation of random field [G]

Under the hypotheses introduced in Section 2.3.1, random field [G] admits the following

Karhunen-Loève decomposition,

[G(x)] = [G0(x)] +
+∞∑

i=1

√
σi [Gi(x)] ηi , (2.33)

in which {ηi}i�1 are uncorrelated random variables with zero mean and unit variance.

The second-order random variables {ηi}i�1 are represented using the following polyno-

mial chaos expansion

ηi =

+∞∑

j=1

yji Ψj({Ξk}k∈N) , (2.34)

in which {Ξk}k∈N is a countable set of independent normalized Gaussian random variables

and where {Ψj}j�1 is the polynomial chaos basis composed of normalized multivariate

Hermite polynomials such that E{Ψj({Ξk}k∈N)Ψj′({Ξk}k∈N)} = δjj′ . Since E{ηiηi′} =

δii′ , it can be deduced that
+∞∑

j=1

yji y
j
i′ = δii′ . (2.35)

2.4 Random upper bound for random field [K]

Lemma 6 If
∑+∞

i=1

√
σi ‖Gi‖∞ < +∞, then for all x in D,

‖G(x)‖F � βG < +∞ a.s., (2.36)

in which βG is the second-order positive-valued random variable,

βG = ‖G0‖∞ +

+∞∑

i=1

√
σi ‖Gi‖∞ |ηi|, E{β2

G} < +∞ . (2.37)

Proof The expression of βG defined in Eq. (2.37) is directly deduced from Eq. (2.33).

The random variable βG can be written as βG = ‖G0‖∞ + β̂. Clearly, if E{β̂2} =∑
i,i′

√
σi
√
σi′‖Gi‖∞‖Gi′‖∞E{|ηi| |ηi′ |} < +∞, then E{β2

G} < +∞. We haveE{|ηi| |ηi′ |} �√
E{η2i }

√
E{η2i′} = 1 and thus E{β̂2} � (

∑+∞
i=1

√
σi ‖Gi‖∞)2.
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Remark 2.3 It should be noted that, if ‖Gi‖∞ < c∞ < +∞ for all i � 1 with c∞
independent of i, we then have

∑+∞
i=1

√
σi ‖Gi‖∞ < +∞ if:

(i) for d = 1, the hypothesis of (a) in Lemma 5 holds for µ = 2. The proof is the

following. We have
∑+∞

i=1

√
σi ‖Gi‖∞ < c∞

∑+∞
i=1

√
σi. Since σi → 0 for i → +∞,

there exists an integer i0 � 1 such that, for all i � i0, we have σi < 1. For µ = 2,

then there exits 0 < ζ < 1/10 such that
∑+∞

i=i0

√
σi �

∑+∞
i=i0

σ
ζ+2/5
i < +∞, which

yields
∑+∞

i=1

√
σi < +∞, and consequently,

∑+∞
i=1 c∞

√
σi < +∞.

(ii) for d � 2 (finite integer), the hypothesis of (b) in Lemma 5 holds for µ = d. The

proof is then the following. We have
∑+∞

i=1

√
σi ‖Gi‖∞ < c∞

∑+∞
i=1

√
σi and for

µ = d,
√
σi = O(i−1−ζ/(2d)) and consequently, for 0 < ζ � 1,

∑+∞
i=1

√
σi < +∞.

The previous results allow the following proposition to be proven.

Proposition 3 Let σi and [Gi] be defined in Section 2.3.1. If
∑+∞

i=1

√
σi ‖Gi‖∞ < +∞,

then for all x in D,

‖K(x)‖F � β < +∞ a.s , (2.38)

in which β is a positive-valued random variable independent of x. Let βG be the second-

order positive-valued random variable defined by Eq. (2.37).

(i) (Exponential type representation) If [K(x)] is represented by Eq. (2.3) with Eq. (2.9),

[K(x)] =
1

1 + ε
[L(x)]T {ε[ In] + expM([G(x)])} [L(x)] , (2.39)

then, β = k 1

√
n(ε+ eβG)/(1 + ε).

(ii) (Square type representation) If [K(x)] is represented by Eq. (2.3) with Eqs. (2.16)

and (2.17),

[K(x)] =
1

1 + ε
[L(x)]T {ε[ In] + [L([G(x)])]T [L([G(x)])]} [L(x)] , (2.40)

then, β = k 1(
√
n ε+ γ0 + γ1 β

2
G)/(1 + ε) in which γ0 and γ1 are two positive and

finite real numbers. In addition the random variable β is such that

E{β} < +∞ . (2.41)

Proof Proposition 3 results from Lemma 2, Propositions 1 and 2, and Lemma 6.

2.5 Approximation of random field [G]

Taking into account Eqs. (2.33) to (2.35), we introduce the approximation [G(m,N)] of

the random field [G] such that,

[G(m,N)(x)] = [G0(x)] +

m∑

i=1

√
σi [Gi(x)] ηi , (2.42)

ηi =

N∑

j=1

yji Ψj(Ξ) , (2.43)
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in which the {Ψj}Nj=1 only depends on a random vector Ξ = (Ξ1, . . . ,ΞNg
) of Ng inde-

pendent normalized Gaussian random variables Ξ1, . . . ,ΞNg
defined on probability space

(Θ, T ,P). The coefficients yji are supposed to verify
∑N

j=1 y
j
i y

j
i′ = δii′ which ensures

that the random variables, {ηi}mi=1, are uncorrelated centered random variables with

unit variance, which means that E{ηiηi′} = δii′ . The relation between the coefficients

can be rewritten as

[y]T [y] = [Im] , (2.44)

in which [y] ∈ MN,m(R) is such that [y]ji = yji for 1 � i � m and 1 � j � N . Introducing

the random vectors η = (η1, . . . , ηm) and Ψ(Ξ) = (Ψ1(Ξ), . . . ,ΨN(Ξ)), Eq. (2.43) can

be rewritten as

η = [y]T Ψ(Ξ) . (2.45)

Equation (2.44) means that [y] belongs to the compact Stiefel manifold

Vm(RN ) =
{
[y] ∈ MN,m(R) ; [y]T [y] = [Im]

}
. (2.46)

With the above hypotheses, the covariance operators of random fields [G] and [G(m,N)]

coincide on the subspace spanned by the finite family {[Gi]}mi=1.

3 Parametrization of discretized random fields in the general class and

identification strategy

Let us consider the approximation {[G(m,N)(x)],x ∈ D} of {[G(x)],x ∈ D} defined by

Eqs. (2.42) to (2.44). The corresponding approximation {[K(m,N)(x)],x ∈ D} of random

field {[K(x)],x ∈ D} defined by Eq. (2.39) or by Eq. (2.40), is rewritten, for all x in D,

as

[K(m,N)(x)] = K(m,N)(x,Ξ, [y]) , (3.1)

in which (x,y, [y]) �→ K(m,N)(x,y, [y]) is a mapping defined on D×RNg ×Vm(RN ) with

values in M+
n (R).

• The first objective of this section is to constructed a parameterized general class of

random fields, {[K(m,N)(x)],x ∈ D}, in introducing a minimal parametrization of the

compact Stiefel manifold Vm(RN ) with an algorithm of complexity O(Nm2).

• The second objective will be the presentation of an identification strategy of an optimal

random field {[K(m,N)(x)],x ∈ D} in the parameterized general class, using partial

and limited experimental data.

3.1 Minimal parametrization of the compact Stiefel manifold Vm(RN )

Here, we introduce a particular minimal parametrization of the compact Stiefel manifold

Vm(RN ) using matrix exponentials (see e.g. [1]). The dimension of Vm(RN ) being ν =

mN−m(m+1)/2, the parametrization consists in introducing a surjective mapping from

Rν onto Vm(RN ). The construction is as follows.

(i) Let [a] be given in Vm(RN ) and let [a⊥] ∈ MN,N−m(R) be the orthogonal com-
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plement of [a], which is such that [a a⊥] is in O(N). Consequently, we have,

[a]T [a] = [Im], [a⊥]
T [a⊥] = [IN−m], [a⊥]

T [a] = [0N−m,m] . (3.2)

The columns of matrix [a⊥] can be chosen as the vectors of the orthonormal basis

of the null space of [a]T . In practice [30], [a⊥] can be constructed using the QR

factorization of matrix [a] = [QN ] [Rm] and [a⊥] is then made up of the columns

j = m+ 1, . . . , N of [QN ] ∈ O(N).

(ii) Let [A] be a skew-symmetric (m×m) real matrix which then depends on m(m−
1)/2 parameters denoted by z1, . . . , zm(m−1)/2 and such that, for 1 � i < j � m,

one has [A]ij = −[A]ji = zk with k = i + (j − 1)(j − 2)/2 and for 1 � i � m,

[A]ii = 0.

(iii) Let [B] be a ((N−m)×m) real matrix which then depends on (N−m)m parameters

denoted by zm(m−1)/2+1, . . . , zm(m−1)/2+(N−m)m and such that, for 1 � i � N−m

and 1 � j � m, one has [B]ij = zm(m−1)/2+k with k = i + (j − 1)(N − m).

Introducing z = (z1, . . . , zν) in Rν , there is a one-to-one linear mapping S from

Rν into MSS
m (R)×MN−m,m(R) such that

{[A], [B]} = S(z) , (3.3)

in which matrices [A] and [B] are defined in (i) and (ii) above as a function of z.

Let t > 0 be a parameter which is assumed to be fixed. Then, for an arbitrary [a] in

Vm(RN ), a first minimal parametrization of the compact Stiefel manifold Vm(RN ) can

be defined by the mapping M[a] from Rν onto Vm(RN ) such that

[y] = M[a](z) := [a a⊥] {expM(t
[

A −BT

B 0

]
)} [IN,m] . (3.4)

In the context of the present development, we are interested in the case for which N � m

and possibly, in the case for which N ≫ m with N very large. The evaluation of the

mapping M[a] defined by Eq. (3.4) has a complexity O(N3).

We then propose to use a second form of minimal parametrization of the compact

Stiefel with a reduced computational complexity. This parametrization, which is derived

from the results presented in [20], is defined by the mapping M[a] from R
ν onto Vm(RN )

such that

[y] = M[a](z) := [a Q] {exp
M
(t

[
A −RT

R 0

]
)} [I2m,m] , (3.5)

in which [a Q] ∈ MN,2m(R). The matrix [Q] is in Vm(RN ) and [R] is an upper triangular

(m ×m) real matrix. These two matrices are constructed using the QR factorization of

the matrix [a⊥] [B] ∈ MN,m(R),

[a⊥] [B] = [Q] [R] . (3.6)

The evaluation of the mapping M[a] defined by Eq. (3.5) has a complexity O(Nm2).
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3.2 Parameterized general class of random fields and parameterized random

upper bound

Using Eq. (3.5), the parameterized general class of random field {[K(m,N)(x)], x ∈ D} is

then defined as

K := {K(m,N)(·,Ξ,M[a](z)) ; z ∈ R
ν} . (3.7)

It should be noted that, for z = 0, [y] = M[a](0) = [a], which corresponds to the random

field [K(m,N)] = K(m,N)(·,Ξ, [a]). The following proposition corresponds to Proposition 3

for the approximation [K(m,N)] of random field [K].

Proposition 4 The random field [K(m,N)] = K(m,N)(·,Ξ,M[a](z)), z ∈ Rν , is such that

‖K(m,N)‖F � γ(Ξ, z) < +∞ (3.8)

almost surely and for all z ∈ Rν , where γ : RNg × Rν → R is a measurable positive

function. For the square type representation of random fields, there exists a constant γ,

independent on N and z, such that

E{γ(Ξ, z)} � γ < +∞ for all z ∈ R
ν . (3.9)

Moreover, if
∑+∞

i=1

√
σi ‖Gi‖∞ < +∞, with σi and [Gi] defined in Section 2.3.1, (3.9) is

satisfied for a constant γ independent of m.

Proof Following the proof of Lemma 6, we obtain

‖G(m,N)(x)‖F � ‖G0‖∞ +

m∑

i=1

√
σi‖Gi‖∞|ηi(Ξ, z)| := δ(Ξ, z), (3.10)

with η = (η1, . . . , ηm) = M[a](z)
TΨ(Ξ). Using Proposition 3, we then obtain Eq. (3.8)

with γ = k1
√
n(ε+eδ)/(1+ε) for the exponential type representation and γ = k 1(

√
n ε+

γ0 + γ1 δ
2)/(1+ ε) for the square type representation. Using E{η2i} = 1, it can be shown

that E{δ2} � 2‖G0‖2∞ + 2
(∑m

i=1

√
σi‖Gi‖∞

)2
:= ζm, where ζm < +∞ is independent

on N and z. Therefore, for the square type representation, we obtain Eq. (3.9) with

γ = k 1(
√
nε + γ0 + γ1 ζm)/(1 + ε). Moreover, if

∑+∞
i=1

√
σi ‖Gi‖∞ < +∞, then ζm �

ζ∞ < +∞ and Eq. (3.9) holds for γ = k 1(
√
n ε+ γ0 + γ1 ζ∞)/(1 + ε).

3.3 Brief description of the identification procedure

Let B be the nonlinear mapping which, for any given random field [K] = {[K(x)],x ∈ D}
introduced and studied in Section 2, associates a unique random observation vector

Uobs = B([K]) with values in Rmobs . The nonlinear mapping B is constructed in solving

the elliptic stochastic boundary value problem as explained in Section 4. We are then

interested in identifying the random field [K] using partial and limited experimental data

set uexp,1, . . . ,uexp,νexp in Rmobs (mobs and νexp are small). In high stochastic dimension

(which is the assumption of the present paper), such a statistical inverse problem is an

ill-posed problem if no additional available information is introduced. As explained in

[59, 60], this difficulty can be circumvented (1) in introducing an algebraic prior model

(APM), [KAPM], of random field [K], which contains additional information and satisfying
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the required mathematical properties and (2) in using an adapted identification proce-

dure. Below, we summarize and we adapt this procedure to the new representations and

their parametrizations of random field [K] that we propose in this paper. The steps of

the identification procedure are the following:

Step 1

Introduction of a family {[KAPM(x;w)], x ∈ D} of prior algebraic models for random field

[K]. This family depends on an unknown parameter w (for instance, w can be made up

of the mean function, spatial correlation lengths, dispersion parameters controlling the

statistical fluctuations, parameters controlling the shape of the tensor-valued correlation

function, parameters controlling the symmetry class, etc). For fixedw, the probability law

and the generator of independent realizations of the APM are known. For example, for

the modeling of groundwater Darcy flows, a typical choice for the APM would consist in

a homogeneous and isotropic lognormal random field [KAPM(x;w)] = exp(GAPM)[Id] with

GAPM a homogeneous real-valued gaussian random field having a covariance function of

the Matérn family. With this APM, w consists of 4 scalar parameters that are the mean

value of G and the three parameters of the Matérn covariance. For other examples of

algebraic prior models of non-Gaussian positive-definite matrix-valued random fields, we

refer the reader to [57] for the anisotropic class, to [64] for the isotropic class, to [31]

for bounded random fields in the anisotropic class, to [32] for random fields with any

symmetry class (isotropic, cubic, transversal isotropic, tetragonal, trigonal, orthotropic),

and finally, to [33] for a very general class of bounded random fields with any symmetry

properties from the isotropic class to the anisotropic class.

Step 2

Identification of an optimal value wopt of parameter w using the experimental data set,

the family of stochastic solutions Uobs(w) = B([KAPM(·;w)]) and a statistical inverse

method such as the moment method, the least-square method or the maximum likelihood

method [55, 61, 66, 59]). The optimal algebraic prior model {[KOAPM(x)],x ∈ D} :=

{[KAPM(x;wopt)],x ∈ D} is then obtained. Using the generator of realizations of the

APM, νKL independent realizations [K(1)], . . . , [K(νKL)] of random field [KOAPM] can be

generated with νKL as large as it is desired without inducing a significant computational

cost.

Step 3

Choice of a type of representation for random field [K] and, using Eq. (2.3) with Eq. (2.10)

or with Eq. (2.20), the optimal algebraic prior model {[GOAPM(x)], x ∈ D} of random field

[G] is deduced. For all x ∈ D, [GOAPM(x)] = log
M
([KOAPM

0 (x)]) for the exponential type

representation and [GOAPM(x)] = L−1([KOAPM
0 (x)]) for the square type representation,

with

[KOAPM
0 (x)] = (1 + ε)[L(x)]−T [KOAPM(x)] [L(x)] − ε[ In] . (3.11)
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It is assumed that random field [GOAPM] belongs to C2,S
n . From the νKL independent real-

izations [K(1)], . . . , [K(νKL)] of random field [KOAPM], it can be deduce the νKL independent

realizations [G(1)], . . . , [G(νKL)] of random field [GOAPM].

Step 4

Use of the νKL independent realizations [G(1)], . . . , [G(νKL)] of random field [GOAPM] and

use of the adapted statistical estimators for estimating the mean function [GOAPM
0 ] and

the covariance function CGOAPM of random field [GOAPM] (see Section 2.3.1). Then, calcu-

lation of the first m eigenvalues σ1 � . . . � σm and the corresponding eigenfunctions

[G1], . . . , [Gm] of the covariance operator CovGOAPM defined by the kernel CGOAPM . For a

given convergence tolerance with respect to m, use of Eq. (2.42) to construct independent

realizations of the random vector ηOAPM = (ηOAPM
1 , . . . , ηOAPM

m ) such that

[GOAPM(m)(x)] = [GOAPM
0 (x)] +

m∑

i=1

√
σi [Gi(x)] η

OAPM
i . (3.12)

For i = 1, . . . ,m, the νKL independent realizations η
(1)
i , . . . , η

(νKL)
i of the random variable

ηOAPM
i are calculated by

η
(ℓ)
i =

1√
σi

≪ [G(ℓ)]− [GOAPM
0 ] , [Gi] ≫ , ℓ = 1, . . . , νKL . (3.13)

Step 5

For a given convergence tolerance with respect to N and Ng in the polynomial chaos

expansion defined by Eq. (2.45), use of the methodology based on the maximum likelihood

and the corresponding algorithms presented in [59] for estimating a value [y0] ∈ Vm(RN )

of [y] such that ηOAPM = [y0]
T Ψ(Ξ).

Let us examine the following particular case for which the algebraic prior model [KAPM]

of random field [K] is defined by Eq. (2.3) with either Eq. (2.10) or Eq. (2.20), in which

[GAPM] is chosen as a second-order Gaussian random field indexed by D with values

in MS
n(R). Therefore, the components η1, . . . , ηm of the random vector η defined by

Eq. (2.45) are independent real-valued normalized Gaussian random variables. We then

have Ng = m. Let us assume that, for 1 � j � m � N , the indices j of the polynomial

chaos are ordered such that Ψj(Ξ) = Ξj . It can then be deduced that [y0] ∈ Vm(RN ) is

such that [y0]ji = δij for 1 � i � m and 1 � j � N .

Step 6

With the maximum likelihood method, estimation of a value ž of z ∈ Rν for the parame-

terized general class K defined by Eqs. (3.1) and (3.7), using the family of stochastic solu-

tionsUobs(z) = B(K(m,N)(·,Ξ,M[y0](z))) and the experimental data set uexp,1, . . . ,uexp,νexp .

Then, calculation of [y̌] = M[y0](ž).

Step 7

Construction of a posterior model for random field [K] using the Bayesian method. In

such a framework, the coefficients [y] of the polynomial chaos expansion η = [y]T Ψ(Ξ)
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(see Eq. (2.45)) are modeled by a random matrix [Y] (see [58]) as proposed in [60] and

consequently, z is modeled by a Rν-valued random variable Z. For the prior model [Yprior]

of [Y], here we propose

[Yprior] = M[y̌](Z
prior) , Zprior ∼ centered Gaussian vector , (3.14)

which guaranties that [Yprior] is a random matrix with values in Vm(RN ) whose statis-

tical fluctuations are centered around [y̌] (the maximum likelihood estimator of the set

of coefficients [y] computed at step 6). The Bayesian update allows the posterior dis-

tribution of random vector Zpost to be estimated using the stochastic solution Uobs =

B(K(m,N)(·,Ξ,M[y̌](Z
prior))) and the experimental data set uexp,1, . . . ,uexp,νexp .

Finally, it should be noted that once the probability distribution of Zpost has been

estimated by Step 7, νKL independent realizations can be calculated for the random field

[Gpost(x)] = [GOAPM
0 (x)] +

∑m
i=1

√
σi [Gi(x)] η

post
i in which ηpost = [Ypost]T Ψ(Ξ) and

where [Ypost] = M[y̌](Z
post). The identification procedure can then be restarted from

Step 4 replacing [GOAPM] by [Gpost].

4 Solution of the stochastic elliptic boundary value problem

Let D ⊂ Rd be a bounded open domain with smooth boundary. The following elliptic

stochastic partial differential equation is considered,

−div([K] · ∇U) = f a.e. in D , (4.1)

with homogeneous Dirichlet boundary conditions (for the sake of simplicity). The random

field {[K(x)],x ∈ D} belongs to the parameterized general class of random fields,

K = {K(m,N)(·,Ξ,M[a](z)) ; z ∈ R
ν} ,

introduced in Section 3.2. This stochastic boundary value problem has to be solved

at steps 6 and 7 of the identification procedure described in Section 3.3, respectively

considering z as a deterministic or a random parameter. We introduce the map

u : D × R
Ng × R

ν → R

such that U = u(x,Ξ, z) is the solution of the stochastic boundary value problem for

[K(x)] = K(m,N)(x,Ξ,M[a](z)). The aim is here to construct an explicit approximation

of the map u for its efficient use in the identification procedure.

In this section, a suitable functional framework will first be introduced for the definition

of the map u. Then, numerical methods based on Galerkin projections will be analyzed

for the approximation of this map. Different numerical approaches will be introduced de-

pending on the type of representation of random fields (square type or exponential type)

and depending on the properties of approximation spaces. For the two types of represen-

tation of random fields (exponential type or square type). Finally, we will briefly describe

complexity reduction methods based on low-rank approximations that exploit the tensor

structure of the high-dimensional map u and allows its approximate representation to
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be obtained in high dimension. That makes affordable the application of the identifica-

tion procedure for high-dimensional germs Ξ (high Ng) and high-order representation of

random fields (high ν).

4.1 Analysis of the stochastic boundary value problem

We denote by Γ = ΓNg
⊗ Γν a product measure on Rµ := RNg × Rν , where ΓNg

is the

probability measure of random variable Ξ and where Γν is a finite measure on Rν . Up to

a normalization, Γν is considered as the probability measure of a random vector Z. We

denote by [C] : D × RNg × Rν → M+
n (R) the map defined by

[C](x,y, z) = K(m,N)(x,y,M[a](z)) ,

and such that [K(x)] = [C](x,Ξ,Z) is a σ(Ξ,Z)-measurable random field. Sometimes, the

random field {[C](x,Ξ,Z),x ∈ D} will be denoted by {[C(x)],x ∈ D}. For a measurable

function h : RNg × Rν → R, the mathematical expectation of h is defined by

EΓ(h) = E{h(Ξ,Z)} =

∫

R
Ng×Rν

h(y, z) Γ(dy, dz) .

Lemma 7 Under the hypotheses of Proposition 4, there exists a constant α and a positive

measurable function γ : RNg × Rν → R such that, for Γ-almost all (y, z) in RNg × Rν ,

we have

0 < α � ess inf
x∈D

inf
h∈Rn\{0}

< [C](x,y, z)h,h >2

‖h‖22
, (4.2)

ess sup
x∈D

sup
h∈Rn\{0}

< [C](x,y, z)h,h >2

‖h‖22
� γ(y, z) < ∞ . (4.3)

Moreover, for the class of random fields corresponding to the square type representation,

we have EΓ(γ) � γ < +∞, that means γ ∈ L1
Γ(R

µ).

Proof Lemma 1(ii) gives the existence of the lower bound α = kε. Proposition 4 yields

‖[C](x,y, z)‖2 � ‖[C](x,y, z)‖F � γ(y, z) < ∞, with γ a measurable function defined

on R
Ng ×R

ν . For the square type representation of random fields, property (3.9) implies

EΓ(γ) =
∫
Rν EΓNg

{γ(Ξ, z)}Γν(dz) � γ.

We introduce the bilinear form C(·, ·;y, z) : H1
0 (D)×H1

0 (D) → R defined by

C(u, v;y, z) =

∫

D

∇v · [C](·,y, z)∇u dx . (4.4)

Let introduce ‖ · ‖H1
0
=

(∫
D |∇(·)|2 dx

)1/2
the norm on H1

0 (D), and ‖ · ‖H−1 the norm on

the continuous dual space H−1(D).

Strong-stochastic solution
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Proposition 5 Assume f ∈ H−1(D). Then, for Γ-almost all (y, z) in RNg × Rν , there

exists a unique u(·,y, z) ∈ H1
0 (D) such that

C(u(·,y, z), v;y, z) = f(v) for all v ∈ H1
0 (D) , (4.5)

and

‖u(·,y, z)‖H1
0
�

1

α
‖f‖H−1 . (4.6)

Proof Lemma 7 ensures the continuity and coercivity of bilinear form C(·, ·;y, z) for

Γ-almost all (y, z) in RNg × Rν . The proof follows from a direct application of the Lax-

Milgram theorem.

Weak-stochastic solution

Let be L2
Γ(R

µ) = L2
ΓNg

(RNg )⊗L2
Γν
(Rν) and X = H1

0 (D)⊗L2
Γ(R

µ). Then X is a Hilbert

space for the inner product norm ‖ · ‖X defined by

‖v‖2X = EΓ

( ∫

D

‖∇v‖22 dx
)
.

We also introduce the spaces X(γsCr) (s, r ∈ N) of functions v : D × Rµ → R with

bounded norm

‖v‖X(γsCr) =
{
EΓ

(
γs

∫

D

∇v · [C]r∇v dx
)}1/2

.

Lemma 8 We have α3/2‖v‖X � α‖v‖X(C) � ‖v‖X(C2) � ‖v‖X(γC) � ‖v‖X(γ2) , and

therefore

X(γ2) ⊂ X(γC) ⊂ X(C2) ⊂ X(C) ⊂ X

with dense embeddings.

Proof The inequalities satisfied by the norms are easily deduced from the properties of

[C] (Lemma 7). Then, it can easily be proven that X(γ2) is dense in X , which proves the

density of other embeddings.

Let introduce the bilinear form a : X ×X → R defined by

a(u, v) = EΓ(C(u, v)) =

∫

Rµ

(∫

D

∇v · [C](·,y, z)∇u dx

)
Γ(dy, dz) ,

and the linear form F belonging to the continuous dual space X ′ of X , defined by

〈F, v〉 = EΓ(f(v)) =

∫

Rµ

f(v(·,y, z))Γ(dy, dz) .

From Lemma 7, it can easily be deduced the

Lemma 9 a : X ×X → R is a symmetric bilinear form such that:

(i) a is continuous from X(C2) ×X to R,

|a(u, v)| � ‖u‖X(C2)‖v‖X ∀(u, v) ∈ X(C2) ×X . (4.7)



Random fields representations for statistical inverse boundary value problems 23

(ii) a is continuous from X(C) ×X(C) to R,

|a(u, v)| � ‖u‖X(C)‖v‖X(C) ∀(u, v) ∈ X(C) ×X(C) . (4.8)

(iii) a is coercive,

a(v, v) � α‖v‖2X ∀v ∈ X . (4.9)

Now we introduce a weak form of the parameterized stochastic boundary value problem:

Find u ∈ X such that

a(u, v) = F (v) ∀v ∈ X .
(4.10)

We have the following result.

Proposition 6 There exists a unique solution u ∈ X to problem (4.10), and ‖u‖X �
1
α‖F‖X′ . Moreover, u verifies (4.5) Γ-almost surely.

Proof The existence and uniqueness of solution can be deduced from a general result

obtained in [46]. Here we provide a short proof for completeness sake. We denote by

A : D(A) ⊂ X → X ′ the linear operator defined by Au = a(u, ·), D(A) being the

domain of A. We introduce the adjoint operator A∗ : D(A∗) ⊂ X → X ′ defined by

〈u,A∗v〉 = 〈Au, v〉 for all u ∈ D(A) and v ∈ D(A∗), with D(A∗) = {v ∈ X ; ∃c >

0 such that | 〈Au, v〉 | � c‖u‖X for all u ∈ D(A)}. The continuity property (4.7) implies

that A is continuous from X(C2) to X ′ and therefore, D(A) ⊃ X(C2) is dense in X

(using Lemma 8). That means that A is densely defined. The coercivity property (4.9)

implies that ‖Av‖X′ � α‖v‖X for all v ∈ X , which implies that A is injective and the

range R(A) of A is closed. It also implies that A∗ is injective and R(A∗) is closed, and

by the Banach closed range theorem, we then have that A is surjective, which proves

the existence of a unique solution. Then, using the coercivity of a, we simply obtain

‖u‖2X � 1
αa(u, u) =

1
αF (u) � 1

α‖F‖X′‖u‖X .

Proposition 7 The solution u of problem (4.10) is such that:

(i) u ∈ X(C),

(ii) u ∈ X(γC) if γ ∈ L1
Γ(R

µ),

(iii) u ∈ X(γ2) if γ ∈ L2
Γ(R

µ).

Proof Using Eq. (4.5) with v = u and Eq. (4.6), we obtain
∫
D ∇u · [C]∇u dx = f(u) �

‖f‖H−1‖u‖H1
0
� 1

α‖f‖2H−1 . Taking the expectation yields ‖u‖2
X(C) � 1

α‖f‖2H−1 < ∞,

which proves (i). If γ ∈ L1
Γ, ‖u‖2X(γC) = EΓ(γ

∫
D
∇u · [C]∇u dx) � 1

α‖f‖2H−1EΓ(γ) < ∞,

which proves (ii). Finally, if γ ∈ L2
Γ, we have ‖u‖2X(γ2)

= EΓ(γ
2‖u‖2

H1
0
) � 1

α2 ‖f‖2H−1EΓ(γ
2) <

∞, which proves (iii).
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4.2 Galerkin approximation

Galerkin methods are introduced for the approximation of the solution u of problem

(4.10). Let XN ⊂ X be an approximation space such that XN := Xq,p = Vq ⊗ Wp

with Vq ⊂ H1
0 (D) (e.g. a finite element approximation space) and Wp ⊂ L2

Γ(R
µ) (e.g. a

polynomial chaos approximation space). The Galerkin approximation uN ∈ XN of u is

defined by

a(uN , vN ) = F (vN ) ∀vN ∈ XN . (4.11)

Note that the coercivity property of bilinear form a on XN ×XN (Lemma 9(iii)) ensures

the existence and uniqueness of a solution uN to problem (4.11). The convergence of

Galerkin approximations is now analyzed in different situations corresponding to the

different types of representation of random fields (exponential or square type), to different

underlying measures Γ, and to different choices of approximation spaces. We first analyze

the case where XN ⊂ X(γ) which leads us to a natural strategy for the definition of

a convergent sequence of approximations. Then, we analyze the use of more general

approximation spaces that do not necessarily verify XN ⊂ X(γ).

4.2.1 Case XN ⊂ X(γ)

Proposition 8 Assuming XN ⊂ X(γ) ⊂ X(C), the solution uN ∈ XN of (4.11) verifies

‖u− uN‖X(C) � inf
vN∈XN

‖u− vN‖X(C) , (4.12)

and ‖u− uN‖X �
1√
α

inf
vN∈XN

‖u− vN‖X(C) . (4.13)

Therefore, if {XN}N∈N ⊂ X(γ) is a sequence of approximation spaces such that ∪N∈NXN

is dense in X, then there exists a subsequence of Galerkin approximations {uN}N∈N which

converges to u in the X(C)-norm and in the X-norm.

Proof Using the Galerkin orthogonality property of uN and the continuity of a (Lemma

9(ii)) yield

‖u− uN‖2X(C) = a(u− uN , u− uN ) = a(u− uN , u− vN ) � ‖u− uN‖X(C)‖u− vN‖X(C) ,

for all vN ∈ XN . Inequality (4.12) is obtained by taking the infimum over all vN ∈ XN .

Then, inequality (4.13) is obtained by using the coercivity of a (Lemma 9(iii)).

Let us now analyze the condition XN ⊂ X(γ) of Proposition 8, with XN = Vq ⊗Wp.

Due to the tensor product structure of XN = Vq ⊗ Wp, the condition XN ⊂ X(γ) is

equivalent to
√
γ Wp ⊂ L2

Γ(R
µ), that means EΓ(ϕ

2γ) < +∞ for all ϕ ∈ Wp.

Use of weighted approximation spaces (for both types of representation of

random fields)

A possible approximation strategy consists in choosing weighted approximation spaces

Wp = {γ−1/2ϕ;ϕ ∈ W̃p} with W̃p ⊂ L2
Γ(R

ν). For example, if the measure Γ has finite

moments of any order, W̃p can be chosen as a classical (piecewise) polynomial space with
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degree p, e.g.

W̃p = Pp(R
Ng )⊗ Pp(R

ν) = span{yαzβ ;α ∈ N
Ng ,β ∈ N

ν , |α| � p, |β| � p}.

Indeed, for all ϕ = γ−1/2yαzβ ∈ Wp,

EΓ(ϕ
2γ) = EΓ(y

2αz2β) =

∫

Rµ

y2αz2βΓ(dy, dz) < +∞,

This approximation strategy is adapted to both types of representation of random fields

(exponential or square type) since it does not require any assumption on γ. However, the

use of weighted polynomial approximation spacesWp leads to non classical computational

treatments.

Use of classical approximation spaces (for square type representation of

random fields)

More classical approximation spaces can be used provided some conditions on γ.

Lemma 10 If γ ∈ Lr
Γ(R

µ) and Wp ⊂ Ls
Γ(R

µ) with some r � 1 and s � 2 such that
2
s +

1
r = 1, then XN ⊂ X(γ). In particular XN ⊂ X(γ) if γ ∈ L1

Γ(R
µ) and Wp ⊂ L∞

Γ (Rµ).

Proof For r > 1, letting s′ = s
2 such that 1

s′ +
1
r = 1, we have

EΓ(ϕ
2γ) � {EΓ(ϕ

2s′ )}1/s′ {EΓ(γ
r)}1/r = {EΓ(ϕ

s)}2/s {EΓ(γ
r)}1/r < ∞.

The proof for r = 1 and s = ∞ is straightforward.

Lemma 10 allows us to analyze the approximation when using the square type represen-

tation of random fields, for which γ ∈ L1
Γ(R

µ). Indeed, in this case, Lemma 10 implies that

XN ⊂ X(γ) if Wp ⊂ L∞
Γ (Rµ). In particular, this condition is satisfied if Γ has a bounded

support and Wp is a (possibly piecewise) polynomial space, e.g. Wp = Pp(R
Ng )⊗Pp(R

ν).

We note that Γ = ΓNg
⊗ Γν has a bounded support if (i) the random germ Ξ for the

representation of random fields in the class K = {K(m,N)(·,Ξ,M[a](z)) ; z ∈ Rν} has a

bounded support supp(ΓNg
), and (ii) the support of the measure Γν on the parameter

space Rν is bounded. This latter condition implies that the map u only provides the solu-

tion to the boundary value problems associated to a subset of random fields in K (those

corresponding to parameters z ∈ supp(Γν)). In other words, this first result shows that

when using the square type representation of random fields with a germ Ξ with bounded

support, the approximation is possible using classical polynomial approximation spaces.

Note that for having XN ⊂ X(γ), weaker conditions on approximation spaces could

be obtained by looking further at the properties of γ and the measure Γ. In particular,

if Wp is the tensor product of polynomial spaces with (total or partial) degree p, that

means Wp = Pp(R
Ng )⊗ Pp(R

ν), then XN ⊂ X(γ) if for all yαzβ ∈ Wp,

EΓ(y
2αz2βγ(y, z)) =

∫

Rµ

y2αz2βγ(y, z)Γ(dy, dz) < +∞, (4.14)
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which is a condition on γ and on measure Γ. The following result justifies the applicability

of classical (piecewise) polynomial spaces when using the square type representation of

random fields.

Proposition 9 For the square type representation of random fields, if Wp is the tensor

product of (possibly piecewise) polynomial spaces and if Γ = ΓNg
⊗ Γν is such that prob-

ability measures ΓNg
and Γν admit moments of any order, then XN = Vq ⊗Wp ⊂ X(γ).

Proof Following the proof of Proposition 4, we obtain γ � k1(
√
nε+ γ0 + γ1δ

2), with δ

defined by Eq. (3.10) and such that

δ2 � 2‖G0‖2∞ + 2
( m∑

i=1

√
σi‖Gi‖∞|ηi|

)2

� g0 + g1

m∑

i=1

η2i ,

with g0 = 2‖G0‖2∞ and g1 = 2
∑m

i=1 σi‖Gi‖2∞. From Eq. (2.45), we have η = [y]TΨ(y)

where Ψ(y) is a vector of polynomials in y and [y]T [y] = [Im]. The latter condition

implies |yji | � 1 for all 1 � i � m and 1 � j � N . Therefore, η2i � (
∑N

j=1 y
j
iΨj(y))

2 �

N
∑N

j=1 Ψj(y)
2, and δ(y, z)2 � g0 + g1mN

∑N
j=1 Ψj(y)

2 := Q(y), where Q(y) is a poly-

nomial in y. If the measures ΓNg
and Γν have finite moments of any order, then any

(piecewise) polynomial function on Rµ is in L1
Γ(R

µ). Therefore, if Wp is a space of (piece-

wise) polynomial functions on R
µ , then for all ϕ ∈ Wp, we have

EΓ(ϕ(y, z)
2γ(y, z)) � EΓ(ϕ(y, z)

2(1 +Q(y)) < +∞,

from which we deduce that Vq ⊗Wp ⊂ X(γ).

Since measures with bounded support have finite moments of any order, Proposition

9 is consistent with the first conclusions of Lemma 10. Moreover, we have that for the

square type representation of random fields, if Z is chosen as a Gaussian random variable

(that means Γν is a Gaussian measure) or a random variable with bounded support, then

the classical Hermite polynomial chaos space associated with a Gaussian germ Ξ can be

used. Note that the use of a measure Γν whose support is Rν allows to explore the whole

class of random fields K with the single map u.

Remark 4.1 The case of log-normal random fields corresponds to a particular case

of the exponential type representation for which the random field [G] is Gaussian and

represented using a degree one Hermite polynomial chaos expansion with a Gaussian germ

Ξ. In this case, it can be proven that if Wp is the tensor product of (possibly piecewise)

polynomial spaces and if Γν admit moments of any order, then XN = Vq ⊗Wp ⊂ X(γ).

This justifies the use of polynomial approximation spaces when considering the particular

case of log-normal random fields. However, this result does not extend to other random

fields with exponential type representation.

4.2.2 Case of general approximation spaces XN

In order to handle both types of representation of random fields (exponential type and

square type) with a measure Γ with a possibly unbounded support, we here propose
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and analyze an approximation strategy which consists in using truncated approximation

spaces. We consider a family of approximation spaces {Vq}q�1 such that ∪qVq is dense

in H1
0 (D), and a family {Wp}p�1 such that ∪pWp is dense in L2

Γ(R
µ). Classical (possibly

piecewise) polynomial spaces with degree p can be chosen for Wp. Let XN be defined as

Vq ⊗Wp. Then, for τ > 0, we introduce the approximation space

W τ
p = {Iγ�τϕ;ϕ ∈ Wp} ,

where Iγ�τ (y, z) = 1 if γ(y, z) � τ and 0 if γ(y, z) > τ . It can be proven that ∪τ>0 ∪p�1

W τ
p is dense in L2

Γ(R
µ). Let Xτ

N be defined as Vq ⊗ W τ
p . For ψ = Iγ�τϕ in W τ

p , we

have EΓ(γψ
2) � τEΓ(ϕ

2) < ∞, that means Xτ
N := Vq ⊗W τ

p ⊂ X(γ) for all τ > 0. The

Galerkin approximation of u in Xτ
N is denoted by uτ

N .

Proposition 10 The Galerkin approximation uτ
N ∈ Xτ

N of u satisfies

‖u− uτ
N‖2X(C) � τ inf

v∈XN

‖u− v‖2X + ‖uIγ>τ‖2X(C) , (4.15)

and there exists a sequence of approximation spaces Xτ
N(τ) = Vq(τ) ⊗W τ

p(τ) such that

‖u− uτ
N(τ)‖X(C) → 0 as τ → ∞. (4.16)

Proof We have u ∈ X(C) (Proposition 7) and Xτ
N ⊂ X(γ) ⊂ X(C). We first note that

for all v ∈ Xτ
N ,

‖(u− v)‖2X(C) = ‖(u− v)Iγ�τ‖2X(C) + ‖(u− v)Iγ>τ‖2X(C)

� ‖(u− v)Iγ�τ‖2X(γ) + ‖uIγ>τ‖2X(C)

� τ‖(u − v)Iγ�τ‖2X + ‖uIγ>τ‖2X(C) .

Then, using Proposition 8 (Eq. (4.13)), we obtain

‖u− uτ
N‖2X(C) � inf

v∈Xτ
N

‖u− v‖2X(C) � τ inf
v∈Xτ

N

‖(u− v)Iγ�τ‖2X + ‖uIγ>τ‖2X(C)

= τ inf
v∈XN

‖(u− v)Iγ�τ‖2X + ‖uIγ>τ‖2X(C)

� τ inf
v∈XN

‖u− v‖2X + ‖uIγ>τ‖2X(C)

Since ‖u‖X(C) is bounded, the second term converges to 0 as τ → ∞. Also, provided that

∪NXN is dense in X , we can define a sequence of spaces XN(τ) such that

τ inf
v∈XN(τ)

‖u− v‖2X → 0 as τ → ∞,

which ends the proof.

4.3 High-dimensional approximation using sparse or low-rank

approximations

The approximation of the map u ∈ X requires the introduction of adapted complex-

ity reduction techniques. Indeed, when introducing approximation spaces Vq ⊂ H1
0 (D)

and Wp = Wy
p ⊗ W z

p ⊂ L2
ΓNg

(RNg ) ⊗ L2
Γν
(Rν), the resulting approximation space
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XN = Vq ⊗ Wp may have a very high dimension dim(Vq) × dim(Wp). For classical

non adapted constructions of approximation spaces Wp, the dimension of Wp has typi-

cally an exponential (or factorial) increase with Ng and ν (e.g. with polynomial spaces

Wy
p = Pp(R

Ng) and W z
p = Pp(R

ν)). Therefore, the use of standard approximation tech-

niques would restrict the applicability of the identification procedure to a class of random

fields with a germ Ξ of small dimension (small Ng) and a low order in the representation

of random fields (small ν).

Sparse approximation

A first possible way to reduce the complexity and address high-dimensional problems is to

use adaptive sparse approximation methods [11]. Supposing that {φi; i ∈ Λ} constitutes

a basis of W , it consists in constructing a sequence of approximations uM ∈ Vq ⊗WM ,

with WM = span{φi; i ∈ ΛM}, where ΛM ⊂ Λ is a subset of M indices constructed

adaptively. For some classes of random fields (that are simpler than the one proposed

in the present paper), algorithms have been proposed for the adaptive construction of

the sequence of subsets ΛM and some results have been obtained for the convergence

of the corresponding sequence of approximations. In [12], convergence results have been

obtained for different classes of random fields and in particular for two classes of random

fields that are closely related to the ones proposed in the present paper, namely random

fields that are obtained with the exponential or the square of a random field which

admits an affine decomposition in terms of the parameters. Under suitable conditions

on the convergence of the series expansion of this random field, the authors prove the

convergence with a convergence rate independent on the dimension µ. Such results may

be obtained for the class of random fields proposed in the present paper under some

conditions on the underlying second order random field [G]. This will be addressed in

future work.

Low-rank approximations.

Low-rank tensor approximation methods can be used in order to reduce the complexity

of the approximation of functions in tensor product spaces [34]. They consist in approxi-

mating the solution in a subset M ⊂ XN of low-rank tensors. Different tensor structures

of space XN can be exploited, such as XN = Vq ⊗Wp or XN = Vq ⊗Wy
p ⊗W z

p . Also, if

the measures ΓNg
and Γν are tensor product of measures, then Wy

p and W z
p can be cho-

sen as tensor product approximation spaces Wy
p = ⊗Ng

k=1W
y,(k)
p and W z

p = ⊗ν
k=1W

z,(k)
p .

Low-rank approximation methods then consist in approximating the solution in a subset

M ⊂ XN of low-rank tensors, which is a subset of low dimension in the sense that M
can be parameterized by a small number of parameters (small compared to the dimen-

sion of XN ). Different low-rank formats can be used, such as canonical format, Tucker

format, Hierarchical Tucker format or more general tree-based tensor formats (see e.g.

[34]). These tensor subsets can be formally written as

M = {v = FM(w1, . . . , wℓ);w1 ∈ R
r1 , . . . , wℓ ∈ R

rℓ}
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where FM is a multilinear map with values in XN and where the wk ∈ Rrk (k = 1, . . . , ℓ)

are the parameters. The dimension of such a parametrization is
∑ℓ

k=1 rk. As an example,

M can be chosen as the set of rank-m canonical tensors in XN = Vq⊗Wy
p ⊗W z

p , defined

by M = {v =
∑m

i=1 w
x
i ⊗ wy

i ⊗ wz
i ;w

x
i ∈ Vq, w

y
i ∈ Wy

p , w
z
i ∈ W z

p }.

Algorithms for the low-rank approximation of uN ∈ XN .

The Galerkin approximation uN ∈ XN of u is the unique minimizer of the strongly convex

functional J : XN → R defined by J(v) = 1
2a(v, v) − F (v). A low-rank approximation

ur ∈ Mr of uN can then be obtained by solving the optimization problem

min
v∈M

J(v) = min
w1∈Rr1 ,...,wℓ∈R

rℓ

J(FM(w1, . . . , wℓ)).

This problem can be solved using alternated minimization algorithms or other optimiza-

tion algorithms (see [34]). Also, greedy procedures using low-rank tensor subsets can

be introduced in order to construct a sequence of approximations {uk}k with uk+1 =

uk + wk+1 and wk+1 ∈ M defined by J(uk + wk+1) = minv∈M J(uk + v). We refer

to [23] for the analysis of a larger class of greedy algorithms in the context of convex

optimization problems in tensor spaces, and to [51] for the practical implementation of

some algorithms in the context of stochastic parametric partial differential equations.

Remark 4.2 (On the approximability of the solution using low-rank approximations) A

very few results are available concerning the complexity reduction that can be achieved

using low-rank approximations, in particular for the approximation of high-dimensional

maps arising in the context of high-dimensional parametric stochastic equations. Of

course, results about sparse polynomial approximation methods (e.g. [12]) could be di-

rectly translated in the context of low-rank tensor methods (a sparse decomposition on

a multidimensional polynomial basis being a low-rank decomposition) but this would

not allow to quantify the additional reduction that could be achieved by low-rank meth-

ods. Providing a priori convergence results for low-rank approximations for the proposed

class of random fields would deserve an independent analysis which is out of the scope of

the present paper. However, we notice that some standard arguments could be used in

order to provide a priori convergence results of low-rank approximations in the 2-order

tensor space X = H1
0 (D)⊗ L2

Γ(R
µ) = L2

Γ(R
µ;H1

0 (D)). Indeed, under suitable regularity

conditions on the samples of the random fields in the class (related to properties of the co-

variance structure of the algebraic prior), the set of solutions U = {u(·,y, z); (y, z) ∈ Rµ}
could be proven to be a subset of H1

0 (D) with rapidly convergent Kolmogorov n-width1,

therefore proving the existence of a good sequence of low-dimensional spaces in H1
0 (D)

for the approximation of the set of solutions U . At least the same convergence rate (with

respect to the rank) could therefore be expected for low-rank approximations that are

optimal with respect to a L2-norm in the parameter domain. These questions will be

investigated in a future work.

1 For example, if the set of solutions U is a bounded subset of H2(D) (which can be obtained

with a simple a posteriori analysis if the random fields have samples with C
1 regularity), then

the Kolmogorov n-width can be proven to converge as n−1/d where d is the spatial dimension.
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4.4 Remarks about the identification procedure

The identification procedure has been presented in Section 3.3. In view of the numerical

analysis presented above, the following remarks can be done. Different approximations

of the map u should be constructed at the different steps of the identification procedure.

Indeed, the quality of approximations of u clearly depends on the choice of measure Γν

on the parameters space Rν . It is recalled that the parametrization of the class K =

{K(m,N)(·,Ξ,M[a](z)) ; z ∈ R
ν} of random fields depends on the set of parameters [a] =

M[a](0). The map u depends on the choice of [a] but it is clearly independent on the

choice of measure Γν , provided that the support supp(Γν) = Rν . However, the Galerkin

approximation uN being optimal with respect to a norm that depends on the measure

Γν , the quality of the approximation clearly depends on measure Γν . For that reason, the

choice of measure Γν can be updated throughout the identification procedure in order to

improve the approximation of u as explained at the end of Section 3.3. Step 6 and step 7

described in Section 3.3 can then be clarified as follows.

At Step 6, the parametrization of K around [a] = [y0] is used and an approximation of

the corresponding map u in X is constructed using low-rank tensor methods. The use of

this explicit map allows a fast maximization of the likelihood function to be performed,

yielding an estimation ž of z (or equivalently [y̌] of [y]).

At Step 7, the map u constructed in Step 6 could be used for the subsequent Bayesian

update. However, it is also possible to construct a new map that takes into account

the result of the maximum likelihood estimation. Therefore, the parametrization of K
around [a] = [y̌] is used and the boundary value problem is solved again in order to

obtain an approximation of the corresponding map u(·, ·, ·; [y̌]) in X . This map can then

be efficiently used for solving the Bayesian update problem.

5 Conclusion

In this paper, we have presented new results allowing an unknown non-Gaussian positive

matrix-valued random field to be identified through a stochastic elliptic boundary value

problem, solving a statistical inverse problem. In order to propose a constructive and

efficient methodology and analysis of this challenging problem in high stochastic dimen-

sion, a new general class of non-Gaussian positive-definite matrix-valued random fields,

adapted to the statistical inverse problems in high stochastic dimension for their exper-

imental identification, has been introduced. For this class of random fields, two types

of representation are proposed: the exponential type representation and the square type

representation. Their properties have been analyzed. A parametrization of discretized

random fields belonging to this general class has been proposed and analyzed for the two

types of representation. Such parametrization has been constructed using a polynomial

chaos expansion with random coefficients and a minimal parametrization of the compact

Stiefel manifold related to these random coefficients. Using this parametrization of the

general class, a complete identification procedure has been proposed. Such a statistical

inverse problem requires to solve the stochastic boundary value problem in high stochas-

tic dimension with efficient and accurate algorithms. New results of the mathematical

and numerical analyzes of the parameterized stochastic elliptic boundary value problem
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have been presented. The numerical solution provides an explicit approximation of the

application that maps the parameterized general class of random fields to the correspond-

ing set of random solutions. Since the proposed general class of random fields possibly

contain random fields which are not uniformly bounded, a particular mathematical anal-

ysis has been developed and dedicated approximation methods have been introduced.

In order to obtain an efficient algorithm for constructing the approximation of this very

high-dimensional map, we have described possible complexity reduction methods using

sparse or low-rank approximation methods that exploit the tensor structure of the solu-

tion which results from the parametrization of the general class of random fields. In this

paper, we do not provide any result concerning the complexity reduction that can be

achieved when using low-rank or sparse approximation methods for the proposed class of

random fields. These results would require a fine analysis of the regularity and structures

of the solution map. Some recent results are already available for sparse approximation

methods and for some simpler classes of random fields (see [12]). This type of results

should be extended to the present class of random fields. Concerning low-rank methods,

a very few quantitative convergence results are available. Some recent results are provided

in [52] for the approximation of functions with Sobolev-type regularity. For the present

class of random fields, specific analyses are necessary to understand the structure of the

solution map induced by the proposed parametrization and to quantify the complexity

reduction that could be achieved with low-rank methods. These challenging issues will

be addressed in future works.
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