
HAL Id: hal-00945606
https://hal.science/hal-00945606

Submitted on 12 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Line search and trust region strategies for canonical
decomposition of semi-nonnegative semi-symmetric 3rd

order tensors
Julie Coloigner, Ahmad Karfoul, Laurent Albera, Pierre Comon

To cite this version:
Julie Coloigner, Ahmad Karfoul, Laurent Albera, Pierre Comon. Line search and trust region strate-
gies for canonical decomposition of semi-nonnegative semi-symmetric 3rd order tensors. Linear Alge-
bra and its Applications, 2014, 450, pp.334-374. �10.1016/j.laa.2014.02.001�. �hal-00945606�

https://hal.science/hal-00945606
https://hal.archives-ouvertes.fr

Line search and trust region strategies for canonical decomposition

of semi-nonnegative semi-symmetric 3rd order tensors

Julie Coloignera,b, Ahmad Karfould, Laurent Alberaa,b,c, Pierre Comone

aInserm, UMR 1099, Rennes, F-35000, France
bLTSI Laboratory, University of Rennes 1, Rennes, F-35000, France

cINRIA, Centre Inria Rennes - Bretagne Atlantique, 35042 Rennes Cedex, France
dAL-Baath University, Faculty of Mech. and Elec. Eng., PB. 2244, Homs, Syria

eLab. GIPSA, CNRS, UMR 5216, BP.46, 38402 Saint Martin d’Heres cedex, France

Abstract

Numerical solutions are proposed to fit the CanDecomp/ParaFac (CP) model of real three-way

arrays, when the latter are both nonnegative and symmetric in two modes. In other words, a semi-

nonnegative INDSCAL analysis is performed. The nonnegativity constraint is circumvented by

means of changes of variable into squares, leading to an unconstrained problem. In addition, two

globalization strategies are studied, namely line search and trust region. Regarding the former,

a global plane search scheme is considered. It consists in computing, for a given direction, one

or two optimal stepsizes, depending on whether the same stepsize is used in various updating

rules. Moreover, we provide a compact matrix form for the derivatives of the objective func-

tion. This allows for a direct implementation of several iterative algorithms such as conjugate

gradient, Levenberg-Marquardt and Newton-like methods, in matrix programming environments

like MATLAB. Our numerical results show the advantage of our optimization strategies when

combined with a priori information such as partial symmetry.

Keywords: Canonical polyadic model, nonnegative matrix factorization, nonnegative tensor

factorization, semi-nonnegative INDSCAL analysis, CanDecomp, ParaFac, nonlinear

optimization, matrix derivation.

1. Introduction

INdividual Differences in multidimensional SCALing (INDSCAL) analysis consists in de-

composing a three-way array into a minimal sum of vector outer products, which are symmetric

in two modes [1]. It is a special case of CanDecomp/ParaFac (CP) model of three-way arrays

[3, 4, 5]. INDSCAL analysis has been most often applied in psychometric literature [6], social

sciences [7], marketing research [8], signal processing [9], and more generally in data analysis,

such as in the context of multiple factor analysis [10]. On the other hand, it appears in signal

processing, and more particularly in Independent Component Analysis (ICA) [9]. Various al-

gorithms have been proposed imposing the semi-symmetry constraint of the INDSCAL model,

Email addresses: julie.coloigner@gmail.com (Julie Coloigner), AKarfoul@gmail.com (Ahmad Karfoul),

laurent.albera@univ-rennes1.fr (Laurent Albera), pierre.comon@gipsa-lab.grenoble-inp.fr (Pierre

Comon)

Preprint submitted to Linear Algebra and its Applications February 12, 2014

such as those described in [9, 11] to cite a few. Other constraints can additionally be taken into

account, according to the considered application. Indeed, as described in section 2, some ICA

applications involve nonnegative mixing matrices, i.e. mixing matrices with nonnegative com-

ponents, encountered in image processing for instance [12]. Thus, imposing a semi-nonnegative

constraint to the INDSCAL model, which leads to the semi-nonnegative INDSCAL model, may

improve its performance. To date, no method has been yet proposed to combine both constraints.

In this paper, the goal is precisely to compute the CP decomposition, under the constraints of

symmetry and nonnegativity in two modes. The nonnegativity constraint is imposed by means

of changes of variable into squares, leading to an unconstrained problem. Several numerical

solutions are proposed, which belong to two fundamental strategies of optimization: line search

and trust region. Regarding the former, we present two approaches, which are based on the use of

first and second order derivatives: Conjugate Gradient (CG) and Newton-like methods, combined

with a global plane search. As far as the latter strategy is concerned, a Levenberg-Marquardt

(LM) method is proposed, using an approximation of the Hessian inside a trust region. Both

optimization strategies are detailed in section 5 whereas the optimization procedure is described

in section 7. Moreover, we provide, in section 6, a compact matrix expression of the derivatives

of the objective function, which allows for a direct implementation of our iterative algorithms in

matrix programming environments, like MATLAB. Next, a detailed numerical complexity study

of our algorithms is provided in section 8. In section 9, numerical results show the benefit that

can be expected from our algorithms on synthetic data. This benefit is also illustrated in section

9.2 through a practical context of image processing.

2. Motivation

Originally, the INDSCAL model was proposed by Carroll and Chang [1] as a multidimen-

sional scaling method for studying individual differences in perceptions of various stimulus do-

mains. In this context of data analysis, in order to extract similarities between stimuli or objects,

the INDSCAL model is applied to a third order tensor in which the frontal slices are distance ma-

trices computed from the measured data [10, 1]. But the most widespread use of the INDSCAL

model is in ICA, where the problem can be reduced to a joint diagonalization (by congruence)

[9, 18, 19, 22, 23]. In practice, the matrices to be jointly diagonalized are different time-delayed

covariance matrices like in SOBI (Second Order Blind Identification) [70], time-frequency co-

variance matrices [20], or slices of higher order cumulant tensor(s) like in JADE (Joint Ap-

proximate Diagonalization of Eigenmatrices) where different slices of fourth order cumulant are

jointly diagonalized [21].

ICA plays an important role in many areas including biomedical engineering [14, 15, 16,

17, 24], speech and audio [25, 26, 27, 28, 29, 30, 31, 12, 30], radiocommunications [32] and

document restoration [33] to cite a few. For instance in [33], the authors use ICA to restore

digital document images in order to improve the text legibility. Indeed, under the statistical in-

dependence assumption, authors succeed in separating foreground text and bleed-through/show-

through in palimpsest images. Furthermore, authors in [12] use ICA to solve the ambiguity

in X-ray images due to multi-object overlappings. They presented a novel object decomposi-

tion technique based on multi-energy plane radiographs. This technique selectively enhances

an object that is characterized by a specific chemical composition ratio of basis materials while

suppressing the other overlapping objects. Besides, in the context of classification of tissues and

more particularly of brain tumors [35], ICA is very effective. In fact, it allows for feature ex-

traction from Magnetic Resonance Spectroscopy (MRS) signals, representing them as a linear

2

combination of tissue spectra, which are as independent as possible [36]. Moreover, using the

JADE algorithm [21] applied to a mixture of sound waves computed by means of the constant-Q

transform (Fourier transform with log-frequency) of a temporal waveform broken up into a set of

time segments, the authors of [28] describe trills as a set of note pairs described by their spectra

and corresponding time envelopes. In this case, pitch and timing of each note present in the trill

can be easily deduced. All the aforementioned applications show the high efficiency of the ICA

and its robustness to the presence of noise. Despite this high efficiency in resolving the proposed

applicative problems, authors did not fully exploit properties enjoyed by the mixing matrix such

as its nonnegativity. For instance in [12], the thickness of each organ, which stands for the mix-

ing coefficient, is real positive. Furthermore, reflectance indices in [33] for the background, the

overwriting and the underwriting, which correspond to the mixing coefficients, are also nonneg-

ative. Regarding tissue classification from MRS data, each observation is a linear combination

of independent spectra with positive weights representing concentrations [38]; the mixing matrix

is again nonnegative.

By imposing the nonnegativity of the mixing matrix within the ICA process, the extraction

quality can be improved as will be shown in section 9.2 through computer results. Exploit-

ing the nonnegativity property of the mixing matrix during the ICA process gives rise to what

we call semi-nonnegative ICA. More particularly, the latter can be performed by computing a

constrained joint CP decomposition of cumulant arrays of different orders [39] having the non-

negative mixing matrix as loading matrices. After merging the entries of the cumulant arrays

in the same third order array (see section 9.2 for more details), the reformulated problem fol-

lows the semi-nonnegative INDSCAL model. Hence there is a real interest in proposing efficient

numerical methods to perform the semi-nonnegative INDSCAL analysis.

3. Notations

Throughout this paper, vectors, matrices and three-way arrays are denoted with bold lower-

case (a, b, · · ·), bold uppercase (A, B, · · ·) and bold calligraphic letters (A,B, · · ·), respectively.

In addition, entries of a given structure are scalars and follow the same notation as their struc-

tures. For instance, the entry in row i and column j of a matrix A is denoted by Ai, j. Simi-

larly, the (i, j, k)-th component of a third order array B is denoted by Bi, j,k. Upper bounds (i.e.,

n = 1, 2, · · · ,N) are denoted by italic capital letters. The matrix Â denotes the estimate of A.

The symbol ⊗ denotes the Kronecker product while ⊙ and ⊡ stand for the Khatri-Rao product

(column-wise Kronecker product) and the Hadamard product (element-wise product), respec-

tively. The operator vec transforms matrices into vectors, that is: vec(T)i+(j−1)I = Ti, j, with

T and vec(T) of size (I × J) and IJ, respectively. Next, unvec is the inverse operator so that

unvec(vec(T)) = T. The operator Mat rearranges a block matrix (or vector) into another; such

as Mat(N×P,M)([A1, A2, ..., AM]T) = [A1
T, A2

T, ..., AM
T], where the M blocks, Ai with 1 ≤ i ≤ M,

are all of size (N × P). The notation diag(Z) stands for the N-dimensional vector z built from the

elements of the diagonal of the (N × N) matrix Z. Furthermore, the superscripts ♯ and T stand for

the Moore-Penrose pseudoinverse and the transpose operators, respectively. The (N×N) identity

matrix is denoted by IN . The permutation matrix, UPN of size (PN×PN), is defined by [40]:

UPN =
∑P

p=1

∑N
n=1 E

(P×N)
pn ⊗E

(N×P)
np , where E

(P×N)
pn is a (P×N) elementary matrix of zeros except the

(p, n)-th component which is set to one. The trace of the square matrix Z is denoted by Tr(Z).

The N-dimensional vector of ones and the (N × P)-dimensional matrix of ones are denoted by

1N and 1N×P, respectively. We denote: A⊙2 = A ⊙ A and B⊡2 = B ⊡ B. Finally |.|, ‖.‖ and ‖.‖F
stand for the absolute value, the Euclidean norm and the Frobenius norm, respectively.

3

4. Preliminaries and problem formulation

This section is devoted to some basic definitions in tri-linear algebra which are required for

the problem formulation. Further related definitions can be found in [41, 42, 43, 44, 45, 4].

Definition 1. The outer product T = u(1) ◦ u(2) ◦ u(3) of three vectors u(1) ∈ ❘I , u(2) ∈ ❘J and

u(3) ∈ ❘K is a third order array of ❘I×J×K whose elements are defined by Ti, j,k=u
(1)

i
u

(2)

j
u

(3)

k
. This

array represents a decomposable tensor.

Despite the similarity between matrices and three-way arrays, they differ in a number of their

properties [45]. For instance, contrary to the matrix case, the rank of three-way arrays can exceed

its smallest dimension [46]. The rank of a three-way array always exists and is defined by:

Definition 2. The rank of a third order array T ∈ ❘I×J×K , denoted by rk(T), is the minimal

number R of decomposable third order arrays that exactly yield T in a linear combination:

T =

R∑

p=1

ap ◦ bp ◦ cp (1)

with ap ∈ ❘
I , bp ∈ ❘

J and cp ∈ ❘
K .

Now, let us introduce the low-rank CP model [41, 44, 47, 4] of a third order array from

definitions 1 and 2, as well as the INDSCAL model [48].

Definition 3. For a given P, corresponding to the number of components, the CP model of a

third order array T ∈ ❘I×J×K can be expressed as:

T =

P∑

p=1

ap ◦ bp ◦ cp +R (2)

where each ap ◦ bp ◦ cp is a rank-1 third order array and where the third order arrayR represents

the model residual. Sometimes we use the notation T (A, B,C) to refer to the third order array

T with its loading matrices A = [a1, · · · , aP], B = [b1, · · · , bP] and C = [c1, · · · , cP].

In other words, the CP model defines a rank-P approximation of tensor T . If P = rk(T) then the

model residual is null and the CP decomposition is exact.

Definition 4. The INDSCAL model of a third order array T ∈ ❘I×I×K , symmetric in the two first

modes, is a CP model of T in which the two first loading matrices are equal.

The problem we tackle in this paper is to fit the INDSCAL model of three-way arrays subject to

the nonnegativity constraint on its two identical loading matrices. The latter is referred to as the

semi-nonnegative INDSCAL model:

Problem 1. Given a real tensor T ∈ ❘I×I×K , symmetric in the two first modes, and a positive

integer P, the semi-nonnegative INDSCAL model is defined as follows:

T =

P∑

p=1

ap ◦ ap ◦ cp +R (3)

where A = [a1, · · · , aP] has nonnegative components.

4

Since matrix C is not necessarily nonnegative, the tensor T can have both negative and positive

components. As a way of treating the nonnegativity constraint in the model above, one can resort

to the change of variable A = B⊡2 with B = [b1, · · · , bP] ∈ ❘I×P as proposed in [49, 50] to solve

the nonnegative matrix factorization problem. As a result, Problem 1 can be reformulated as an

unconstrained problem:

Problem 2. Given a real tensor T ∈ ❘I×I×K and an integer P, the semi-nonnegative INDSCAL

model can be expressed as:

T =

P∑

p=1

b⊡2
p ◦ b⊡2

p ◦ cp +R (4)

It is often convenient to represent three-way arrays as matrices. Among possible matrix rep-

resentations, the one associated with mode-3 is defined such as the (i, j, k)-th component of T

corresponds to the (k, i + (j − 1)I)-th element in T(3). Then Problem 2 can be reformulated in a

matrix form:

Definition 5. Let T (A, A,C) be a 3-rd order array of size (I × I × K). Then a (K × I2) matri-

cization of T denoted by the array, T(3) = C (A⊙2)T + R(3), associated with the 3-rd mode can

be achieved by side-by-side stacking of the lateral slices of T with A = B ⊡ B, B ∈ ❘I×P and

C ∈ ❘K×P; R(3) is the mode-3 matricization of the residual.

The semi-nonnegative INDSCAL model (4) is typically fitted according to a least squares crite-

rion, although others have been proposed [51]. The unconstrained optimization problem consists

in the minimization of the following objective function:

Ψ(B,C) =

∥∥∥∥∥T(3) − C

((
B⊡2

)⊙2
)

T
∥∥∥∥∥

2

F

(5)

Several solutions are proposed, which belong to two fundamental strategies of optimization: line

search and trust region. Regarding the former, we present two approaches based on the use

of the first and the second order derivatives of Ψ: CG and Newton-like methods are combined

with a search for optimal stepsizes. For the second strategy, an LM method is proposed. In the

next section, both strategies are detailed and each descent optimization procedure is described in

section 7.

5. Two optimization strategies

5.1. Line search strategy

The line search strategy combines the computation of a descent direction given by an optimiza-

tion procedure with the search for stepsizes minimizing the objective function along that direc-

tion. The global plane search selects two directions, and actually permits to sometimes avoid

local minima. At iteration it, the update of matrices B and C in (4) is defined by the following

rule: [
vec(Bit+1)

vec(Cit+1)

]
=

[
vec(Bit)

vec(Cit)

]
+

[
µit

B
IIP 0

0 µit
C

IKP

] [
vec(Git

B)

vec(Git
C)

]

5

where GB and GC are two search directions. Both stepsizes µit
B

and µit
C

can be computed by

minimizing the following function:

ϕ2steps(µB, µC) =
∥∥∥T(3) − (Cit + µCGit

C)(((Bit + µBGit
B)⊡2)⊙2)T

∥∥∥2

F
(6)

w.r.t. µB and µC. This can be done approximately or exactly [47, 52, 53, 54, 55]. Because of

its higher numerical complexity, the authors proposed in [47] to consider the same stepsize µ for

all loading matrices. Due to the satisfactory results they provided, we shall not only address the

case of two independent stepsizes, but also consider in the sequel a simpler plane search where

µB = µC = µ. For the sake of clarity superscript it will be omitted in the rest of this section.

5.1.1. Global plane search with two stepsizes

The problem of global plane search with two stepsizes is defined as follows:

Problem 3. Given two search directions GB and GC, find the optimal stepsizes (µB, µC) by min-

imizing criterion (6).

One can show that criterion (6) can be rewritten as follows:

ϕ2steps(µB, µC) =
∥∥∥F0 + F1µB + F2µ

2
B + F3µ

3
B + F4µ

4
B + F5µC + F6µCµB + F7µCµ

2
B+

F8µCµ
3
B + F9µCµ

4
B

∥∥∥2

F
(7)

where:
F0 = T(3) − CE0 F1 = −CE1 F2 = −CE2 F3 = −CE3,
F4 = −CE4 F5 = −GC E0 F6 = −GC E1 F7 = −GC E2

F8 = −GC E3 F9 = −GC E4

(8)

with:

E0 = (K⊙2
0)T E1 = (K0 ⊙ K1 + K1 ⊙ K0)T E2 = (K0 ⊙ K2 + K⊙2

1 + K2 ⊙ K0)T

E3 = (K1 ⊙ K2 + K2 ⊙ K1)T E4 = (K⊙2
2)T (9)

and:

K0 = A = B⊡2 K1 = B ⊡ GB + GB ⊡ B K2 = G⊡2
B (10)

Note that equation (7) can be reduced to a compact form as follows:

ϕ2steps(µB, µC) = ‖Fu‖2F = uT F T Fu = uTQu (11)

where F = [vec(F9) , vec(F8) , vec(F7) , vec(F6) , vec(F5) , vec(F4) , vec(F3) , vec(F2) , vec(F1) ,
vec(F0)] is a (I2K × 10) matrix and u = [µCµ

4
B
, µCµ

3
B
, µCµ

2
B
, µCµB, µC, µ

4
B
, µ3

B
, µ2

B
, µB, 1]T is a 10-

dimensional vector and Q is a symmetric matrix. The latter can be computed from F using the

expression Q = F T F. However, in terms of numerical complexity, it is better to build Q differ-

ently. Indeed, Q is a symmetric matrix only of size (10 × 10) unlike F, which requires a large

storage. Second, using the following Khatri-Rao property (M ⊙ N)T(M ⊙ N) = MT M ⊡ NT N

and (A.3) [40], the expression of components of Q, except those belonging to the last row and

column depending on T(3), can be simplified. Initially, we have Qi j = vec(F10−i)
Tvec

(
F10− j

)
, for

0 ≤ i, j ≤ 9. First, using the previous property (A.3), both vectors are replaced by a Khatri-Rao

6

product of matrices. And second, Khatri-Rao products are replaced by a Hadamard product. For

instance, we get:

Q1,5 = Q5,1 = vec
(
Gc(K0 ⊙ K0)T

)
Tvec

(
C(K2 ⊙ K2)T

)
(12)

= 1p
T((K0 ⊙ K0) ⊙ Gc))T((K2 ⊙ K2) ⊙ C)1p

= 1p
T((K0 ⊙ K0)T(K2 ⊙ K2) ⊡ Gc

TC)1p

= 1p
T(K2

T K0 ⊡ K2
T K0 ⊡ Gc

TC)1p (13)

Note that this way of simplifying the matrix trace was originally proposed by Tomasi and Bro

[56]. The same technique is used for the other components except those depending on T(3) and

by which the numerical complexity is governed.

As it was expected after a simple glance at (6), equation (11) shows that the objective function

ϕ2steps is a second degree polynomial in µC. Thus, the optimal stepsize µC is a rational function in

µB. Now, once µC is computed, its expression is injected in the equation ∂ϕ2steps/∂µB = 0, which

is a 24-th degree polynomial in µB. Consequently, the global minimum µB can be obtained

by finding the roots of the numerator and selecting the root yielding the smallest value of the

objective function ϕ2steps. It is noteworthy that the computation of the coefficients of the 24-

th degree polynomial and more particularly the elements of matrix Q is dominant in terms of

numerical complexity, compared to the computation of the roots of this polynomial.

5.1.2. Global search with one stepsize

To reduce the numerical complexity, a unique stepsize µ = µB = µC for B and C may be

calculated by minimizing the following function derived from (6):

ϕ1step(µ) =
∥∥∥T(3) − (C + µGC)(((B + µGB)⊡2)⊙2)T

∥∥∥2

F
(14)

w.r.t. µ. Then the problem of global search with a unique stepsize is defined as follows:

Problem 4. Given two search directions GB and GC, find the optimal stepsize µ = µB = µC, by

minimizing function (14).

ϕ1step can be rewritten as follows:

ϕ1step =
∥∥∥F0 + µF1 + µ

2F2 + µ
3F3 + µ

4F4 + µ
5F5

∥∥∥2

F
(15)

where:
F0 = T(3) − CE0 F1 = −GC E0 − CE1 F2 = −GC E1 − CE2

F3 = −CE3 − GC E2 F4 = −CE4 − GC E3 F5 = −GC E4
(16)

with the five matrices E0, ..., E4 given by equations (9) and (10). Note that equation (15) can be

reduced to a compact form as follows:

ϕ1step(µ) = ‖Fu‖2F = uT F T Fu = uTQu (17)

where F = [vec(F5) , vec(F4) , vec(F3) , vec(F2) , vec(F1) , vec(F0)] is a (I2K × 6) matrix,

u = [µ5, µ4, µ3, µ2, µ, 1]T is a 6-dimensional vector and Q is a (6 × 6) symmetric matrix. Q

can be computed following the low cost strategy proposed in section 5.1.1. Then we calculate

the globally optimal stepsize µ of the function ϕ1step by finding the roots of its derivative. This

alternative solution is generally less efficient compared to the procedure proposed in section

5.1.1, as shown in section 9 through computer results. However, it permits to reduce the objective

function to a 10-th degree polynomial in µ, and consequently to reduce the numerical complexity

per iteration.

7

5.2. Trust region strategy

The second strategy we consider is known as the trust region method. The search direction and

the step length are computed simultaneously. The method is based on an approximation of the

cost function (5), which is considered to be accurate enough inside a ball with sufficiently small

radius. We shall resort to the Levenberg-Marquardt method, which uses an approximation of the

Hessian, combined with an estimation of a damping parameter proposed by Madsen et al. [57].

6. Matrix derivatives

This section is devoted to the computation of the gradient, the Jacobian and the Hessian of

the objective function (5) in a compact matrix form [40, 58, 59]. In order to preserve the matrix

form during the operations of derivation, matrix calculus is adopted. All useful formulas are

given in Appendix A.

6.1. Gradient computation

The differential of Ψ, seen as a scalar function of two real-valued matrices B and C, is given

by:

dΨ(B,C) = DBΨ(B,C) dvec(B) + DCΨ(B,C) dvec(C) (18)

where DBΨ(B,C) = ∂Ψ/∂vec(B)T and DCΨ(B,C) = ∂Ψ/∂vec(C)T represent the partial deriva-

tives of Ψ w.r.t. B and C, respectively, and dvec(B) and dvec(C) denote the differential of B and

C, respectively, stored in column vector format. Magnus and Neudecker [60] argued in favour

of vector representations of matrix derivatives, which are used in this paper. Then, according to

expression (18), the first order derivative ofΨw.r.t. B and C, called DΨ(B,C), can be partitioned

as follows [60]:

DΨ(B,C) = [DBΨ(B,C),DCΨ(B,C)] (19)

A compact matrix computation of both partial gradients DBΨ(B,C) and DCΨ(B,C) is given

hereafter. From equation (5), we have:

Ψ(B,C) = Tr(T(3)TT(3)) − 2 fT(3) (B,C) + g(B,C) (20)

where fT(3) (B,C) = Tr(T(3)TCZT) and g(B,C) = Tr(ZξZT) with A = B⊡2, Z = A⊙2 and ξ =
CTC. Using equation (A.3) and the property of the column-wise Khatri-Rao product (A.14),

the expression of g(B,C) is reformulated, providing us with a simpler expression of derivatives:

g(B,C) = 1p
T((AT A)⊡2⊡CTC)1p. Then we get, using chain rules [58] and differential properties:

dΨ(B,C) = −2d fT(3) (B,C) + dg(B,C)

= (−2DZ fT(3) (B,C) + DZg(B,C)) dvec(Z) +

(−2DC fT(3) (B,C) + DCg(B,C)) dvec(C)

= (−2DZ fT(3) (B,C) + DZg(B,C)) DAZ dvec(A) +

(−2DC fT(3) (B,C) + DCg(B,C)) dvec(C) (21)

= (−2DZ fT(3) (B,C) + DZg(B,C)) DAZ DB A dvec(B) +

(−2DC fT(3) (B,C) + DCg(B,C)) dvec(C)

= (−2DB fT(3) (B,C) + DBg(B,C)) dvec(B) +

(−2DC fT(3) (B,C) + DCg(B,C)) dvec(C)

8

with:

dvec(Z) = DAZ dvec(A) dvec(A) = DB A dvec(B)

DB fT(3) (B,C) = DZ fT(3) (B,C) DAZ DB A

DBg(B,C) = DZg(B,C) DAZ DB A

The expression of DAZ and DB A required during the differentiation process are given in the two

following lemmas:

Lemma 1. The gradient of Z = A⊙2 w.r.t. A is given by:

DAZ = ∂vec(Z) /∂vec(A) T

= diag(vec(1I ⊗ A))(IIP ⊗ 1I) + diag(vec(A) ⊗ 1I)(UIP ⊗ II)(1I ⊗ IIP) (22)

See Appendix B for a proof.

Lemma 2. The gradient of A = B⊡2 w.r.t. B is given by:

DB A = ∂vec(A) /∂vec(B) T = 2diag(vec(B)) (23)

The proof is given in Appendix C. According to equalities (19) and (21), gradient DΨ(B,C)

may be obtained as stated in the following lemma.

Lemma 3. The gradient DΨ(B,C) = [DBΨ(B,C),DCΨ(B,C)] is defined as:

DBΨ(B,C) = −2DB fT(3) (B,C) + DBg(B,C) (24)

DCΨ(B,C) = −2DC fT(3) (B,C) + DCg(B,C) (25)

where:

DB fT(3) (B,C) = 2
(
vec(B) ⊡ (((A ⊗ 1I

T) ⊡ (M + N))T1I)
)

T (26)

DBg(B,C) = 4vec
(
AT A ⊡ CTC

)
T((IP ⊗ AT) + (AT ⊗ IP)UIP)diag(vec(B)) (27)

and:

DC fT(3) (B,C) = vec
(
T(3)Z

)
T (28)

DCg(B,C) = 2vec(C) T(ZT Z ⊗ IK) (29)

with A = B⊡2, Z = A⊙2, M = Mat(I×1,IP)(vec
(
T(3)TC

)
) and N = Mat(I×I,P)(MT).

The proof is given in Appendix D.

6.2. Jacobian Computation

To compute the Jacobian matrix, a vector function h(B,C) = vec(T(3) − C((B⊡2)⊙2)T) is

introduced. The Jacobian matrix for h w.r.t. B and C is obtained by computing the differential

of h.

dh(B,C) = d(vec(T(3) − C((B⊡2)⊙2)T))

= DBh(B,C)d(vec(B)) + DC h(B,C)d(vec(C)) (30)

where DBh(B,C) = ∂h(B,C)/∂vec(B) T and DC h(B,C) = ∂h(B,C)/∂vec(C) T. Then we can

write the Jacobian J as J = [J B, JC], say the row concatenation of both partial Jacobians defined

by J B = DBh(B,C) and JC = DC h(B,C).

9

Lemma 4. The Jacobian J = [J B, JC] of the vector function h is given by:

JB = −2(II2 ⊗ C)UI2P[diag(vec(A ⊗ II))(IIP ⊗ 1I) + diag(vec(A) ⊗ 1I)

(UPI ⊗ IN)(1I ⊗ IIP)]diag(vec(B)) (31)

JC = −Z ⊗ IK (32)

with A = B⊡2 and Z = A⊙2.

A proof is given in Appendix E. Because of the large size of the Jacobian (I2K, (I + K)P),

the normal equations are used to compute the update of the Levenberg-Marquardt method. The

much smaller JT J matrix is calculated directly by rearranging its blocks to obtain simplified

expressions involving fewer terms of smaller dimensions than if J were used explicitly.

Lemma 5. The symmetric matrix JT J =

(
JB

T JB JB
T JC

JC
T JB JC

T JC

)
of the vector function h is given by:

JB
T JB = 4[(vec(B) ⊗ 1IP

T) ⊡ (1IP ⊗ vec(B) T)] ⊡ (CTC ⊗ 1I×I) ⊡ (33)

[2AT A ⊗ II + (21P
T ⊗ (AT ⊙ 1I×I)) ⊡ (1P×IP ⊙ (A ⊗ 1I

T))]

JC
T JC = ((AT A)⊡2 ⊗ IK) (34)

JB
T JC = 4(vec(B) ⊗ 1KP

T))T
⊡ (1P×IP ⊙ (C ⊗ 1I

T)) ⊡ ((ZT(II ⊗ A)UIP)T ⊗ 1K
T)T (35)

JC
T JB = JB

T JC (36)

with A = B⊡2, Z = A⊙2

A proof is given in Appendix F.

6.3. Hessian computation

The computation of the Hessian w.r.t. to variables B and C is also given in a compact matrix form

following the differentiation technique used in sections 6.1 and 6.2. The Hessian D2Ψ(B,C) can

be partitioned in 4 blocks:

D2Ψ(B,C) =

(
D2

B,B
Ψ(B,C) D2

B,C
Ψ(B,C)

D2
C,B
Ψ(B,C) D2

C,C
Ψ(B,C)

)
(37)

where D2
B,B
Ψ(B,C) = DB(DBΨ(B,C))T and D2

C,C
Ψ(B,C) = DC(DCΨ(B,C))T denote the second

order partial derivatives w.r.t. B and C, respectively; and where D2
B,C
Ψ(B,C) and D2

C,B
Ψ(B,C)

represent the crossed partial derivatives such that (D2
B,C
Ψ(B,C))T = D2

C,B
Ψ(B,C).

The expression of each block is calculated separately and given in the sequel. Firstly, we

compute D2
B,B
Ψ(B,C) from equations (24), (26) and (27):

Lemma 6. The partial Hessian D2
B,B
Ψ(B,C) is given by:

D2
B,BΨ(B,C) = −2D2

B,B fT(3) (B,C) + D2
B,Bg(B,C) (38)

where:

D2
B,B fT(3) (B,C) = 2([(AT ⊗ 1I)⊡(M + N)T]1/2[(A⊗1I

T)⊡ (M + N)]1/2)⊡IIP

+4((1P
T⊗(M + N)T)⊡(diag(vec(B))(IP ⊗ 1I×I)))diag(vec(B)) (39)

10

and:

D2
B,Bg(B,C) = 4diag(((IP ⊗ A) + UPI(A ⊗ IP))vec

(
AT A ⊡ CTC

)
) + 8diag(vec(B)) ×

((IP ⊗ A) + UPI(A ⊗ IP))diag(vec
(
CTC

)
)((IP ⊗ AT) + (AT ⊗ IP)UIP)diag(vec(B)) +

+16diag(vec(B))((AT A ⊡ CTC) ⊗ II)diag(vec(B)) (40)

with A = B⊡2, Z = A⊙2, M = Mat(I×1,NP)(vec
(
T(3)TC

)
) and N = Mat(I×I,P)(MT).

The proof is given in Appendix G. Secondly, we derive the second diagonal block of the Hessian,

D2
C,C
Ψ(B,C), from equations (25), (28) and (29):

Lemma 7. The partial Hessian of Ψ (5) w.r.t. C is given by:

D2
C,CΨ(B,C) = 2((AT A)⊡2 ⊗ IK) (41)

with Z = A⊙2 and A = B⊡2.

Proof is given in Appendix H. Thirdly, the crossed partial derivatives D2
B,C
Ψ(B,C) and D2

C,B
Ψ(B,C)

can be derived from equations (25), (28) and (29).

Lemma 8. The partial Hessians D2
B,C
Ψ(B,C) and D2

C,B
Ψ(B,C) are given by:

D2
C,BΨ(B,C) = D2

C,B fT(3) (B,C) + D2
C,Bg(B,C) = (D2

B,CΨ(B,C))T (42)

where:

D2
C,B fT(3) (B,C) = −4diag(vec(B))(((IP ⊗ 1K

T) ⊗ 1K) ⊡ ((((II ⊗ A)UIP) +

(A ⊗ II)
T)(1P

T ⊗ T(3)T))) (43)

and:

D2
C,Bg(B,C) = 4diag(vec(B))((IP ⊗ A) + UPI(A ⊗ IP))diag(vec

(
AT A

)
)

((IP ⊗ CT) + (CT ⊗ IP)UKP) (44)

with A = B⊡2.

The proof may be found in Appendix I.

7. The algorithms

This section is devoted to a brief description of some derivative-based optimization algo-

rithms, used to solve problem 2.

11

7.1. Conjugate gradient method

The CG method is well-known and widely used in practice, particularly to solve large-scale

nonlinear optimization problems. The main advantage of this algorithm resides in both its rela-

tively small memory allocation and numerical complexity. Therefore it is considered to be faster

than a simple gradient descent. A procedure of global plane search, described in section 5.1,

is associated with this method, giving birth to the CG1step and CG2steps algorithms, depending

on whether one or two different optimal stepsizes (as described in section 5.1) are used. Their

pseudo-codes are described in Algorithm 1. Each direction is chosen to be a linear combination

of the gradient and the previous direction. The update rules of B and C of the CG1step and CG2steps

algorithms are given by:

[
vec(Bit+1)

vec(Cit+1)

]
=

[
vec(Bit)

vec(Cit)

]
−

[
µit

B
IIP 0

0 µit
C

IKP

] [
vec(Git

B)

vec(Git
C)

]
(45)

[
vec(Git

B)

vec(Git
C)

]
= −

[
DBΨ(Bit,Cit)T

DCΨ(Bit,Cit)T

]
+ βit−1

[
vec(Git−1

B)

vec(Git−1
C)

]
(46)

where µit
B
= µit

C
for CG1step, and where βit−1 is computed using the Polak-Ribière formula:

βit−1 =
(DΨ(Bit−1,Cit−1) − DΨ(Bit−2,Cit−2))DΨ(Bit−1,Cit−1)T

DΨ(Bit−2,Cit−2)DΨ(Bit−2,Cit−2)T

(47)

with DΨ(B,C) = [DBΨ(B,C),DCΨ(B,C)]. Several parameters βit−1 were proposed such as

Fletcher-Reeves or Hestenes-Stiefel, to cite a few, but the Polak-Ribière parameter tends to be

more robust and efficient [61]. The descent is initialized by a gradient direction. Another mod-

ification that is often used in nonlinear conjugate gradient procedures is to restart the iteration

at every n steps by taking a steepest descent step. Restarting serves to periodically refresh the

algorithm, erasing old information that may not be beneficial.

Algorithm 1 Pseudo-code for the CG1step and CG2steps algorithms

Initialize both matrices B0 and C0.

Set it = 1, n = I2K, the relative error err = 1 and set the maximal number itmax of allowed

iterations and the stopping criterion threshold ǫ to a predefined value, respectively.

Calculate DBΨ(B0,C0) and DCΨ(B0,C0), and compute µ0
B

and µ0
C

if CG2steps, according to

section 5.1.1, else calculate µ0
B
= µ0

C
= µ0 according to section 5.1.2.

Compute B1 and C1 with a steepest descent step.

while err > ǫ or it < itmax do

Compute the gradients DBΨ(Bit,Cit) and DCΨ(Bit,Cit) using lemma 3.

If it is proportional to n, vec(Git
B) = DBΨ(Bit,Cit)T and vec(Git

C) = DCΨ(Bit,Cit)T, else

compute βit−1, defined in (47), and update the direction [vec(Git
B)T, vec(Git

C)T]T using (46).

If CG2steps, compute the two stepsizes µit
B

and µit
C

according to section 5.1.1, else compute

µit
B
= µit

C
= µit according to section 5.1.2.

Compute the matrices Bit+1 and Cit+1 using the update rule (45).

Compute err = |Ψ(Bit+1,Cit+1) − Ψ(Bit,Cit)|/Ψ(Bit,Cit).

Set it = it + 1.

end while

12

7.2. Levenberg-Marquardt method

The LM procedure may be seen to belong to the family of trust region methods, and is based

on an approximation of the Hessian by a function of the Jacobian of h (see section 6.2). It is based

on solving the modified normal equations, where the so-called damping parameter λ permits to

adjust the conditioning of the approximated Hessian in a trust region [57, 61]. We propose two

algorithms: the first one called LM+sym, based on a simultaneous update of the matrices B and C

and the second one, named A-LM+sym, alternating between these two updates. The latter method

permits to reduce the numerical complexity in comparison to the former, while keeping a good

performance as described in sections 8 and 9. Then the vector update rule of the LM+sym method

is given by:


vec

(
Bit+1

)

vec
(
Cit+1

)
 =


vec

(
Bit

)

vec
(
Cit

)
 −

1

2
(JT J + λitIP(I+K))

−1

[
DBΨ(Bit,Cit)T

DCΨ(Bit,Cit)T

]
(48)

where:

(JT J + λIP(I+K))
−1 =

(
JB

T JB + λIIP JB
T JC

JC
T JB JC

T JC + λIKP

)−1

(49)

where λ is the damping parameter adjusting the conditioning of the approximated Hessian, JT J,

in the trust region [57].

Algorithm 2 Pseudo-code for the LM+sym algorithm

Initialize matrices B0 and C0.

Compute DΨ(B0,C0) (see lemma 3) and calculate JT J (see lemma 5) at (B0,C0).

Set it = 0, the relative error err = 1, µ = 2 and set the maximal number itmax of allowed

iterations and the stop criterion threshold ǫ to a predefined value, respectively.

while err > ǫ or it < itmax do

Compute the matrices Bit+1 and Cit+1, based on a Cholesky decomposition, using the vector

update rule (48).

Compute ρ, corresponding to the gain ratio, which controls the update rule (48) [57, p.25].

while ρ < 0 do

λit = λit ∗ µ and µ = 2 ∗ µ
Compute the matrices again Bit+1 and Cit+1, based on a Cholesky decomposition, using

the vector update rule (48).

Compute ρ.
end while

λit+1 = λit ∗max(1/3, 1 − (2ρ − 1)3) and µ = 2

Compute the gradient DΨ(Bit+1,Cit+1)T according to lemma 3.

Compute JT J, according to lemma 5.

Compute err = |Ψ(Bit+1,Cit+1) − Ψ(Bit,Cit)|/Ψ(Bit,Cit).

Set it = it + 1.

end while

13

The A-LM+sym update rules are given by:

vec
(
Bit+1

)
= vec

(
Bit

)
−

1

2
(JB

T JB + λ
it
BIIP)−1DBΨ(Bit,Cit)T (50)

vec
(
Cit+1

)
= vec

(
Cit

)
−

1

2
(JC

T JC + λ
it
CIKP)−1DCΨ(Bit+1,Cit)T (51)

where λB and λC are the damping parameters, and where JB
T JB and JC

T JC are the diagonal

blocks of JT J. Solving the normal equations leads to compute directly the blocks of JT J without

suffering from a Jacobian of potentially large size in several problems, yielding an enhancement

in terms of numerical complexity and memory allocation. The update of both loading matrices

is calculated by means of Cholesky decomposition of the well-conditioned approximated Hes-

sian [62]. Then, B and C are each obtained by solving two triangular systems. The damping

parameters λ are computed at each iteration using the technique of Madsen et al. [57].

Algorithm 3 Pseudo-code for the A-LM+sym algorithm

Initialize matrices B0 and C0.

Compute DBΨ(B0,C0) and DCΨ(B0,C0) (see lemma 3).

Calculate JB
T JB, JC

T JC (see lemma 5) at B0 and C0, respectively.

Set it = 0, the relative error err = 1, µB = 2 and µC = 2

Set the maximal number itmax of allowed iterations and the stop criterion threshold ǫ to a

predefined value, respectively.

while err > ǫ or it < itmax do

Compute the matrices Bit+1 and Ci+1, based on a Cholesky decomposition, using the two

update rules (50) and (51).

Compute ρB and ρC , corresponding to the gain ratio, which control the update rules (50)

and (51) [57, p.25].

while ρB < 0 do

λit
B
= λit

B
∗ µB and µB = 2 ∗ µB

Compute again the matrix Bit+1 using the update rule (50).

Compute ρB.

end while

λit+1
B
= λit

B
∗max(1/3, 1 − (2ρB − 1)3) and µB = 2

Compute the gradient DCΨ(Bit+1,Cit), according to lemma 3.

Compute JC
T JC , according to lemma 5.

while ρC < 0 do

λit
C
= λit

C
∗ µC and µC = 2 ∗ µC

Compute again the matrix Cit using the equations (51).

Compute ρC .

end while

λit+1
C
= λit

C
∗max(1/3, 1 − (2ρC − 1)3) and µC = 2

Compute the gradient DBΨ(Bit+1,Cit+1), according to lemma 3.

Compute JB
T JB, according to lemma 5.

Compute err = |Ψ(Bit+1,Cit+1) − Ψ(Bit,Cit)|/Ψ(Bit,Cit).

Set it = it + 1.

end while

14

Both methods have two main benefits. First, regularizing the approximated Hessian by

adding a matrix proportional to the identity permits to ensure its positive definiteness, and hence

the descent property. Indeed the positive definiteness of the approximated Hessian is compro-

mised due to the rank deficiency of the Jacobian. In fact, a fundamental result in parameter

identification is that the rank of the Jacobian cannot exceed the number of its free parameters.

Yet in the case of INDSCAL decomposition, there are only (I +K − 1)P free parameters while J

has (I+K)P columns. Consequently, the local identifiability of the INDSCAL model is ensured if

J has exactly P null singular values, which is expected almost surely when I2K > (I +K)P [46].

Second, a full computation of the Hessian is avoided. Furthermore, the classical LM method

is known for its robustness and stability against collinearity and overfactoring in case of small

ranks and array dimensions [62]. Third, note that the A-LM+sym method is equivalent to the ALS

algorithm with regularization, in which the normal equations are solved using the Cholesky de-

composition. This kind of approach allows us to avoid swamps [63]. A pseudo-code of these

two methods are described separately in Algorithms 2 and 3.

7.3. Newton method

The Newton method exploits further information about the surface of the objective function

such as the second order derivative (i.e. the Hessian) which is a good way to accelerate the local

convergence [57]. In our framework, this descent direction is also combined with a global plane

search procedure with two stepsizes as described in section 5.1.1. Note that our preliminary

computer results showed us that the use of two stepsizes makes the Newton method converge

faster in difficult contexts. Two algorithms have been implemented: the first, called mNewton,

updates simultaneously matrices B and C, and the second, named A-mNewton, updates them

alternately. The vector update rule of the mNewton method is then defined by:


vec

(
Bit+1

)

vec
(
Cit+1

)
 =


vec

(
Bit

)

vec
(
Cit

)
 −

[
µit

B
IIP 0

0 µit
C

IKP

]
D2Ψ(Bit,Cit)−1

[
DBΨ(Bit,Cit)T

DCΨ(Bit,Cit)T

]
(52)

The expression above is more general than the standard Newton iteration, since we allow to

Algorithm 4 Pseudo-code for the mNewton algorithm

Initialize matrices B0 and C0.

Set it = 0, the relative error err = 1 and set the maximal number itmax of allowed iterations

and the stop criterion threshold ǫ to a predefined value, respectively.

while err > ǫ or it < itmax do

Compute the gradient DΨ(Bit,Cit) and the Hessian D2Ψ(Bit,Cit) using lemmas 3, 6, 7 and

8.

Compute the modified Hessian matrix H(Bit,Cit) as described in equation (53).

Compute the stepsizes µit
B

and µit
C

, used in the equation (52), with the global plane search

scheme described in section 5.1.1.

Update the matrices Bit+1 and Cit+1 using the equation (52).

Compute err = |Ψ(Bit+1,Cit+1) − Ψ(Bit,Cit)|/Ψ(Bit,Cit).

Set it = it + 1.

end while

modify the stepsizes via a global plane search (i.e. in two complementary subspaces). To ensure

15

local convergence of this algorithm, the Hessian must be positive definite. Therefore, a regu-

larization step of this Hessian is mandatory. This regularization consists simply in adding the

identity matrix multiplied by a positive value τ evaluated in an iterative procedure initialized by

the Frobenius norm of the Hessian [61]. Indeed, this positive definiteness property of the Hessian

is evaluated through the possibility or not to achieve a Cholesky decomposition. If this decom-

position is possible, the scalar τ is kept while it is increased if this decomposition is not so. Then

the modified Hessian, H, can be written as:

H(Bit,Cit) = D2Ψ(Bit,Cit) + τIP(I+K) (53)

The pseudo-code given in algorithm 4 describes the main steps of the mNewton method,

which uses two globally optimal stepsizes. Besides the mNewton algorithm, an alternative ver-

sion, named A-mNewton is proposed hereafter. The main advantage of this alternative version

resides in its attractive computational cost due the approximation of the Hessian by its two diag-

onal blocks. Then, the update rule related to the A-mNewton algorithm is given in the following

form:

vec
(
Bit+1

)
= vec

(
Bit

)
− µBH−1

B,BDBΨ(Bit,Cit)T (54)

vec
(
Cit+1

)
= vec

(
Cit

)
− µC H−1

C,CΨ(Bit+1,Cit)−1DCΨ(Bit+1,Cit)T (55)

where HB,B and HC,C are the modified Hessians of Ψ w.r.t. B and C. µB and µC are the stepsizes

computed using the global plane search procedure. Note that D2
C
Ψ(Bit,Cit) is positive definite,

according to equation (41), except if the rank of Z is not equal to P. In this case, D2
C
Ψ(Bit,Cit) is

only semi-definite positive and the zero eigenvalue should be removed. The pseudo-code given

in algorithm 5 describes the main steps of the A-mNewton method.

Algorithm 5 Pseudo-code for the A-mNewton algorithm

Initialize matrices B0 and C0.

Set it = 0, the relative error err = 1 and set the maximal number itmax of allowed iterations

and the stop criterion threshold ǫ to a predefined value, respectively.

while err > ǫ or it < itmax do

Compute the gradients DBΨ(Bit,Cit)T and DCΨ(Bit,Cit)T; and the Hessians D2
B
Ψ(Bit,Cit)

and D2
C
Ψ(Bit,Cit) using lemmas 3, 6 and 7 and 8.

Compute the modified Hessian matrix HB,B(Bit,Cit) and HC,C(Bit,Cit), as described in

equation (53).

Compute the stepsizes µit
B

and µit
C

used in the equations (54) and (55), with the global plane

search scheme described in section 5.1.1.

Update the matrices Bit+1 and Cit+1 using the equations (54) and (55)

Compute err = |Ψ(Bit,Cit) − Ψ(Bit−1,Cit−1)|/Ψ(Bit−1,Cit−1).

Set it = it + 1.

end while

8. Numerical complexity

The computational complexity of the proposed methods is given in table 1 and explained

with more details below. Note that all expressions have been calculated analytically.

16

Let us begin by tackling the numerical complexity of the step common to all methods pro-

posed in this paper, namely the computation of the gradient. The compact form of DBΨ(B,C)

given by (26) costs approximately I2P(2P3+IP+K). As far as the term DCΨ(B,C) is concerned,

it requires exactly KP(2KP + I2) multiplications. When all the dimensions of the three-way

array are considered of the same order O(I), the calculation of the gradient costs approximately

O(I2P5+I3P).

Next, let us consider the algorithms based on the line search strategy, namely CG1step, CG2steps,

A-mNewton and mNewton. The computation of the global line search, as described in sections

5.1.2 and 5.1.1, requires an order of θI2KP+P2(I+K) multiplications where θ = 5 for the compu-

tation of one optimal stepsize and θ = 9 for two optimal stepsizes. It is noteworthy that the first

term θI2KP is associated to the computation of the last row and column of matrix Q defined in

section 5.1. The second term P2(I+K) corresponds to the computation of the other components

of Q. Under the assumption that the three dimensions of the tensor are of the same order O(I),

the computation of the global line search requires an order of O(I3P+ IP2) multiplications. As

far as the Newton-like methods are concerned, they are based on the computation of the Hessian

of Ψ. The computation of the three blocks D2
B,B
Ψ(B,C), D2

C,C
Ψ(B,C) and D2

C,B
Ψ(B,C) requires

an order of 4I2P4 + 5I3P3 + IP5 + I2KP, K2P2 and IKP4 + K2P4 + I2P4 + KP5 multiplica-

tions, respectively. If I = K, the calculation of the Hessian (the two diagonal blocks for the

A-mNewton algorithm and the whole Hessian for the mNewton algorithm) requires an order of

O(I2P4+I3P3 + IP5) multiplications. In addition, the iterative procedure based on the Cholesky

decomposition [61] costs j(I + K)3P3 multiplications for mNewton and j(I3P3 + K3P3) multi-

plications for A-mNewton where j denotes the number of iterations. Moreover, (I + K)2P2 and

(I2 +K2)P2 multiplications are required by mNewton and A-mNewton, respectively, to solve the

system of two triangular equations avoiding a direct inversion of the modified Hessian. So, the

step of solving the update rules requires an order of O(I3P3) multiplications, under the assump-

tion of I = K.

Eventually, let us study the methods based on the trust region strategy, namely the LM+sym

and A-LM+sym methods. The computation of the three blocks JB
T JB, JC

T JC and JB
T JC costs

approximately I2P2, K2P2 and I2P2(I2 + KP), respectively. For I = K, A-LM+sym requires the

computation of the two diagonal blocks, requiring an order of O(I2P2) multiplications, while

LM+sym needs in addition the calculation of JB
T JC , leading to O(I4P2+ I3P3) multiplications.

Besides, as for the Newton-like methods, the computational complexity of one Cholesky de-

composition [56] and the solving of one system of two triangular equations used in LM+sym and

A-LM+sym requires O(I3P3) multiplications. These steps are repeated as long as the damping

parameter is rejected.

9. Computer results

This section is two-fold. First, the performance of the methods proposed in this paper is

investigated. Second, the interest in exploiting prior information when fitting the CP model is

analyzed, such as semi-nonnegativity and semi-symmetry. This analysis is performed in terms

of convergence speed, accuracy of factor estimation and CPU time.

The experiments are first performed with synthetic datasets, in order to evaluate the impact of

the Signal to Noise Ratio (SNR), the collinearity, the rank and the size on the behavior of the con-

sidered methods. Our methods are compared with ELS-ALS [47] and LM [64, 41] algorithms,

where neither symmetry nor nonnegativity constraints are imposed. The goal of the second part

17

CG1,2steps LM+sym A-LM+sym mNewton A-mNewton

Line search X X X

O(I3P+IP2)

Gradient X X X X X

O(I2P5+I3P)

JT J

O(I4P2+I3P3) X

O(I2P2) X

Hessian

O(I2P4+I3P3 + IP5) X X

Cholesky decomposition

O(I3P3) X X X X

Table 1: Numerical complexity for I = K of the main steps of the proposed algorithms. The symbol X indicates that the

method uses the related step. Furthermore, for the last three steps, the position of X can indicate whether the first or the

second expression of the related step is used.

is to show how the semi-nonnegative INDSCAL problem can occur in ICA applications and to

assess the behavior of the proposed methods w.r.t. classical ICA [21, 70] methods (see section

9.2). To do so, some experiments are carried out on image data.

9.1. Test on synthetic data

Synthetic semi-nonnegative and semi-symmetric array sets are generated from random load-

ing matrices, according to equation (4), with different ranks, levels of collinearity between fac-

tors and different sizes. In particular, the zero-mean unit-variance Gaussian distribution is used

to simulate the matrices B and C. Moreover the resulting three-way arrays are contaminated

by a semi-nonnegative and semi-symmetric third-order array of noise, namedN , also generated

with the help of two Gaussian random matrices. The corresponding noisy third-order array Y is

written as:

Y =
T

‖T ‖F
+ σN

N

‖N‖ F

(56)

where σN is a scalar controlling the noise level. The Signal to Noise Ratio (SNR) is then defined

by SNR= −20 log10(σN).

As a performance criterion, we use a global measure allowing to quantify the estimation error

of both loading matrices A and C. Such a measure is scale-invariant and blind to permutation

indeterminacies inherent in problem 1. It is given by:

α =
1

2P

P∑

k=1

∆A
k + ∆

C
k (57)

where:

∆G
k = min

(p,p′)∈I2
d(gp, ĝp′) (58)

with gp and ĝp the p-th column of G and Ĝ, respectively and I2 = {1, ..., P} × {1, ..., P}. Besides,

d is the pseudo-distance between vectors defined by [67]:

d(u, v) = 1 −
‖uTv‖2

‖u‖2 ‖v‖2
(59)

18

In the first step of α, the smallest distance is selected, associating a column of a loading matrix

with one of its estimate. Then, this pair of indices is removed from I2, and the step is repeated

until the P columns of Ĝ are used and the set I2 is empty. Such a criterion is an upper bound

of the optimal criterion and enjoys several properties: i) it is usable for high rank arrays, ii) it

avoids the computation of all permutations and iii) it prevents two factors from being estimated

by the same computed factor. Note that, for the scenario with low rank studied in this section,

we checked the good quality of the measure α in comparison with the corresponding criterion

calculating all permutations. All algorithms considered in this study stop either when the relative

error of the cost function between two successive iterations, as defined in the above pseudo-

codes, exhibits a value below a predefined threshold of 10−12, or when the number of iterations

exceeds 2000. For each method, the probability of nonaberrant measures, called P(α < 0.2), is

defined by the ratio between the number of realizations for which the measure α is less than 0.2
and the number of realizations [68]. From the nonaberrant realizations, we calculate the averaged

measure α, as defined previously.

Furthermore, all results reported in this section are averaged over 200 Monte Carlo realiza-

tions, where new loading matrices and noise are generated at each realization. In addition, all

methods are initialized by the same matrices C and A such as A = B⊡2, with B and C drawn

from a zero-mean unit-variance normal distribution.

9.1.1. Influence of SNR

In this experiment, the impact of SNR is evaluated. The dimensions and the rank of T are

fixed to (6 × 6 × 6) and 4, respectively. The nonnegative matrix A is generated with two bot-

tlenecks parametrized as A = [a1, a1 + βcol a2, a3, a3 + βcol a4], where each vector ai is drawn

from a standard uniform distribution and where βcol is equal to 0.4. Figure 1(a) shows the mean

of measure α at the output of the eight methods as a function of SNR, ranging from 20 dB

to 70 dB. In parallel, the probability of nonnaberrant measures is reported in figure 1(b) as a

function of SNR. As expected, the decomposition is more effective in the context of high SNR

values with a probability of nonnaberrant measures close to one. The benefit of exploiting semi-

nonnegativity and semi-symmetry can be observed in this context. This can straightforwardly be

seen by comparing the performance of the conventional LM algorithm with its constrained ver-

sions using semi-symmetry and semi-nonnegativity, i.e. LM+sym and A-LM+sym algorithms. More

generally, we observe a significant gap between classical LM and ELS-ALS algorithms and our

methods, in terms of performance and probability of nonnaberrant measures. In fact, for every

SNR value, our methods outperform both unconstrained CP algorithms and give a very good es-

timation of the loading matrices with probabilities of nonnaberrant measures close to one. Note

that classical LM and ELS-ALS algorithms have a poor probability of nonnaberrant measures,

as demonstrated in Figure 1(b). Figure 1(c) displays the mean of CPU time for each method

as a function of SNR. In this context, the cheapest method is the classical LM, where neither

symmetry nor nonnegativity constraints are imposed. But its estimation accuracy is bad. Among

the remaining methods, LM+sym is the cheapest. We also notice that Newton-like methods are

very computationally demanding. The best accuracy/complexity trade-off seems to be achieved

by the LM+sym approach.

In the second experiment, the impact of SNR is evaluated on synthetic data with higher di-

mensions. The dimensions and the rank of T are fixed to (100× 100× 100) and 25, respectively.

To reduce the number of mathematical operations, memory allocation and estimated parameters,

a compression step is subsequently applied on the arrays leading to a dimension reduction, i.e. a

reduction in the number of parameters to be estimated. We use the same technique as HOSVD

19

20 30 40 50 60 70

0,05

0,1

0,15

0,2

SNR

α

ELS−ALS

LM

LM
+

sym

A−LM
sym

CG
2steps

A−mNewton

CG
1step

mNewton

(a) Performance measure α

20 30 40 50 60 70

0.4

0.6

0.8

1

SNR

P
(α

<
0

.2
)

mNewton
A−mNewton

A−LM
sym

LM
sym

LM

ELS−ALS

CG
1step

,CG
2steps

(b) P(α < 0.2)

20 30 40 50 60 70

10

20

30

SNR

C
P

U
 t

im
e

LM

mNewton
A−mNewton

CG
1step

CG
2steps

A−LM
sym

ELS−ALS
LM

sym

(c) CPU time

Figure 1: Influence of SNR for a (6 × 6 × 6) array, P = 4 and βcol = 0.4 at the output of CG2steps (the CG algorithm

with two optimal step lengths), CG1step (with µB = µC optimally computed), mNewton (the mNewton algorithm with

two optimal learning steps µB and µC), A-mNewton, LM+sym, A-LM+sym and two unconstrained CP methods, namely

ELS-ALS and LM.

20

0 10 20 30 40 50 60
0

0,005

0,01

SNR

α

0 20 40 60
0

0.1

ELS−ALSCG
2steps

,A−LM
sym

+

CG
2steps

mNewton

LM
sym

+
,LM,A−mNewton,

 CG
1step

(a) Performance measure α

0 10 20 30 40 50 60
10

2

10
3

10
4

10
5

10
6

SNR

C
P

U
 t

im
e

A−mNewton

LM

LM
sym

+
,A−LM

sym

+
,

CG
2steps

ELS−ALS

CG
1step

mNewton

(b) CPU time

Figure 2: Influence of SNR for a (100×100×100) array and P = 25 at the output of CG2steps (the CG algorithm with two

optimal step lengths), CG1step (with µB = µC optimally computed), mNewton (the mNewton algorithm with two optimal

learning steps µB and µC), A-mNewton, LM+sym, A-LM+sym and two unconstrained CP methods, namely ELS-ALS and

LM.

[41], but the compression is executed only for the third mode, for which no nonnegativity con-

straint is required. Indeed, a compression via truncated HOSVD transforms the tensor T into

another tensor with lower mode-rank (or identical if this compression is lossless). In our com-

puter experiments, the compression is lossy because of additive noise, so that the problem we

actually solve differs from (5). Figure 2(a) shows the α measure at the output of both uncon-

strained CP algorithms compared to our proposed ones as a function of SNR, which ranges from

0 to 60 dB. In practice, the gain in numerical complexity also makes this lossy compression

mandatory for tensors of large size. Indeed, this compression step results in third order arrays of

size (100×100×25). As expected, the decomposition becomes more effective in terms of estima-

tion accuracy when the SNR increases. Furthermore, our proposed semi-nonnegative INDSCAL

algorithms outperform the ELS-ALS method, except mNewton. Contrary to the previous sim-

ulation, the LM algorithm exhibits a good performance, in the context of larger dimensions,

regardless of the SNR value. Note also that for low SNR values, both the CG2steps and the A-

LM+sym approaches outperform the other algorithms considered in this scenario. Regarding the

probabilities of nonabberant measures of all algorithms, they are equal to one for all SNR values,

except mNewton. We note that mNewton is less efficient in terms of estimation accuracy in this

study. Figure 2(b) displays the mean of CPU time for each method as a function of the SNR

values. As depicted in figure 2(b), ELS-ALS is the cheapest method for SNR values ranging

from 0 dB to 60 dB. It is worth mentioning that the measured numerical complexity is constant

regardless of the SNR value. This is due to the fact that the number of iterations required for the

convergence of each realization is always equal to 2000. Figure 2(b) shows also that CG2steps and

our two LM-like methods are less costly in terms of CPU time than the classical LM method. In

the context of low SNR values, CG2steps is even cheaper.

21

9.1.2. Influence of collinearity

In this simulation, a difficult context is addressed and the impact of collinearity between

columns of a matrix factor is evaluated. As in previous experiments, a set of (10×4) nonnegative

matrices A is generated with two bottlenecks and the parameter of collinearity, called βcol, is

ranging from 0 to 1. C is generated with a standard normal distribution. Figure 3(a) shows the

mean of measure α at the output of all methods as a function of βcol, for an SNR value equal

to 60dB. Figure 3(b) displays the probability of nonabberrant measures, P(α < 0.2), for each

value of βcol. As expected, the decomposition is less effective in terms of estimation accuracy

when vectors belonging to a bottleneck are close to collinear (βcol ≈ 0). Moreover, when vectors

are totally collinear (βcol = 0), the probability of having α lower than 0.2 is equal to zero. As

shown in figure 3(b), this probability increases to one at various speeds. Besides, we note the big

gap in the probability measure between the unconstrained LM algorithm and our methods with

semi-nonnegativity and semi-symmetry constraints, principally when the collinearity coefficient

is beyond 0.1. In fact, the probability P(α < 0.2) of our two LM-like methods is close to one

as soon as βcol = 0.1, followed by both CG algorithms. Concerning ELS-ALS, its probability is

lower than that of our LM-like and CG-like approaches. Among all the compared methods, for

βcol beyond 0.1, A-LM+sym and LM+sym are the most effective, both in terms of estimation accuracy

and probability of nonaberrant results. Figure 3(c) displays the averaged CPU time as a function

of βcol. Both unconstrained CP methods have the lowest cost. Regarding our algorithms, for

columns close to collinear, LM+sym is the cheapest. However, when the collinearity is relaxed, the

cost of A-LM+sym is reduced and becomes comparable to the one of LM+sym. To sum up, this study

brings out the good behavior of LM+sym in terms of performance and CPU time.

9.1.3. Influence of the rank

In this section, both matrices C and B are of size (50 × P) with P ∈ {20, 50} and for

SNR=10dB. Table 2 shows the mean of measure α at the output of all methods for P ∈ {20, 50}.

As expected, the decomposition is more effective in the context of low rank. We note that, for

low ranks, the performance accuracy of ELS-ALS and most of the semi-nonnegative INDSCAL

methods are similar. Next, LM and mNewton are less efficient than the other ones, for P = 20.

Besides, our methods outperform the unconstrained CP methods for P = 50, except for mNew-

ton. Indeed, this experiment shows how the full exploitation of the nonnegativity and symmetry

properties, if it exists, in the INDSCAL decomposition of high-rank arrays, allows for a good

estimation accuracy. Regarding the probabilities of having nonaberrant measures, this experi-

ment shows that these quantities are equal to one for all the considered algorithms. Note also

that, for both P values, the A-LM+sym method gives the best estimation accuracy. Table 2 shows

the mean of the CPU time at the output of all methods for P ∈ {20, 50}. As expected, the CPU

time increases with the rank. Among all semi-nonnegative INDSCAL methods, the one with the

lowest cost is A-LM+sym for low and high ranks. The best accuracy/complexity trade off seems to

be achieved by the A-LM+sym approach.

9.1.4. Influence of dimensions

In this experiment, for an SNR value of 60dB, a set of (I×I×I) three-way arrays are generated

with I varying from 10 to 100. To address a more difficult context, a collinearity coefficient equal

to 0.8 between the columns of the loading matrix A is assumed. A compression step is applied

to the arrays, as in section 9.1.1. Table 3 shows the mean of the α measure at the output of all

methods as a function of I ranging from 10 to 100. As shown in the experiment evaluating the

influence of the collinearity (section 9.1.2), some semi-nonnegative INDSCAL methods such as

22

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

β
col

α

LM

A−LM
sym

+
mNewton

A−mNewton
LM

sym

+
,ELS−ALS

CG
1step

CG
2steps

(a) Performance measure α

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

β
col

P
(α

<
0

.2
)

ELS−ALS

mNewton

CG
2steps

CG
1step A−mNewton

A−LM
sym

+

LM
sym

+

LM

(b) P(α < 0.2)

0 0.2 0.4 0.6 0.8 1
0

50

100

β
col

C
P

U
 t

im
e

LM
ELS−ALS

mNewton

A−mNewton

LM
sym

+

CG
1step

CG
2steps

A−LM
sym

+

(c) CPU time

Figure 3: Influence of collinearity for a (10 × 10 × 10) array, P = 4 and SNR=60dB, over the numerical complexity

and the performance at the output of CG2steps (the CG algorithm with two optimal step lengths), CG1step (with µB = µC

optimally computed), mNewton (the mNewton algorithm with two optimal learning steps µB and µC), A-mNewton,

LM+sym, A-LM+sym and two unconstrained CP methods, namely ELS-ALS and LM.

23

❳
❳
❳
❳
❳
❳
❳
❳
❳❳

Algorithms

P P = 20 P = 50

α CPU time α CPU time

ELS-ALS 1.7 × 10−3 199 3.1 × 10−2 972.3

LM 2.3 × 10−3 181.8 2.5 × 10−2 3.45 × 103

CG1step 1.7 × 10−3 871.6 2.3 × 10−2 1.4 × 104

CG2steps 1.7 × 10−3 803.5 2.3 × 10−2 1.1 × 104

LM+sym 1.7 × 10−3 1.2 × 103 2.7 × 10−2 1.4 × 104

A-LM+sym 1.7 × 10−3 353.2 2.3 × 10−2 1.1 × 104

mNewton 4.1 × 10−3 1.12 × 104 4.8 × 10−2 2.3 × 105

A-mNewton 1.7 × 10−3 3.5 × 103 2.5 × 10−2 1 × 105

Table 2: Influence of the rank for a (50×50×50) array and SNR=10dB over the measure α and CPU time at the output of

CG2steps (the CG algorithm with two optimal step lengths), CG1step (with µB = µC optimally computed), mNewton (the

mNewton algorithm with two optimal learning steps µB and µC), A-mNewton, LM+sym, A-LM+sym and two unconstrained

CP methods, namely ELS-ALS and LM.

CG2steps, LM+sym and A-LM+sym, outperform the unconstrained CP algorithms, namely ELS-ALS

and LM, for I = 10. We note that the difference in the accuracy between unconstrained CP

algorithms and those with semi-nonnegativity and semi-symmetry constraints decreases when

the size of the three-way arrays increases. Besides, in this easy context of large arrays and low

rank, our computer results show that the probability P(α < 0.2) is close to one for all array sizes

and all algorithms. In this context, the methods based on the alternating update rules, namely

A-LM+sym and A-mNewton, give better results than those based on simultaneous updates. This

remark is also true for both conjugate gradient-like methods, CG1step and CG2steps, for which the

performance criterion does not decrease significantly when I increases. Furthermore A-LM+sym

converges very well and gives the best results for I ∈ {50, 100}. Table 4 shows the mean of the

CPU time at the output of all methods as a function of I ranging from 10 to 100. All methods

are expensive in this context, due to the fact that, contrary to the unconstrained case, semi-

nonnegative INDSCAL three-way arrays are only compressed in the third mode, for which no

nonnegativity constraint is imposed. The unconstrained LM algorithm is by far the cheapest

method in this context of high dimensions and low rank. The cost of both LM-like methods

is close to that of ELS-ALS. In the context of high dimensions and high collinearity, the best

accuracy/complexity trade off seems to be achieved by the A-LM+sym approach.

9.2. Application to semi-nonnegative ICA

In this section, a problem of semi-nonnegative ICA is addressed, where algorithms exploit

some interesting properties enjoyed by cumulants. The semi-nonnegative ICA problem can be

then transformed into a semi-nonnegative INDSCAL model fitting, and the methods described

previously are used to solve it.

9.2.1. Semi-nonnegative ICA

As mentioned in section 2, the ICA concept has been widely used to solve real-world prob-

lems. However, they did not exploit further prior information such as nonnegativity. Herein, the

nonnegativity constraint of the mixing coefficients is taken into account during the ICA step giv-

ing rise to the semi-nonnegative ICA. This is illustrated through the problem of blind separation

of face images. To this end let’s start by defining the semi-nonnegative ICA concept.

24

❳
❳
❳
❳
❳
❳
❳

❳
❳❳

Algorithms

I
10 20 30 50 100

ELS-ALS 0.91 × 10−3 0.33 × 10−4 0.55 × 10−5 0.15 × 10−6 0.1 × 10−6

LM 0.10 0.41 × 10−1 0.28 × 10−1 0.24 × 10−1 0.20 × 10−1

CG1step 0.2 × 10−1 0.78 × 10−2 0.23 × 10−2 0.5 × 10−3 0.5 × 10−3

CG2steps 0.5 × 10−3 0.24 × 10−3 0.19 × 10−3 0.29 × 10−3 0.61 × 10−3

LM+sym 0.6 × 10−3 0.2 × 10−3 0.2 × 10−3 0.2 × 10−3 0.2 × 10−3

A-LM+sym 0.18 × 10−4 0.93 × 10−6 0.36 × 10−6 0.13 × 10−6 0.6 × 10−7

mNewton 0.64 × 10−1 0.54 × 10−1 0.54 × 10−1 0.54 × 10−1 0.54 × 10−1

A-mNewton 0.21 × 10−1 0.62 × 10−2 0.51 × 10−2 0.43 × 10−2 0.40 × 10−2

Table 3: Influence of the dimensions for a (I × I × I) array, P = 4 and SNR=60dB over the measure α at the output of

CG2steps (the CG algorithm with two optimal step lengths), CG1step (with µB = µC optimally computed), mNewton (the

mNewton algorithm with two optimal learning steps µB and µC), A-mNewton, LM+sym, A-LM+sym and two classical CP

methods, namely ELS-ALS and LM.

❳
❳
❳
❳
❳
❳
❳

❳
❳❳

Algorithms

I
10 20 30 50 100

ELS-ALS 3.59 27.49 36.49 51.22 120.06

LM 0.11 1.17 1.77 4.44 23.59

CG1step 7.40 73.88 98.83 183.05 493.92

CG2steps 10.04 76.63 94.13 159.42 432.03

LM+sym 1.42 19.46 21.96 46.11 147.48

A-LM+sym 4.10 58.26 57.55 90.62 238.28

mNewton 0.12 × 10+3 0.21 × 10+3 0.31 × 10+3 0.76 × 10+3 4.10 × 10+3

A-mNewton 0.11 × 10+3 0.16 × 10+3 0.24 × 10+3 0.40 × 10+3 1.22 × 10+3

Table 4: Influence of the dimensions for a (I × I × I) array, P = 4 and SNR=60dB over the CPU time at the output of

CG2steps (the CG algorithm with two optimal step lengths), CG1step (with µB = µC optimally computed), mNewton (the

mNewton algorithm with two optimal learning steps µB and µC), A-mNewton, LM+sym, A-LM+sym and two classical CP

methods, namely ELS-ALS and LM.

25

Definition 6. Given realizations {x[t]} of a real random vector x, find an (I×P) mixing matrix

A and realizations {s[t]} of a P-dimensional source random vector s such that x = As where A

has nonnegative components and s has statistically independent components.

To solve this problem, we decide to jointly use Second Order (SO), Third Order (TO) and

Fourth Order (FO) cumulant arrays. Indeed, resorting to the use of different cumulant orders

allows us to cover the variety of source spectra that may be involved in the observed mixture.

Now, the purpose is to show how we can combine cumulants into one third order array, following

the semi-nonnegative INDSCAL model.

Let Cn1,n2,x, Cn1,n2,n3,x and Cn1,n2,n3,n4,x be the entries of the SO, TO and the FO cumulant

arrays, C2, x,C3, x,C4, x, respectively of a zero-mean I-dimensional random vector x computed as

shown in [39]. We propose now to merge the entries of the three cumulant arrays in the same

matrix, named T
(2,3,4)
x of size (M× I2) with M = 1+ I + I2. More precisely, the (m1,m2)-th entry,

T
(2,3,4)
m1,m2,x of T

(2,3,4)
x is defined as follows:

T
(2,3,4)
m1,m2,x =



Cn1,n2,x with m1 = 1 and m2 = n2 + I(n1 − 1)

Cn1,n2,m1,x ∀m1 ∈ {2, · · · , I + 1} with m2 = n2 + I(n1 − 1)

Cn1,n2,n3,n4,x ∀m1 ∈ {I + 2, · · · , I + I2 + 1}

with m1 = n4 + Nn3 and m2 = n2 + I(n1 − 1)

(60)

According to the multi-linearity property enjoyed by cumulants [39], the SO, TO and FO cumu-

lant tensors of the observations (6) follow the relations below:

Cn1,n2,x =

P∑

p=1

An1,pAn2,pCp,p,s

Cn1,n2,n3,x =

P∑

p=1

An1,pAn2,pAn3,pCp,p,p,s

Cn1,n2,n3,n4,x =

P∑

p=1

An1,pAn2,pAn3,pAn4,pCp,p,p,p,s (61)

where Cp,p,s, Cp,p,p,s and Cp,p,p,p,s denote the SO, TO and the FO marginal cumulants of the p-th

source, respectively. By inserting (60) in (61), we obtain the following algebraic structure:

T
(2,3,4)
x = C(A ⊘ A)T (62)

with C = [C2,x,C3,x AT,C4,x(A ⊙ A)T]T where the matrices C3,s = diag[C1,1,1,s, · · · ,CP,P,P,s]

and C4,s = diag[C1,1,1,1,s, · · · ,CP,P,P,P,s] of size (P × P) are diagonal and the vector C2,s =

[C1,1,s, · · · ,CP,P,s] is of size P. Now, according to Definition 5, equation (62) is nothing else

but the matrix representation of the semi-nonnegative INDSCAL model defined in Problem 1.

Note that the semi-symmetry property is satisfied since the resulted TO tensor described through

its matrix representation in (62) has two equal loading matrices.

9.3. Tests on image data

In this section, the semi-nonnegative ICA is applied to images. We compare our methods

to two classical ICA algorithms using the INDSCAL model, namely JADE [21] and SOBI [70].

Following the results obtained in the previous sections, and since CG2steps, LM+sym and A-LM+sym

26

P
P
P
P
P
P
PP

Algorithms
measure α CPU time

JADE 0.110 0.149

SOBI 0.286 0.937

CG2steps 0.036 9.473

LM+sym 0.036 5.025

A-LM+sym 0.036 6.747

Table 5: Average values of measure α and CPU times at the output of two classical ICA methods (JADE and SOBI) ,

CG2steps (the CG algorithm with two optimal step lengths), LM+sym and A-LM+sym.

show the best efficiency/CPU timing trade-off, they are considered in this practical context. We

consider a database1 of 40 face images for this application, which are assumed to be statistically

independent. For each dataset of two face images (among 780), five observations are generated

as a mixture of two image sources. The nonnegative mixing matrix A is drawn from a uniform

distribution. Table 1 shows the average of measure α of sources and the CPU time for 780

datasets at the output of the five methods. The three semi-nonnegative ICA methods, CG2steps,

LM+sym and A-LM+sym, outperform JADE and SOBI. This experiment shows that in this context

the use of both constraints, namely nonnegativity and independence of the sources, allows us to

achieve a good estimation accuracy. Concerning CPU time, JADE and SOBI appear to be the

least expensive methods. As A-LM+sym is the least expensive among our semi-nonnegative ICA

methods, it it may be a good compromise between accuracy and complexity.

Figure 5 shows the extracted sources at the output of the five methods, for three experiments.

The first line corresponds to sources and the second to observations. The two ICA methods,

JADE and SOBI, fail to separate the two sources. On the other hand, using CG2steps, LM+sym or

A-LM+sym leads to a quasi-perfect separation.

10. Conclusion

Six algorithms have been proposed to compute the approximate CP decomposition of real

three-way arrays, which are nonnegative and symmetric in two modes. Both constraints were

explicitly exploited to achieve this decomposition. A change of variable into squares has been

used to force the nonnegativity of two of the three loading matrices, leading to an unconstrained

problem. In addition, two globalization strategies have been studied, namely line search and trust

region. Regarding the former, a global plane search procedure has been considered, with one or

two stepsizes optimally computed at each iteration. Moreover, all derivatives have been calcu-

lated in matrix form using the algebraic basis of matrix calculus and product operator properties.

The computational complexity issue has been taken into account in the design phase of the algo-

rithms, and has been evaluated for each algorithm, allowing to fairly compare their performance.

Then, various scenarios have been considered, aiming at testing the influence of i) an additive

noise, which can stand for modeling errors, ii) the collinearity between factors, iii) the array

rank and iv) the data size. The comparisons between our CG-like, Newton-like and LM-like

methods (where semi-nonnegativity and semi-symmetry constraints are exploited), and classical

1Database accessible at http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html. The set of faces was

taken between April 1992 and April 1994 at the Olivetti Research Laboratory in Cambridge, UK and used in [69].

27

Observations

Sources

JADE

SOBI

CG
2steps

LM
+

sym

A−LM
+

sym

(a) Legend (b) Test 1 (c) Test 2 (d) Test 3

Figure 4: Results for three simulations: (line 1) sources, (line 2) observations, (line 3) extracted sources by JADE, (line

4) by SOBI, (line 5) by CG2steps, (line 6) by LM+sym and (line 7) by A-LM+sym.

28

CP algorithms (where no constraints are considered), showed that a better CP decomposition is

obtained when these a priori are exploited. In particular in the context of high dimensions and

high collinearity, we can observe that our methods outperform ELS-ALS and LM algorithms.

Finally, based on our numerical analysis, the algorithms that seem to yield the best tradeoff

between accuracy and complexity are LM+sym for small dimensions, and CG2step and A-LM+sym

for higher dimensions. Furthermore, the proposed algorithms have been evaluated in a practical

context, namely semi-nonnegative ICA of face images. The results have shown the benefit gained

by fully exploiting prior information, such as the nonnegativity of the mixing matrix.

Appendix A. The algebra of Kronecker and Khatri-Rao products and basic relationships

Some useful properties are recalled [40].

vec(FZ) = (IP ⊗ F) vec(Z) (A.1)

vec(FZ) = (ZT ⊗ IP) vec(F) (A.2)

vec(FZ) = (ZT ⊙ F)1N (A.3)

vec(FT) = UPN vec(F) (A.4)

vec(F ⊙ G) = diag(vec(F) ⊗ 1K)(UNP ⊗ IK)(1P ⊗ INK)vec(G)(A.5)

vec(F ⊙ G) = diag(vec(1P ⊗ G))(IPN ⊗ 1K) vec(F) (A.6)

Tr(FZ) = vec(FT)Tvec(Z) (A.7)

Z(v ⊡ e) = Zdiag(v) e (A.8)

diag(vec(1P ⊗ F))vec
(
LT Z

)
= vec(1P ⊗ F) ⊡ vec

(
LT Z

)
(A.9)

= vec
(
LT Z

)
⊡ vec(1P ⊗ F) (A.10)

vec(1N ⊗ Z) = (UPN ⊗ IN)(1N ⊗ INP)vec(Z) (A.11)

vec(Z ⊡ H) = diag(vec(H))vec(Z) (A.12)

= diag(vec(Z))vec(H) (A.13)

(F ⊙ G)T(F ⊙ G) = FT F ⊡ GTG (A.14)

where F ∈ ❘P×N , Z,H ∈ ❘N×P,G ∈ ❘K×N , D ∈ ❘K×M , L ∈ ❘N×NP,w ∈ ❘N and v, e ∈ ❘P .

Appendix B. Proof of lemma 1

Assume at this moment that matrix A is a real function in two real-valued matrices A1 ∈

❘
I1×P
+ and A2 ∈ ❘

I2×P
+ with A1 = A2 = A. Then according to equations (A.5) and (A.6), we

have:

vec(Z) = vec(A1 ⊙ A2)

= diag(vec
(
1I2
⊗ A2

)
)(II1P ⊗ 1I2

)vec(A1) (B.1)

= diag(vec(A1) ⊗ 1I2
)(UI2P ⊗ II2

)(1I1
⊗ II2P)vec(A2) (B.2)

where A1 ∈ ❘
I1×P
+ and A2 ∈ ❘

I2×P
+ .

Then the differential of the vectorized form of Z is given by:

dvec(Z) = DA1
vec(Z) dvec(A1) + DA2

vec(Z) dvec(A2) (B.3)

29

Then according to the last equation and equations (B.1) and (B.3), we have:

dvec(Z) = diag(vec
(
1I2
⊗ A2

)
)(II1P ⊗ 1I2

) dvec(A1) + diag(vec(A1) ⊗ 1I2
)(UI2P ⊗ II2

) ×

(1I1
⊗ II2P)dvec(A2) (B.4)

Now, by including the constraint A1 = A2 = A in the latter differential form and factorizing it

w.r.t. dvec(Z), the gradient expression DAZ given in this lemma is proved.

Appendix C. Proof of lemma 2

As proceeded previously, we suppose at this moment that matrix A is is a real function in

two real-valued matrices B1 and B2 subject to B1 = B2. Then, according to equations A.12 and

A.13, we have:

vec(A) = vec(B1 ⊡ B2) = diag(vec(B2)) vec(B1) (C.1)

= diag(vec(B1)) vec(B2) (C.2)

Then according to equations (C.1) and (C.2), the differential of A is given by:

dvec(A) = DB1
vec(A) dvec(B1) + DB2

vec(A) dvec(B2)

= diag(vec(B2)) dvec(B1) + diag(vec(B1)) dvec(B2) (C.3)

Now, by including the constraint B1 = B2 = B in the latter differential form and factorizing it

w.r.t. dvec(B), the gradient expression DB A given in Lemma 2 is proved.

Appendix D. Proof of Lemma 3

According to the differential expression (18) and from equation (21), equations (24) and (25)

are immediate. Now, we have

fT(3) (B,C) = Tr(T(3)TC(A ⊙ A)T) = Tr(T(3)TCZT) = vec
(
CTT(3)

)
Tvec

(
ZT

)

= vec
(
CTT(3)

)
TUI2Pvec(Z) = vec

(
T(3)TC

)
Tvec(Z) (D.1)

Then:

d fT(3) (B,C) = vec
(
T(3)TC

)
T dvec(Z)

= DZ fT(3) (B,C) dvec(Z) = DZ fT(3) (B,C) DAZ dvec(A)

= DZ fT(3) (B,C) DAZ DB A dvec(B)

= DB fT(3) (B,C) dvec(B) (D.2)

Now using the results of both lemma 1 and lemma 2 we obtain:

DB fT(3) (B,C) = 2vec
(
T(3)TC

)
T(diag(vec(1I ⊗ A))(IIP ⊗ 1N) + diag(vec(A) ⊗ 1I) ×

(UPI ⊗ II)(1I ⊗ IIP))diag(vec(B)) (D.3)

30

With the aim of reducing the numerical complexity and dimensions of matrices used in the gra-

dient expression, we simplify the expression using only small matrices:

DB fT(3) (B,C) = 2
(
vec(B) ⊡ (((A ⊗ 1I

T) ⊡ (M + N))T1I)
)

T (D.4)

(D.5)

with M = Mat(I×1,IP)(vec
(
T(3)TC

)
) and N = Mat(I×I,P)(MT).

This simplification is expressed using the algebraic basis of matrix calculus, some operator prop-

erties.

Let us now compute the gradient of the real function g(B,C) w.r.t. B.

g(B,C) = 1p
T(Y⊡2

⊡ CTC)1p

where Y = AT A. Then:

dg(B,C) = DYg(B,C) DAY DB A dvec(B)

= DBg(B,C) dvec(B) (D.6)

with A = B⊡2 and Y = AT A. By calculus, we obtain:

DYg(B,C) = 2vec
(
Y ⊡ CTC

)
(D.7)

DAY = (IP ⊗ AT) + (AT ⊗ IP)UPN (D.8)

Now from both previous differential expressions and Lemma 2, we obtain the expression of

DBg(B,C). Then by multiplying equation (D.3) by a negative factor of two and adding it to

equation (D.7), we obtain the gradient expression DBΨ(B,C).

We proceed in a similar manner to obtain the derivative w.r.t. C: DCΨ(B,C). We start by

rewriting fT(3) (B,C) and g(B,C), to be able to derive in matrix form.

fT(3) (B,C) = Tr
(
T(3)TCZT

)
= Tr

(
ZTT(3)TC

)
= vec

(
T(3)Z

)
Tvec(C) (D.9)

Then since we are interested in computing the gradient w.r.t. to C, we will limit ourselves to

compute the differential of fT(3) (B,C) w.r.t. to B:

d fT(3) (B,C) = vec
(
T(3)Z

)
Tdvec(C) = DC fT(3) (B,C) dvec(C) (D.10)

Let us now compute the gradient of the real function g(B,C) w.r.t. C.

g(B,C) = Tr
(
ZCTCZT

)
= Tr

(
CZT ZCT

)

= vec
(
ZT ZCT

)
Tvec

(
CT

)

= (UKP(ZT Z ⊗ IK) vec(C))TUKP vec(C)

= vec(C) T(ZT Z ⊗ IK) vec(C) (D.11)

Then since we are interested in computing the gradient w.r.t. to C, we will limit ourselves to the

differential of g(B,C) w.r.t. to C:

dg(B,C) = 2vec(C) T(ZT Z ⊗ IK) dvec(C) = DCg(B,C) dvec(C) (D.12)

Then premultiplying the term DC fT(3) (B,C) by a negative factor of two and adding it to DCg(B,C),

we obtain the gradient expression DCΨ(B,C).

31

Appendix E. Proof of lemma 4

Using the same technique as that adopted to prove lemmas 1 and 2, the results of the latter,

and using equations (A.1), (A.2) and (A.4), the vectorized expression of the matrix function h is

modified to allow a derivation in matrix form.

h(B,C) = vec
(
T(3) − C(A ⊙ A)T

)

= vec
(
T(3)

)
− (II2 ⊗ C)vec

(
(A ⊙ A)T

)

= vec
(
T(3)

)
− (II2 ⊗ C)UI2Pvec(A ⊙ A) (E.1)

= vec
(
T(3)

)
− ((A ⊙ A) ⊗ IK) vec(C) (E.2)

Then, inserting the result of Lemma 1 in equation (E.1), equation (31) is readily obtained. Equa-

tion (32) then follows easily from equation (E.2)

Appendix F. Proof of Lemma 5

From the Jacobian expressions (31) and (32), we compute the term JT J, which yields:

J B
T J B = 4WT(II2 ⊗ CTC)W (F.1)

JC
T JC = (ZT Z) ⊗ IK (F.2)

J B
T JC = (J B

T JC)T (F.3)

where the second equation above can be found in [56], with A = B⊡2, Z = A⊙2 and W =

UI2P[diag(vec(A ⊗ II))(IIP ⊗ 1I)+ diag(vec(A)⊗ 1I)(UPI ⊗ IN)(1I ⊗ IIP)]. Based on the properties

of Kronecker and Khatri-Rao products and using some matrix manipulations, the previous ex-

pression can be written in terms of matrices with dimensions less than or equal to max (IP,KP).

This rearrangement permits in turn to deal with large dimensional problems. As a result, expres-

sions (33), (34) and (35) are immediate.

Appendix G. Proof of Lemma 6

In order to compute the term D2
B,B fT(3) (B,C), we derive (DB fT(3) (B,C))T separately w.r.t. B

and A.

(
DB fT(3) (B,C)

)
T = 2diag(vec(B))(1I

T ⊗ IIP)(UIP ⊗ II)diag(vec(A) ⊗ 1I) + (IIP ⊗ 1I
T)

diag(vec(1I ⊗ A))vec
(
T(3)TC

)
(G.1)

We shall first need the lemma below to derive (D
(1)

B
fT(3) (B,C))T w.r.t. B..

Lemma 9. Let u(B) = diag(vec(B))ω be a vector function in the matrix B of size (I × P) where

ω is an IP-dimensional vector, the gradient of u(B) w.r.t. B is then given by DBu(B) = diag(ω).

The proof of this Lemma is immediate, using equation (A.12).

32

Now, by using the result of Lemma 9 in equation (G.1) and by inserting the properties (A.12)

and (A.13) in equation (G.1) to derive w.r.t. A, we have:

d(DB fT(3) (B,C)T) = d2 fT(3) (B,C) =

2diag(((IIP ⊗ 1I
T)diag(vec(1I ⊗ A)) + (1I

T ⊗ IIP)(UIP ⊗ II)diag(vec(A) ⊗ 1I)) ×

vec(T(3)TC)) dvec(B) + 2diag(vec(B))((IIP ⊗ 1I
T)diag(vec(T(3)C))(UPI ⊗ II)(1I ⊗ IIP)

+(1I
T ⊗ IIP)(UIP ⊗ II)UPI(UPI ⊗ II)(1I ⊗ IIP)) dvec(A) (G.2)

However A = B⊡2, then according to Lemma 2 we get:

d(DB fT(3) (B,C)T) = d2 fT(3) (B,C) =

2diag(((IIP ⊗ 1I
T)diag(vec(1I ⊗ A)) + (1I

T ⊗ IIP)(UIP ⊗ II)diag(vec(A) ⊗ 1I)) ×

vec(T(3)TC)) dvec(B) + 4diag(vec(B))((IIP ⊗ 1I
T)diag(vec(T(3)C))(UPI ⊗ II)(1I ⊗ IIP)

+(1I
T ⊗ IIP)(UIP ⊗ II)UPI(UPI ⊗ II)(1I ⊗ IIP))diag(vec(B)) dvec(B)

= D2
B,B fT(3) (B,C) dvec(B) (G.3)

Recall that another expression (39) of D2
B,B

fT(3) (B,C), written in terms of matrices of small di-

mensions, can be obtained using some matrix manipulations based on properties of Kronecker

and Khatri-Rao products. Regarding the partial Hessian D2
B,B

g(B,C), it is computed in the same

manner.

Appendix H. Proof of Lemma 7

According to equation (25), the term D2
C,C
Ψ(B,C) is given by:

D2
C,CΨ(B,C) = −2D2

C,C fT(3) (B,C) + D2
C,Cg(B,C) (H.1)

with D2
C,C

fT(3) (B,C) = DC

(
DC fT(3) (B,C)

)
T and D2

C,C
g(B,C) = DC (DCg(B,C)) T. Since accord-

ing to Lemma 3, i.e. equation (28), DC fT(3) (B,C) does not depend on C, then D2
C,C

fT(3) (B,C) = 0.

Thus the Hessian of Ψ given in (5) depends only on D2
C,C

g(B,C). From equation (29) we have:

DCg(B,C) = 2vec(C) T(ZT Z ⊗ IK) (H.2)

Then:

d(DCg(B,C))T = 2(ZT Z ⊗ IK) dvec(C)

= HC,Cg(B,C) dvec(C) = D2
C,CΨ(B,C) dvec(C)

(H.3)

Hence the result.

Appendix I. Proof of Lemma 8

In order to compute the cross partial Hessian DB,C fT(3) (B,C)T, we derive (DB fT(3) (B,C))T

w.r.t. C. Using the chain rules and equation (A.1), we obtain:

(
DB fT(3) (B,C)

)
T = −4diag(vec(B))(1I

T ⊗ IIP)(UIP ⊗ II)diag(vec(A) ⊗ 1I) + (IIP ⊗ 1I
T)

diag(vec(1I ⊗ A))vec
(
T(3)TC

)
(I.1)

33

(
DB fT(3) (B,C)

)
T = −4diag(vec(B))(1I

T ⊗ IIP)(UIP ⊗ II)diag(vec(A) ⊗ 1I) + (IIP ⊗ 1I
T)

diag(vec(1I ⊗ A))(IP ⊗ T(3)T)vec(C) (I.2)

Hence the expression of D2
B,C

fT(3) (B,C). Moreover, as for DB,C fT(3) (B,C), the expression is

reformulated, using the algebraic basis of matrix calculus and operator properties, in terms of

small matrices (43)

DBg(B,C)T = 4diag(vec(B))((IP ⊗ A) + UPI(A ⊗ IP))vec
(
AT A ⊙ CTC

)

So, we calculate:

d(DBg(B,C))T = DCTC(DBg(B,C))T DCCTC dvec(C) (I.3)

We have:

DCTC(DBg(B,C))T = 4diag(vec(B))((IP ⊗ A) + UPI(A ⊗ IP))diag(CTC)

and

DCCTC = (IP ⊗ CT) + (CT ⊗ IP)UKP

Inserting the two previous expressions DCTC(DBg(B,C)) and DCCTC, we obtain (43) and (44).

Acknowledgement

This work has been partly supported by the French ANR contract 10-BLAN-MULTIMODEL.

We thank the reviewers for their thorough reading and helpful comments.

References

[1] J. CARROLL, J. CHANG, Analysis of individual differences in multidimensional scaling via an n-way generaliza-

tion of Eckart-Young decomposition, Psychometrika 35 (9) (1970) 267–283.

[2] S. HAJIPOUR SARDOUIE, L. ALBERA, M. B. SHAMSOLLAHI, I. MERLET, Canonical Polyadic Decomposi-

tion of Complex-Valued Multi-Way Arrays based on Simultaneous Schur Decomposition, in: IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013.

[3] F. L. HITCHCOCK, The expression of a tensor or a polydiac as a sum of products, J. Math. Phys. 6 (1) (1927)

164–189.

[4] T. G. KOLDA, B. W. BADER, Tensor decompositions and applications, SIAM Review 51 (3) (2009) 455–500.

[5] X. LUCIANI, L. ALBERA, Semi-algebraic canonical decomposition of multi-way arrays and joint eigenvalue

decomposition, in: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011,

pp. 4104–4107.

[6] Y. TAKANE, Applications of multidimensional scaling in psychometrics., In Rao, C. R., and Sinharay, S. (Eds.),

Handbook of Statistics (Vol. 26): Pyschometrics, (pp. 359-400). Amsterdam: Elsevier., 2007.

[7] R. N. SHEPARD, Multidimensional scaling, tree-fitting and clustering, Science 210 (1980) 390–398.

[8] C. J. DOUGLAS, P. E. GREEN, An indscal-based approach to multiple correspondence analysis, Journal of Mar-

keting Research 25 (25) (1988) 193.

[9] A. YEREDOR, Non-orthogonal joint diagonalization in the least-squares sense with application in blind source

separation, IEEE Transactions On Signal Processing 50 (7) (2002) 1545–1553.

[10] F. HUSSON, J. PAGES, Indscal model: geometrical interpretation and methodology, Computational Statistics and

Data Analysis 50 (2) (2006) 358 – 378. doi:DOI: 10.1016/j.csda.2004.08.005.

[11] A. KARFOUL, L. ALBERA, G. BIROT, Blind underdetermined mixture identification by joint canonical decom-

position of ho cumulants, IEEE Transactions on Signal Processing 58 (2010) 638 – 649.

34

[12] K. DONG-GOO, S. YOUNGHUM, K. SUNGSU, L. SEONGDEOK, K. CHANGYEONG, Multiple object decom-

position based on independent component analysis of multi-energy x-ray projections, International Conference on

Image Processing ICIP (2010) 4173–4176.

[13] P. COMON, Independent Component Analysis, a new concept ?, Signal Processing, Elsevier 36 (3) (1994) 287–

314.

[14] L. ALBERA, P. COMON, L. C. PARRA, A. KARFOUL, A. KACHENOURA, L. SENHADJI, Comparative per-

formance study of independent component analysis methods on biomedical signals, in Handbook of Blind Source

Separation, P. Comon and C. Jutten Eds, Academic Press, 2010.

[15] M. CONGEDO, C. GOUY-PAILLER, C. JUTTEN, On the blind source separation of human electroencephalogram

by approximate joint diagonalization of second order statistics, Clinical Neurophysiology 119 (12) (2008) 2677–

2686.

[16] A. KACHENOURA, L. ALBERA, L. SENHADJI, P. COMON, ICA: a potential tool for BCI systems, IEEE Signal

Processing Magazine, special issue on Brain-Computer Interfaces 25 (1) (2008) 57–68.

[17] L. D. LATHAUWER, B. DE MOOR, J. VANDEWALLE, Fetal electrocardiogram extraction by blind source sub-

space separation, IEEE Transactions on Biomedical Engineering 47 (5) (2000) 567–572.

[18] R. VOLLGRAF and K. OBERMAYER, Quadratic optimization for simultaneous matrix diagonalization, IEEE

Transactions on Signal Processing 54 (9) (2006) 3270–3278.

[19] A. ZIEHE, P. LASKOV, G. NOLTE and K.-R. MULLER, A fast algorithm for joint diagonalization with non-

orthogonal transformation and its application to blind source separation, Journal of Machine Learning Research 5

(2004) 801–818.

[20] L. GIULIERI, H. GHENNIOUI, N. THIRION-MOREAU and E. MOREAU, Nonorthogonal joint diagonalization

of spatial quadratic time-frequency matrices for source separation., IEEE Signal Processing Letters 12 (5) (2005)

415–418.

[21] J.-F. CARDOSO and A. SOULOUMIAC, Blind beamforming for non-gaussian signals, IEE Proceesings-F 140 (6)

(1993) 362–370.

[22] A. BELOUCHRANI and A. CICHOCKI, Robust whitening procedure in blind source separation context, Electron-

ics Letters 36 (2000), 2050–2053.

[23] S. DEGERINE and E. KANE, A comparative study of approximate joint diagonalization algorithms for blind

source separation in presence of additive noise, IEEE Transactions on Signal Processing 55 (6) (2007) 3022–3031

[24] L. ALBERA, A. KACHENOURA, P. COMON, A. KARFOUL, F. WENDLING, L. SENHADJI, I. MERLET,

ICA-based eeg denoising : a comparative analysis of fifteen methods, The special issue of the Bulletin of the Polish

Academy of Science 60 (3) (2012) 737–777.

[25] F. ASANO, S. IKEDA, M. OGAWA, H. ASOH, N. KITAWAKI, Combined approach of array processing and

independent component analysis for blind separation of acoustic signals, IEEE Transactions On Speech and Audio

Processing 11 (3) (2003) 204–215.

[26] D. BARRY, D. FITZ, E. COYLE, B. LAWLOR, Single channel source separation using short-time independent

component analysis, Audio Engineering Society, 119’s convention (2005) 1–6.

[27] M. A. CASEY, A. WESTNER, Separation of mixed audio sources by independent component analysis, Tech. rep.,

Mistubishi electric research labs, cambridge, MA, USA (2000).

URL http://www.merl.com/publications/TR2001-031/

[28] J. C. BROWN, P. SMARAGDIS, Independent component analysis for automatic note extraction from musical trills,

Acoustical Society of America 115 (5) (2004) 2295–2306.

[29] C. LADROUE, F. A. HOWE, J. R. GRIFFITHS, A. R. TATE, Independent component analysis for automated

decomposition of in vivo magnetic resonance spectra, Magnetic Resonance in Medecine 50 (2003) 697–703.

[30] A. J. WRIGHT, G. FELLOW, T. J. BYRNES, K. S. OPSTAD, D. J. O. MCINTYRE, J. R. GRIFFITHS, B. A.

BELL, C. A. CLARK, T. R. BARRICK, F. A. HOWE, Pattern recognition of mrsi data shows regions of glioma

growth that agree with DTI markers of brain tumor infiltration., Magnetic Resonance in Medicine 62 (2009) 1646–

1651.

[31] J. PULKKINEN, A.-M. HAKKINEN, N. LUNDBOM, A. PAETAU, R. A. KAUPPINEN, Y. HIKTUNEN, Inde-

pendent component analysis to proton spectroscopic imaging data of human brain tumours, European Journal of

Radiology 56 (2005) 160–164.

[32] P. CHEVALIER, A. CHEVREUIL, Application to telecommunications, in a handbook of blind source separation,

P. Comon and C. Jutten Eds, Academic Press, 2010.

[33] A. TONAZZINI, L. BEDINI, E. SALERNO, Independent component analysis for document restoration, Interna-

tional Journal on Document Analysis and Recognition IJDAR (7) (2004) 17–27.

[34] A. HYVARINEN, Fast and robust fixed-point algorithms for independent component analysis, IEEE Transactions

On Neural Networks 10, no. 3 (1999) 626–634.

[35] J. PULKKINEN, A. M. HAKKINEN, N. LUNDBOM, A. PAETAU, R. A. KAUPPINEN, Y. HILTUNEN, Inde-

pendent component analysis to proton spectroscopic imaging data to human brain tumours, European Journal of

35

Radiology 56 (2) (2005) 160–164.

[36] F. SZABO DE EDELENYI, A. SIMONETTI, G. POSTMA, R. HUO, L. BUYDENS, Application of independent

component analysis to 1H MR spectroscopic imaging exams of brain tumours, Analytica Chimica Acta 544 (1-2)

(2005) 36–46.

[37] J.-F. CARDOSO, A. SOULOUMIAC, Jacobi angles for simultaneous diagonalization, SIAM Journal Matrix Anal-

ysis and Applications 17 (1) (1996) 161–164.

[38] J. HAO, X. ZOU, P. M. WILSON, N. P. DAVIES, Y. SUN, C. A. PEET, T. N. ARVANITIS, A comparative study of

feature extraction and blind source separation of independent component analysis (ICA) on childhood brain tumour

1H magnetic resonance spectra, NMR in Biomedicine 22 (8) (2009) 809–818.

[39] P. McCULLAGH, Tensor Methods in Statistics, Chapman and Hall, Monographs on Statistics and Applied Proba-

bility, 1987.

[40] J. W. BREWER, Kronecker products and matrix calculus in system theory, IEEE Transactions On Circuits and

Systems 25 (9) (1978) 114–122.

[41] P. COMON, X. LUCIANI, A. L. F. D. ALMEIDA, Tensor decomposition, alternating least squares and other tales,

Journal of Chemometrics 23 (393-405) (2009) 393–405.

[42] L. D. LATHAUWER, B. DE MOOR, J. VANDEWALLE, A multilinear singular value decomposition, SIAM J.

matrix Ana. Appl 21 (4) (2000) 1253–1278.

[43] P. COMON, Tensor decompositions, in: J. G. McWhirter, I. K. Proudler (Eds.), Mathematics in Signal Processing

V, Clarendon Press, Oxford, UK, 2002, pp. 1–24.

[44] L. D. LATHAUWER, A link between the canonical decomposition in multilinear algebra and simultaneous matrix

diagonalization, SIAM Journal in matrix Analysis and Applications 28 (3) (2006) 642–666.

[45] P. COMON, Tensors, usefulness and unexpected properties, in: 15th IEEE Workshop on Statistical Signal Process-

ing (SSP’09), Cardiff, UK, 2009, pp. 781–788, keynote. hal-00417258. doi:10.1109/SSP.2009.5278471.

[46] P. COMON, J. M. F. T. BERGE, L. D. LATHAUWER, J. CASTAING, Generic and typical ranks of multi-way

arrays, Linear Algebra and its Applications 430 (11-12) (2009) 2997–3007, hal-00410058.

[47] M. RAJIH, P. COMON, R. A. HARSHMAN, Enhanced line search : A novel method to accelerate PARAFAC,

SIAM Journal on Matrix Analysis Appl. 30 (3) (2008) 1148–1171. doi:10.1137/06065577.

URL http://link.aip.org/link/?SML/30/1128/1

[48] A. STEGEMAN, J. M. F. T. BERGE, L. D. LATHAUWER, Sufficient conditions for uniqueness in CANDE-

COMP/PARAFAC and indscal with random component matrices, The Psychometric Society 71 (2) (2006) 219–

229.

[49] M. CHU, F. DIELE, R. PLEMMONS, S. RAGNI, Optimality, computation and interpretation of nonnegative matrix

factorizations, Tech. rep., Wake Forest University (2004).

URL http://www.wfu.edu/ plemmons

[50] J.-P. ROYER, N. THIRION-MOREAU, P. COMON, Computing the polyadic decomposition of nonnegative third

order tensors, Signal Processing 91 (9) (2011) 2159–2171. doi:10.1016/j.sigpro.2011.03.006.

[51] P. PAATERO, A weighted non-negative least squares algorithm for three-way ’parafac’ factor analysis, Chemomet-

rics and Intelligent Laboratory Systems 38 (1997) 223–242.

[52] R. BRO, Multi-way analysis in the food industry: Models, algorithms, and applications, Ph.D. thesis, University of

Amsterdam (1998).

[53] R. A. HARSHMAN, Foundation of PARAFAC procedure: Models and conditions for an ’explanatory’ multi-mode

factor analysis, UCLA working papers in Phonetics (16) (1970) 1–84.

[54] P. K. HOPKE, P. PAATERO, H. JIA, R. T. ROSS, R. A. HARSHMAN, Three-way (parafac) factor analysis: Ex-

amination and comparison of alternative computational methods as applied to ill-conditioned data, Chemometrics

and Intelligent Laboratory Systems 43 (1-2) (1998) 25 – 42. doi:DOI: 10.1016/S0169-7439(98)00077-X.

[55] A. FRANC, Etude algebrique des multitableaux: Apport de l’algebre tensorielle, Ph.D. thesis, University of Mont-

pellier II (1992).

[56] G. TOMASI, Practical and computational aspects inchemometric data analysis, Ph.D. thesis, University of Fred-

eriksberg, Denmark (2006).

[57] K. MADSEN, H. B. NIELSEN, O. TINGLEFF, Methods for non-linear least squares problems, Informatics and

Mathematical Modeling, Technical University of Denmark.

URL Available online: http://www.imm.dtu.dk

[58] A. HJORUNGNES, D. GESBERT, Complex-valued matrix differentiations: techniques and key results, IEEE

Transactions on Signal Processing 55 (6) (2007) 2740–2746.

[59] J. TENDEIRO, M. B. DOSSE, J. M. F. T. BERGE, First and second-order derivatives for CP and indscal, Chemo-

metrics and Intelligent Laboratory System 106 (2011) 27–36. doi:10.1016/j.chemolab.2010.05.013.

[60] J. R. MAGNUS, H. NEUDECKER, Matrix differential calculus with applications in statistics and econometrics,

Wiley, 2007, third Edition.

[61] J. NOCEDAL, S. J. WRIGHT, Numerical optimization second edition, Springer, 2006.

36

[62] G. TOMASI, R. BRO, Parafac and missing values, Chemometrics and Intelligent Laboratory systems 75 (2005)

163–180.

[63] W. RAYENS, B. MITCHELL, Two-factor degeneracies and a stabilization of parafac, Chemometrics and Intelligent

Laboratory Systems 38 (1997) 173–181.

[64] G. TOMASI, R. BRO, A comparison of algorithms for fitting the parafac model, Computational Statistics and Data

Analysis 50 (7) (2006) 1700–1734.

[65] A. J. BELL, T. J. SEJNOWSKI, An information-maximization approach to blind separation and blind deconvolu-

tion, Neural Computation 7 (1995) 1129–1159.

[66] R. BRO, S. D. JONG, A fast non-negativity-constrained least squares algorithm, Journal of Chemometrics 11

(1999) 393–401.

[67] L. ALBERA, A. FERREOL, P. COMON, P. CHEVALIER, Blind Identification of Overcomplete Mixtures of

sources (BIOME), Linear Algebra Applications 391C (2004) 3–30.

[68] P. CHEVALIER, A. FERREOL, L. ALBERA, G. BIROT, Higher order direction finding from arrays with diversely

polarized antennas: The PD-2q-MUSIC algorithms, IEEE Transactions on Signal Processing 55 (11) (2007) 5337–

5350.

[69] F. SAMARIA, A. HARTER, Parametrisation of a stochastic model for human face identification, Second IEEE

Workshop on Applications of Computer Vision (1994), Sarasota, US.

[70] A. BELOUCHRANI, K. ABED-MERAIM, J.-F. CARDOSO and E. MOULINES, A blind source separation tech-

nique using second-order statistics, IEEE Transactions On Signal Processing 45 (2) (1997), 434–444.

37

