
HAL Id: hal-00945549
https://hal.science/hal-00945549

Submitted on 17 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Do not Choose Representation just Change: An
Experimental Study in States based EA

Maroun Bercachi, Manuel Clergue, Philippe Collard, Sébastien Verel

To cite this version:
Maroun Bercachi, Manuel Clergue, Philippe Collard, Sébastien Verel. Do not Choose Represen-
tation just Change: An Experimental Study in States based EA. GECCO ’09 the 11th Annual
conference on Genetic and evolutionary computation, Jul 2009, Montréal, Canada. pp.1799-1800,
�10.1145/1569901.1570168�. �hal-00945549�

https://hal.science/hal-00945549
https://hal.archives-ouvertes.fr

Do not Choose Representation just Change:

An Experimental Study in States based EA

Maroun Bercachi Philippe Collard Manuel Clergue Sebastien Verel

I3S Laboratory - Nice-Sophia Antipolis University - CNRS
2000 Route Des Lucioles - 06903 Sophia Antipolis - France

{bercachi, pc, clergue, verel}@i3s.unice.fr, http://www.i3s.unice.fr/tea

ABSTRACT
Our aim in this paper is to analyse the phenotypic effects (evolv-

ability) of diverse coding conversion operators in an instance of the

states based evolutionary algorithm (SEA). Since the representa-

tion of solutions or the selection of the best encoding during the

optimization process has been proved to be very important for the

efficiency of evolutionary algorithms (EAs), we will discuss a strat-

egy of coupling more than one representation and different proce-

dures of conversion from one coding to another during the search.

Elsewhere, some EAs try to use multiple representations (SM-GA,

SEA, etc.) in intention to benefit from the characteristics of each of

them. In spite of those results, this paper shows that the change of

the representation is also a crucial approach to take into considera-

tion while attempting to increase the performances of such EAs. As

a demonstrative example, we use a two states SEA (2-SEA) which

has two identical search spaces but different coding conversion op-

erators. The results show that the way of changing from one coding

to another and not only the choice of the best representation nor the

representation itself is very advantageous and must be taken into

account in order to well-desing and improve EAs execution.

Categories and Subject Descriptors
G.1.6 [Mathematics of Computing]: Numerical Analysis Opti-

mization [Stochastic Programming]; I.2.8 [Computing Method-

ologies]: Artificial Intelligence Problem Solving, Control Methods,

and Search [Heuristic Methods]

General Terms
Algorithms, Performance, Experimentation

Keywords
States based Evolutionary Algorithm, Representation, Coding Cou-

pling, Coding Conversion.

1. INTRODUCTION
The choice of the representation of solutions is a very fundamental

step and a highly decisive point to take into consideration in EAs

functioning. A problem could be difficult for one representation

and easy for another one [1, 2]. It is a challenging task to discover

which coding scheme is a suitable one for a specific problem before

testing that coding scheme using an evolutionary algorithm (EA).

One representation could have a very good behaviour at the begin-

ing of the run and a bad one at the end of the run [3, 4, 2]. Besides,

the search bias during genetic search depends on the problem, the

structure of the encoded search space and the genetic operators of

selection, crossover, and mutation. For every problem there is a

large number of possible encodings. It is often possible to follow

the principle of minimal alphabets when choosing an encoding for

an EA, but simultaneously following the principle of meaningful

building blocks can be much harder. This is because our intuition

about the structure of the problem space may not translate well in

the binary-encoded spaces that EAs expand and spread on [5, 6,

7, 8, 9]. There are two possible ways of tackling the problem of

coding design for meaningful building blocks: 1) Search through

possible encodings for a good one while searching for a solution

and try to apply the chosen encoding. 2) Incorporate more than one

coding scheme simultaneously and change the representation of so-

lutions from one coding to another during the optimization process

which can help in well exploring the search space and in increasing

the count of building blocks considered meaningful in the solution

string. The first choice uses reordering operators, like inversion,

that try to look for and then apply the best encoding while search-

ing for the solution. The rest of this paper motivates, develops and

illustrates the second approach in use with the states based evolu-

tionary algorithm (SEA).

The SEA is a new parallel version of EAs implemented as a group

of independent optimization algorithms where each algorithm is

considered as a state of a SEA. A state i of a SEA is denoted EAi

and can be any of the optimization algorithms that have been pro-

posed in the literature such as EAs, genetic algorithms (GAs), ge-

netic programming (GP), evolution strategies (ES), etc. An exe-

cution of a SEA with n states is equivalent to the execution of n

parallel EAs where each EAi has its own parameter settings (cf.

Figure 1). After each main generation, a SEA contains a merge

phase which consists in regrouping all states together in a whole

population. During this phase, each state undergoes a mutation to

any other state with a given state mutation rate pMutState which

can help to maintain diversity over the state space. During the mu-

tation phase, the states of existing solutions are converted with-

out changing their corresponding fitness values. After the merge

phase, selection for replacement and elitist selection phases

take place in order to guarantee the survival of the best individu-

als. The elitist selection stage is done in the whole population

according to the fitness values of each state. Finally, a split phase

is necessary to disconnect all members of the whole population and

reorder them in such a way that each homogeneous group reconsti-

tutes a separate state. The split and merge cycle continues after

each generation until the SEA obtains the ultimate solution or un-

til a definite number of iterations is “absorbed” [10]. The main

principle of the SEA is to choose the good state according to the

fitness values of the actual solutions and not directly according to

their states using a classical selection operator. Eventually, the SEA

favours the coding whose the solutions have a best average fitness,

and the choice of the coding depends on the evolvability of that cod-

ing just after the modification of representation. In another terms,

it depends on the evolvability of the coding conversion operator

which can be resumed as its capacity to promote and support the

crossover and mutation operators to build new promising solutions

from the old ones. Consequently, the conception of coding con-

version operators that can lead to a scaled average fitness and an

assorted evolvability would be a good approach to attack and dis-

solve the EAs problem caused by the representation issues.

On the other side, redundant representations are increasingly being

applied in evolutionary computation and seem to affect positively

the performance of genetic and evolutionary algorithms [7]. They

use a higher number of alleles for encoding phenotypic informa-

tion in the genotype than is essentially to construct the phenotype.

This is the reason why we preface the use of block composites into

the binary encoding which proves to have the features and proper-

ties of maintaining scaled genotypes and phenotypes (cf. Section

2). In this paper, we expose an already-evoked structure of binary

representation tagged as binary block coding (BBC) and founded

on the concept of bitstrings decomposed into a definite number of

blocks each having a fixed length [7]. The previous work in [7] dis-

cussed how the synonymy of a representation influences the genetic

search. Then, it developed a population sizing model for synony-

mously redundant representations based on the assumption that a

representation affects the initial supply. Our present study will fo-

cus on the framework of coupling more than one representation in

one algorithm. Eventually, this paper will be centralized on the

concept of proposing diverse ways of coding conversion and on the

matter of how and when to apply these conversion operators which

allow to change the representation of solutions in the population

from one coding to another. In this intention, two different ways of

changing the representation are evolved in this paper. The first one

tends to increase the number of zeros “0s” in the binary solution by

the fact that each bit will be encoded as a sub-solution composed

by a block of binary bits having the maximum number of “0s”. The

second way tends to increase the number of ones “1s” in the binary

solution by the fact that each bit in the solution will be encoded as

a sub-solution composed by a block of binary bits having the max-

imum number of “1s”. Thus, the conversion operators are different

but the representations used to encode individuals in the population

are identical by the fact that they have the same search space, the

same neighborhood structure and the same fitness values for indi-

viduals having equivalent solutions.

The experiments are performed in intention to prove that even if the

representations used to encode the solutions are identical, the man-

ner of modifying the representation from one coding to another in

the algorithm is of importance and is useful in the same way of

selecting the best representation. This paper contains four main

sections. In Section 2, BBC is described in details. The entire set

of experiments is exposed in Section 3. Section 4 presents general

comments and concluding remarks. Finally, Section 5 summarizes

some further works.

2. BBC AND CONVERSION

.......

Replacement

conversion 0

EA 0 EA 1

conversion 1 conversion n

EA n

Split

Merge

Selection

Initialisation

Figure 1: Scheme of a n-SEA.

The binary block coding and various coding conversion operators

are evolved in this paper for the purpose of bringing some form of

order into the disturbed situation caused by the influence of repre-

sentation on the performance of EAs. The required specifications

are outlined in the following subsections.

2.1 Binary Block Coding
We present the binary block coding scheme, an existing binary rep-

resentation which is based on the binary block constitution [7].

BBC is the set of all possible solutions {0, 1}nk where n is the

blocks number and k is the block size. Suppose that we have a bit-

string w which is encoded with BBC. w will be composed of a set

of binary blocks wj where j ∈ [0, n − 1] and each wj is of length

k (cf. Figure 2). The decoding of w to the standard binary returns

a bitstring x of length n. This procedure can be defined by the bi-

nary voting mapping. Each block in w will be replaced by one bit

in x. The value of each bit in x is determinded by the “voting to

the majority of the values” in the corresponding block. Generally,

a specific binary encoded optimization task requires a binary rep-

resentation that correlates to its fitness function structure. In this

intention and since a bit value can be set equal to “0” or “1”, we

state two variants of changing the binary representation from one

coding to another. The first is assigned to maximize the number

of “0s” in the bitstring by transforming each bit in the string to a

block of binary substring containing the largest possible number of

“0s” (cf. Figure 2). The second variant is assigned to maximize

the number of “1s” in the bitstring by transforming each bit in the

string to a block of binary substring containing the largest possible

number of “1s” (cf. Figure 2). BBC is considered to introduce a

form of redundancy to the chromosome codification and is itself an

infinite group of binary coding schemes by just varying the block

size, and the standard binary coding is the basic element of this

group with a block size equal to 1.

2.2 BBC Encoding Operators
Suppose that we have a bitstring x of length n whose we want to

encode in BBC with a block size equal to k generating as well a

new bitstring w. As it has been mentioned above, two encoding

operators are available to change the representation from standard

binary coding to BBC. The first, enc0, maximizes the number of

“0s” and the second, enc1, maximizes the number of “1s” in the

bitstring. So ∀ i ∈ {0, 1}, enci operator can be defined as follows:

enci : {0, 1}
n → {0, 1}nk

enci(x) = w = w0w1...wn−1

where ∀ j ∈ [0, n− 1],

wj =

{

ik if xj = i

i
k−1

2 ī
k+1

2 if xj = ī

where ī is the bitwise complement of i.

Two demonstrative examples are given in Figure 2.

2.3 BBC Decoding Operator
Suppose that we have a bitstring w composed of n blocks each

having a size equal to k. If we want to decode w in standard binary,

a new bitstring x will be generated using the decoding operator

dec. The decoding procedure from BBC to standard binary coding

is based on a predefined function called maj used to evaluate each

wj in w where j ∈ [0, n − 1]. maj routine is specified by the

“voting to the majority of the values” in the bitstring and it can be

outlined as follows:

maj : {0, 1}k → {0, 1}

maj(u) =

{

0 if |u|0 > |u|1

1 otherwise

where |u|0 respectively |u|1 represents the number of “0s” respec-

tively of “1s” in u. Then, dec operator can be defined as follows:

dec : {0, 1}nk → {0, 1}n

dec(w) = x = x0x1...xn−1

where ∀ j ∈ [0, n− 1],

xj = maj(wj)

Two demonstrative examples are given in Figure 2.

2.4 BBC Conversion Operators
There exist several ways to change the representation of individu-

als in the population from BBC to BBC. We state below a brief list

of two BBC conversion operators. They are transmutation utilities

that change the state, here the representation, of a solution without

changing the fitness value of that solution. So, we have ∀ j ∈ S,

∀ x ∈ Ω, f(x) = f(convj(x)) where S is the state space, Ω is

the search space, f the fitness function, and convj the conversion

operator to state j. In our case, conv0 corresponds to the operator

that maximizes the number of “0s” and conv1 corresponds to the

operator that maximizes the number of “1s” in the bitstring. Sup-

pose that we have a bitstring w encoded with BBC and composed

of n blocks each having a size equal to k. If we want to change the

representation of w to BBC in a form of redundancy that increases

the number of “is” in the bitstring with the same block size where i

∈ {0, 1}, a new bitstring w′ will be generated following two main

steps. The first belongs to the decoding of w in standard binary

producing as well a new bitstring x of length n. The second step

belongs to the encoding of x in BBC by applying enci operator

poducing as well a new bitstring w′ of length nk. Therefore ∀ i ∈
{0, 1}, convi operator can be defined as follows:

convi : {0, 1}
nk → {0, 1}nk

convi(w) = w
′ = enci(dec(w))

Two demonstrative examples are given in Figure 2.

2.4.1 Role and Importance
Some classes of optimization problems can take advantage from

the coexistence and the application of the two BBC conversion op-

erators, conv0 and conv1, in one algorithm. A dual coding strat-

egy based on these two variants and developed genuinely in an EA

serves to make the representation of solutions more adaptive and

well-matched to a problem’s fitness function. Likewise, this ap-

proach can make EAs advantageously explore undiscovered areas

of the search space. If we introduce the notion of state to be defined

according to the representation in a SEA, then that SEA can be the

appropriate algorithm that integrates an adaptive approach for the

representation in which the genotype encoding is altered dynami-

cally by the fact that a state mutation will be equivalent to a coding

conversion. Therefore, the modification of the representation of ar-

bitrary solutions to a form of BBC using conv0 or conv1 tries to

make an equilibrum in the number of bits with “0” and “1” while a

classic binary representation sometimes makes bias towards the bits

with “0” or “1”. For example, if the ultimate solution of an opti-

mization problem contains a number of “0s” more than the number

of “1s” in the string then the BBC coding alternation “tour” per-

formed in a SEA while applying conv0 and then conv1 to random

solutions during the search may be helpful in increasing the num-

ber of bits with “0” and then can lead, iteration after iteration, to

discover and locate the global optimum. The role of BBC conver-

sion operators can be seen as intermediators between the standard

binary coding and the problem structure, and those mediators serve

to well explore new regions in the search space. The importance of

those operators lies on the concept that specifies them as adjustors

which attempt to correct the erroneous bits in the string by replac-

ing each probable false bit value by the true one, the matter which

can be seen and interpreted indirectly as the constructors of the

meaningful building blocks. Since in a binary coding, “0” is the

bitwise complement of “1” and inversely “1” is the bitwise com-

plement of “0”, so conv0 can be translated as the complementary

conversion operator of conv1 and reciprocally conv1 can be trans-

lated as the complementary conversion operator of conv0. In this

aim, we must notice that the value of BBC resides in using conv0
and conv1 operators simultaneously in one method that let them

interact and interchange data bits to finally assisst in creating and

not in destroying the substantive building blocks.

2.4.2 Evolvability
The evolvability of a coding conversion operator is defined as the

phenotypic effects that can be produced after the change of the rep-

resentation of solutions using that operator. In another terms, it is

the ability of that operator to affect and serve the genetic opera-

tors, crossover and mutation, to develop new promising solutions

from the old ones during the reproduction phase. Particularly, the

evolvability of a coding conversion operator deeply depends on the

problem structure and the shape of the optimum. Suppose that we

have to optimize a problem where the global optimum contains a

number of ones “1” greater than that of zeros “0”. Then, conv1
operator will be more favored regarding its concern in maximizing

the number of ones “1” in the bitstring. Consequently, the chance

to produce new promising solutions after the application of conv1
will be greater than that after the application of conv0, and hence

the evolvability of conv1 will be greater than that of conv0. Two

experimental tests were performed in sections 3.4.1 and 4 to study

and compare the evolvability of conv0 and conv1 operators.

Figure 2: For two given bitstrings w and w′ with a blocks num-

ber equal to 5 and a block size equal to 3 for both of them, we

show the decoding in standard binary and then the application

of enc0 respectively of enc1 operators.

Table 1: Test Functions
Reference Name Definition

P1 ONEMAX f1(s) = |s|1

P2 NEEDLE f2(s) =

{

l if |s|1 = l

1 otherwise

P3 ONOFF f3(s) = HDO(s)

P4 ALTERNATION f4(s) = ND(s)

3. EXPERIMENTS
We have prepared a set of experiments to test and analyze some

of the main features of BBC conversion operators in use with a

SEA, and to show the importance of changing the representation of

solutions during the search process.

3.1 Test Functions
To test the performance of optimization algorithms, standard test

problems should be used. We mainly consider a set of four binary

encoded optimization functions.

The first one is P1 and is the classical ONEMAX problem. It be-

longs to the unitation class of fitness functions. Unitation functions

are fitness functions where the fitness is a function of the count of

“1s” in a solution x ∈ {1, 0}l, where l is the length of the solu-

tion. All fitness values are non-negative: u : {0, 1}l → IR+. The

first two fitness functions given in Table 1 and pictured in Figure

3 are two examples of unitation functions. They are respectively

called ONEMAX and NEEDLE, and have been theoretically stud-

ied for fixed parameter simple GAs by Rowe [11], Wright [12] and

Richter et al. [13]. The ONEMAX fitness function has been called

the “fruit fly” of GA research [14]. It is a maximization problem

that countes the number of “1s” in the string. P1 is a neutral linear

function with one global optimum, an all “1s” string.

As well, we have expanded our observations to test the second func-

tion P2. It is the NEEDLE problem which also belongs to the uni-

tation class of fitness functions. P2 has one global optimum, an

all “1s” string, and is reasoned to be a difficult optimization task

for the classic GA to work out. NEEDLE is a maximization linear

problem and can serve to study the properties of the SEA and show

the importance of changing the representation.

On the other side, we have applied our tests on the ONOFF problem

P3. We define the ONOFF problem as a fitness function where the

global optimum is a finite binary sequence of the form 1010...10
and the fitness is the regular Hamming distance of a solution x ∈

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 1 2 3 4 5 6 7 8 9 10

F
itn

es
s

Unitation

ONEMAX

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 1 2 3 4 5 6 7 8 9 10

F
itn

es
s

Unitation

NEEDLE

ONEMAX NEEDLE

Figure 3: Graphical representations of unitation functions.

{1, 0}l to the global optimum, where l is the length of x. ONOFF is

a typical minimization problem. All fitness values are non-negative:

u : {0, 1}l → IR+, and the fitness value of the global optimum cor-

responds to a value of 0 for any length of the solution. Each bit of

value 1 in the binary string of the global optimum represents the

ON label and each bit of value 0 represents the OFF label. An il-

lustrative example of the ONOFF function is pictured in Figure 4

for a length of the binary solution equal to 4. This function should

advantageously confirm our assertions about changing the repre-

sentation because we consider that the genuine solution of the form

1010...10 will be a really challenging task for BBC conversion op-

erators. Consequently, conv0 and conv1 operators should have the

equal opportunities to be applied during the optimization task re-

garding the global optimum that contains an equal and consecutive

number of “0s” and “1s”.

Likewise, the experiments are extended to include the ALTERNA-

TION problem P4. This function counts the number of dicontinu-

ities between consecutive bits in the bitstring [15]. It is considered

as a hard maximization problem for a simple GA to solve. It de-

pends on the total number of sequences 10 or 01 in a string and

not on the positions of the alternations. So, it is defined on the

binomial distribution of the space induced by alternations. As a

consequence, ALTERNATION function has the following proper-

ties: 1) All the points with the same number of alternations have the

same fitness value. 2) Symmetry with respect to bit value, that is

f(x) = f(x̄), where x ∈ {1, 0}l is a bitstring of length l, and x̄ is

its bitwise complement. 3) According to the above property, the fit-

ness Hamming distance correlation coefficient is equal to zero. An

illustrative example of the ALTERNATION function is pictured in

Figure 4 for a length of the binary solution equal to 4. This problem

provides an interesting tool to analyze and report the dimensions of

enc0 and enc1 operators by the fact that it features two global opti-

mum regarding its symmetry characteristic. The first is of the shape

1010...10 and the second one is of the shape 0101...01. Contrarily

to the first three problems, P4 is a non-linear problem where a form

of epistasis is contained in the structure of the solution and the bits

are tightly linked each to other. The chances to apply conv0 and

conv1 operators must be equivalent for the EA to succeed.

The definitions of all these problems are summarized in Table 1

where l is the length of the solution s, |s|1 is the number of “1s” in

s, HDO(s) is the Hamming distance of s to the global optimum,

and ND(s) is the count of dicontinuities between consecutive bits

in s. In order to compute the fitness value f ′ of a given solution

w which is encoded by BBC where f ′ : {0, 1}nk → IR+, first we

decode w in standard binary generating as well a new bitstring x.

And then, the fitness value f of x is taken equal to the correspond-

ing function value which is calculated according to the function

expression given in Table 1 where f : {0, 1}n → IR+. And so, we

obtain the following equality: f ′ = f ◦ dec.

 0

 1

 2

 3

 4

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

F
itn

es
s

Solution

ONOFF

 0

 1

 2

 3

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

F
itn

es
s

Solution

ALTERNATION

ONOFF ALTERNATION

Figure 4: Examples of the graphical representation of the

ONOFF and ALTERNATION functions. For a binary solution

of length equal to 4, we compute the fitness values correspond-

ing respectively to the 16 (24) possible solutions. The x-axis

represents the real-value of each standard binary solution. The

y-axis represents the fitness of solutions.

3.2 SEA Parameters
Since a SEA itself has several options in terms of its implemen-

tation, it is necessary to denote the parameter choices used in this

paper. First, the number of states was set to 2, each state being rep-

resented by a simple GA (SGA). The representations of solutions

applied in all states are identical and we used BBC for encoding

the solutions. This choice was explicit in intention to integrate a

dual coding strategy which may help in locating the ultimate so-

lution while changing the representation of different random solu-

tions from one coding to another using BBC conversion operators.

Thus, we have two states symbolized by two SGAs which are sim-

ilar in everything and each component. And so, an instance of the

SEA is implemented and is denoted 2-SEA where the representa-

tion is directly linked to the algorithm and not to the individual in

the population. Each SGA is executed for one simple iteration be-

fore the merge phase takes place in the algorithm life-cycle. Next,

the follow-up parameter is pMutState for state mutation rate. In

our case and since the representation is directly linked to the algo-

rithm, a state mutation means that the representation of individuals

in that algorithm is changed to another representation. Afterwards,

we will refer to pMutState by conversion rate. pMutState pa-

rameter could be easily modified to provide conversion of arbitrary

solutions from one coding scheme to another without affecting the

results dramatically during the search process. The value of this

parameter is fixed using the experiments described later in Sec-

tion 3.4.1. As well, 2-SEA has another particular parameter: k for

the block size. The value used for that parameter was chosen as

a result of prior experimentation reported subsequently in Section

3.4.1. The best parameter settings between those tested for all ob-

jective functions are given in Table 3.

3.3 General Parameter Values
In order to create a fair tableau for comparison of SGA with 2-SEA,

the parameters shared between these two algorithms were kept the

same. Since 2-SEA is composed of two parallel SGAs, the clas-

sic GA and 2-SEA were run with the parameters recommended by

Goldberg (Goldberg 1989) (cf. Table 2). In general, the set of all

used parameters and their respective attributes are shown in Table 3

with: maxGen for maximum number of generations before STOP,

popSize for population size, vecSize = nk for genotype size,

tSize for tournament selection size, pCross for crossover rate,

pMut for mutation rate, and pMutPerBit for bit-flip mutation

rate. This tableau was employed for the four test problems. We

have to mention that for the first three test problems the population

Table 2: General Parameter Values

Parameters Attributes

Pseudorandom generator Uniform Generator

Selection mechanism Tournament Selection

Crossover mechanism 1-Point Crossover

Mutation mechanism Bit-Flip Mutation

Replacement model 1 Generational Replacement

Replacement model 2 Elitism Replacement

Ending criteria Maximum Number of Iterations

Table 3: Best Parameter Settings

Parameters P1 P2 P3 P4

maxGen 3000 3000 3000 30000
popSize 100 100 100 10
vecSize 1900 1900 300 300
tSize 2 2 2 2
pCross 0.6 0.6 0.6 0.6
pMut 1.0 1.0 1.0 1.0
pMutPerBit 0.9 0.9 0.05 0.05
pMutState 1.0 1.0 0.85 0.7
k 19 19 3 3

size was set equal to 100 and for the last problem this parameter

value was set equal to 10 which reflects the fact that the ALTER-

NATION function requires more exploitation than exploration due

to the deceptive attractor which is at mid-distance from the global

optimum. This choice is well verified and is totally compatible with

the choice of a low pMutPerBit value for the ALTERNATION

function which enables the algorithm to discover recursively and

regularly good directions in the search interval.

3.4 Experimental Results
In the following two subsections, we introduce the experiments that

have been performed for two different purposes. The first serves to

analyze BBC conversion operators and to study the interaction and

the dependency of the parameters of both BBC and 2-SEA. And the

second purpose tries to test the importance of changing the repre-

sentation and contributes in a comparison between the performance

of 2-SEA and the classic GA.

3.4.1 BBC Analysis
In this section, we present experiments designed to examine sev-

eral aspects of BBC conversion operators. We would like to know

how much the change of the representation using conv0 and conv1
could “help” and “advance” 2-SEA during the search. Besides, we

would like to discover how the parameters of both BBC and 2-SEA

interact each with other.

First, it is so essential to mention that pMutState and pMutPerBit

parameters play an important role in 2-SEA operation, and their af-

fected values are decisive in the final outcome. Precisely, pMutState

is responsible for the conversion of arbitrary individuals in the pop-

ulation from their initial representation to the other one. In our

research, we are using conv0 and conv1 as two different conver-

sion operators for the same search space defined by BBC. Con-

sequently, each of these two operators has a different evolvability

after the change of the representation. Since the evolvability of a

coding conversion operator and with it pMutState is incidental to

the application of genetic operators and with it to the probability of

flipping one bit in a bitstring, pMutPerBit, we will begin by ex-

ploring the relationship between pMutState and pMutPerBit

parameters and the proportion of solutions solved correctly by 2-

SEA, success rate in percent. In the first experiment, pMutState

and pMutPerBit values changed within [0.0 : 1.0] interval with

a step of 0.05. This experiment was realized on each test prob-

lem for 100 independent runs. Graphical representations of fitness

variations relatively to pMutState and pMutPerBit were given

in Figure 5. A simple reading of these figures shows that a large

conversion rate is needed for all test functions in order for 2-SEA

to produce positive results which reflects the great importance and

utility of the change of the representation during the search. Be-

sides, Figure 5 indicates that a high bit-flip mutation rate is re-

quired for P1 and P2 problems, and a small bit-flip mutation rate

is required for P3 and P4 problems so that 2-SEA can render im-

portant end results. As an elementary synthesis on these obtained

results, we can say that P3 and P4 problems require a low-level

of mutation effects regarding the ordered structure of their global

optimums which necessitate a modest contribution of the genetic

operators, especially the bit-flip mutation, to be able to rearrange

and fix up each bit in its correct position in the bitstring.

On the other side, BBC has another key parameter: k for the block

size. The second experiment is performed to determine the value

of that parameter for each test function. First, we have fixed the

length of the standard binary genotype to a value of n = 100 which

means that the number of blocks in the binary block genotype will

be equal to 100 and the fitness value of the global optimum will

be equal to 100 for unitation functions, 0 for P3 problem, and 99
for P4 problem. Likewise, we have fixed the values of pMutState

and pMutPerBit parameters respectively to 1.0 and 0.9 for uni-

tation functions. P3 and P4 problems have a pMutState value

equal to 0.85 respectively 0.7 and a pMutPerBit value equal to

0.05 for both of them. This test was realized on all objective func-

tions for 100 independent runs. Graphical records are displayed in

Figure 6 and show that a large block size is necessary for the uni-

tation functions in order for 2-SEA to produce significant positive

results in a minimum number of iterations. This fact can be ex-

plained as a consequence of that, for classical linear problems, an

optimal evolvability of a coding conversion operator is related to a

maximal length of a bitstring and next to a maximal or large block

size. On the other side, P3 and P4 problems require a small block

size to make 2-SEA competent to submit large-scale solutions by

the concept of that a small pMutPerBit value and with it a low-

order evolvability can avoid a disruptive effect on the solution and

as a result it can help in adjusting the structural form of individuals

heuristically and progressively in a minor number of generations.

3.4.2 Performance Comparison: 2-SEA vs. SGA
Considering the stochastic nature of 2-SEA, we compute the aver-

age performance of 100 independent runs of 2-SEA on each objec-

tive function. The global optimum being equal to 100 for P1 and

P2, 0 for P3 and 99 for P4, Table 4 shows the numerical results

whereas Figure 8 represents the graphical records of the experi-

ments. For the two algorithms, SGA and 2-SEA, Table 4 displays

two main records for each test function. The first is the success rate

(SR%) measurement and is the percentage of the number of runs

in which the algorithm succeeded in finding the global optimum.

The second record is the generation number to optimum (GNTO)

measurement and is the average of the number of iterations needed

for the algorithm to attain the global optimum.

4. DISCUSSION AND CONCLUSION

Figure 5: Study of the success rate fluctuations relatively to

the variations of the conversion rate and the bit-flip mutation

rate. pMutState and pMutPerBit values varied from 0.0 to

1.0 with a step of 0.05 for all test functions. As a result, the

obtained success rate values varied from 0% to 100%.

Table 4: Experimental Results

Problem Measurement Algorithm

SGA 2-SEA

P1
SR % 100 100
GNTO 128 10

P2
SR % 3 100
GNTO 3000+ 8

P3
SR % 100 100
GNTO 579 84

P4
SR % 4 32
GNTO 30000+ 30000+

5

10

15

20

25

30

150

3000

3500

4000

 1 3 5 7 9 11 13 15 17 19

G
en

er
at

io
n

N
um

be
r

T
o

G
lo

ba
l O

pt
im

um

Block Size

ONEMAX
NEEDLE
ONOFF

 0

 5

 10

 15

 20

 25

 30

 35

 1 3 5 7 9 11 13 15 17 19

P
er

ce
nt

 O
f C

or
re

ct
 S

ol
ve

d
S

ol
ut

io
ns

Block Size

ALTERNATION

Figure 6: For the best values of pMutState and pMutPerBit,

we plot the number of iterations required to reach the global

optimum relatively to the block size for P1, P2 and P3 prob-

lems. As well, we plot the percent of correct solved solutions

relatively to the block size for P4 problem.

In this paper, we used a method based on the framework of change

of the representation during the search. The basic intermediators

to apply this action were the diverse BBC conversion operators.

These operators allow to alter the representation of solutions from

one coding to another during the search without modifying their re-

spective fitness values. For this purpose, we applied identical rep-

resentations of BBC which have the same search space, the same

neighborhood structure and the same fitness values for identical so-

lutions, but various conversion operators to change the form of the

representation issued from BBC. We have to state that all previous

works which used to search for the good coding during the opti-

mization process and then tried to apply that best coding were very

essential, helpful and efficient. Another effective statement and af-

firmation can be deduced from our work and test results. The data

of the experiments shown in Table 4 and Figure 8 clearly prove the

importance and the utility of changing the representation of many

random solutions in favour of 2-SEA that incorporates a conversion

strategy which leads to a dynamic and mutual representation. They

also confirm that the change of the representation during the search

is a very helpful and fundamental step to profoundly think about as

well to apply when one tries to improve EAs performances.

Besides, the experimental results displayed in Table 4 and Figure 8

are uncomparable and show the advancement of 2-SEA over SGA.

They distinctly show how 2-SEA has found the global optimum in

an extreme minimal number of generations for the first three test

functions while SGA has reached the global optimum of the ONE-

MAX and ONOFF problems in a remarkable larger number of iter-

ations and failed to detect the global optimum of the NEEDLE and

ALTERNATION problems for the majority of runs (for a great pro-

portion of initial populations). For the deceptive P4 problem, the

change of the representation with an appropriate conversion rate

has driven the search process in 2-SEA to build and fix each bit in

its correct position relatively to its neighbours but good combina-

tions of bits cannot be made fast enough because of the matter that

the bits are tightly linked each to other. Consequently, the change

of the representation during the optimization task has been proved

to be of great importance in EAs operation and positively showed

that the obtained results for 2-SEA are significantly different from

those of SGA for all objective functions.

To prove our results, first we must show value of applying the cod-

ing conversion operators. Thus, to reveal some characteristics of

BBC and study the evolvability of conv0 and conv1, we have made

a simple test on the ONEMAX problem denoted Fitness Clouds

Representation [16]. We started our test with a fixed number of

arbitrary solutions uniformly generated from a given seed num-

ber. In a first step, we applied a standard bit-flip mutation to each

of those solutions and evaluated their respective fitnesses (m). As

a next step, we applied two kinds of coding conversion to those

initial solutions, the first is done using conv1 operator and the sec-

ond using conv0 operator. Then, we applied a standard bit-flip

mutation to each of those solutions and evaluated their respective

fitnesses (m ◦ conv1 and m ◦ conv0). In a following step, we ap-

plied two types of coding alternation “tour” to the same random

solutions taken before, where each “tour” is considered as two con-

secutive coding conversions. The first “tour” is realized according

to the respective application of conv1, a bit-flip mutation, conv0, a

bit-flip mutation, and the evaluation of the corresponding fitnesses

(m◦conv1◦m◦conv0). Inversely, the second “tour” is realized ac-

cording to the respective application of conv0, a bit-flip mutation,

conv1, a bit-flip mutation, and the evaluation of the corresponding

fitnesses (m ◦ conv0 ◦m ◦ conv1). This elementary test was per-

formed on 100 arbitrary solutions, each having a length of 1900,

an extreme value of k equal to 19, a blocks number equal to 100,

and hence the ultimate solution is an all “1s” string with a fitness

value equal to 100. The traditional bit-flip mutation operator was

applied in all steps with a bit-flip mutation rate equal to 0.25. The

comparison of the obtained results is illustrated in Figure 7.

A graphical interpretation of Figure 7 (left) indicates that the fitness

values of individuals which have been submitted to conv1 and then

to the bit-flip mutation operator are higher than those of individuals

which have been simply submitted to a bit-flip mutation and than

those of individuals which have been submitted to conv0 and then

to the bit-flip mutation operator. Similarly, Figure 7 (right) shows

that the fitness values of individuals which have been submitted to

conv0 and then to conv1 and then to the bit-flip mutation operator

are higher than those of individuals which have been simply sub-

mitted to a bit-flip mutation and than those of individuals which

have been submitted to conv1 and then to conv0 and then to the

bit-flip mutation operator. Since for the ONEMAX problem, the

more the number of “1s” in the string increases the more the cor-

responding fitness value increases, Figure 7 proves very well that

conv1 is the most appropriate conversion operator and is the one

that clearly contributed in producing superior results. We can con-

clude that the coding alternation “tour” and the conversion of the

representation from one coding to another have induced a befitting

evolvability that matches to the problem structure. And the test re-

sults assume that the last applied BBC conversion operator is the

one that influences the more on the final outcome. Graphical rep-

resentations of fitness variations relatively to pMutState given in

Figure 5 showed that, for all test functions, a large conversion rate

is needed for 2-SEA to render high positive results, the fact that jus-

tifies once a time the important and essential role of BBC coding

alternation “tour” and its constructive influence on the performance

of 2-SEA by re-creating, remodeling and reforming the meaningful

building blocks. Also, we can say that the evolvability of a coding

conversion operator is more beneficial over the EAs performance

after the change of the representation. The use of more than one

coding in EAs is very important and the most fundamental mecha-

nism resides in the framework of changing the representation from

one coding to another which contributes in exploring undetected

and unspoiled sub-regions of the search space. Therefore, better fit-

ness values can be discovered and EAs can progress towards more

positive outcomes. The test results have distinctly verified the util-

ity of BBC and the value of coupling various encodings in an al-

ternation strategy where different conversion operators interact to

increase the probabilities of obtaining advanced and good struc-

tures.

As a final statement, we believe that our test results totally complied

with our assertions about the argument “Do not Choose Represen-

tation just Change”, and showed that an algorithm which incorpo-

rates a method of coding mating by the application of the conver-

sion of the representation from one coding to another during the

search will easily converge and will be more successful in reaching

more optimum solutions using less computational power.

5. FUTURE DIRECTIONS
In our study, we used two SGAs in 2-SEA. An advanced research

can lead to the exploitation of other kinds of EAs to be assigned to

each state having in mind that both the notion of states and the state

conversions are very essential in EAs functioning.

In this paper, BBC is considered. Though, other kinds of coding

schemes such as tree or linear representation, and any number of

coding schemes can be applied to EAs in order to profit from the

convenient representation for a particular problem.

A future direction also suggests that other implementations of the

SEA can still be improved by decreasing user defined parameters

 30

 35

 40

 45

 50

 55

 60

 65

 70

 30 35 40 45 50 55 60 65 70

fit
ne

ss
 v

al
ue

s

f(s)

ONEMAX

diagonal
f(m(s))

f(m(conv1(s)))
f(m(conv0(s)))

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 25 30 35 40 45 50 55 60 65 70 75

fit
ne

ss
 v

al
ue

s

f(s)

ONEMAX

diagonal
f(m(s))

f(m(conv1(m(conv0(s)))))
f(m(conv0(m(conv1(s)))))

Figure 7: Fitness Clouds representing the influence and inter-

action of BBC conversion routines with genetic operators: for

the ONEMAX problem, we plot different kinds of fitness values

for 100 arbitrary solutions. The x-axis represents the fitness of

initial solutions (f). The y-axis represents the fitness of solu-

tions after the application of BBC conversion operators (conv)

and the bit-flip mutation operator (m).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140

S
uc

ce
ss

 R
at

e
 (

 %
)

Generation Number

ONEMAX

SGA
2-SEA

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8

S
uc

ce
ss

 R
at

e
 (

 %
)

Generation Number

NEEDLE

SGA
2-SEA

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 80 160 240 320 400 480 560

S
uc

ce
ss

 R
at

e
 (

 %
)

Generation Number

ONOFF

SGA
2-SEA

 0

 4

 8

 12

 16

 20

 24

 28

 32

 0 5000 10000 15000 20000 25000 30000

S
uc

ce
ss

 R
at

e
 (

 %
)

Generation Number

ALTERNATION

SGA
2-SEA

Figure 8: Performance comparison of the percentage of cor-

rect solved solutions across the number of iterations required

to reach the global optimum. These records were averaged over

100 independent runs for each test function.

and making them automatically adjustable based on measures ex-

tracted from the process.

In a further research, we must understand properly the basic proper-

ties of BBC and recognize well its fundamental evolvability evoked

by the genetic operators so we can propose other types of BBC con-

version operators to help making the representation more dynamic

and more adaptive to the problem structure.

6. REFERENCES
[1] D.H. Wolpert and W.G. MacReady. “No free lunch theorems

for optimization”. IEEE Transactions on Evolutionary

Computation, 1996.

[2] Maroun Bercachi, Philippe Collard, Manuel Clergue, and

Sebastien Verel. “Evolving dynamic change and exchange of

genotype encoding in genetic algorithms for difficult

optimization problems”. In Proceedings of IEEE

International Congress on Evolutionary Computation, 2007.

[3] M. Mitchell. “An introduction to genetic algorithms”.

Complex Adaptive Systems Series, MIT Press 1996.

[4] D. Whitley and Soraya Rana. “Representation, search and

genetic algorithm”. In Proceedings of the Fourteenth

National Conference on Artificial Intelligence, 1997.

[5] Franz Rothlauf and David E. Goldberg. “Representations for

genetic and evolutionary algorithms”. Springer 2002.

[6] Liepins G. and Vose M. “Representations issues in genetic

algorithms”. Experimental and Theoretical Artificial

Intelligence Journal, MIT Press 1990.

[7] Franz Rothlauf and David E. Goldberg. “Redundant

representations in evolutionary computation”. Evolutionary

Computation, MIT Press 2003.

[8] Marc Toussaint. “Compact representations as a search

strategy: Compression edas”. E.S. Publishers Ltd. 2006.

[9] Franz Rothlauf, David E. Goldberg, and Armin Heinzl.

“Network random keys: a tree representations scheme for

genetic and evolutionary algorithms”. MIT Press 2002.

[10] Sebastien Verel. “States based evolutionary algorithm”.

Internal report, I3S Laboratory 2008.

[11] Rowe J.E. “Population fixed-points for functions of

unitation”. In Foundations of Genetic Algorithms. Vol. 5.

Colin Reeves, and Wolfgang Banzhaf. M.K. Publishers, 1998.

[12] Wright A.H., Rowe J.E., and Neil J.R. “Analysis of the

simple genetic algorithm on the single-peak and double-peak

landscapes”. In Proceedings of the 2002 Congress on

Evolutionary Computation, Fogel et al. Editors, 1999.

[13] Richter J.N., Paxton J., and Wright A.H. “EA models and

population fixed points versus mutation for functions of

unitation”. In Proceedings of GECCO 2005, D.C. 2005.

[14] Thierens D. “Adaptive mutation rate control schemes in

genetic algorithms”. In Proceedings of IEEE World Congress

on Computational Intelligence: Congress on Evolutionary

Computation. IEEE Press, 2002.

[15] Philippe Collard and Manuel Clergue. “Misleading functions

designed from alternation”. In Proceedings of IEEE

International Congress on Evolutionary Computation, 2000.

[16] Sebastien Verel, Philippe Collard, and Manuel Clergue.

“Where are bottlenecks in nk fitness landscapes?”. In

Proceedings of IEEE International Congress on

Evolutionary Computation, 2003.

[17] Rich Caruana, Schaffer, and J. David. “Representation and

hidden bias: Gray vs. binary coding for genetic algorithms”.

In Proceedings of the Fifth International Conference on

Machine Learning. M.K. Publishers, 1988.

[18] E. Mathias and D. Whitley. “Transforming the search space

with gray coding”. In Proceedings of the 1994 International

Conference on Evolutionary Computation, 1994.

[19] D. Whitley. “A free lunch proof for gray versus binary

encodings”. In Proceedings of the Genetic and Evolutionary

Computation Conference, M.K. Publishers 1999.

[20] D. Whitley, Soraya Rana, and Robert B. Heckendorn.

“Representation issues in neighborhood search and

evolutionary algorithms”. Genetic Algorithms in Engineering

and Computer Science, 1997.

[21] Laura Barbulescu, Jean-Paul Watson, and D. Whitley.

“Dynamic representations and escaping local optima:

Improving genetic algorithms and local search”. 2000.

