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Partial multivariate Bell polynomials have been dened by E.T. Bell in 1934. These polynomials have numerous applications in Combinatorics, Analysis, Algebra, Probabilities etc. Many of the formulae on Bell polynomials involve combinatorial objects (set partitions, set partitions into lists, permutations etc). So it seems natural to investigate analogous formulae in some combinatorial Hopf algebras with bases indexed by these objects. In this paper we investigate the connexions between Bell polynomials and several combinatorial Hopf algebras: the Hopf algebra of symmetric functions, the Faà di Bruno algebra, the Hopf algebra of word symmetric functions etc. We show that Bell polynomials can be dened in all these algebras and we give analogues of classical results. To this aim, we construct and study a family of combinatorial Hopf algebras whose bases are indexed by colored set partitions.

Introduction

Partial multivariate Bell polynomials (Bell polynomials for short) have been dened by E.T. Bell in [START_REF] Temple | Exponential polynomials[END_REF] in 1934. But their name is due to Riordan [START_REF] Riordan | An Introduction to Combinatorial Analysis[END_REF] which studied the Faà di Bruno formula [START_REF] Faà | Sullo sviluppo delle funzioni[END_REF][START_REF] Faà | Note sur une nouvelle formule de calcul diérentiel[END_REF] allowing one to write the nth derivative of a composition f • g in terms of the derivatives of f and g [START_REF] Riordan | Derivatives of composite functions[END_REF]. The applications of Bell polynomials in Combinatorics, Analysis, Algebra, Probabilities etc. are so numerous that it should be very long to detail them in the paper. Let us give only a few seminal examples.

• The main applications to Probabilities follow from the fact that the nth moment of a probability distribution is a complete Bell polynomial of the cumulants.

• Partial Bell polynomials are linked to the Lagrange inversion. This follows from the Faà di Bruno formula.

• Many combinatorial formulae on Bell polynomials involve classical combinatorial numbers like Stirling numbers, Lah numbers etc.

The Faà di Bruno formula and many combinatorial identities can be found in [START_REF] Comtet | Advanced Combinatorics: The art of nite and innite expansions[END_REF]. The PhD thesis of M. Mihoubi [START_REF] Mihoubi | Polynômes multivariés de Bell et polynômes de type binomial[END_REF] contains a rather complete survey of the applications of these polynomials together with numerous formulae. Some of the simplest formulae are related to the enumeration of combinatorial objects (set partitions, set partitions into lists, permutations etc.). So it seems natural to investigate analogous formulae in some combinatorial Hopf algebras with bases indexed by these objects. We recall that combinatorial Hopf algebras are graded bigebras with bases indexed by combinatorial objects such that the product and the coproduct have some compatibilities. The paper is organized as follows. In Section 2, we investigate the combinatorial properties of the colored set partitions. Section 3 is devoted to the study of the Hopf algebras of colored set partitions. After having introduced this family of algebras, we give some special cases which can be found in the literature. The main application explains the connections with Sym, the algebra of symmetric functions. This explains that we can recover some identities on Bell polynomials when the variables are specialized to combinatorial numbers from analogous identities in some combinatorial Hopf algebras. We show that the algebra WSym of word symmetric functions has an important role for this construction. In Section 4, we give a few analogues of complete and partial Bell polynomials in WSym, ΠQSym = WSym * and C A and investigate their main properties. Finally, in Section 5 we investigate the connection with other noncommutative analogues of Bell polynomials dened by Munthe-Kass [START_REF] Munthe-Kaas | Lie-Butcher theory for Runge-Kutta methods[END_REF].

2 Denition, background and basic properties of colored set partitions

2.1

Colored set partitions

Let a = (a m ) m≥1 be a sequence of nonnegative integers. A colored set partition associated to the sequence a is a set of couples

Π = {[π 1 , i 1 ], [π 2 , i 2 ], . . . , [π k , i k ]}
such that π = {π 1 , . . . , π k } is a partition of {1, . . . , n} for some n ∈ N and 1 ≤ i ≤ a #π for each 1 ≤ ≤ k. The integer n is the size of Π. We will write |Π| = n, Π n and Π π.

We will denote by CP n (a) the set of colored partitions of size n associated to the sequence a. Notice that these sets are nite. We will set also CP(a) = n CP n (a). We endow CP with the additional statistic #Π and set CP n,k (a) = {Π ∈ CP n (a) : #Π = k}. It is well known that the number of colored set partitions of size n for a given sequence a = (a n ) n is equal to the evaluation of the complete Bell polynomial A n (a 1 , . . . , a m , . . . ) and that the number of colored set partitions of size n and cardinality k is given by the evaluation of the partial Bell polynomial B n (a 1 , a 2 , . . . , a m , . . . ). That is #CP n (a) = A n (a 1 , a 2 , . . . ) and #CP n,k (a) = B n,k (a 1 , a 2 , . . . ).

Now, let Π = {[π 1 , i 1 ], . . . [π k , i k ]
} be a set such that the π j are nite sets of nonnegative integers such that no integer belongs to more than one π j , and 1 ≤ i j ≤ a #(πj ) for each j. Then, the standardized std(Π) of Π is well dened as the unique colored set partition obtained by replacing the ith smallest integer in the π j by i.

Example 2. For instance:

std({[{1, 4, 7}, 1], [{3, 8}, 1], [{5}, 3], [{10}, 1]}) = {[{1, 3, 5}, 1], [{2, 6}, 1], [{4}, 3], [{7}, 1]} We dene two binary operations : CP n,k (a) ⊗ CP n ,k (a) -→ CP n+n ,k+k (a), Π Π = Π ∪ Π [n],
where Π [n] means that we add n to each integer occurring in the sets of Π and : CP n,k ⊗ CP n ,k -→ P(CP n+n ,k+k ) by Example 3. We have

Π Π = { Π ∪ Π ∈ CP n+n ,k+k ( 
{[{1, 3}, 5], [{2}, 3]} {[{1}, 2], [{2, 3}, 4]} = {[{1, 3}, 5], [{2}, 3], [{4}, 2], [{5, 6}, 4]},
and

{[{1}, 5], [{2}, 3]} {[{1, 2}, 2]} = {{[{1}, 5], [{2}, 3], [{3, 4}, 2]}, {[{1}, 5], [{3}, 3], [{2, 4}, 2]}, {[{1}, 5], [{4}, 3], [{2, 3}, 2]}, {[{2}, 5], [{3}, 3], [{1, 4}, 2]}, {[{2}, 5], [{4}, 3], [{1, 3}, 2]}, {[{3}, 5], [{4}, 3], [{1, 2}, 2]}}.
The operator provides an algorithm which computes all the colored partitions:

CP n,k (a) = i1+•••+i k =n ai 1 j1=1 • • • ai k j k =1 {[{1, . . . , i 1 }, j 1 ]} • • • {[{1, . . . , i k }, j k ]}. (1) 
Nevertheless each colored partition is generated more than once using this process. For a triple (Π, Π , Π ) we will denote by α Π Π ,Π the number of pairs of disjoint subsets ( Π , Π ) of Π such that Π ∪ Π = Π, std( Π ) = Π and std( Π ) = Π . Remark 4. Notice that for a = 1 = (1, 1, . . . ) (i.e. the ordinary set partitions), there is an alternative simple way to construct eciently the set CP n [START_REF] Temple | Exponential polynomials[END_REF]. It suces to use the induction

CP 0 (1) = {∅}, CP n+1 (1) = {π ∪ {{n + 1}} : π ∈ CP n (1)} ∪ {(π \ {e}) ∪{e ∪ {n + 1}} : π ∈ CP n (1), e ∈ π}}.
(

) 2 
Applying this recurrence, the set partitions of CP n+1 (1) are each obtained exactly once from the set partitions of CP n (1).

Generating series

The generating series of the colored set partitions CP(a) is obtained from the cycle generating function for the species of colored set partitions. The construction is rather classical, see e.g. [START_REF] Bergeron | Introduction to the Theory of Species of Structures[END_REF]. Recall rst that a species of structures is a rule F which produces for each nite set U , a nite set F [U ] and for each bijection φ :

U -→ V , a function F [φ] : F [U ] -→ F [V ]
satisfying the following properties:

• for all pairs of bijections φ : U -→ V and ψ :

V -→ W , F [ψ • φ] = F [ψ] • F [φ]
• if Id U denotes the identity map on U , then

F [Id U ] = Id F [U ] .
An element s ∈ F [U ] is called an F -structure on U . The cycle generating function of a species F is the formal power series in innitely independent many variables p 1 , p 2 , . . . (called power sums) dened by the formula

Z F (p 1 , p 2 , • • • ) = ∞ n=0 1 n! σ∈Sn |F ([n]) σ |p cycle_type(σ) , (3) 
where F ([n]) σ denotes the set of F -structures on [n] := {1, . . . , n} which are xed by the permutation σ, and

p λ = p λ1 • • • p λ k if λ is the vector [λ 1 , . . . , λ k ].
For instance, the trivial species TRIV has only one TRIV-structure on every n. Hence, its cycle generating function is nothing else but the Cauchy function

σ 1 := exp    n≥1 p n n t n    = n≥0 h n . (4) 
Here h n denotes the complete function h n = λ n 1 z λ p λ where λ n means that the sum is over the partitions λ of n and

z λ = i i mi(λ(i)) m i (λ(i))! if m i (λ(i))
is the multiplicity of the part i in λ. We consider also the species NCS(a) of non-empty colored sets having a n NCS(a)-structures on [n] which are invariant by permutations. Its cycle generating function is

Z NCS(a) = n≥1 a n h n . (5) 
As a species, CP(a) is a composite TRIV • NCS(a). Hence, its cycle generating function is obtained by computing the plethysm

Z NCS(a) (p 1 , p 2 , . . . ) = σ 1 [Z NCS(a) ] = exp n>0 1 n k>0 a k p n [h k ] . (6) 
The exponential generating function of CP(a) is obtained by setting p 1 = t and p i = 0 for i > 1 in (6):

n≥0 A n (a 1 , a 2 , . . . ) t n n! = exp i>0 a i i! t i . (7) 
We deduce easlily that A n (a 1 , a 2 , . . . ) are multivariate polynomials in the variables a i 's. These polynomials are known under the name of complete Bell polynomials [START_REF] Temple | Exponential polynomials[END_REF]. The double generating function of card(CP n,k (a)) is easily deduced from (7) by n≥0 k≥0

B n,k (a 1 , a 2 , . . . )

x k t n n! = exp x i>0 a i i! t i . (8) 
Hence,

n≥k B n,k (a 1 , a 2 , . . . ) t n n! = 1 k! i>0 a i i! t i n . (9) 
So, one has

A n (a 1 , a 2 , . . . ) = n k=1
B n,k (a 1 , a 2 , . . . ), ∀n 1 and A 0 (a 1 , a 2 , . . .

) = 1. (10) 
The multivariate polynomials B n,k (a 1 , a 2 , . . . ) are known under the name partial Bell polynomials [START_REF] Temple | Exponential polynomials[END_REF]. Let S n,k denote the Stirling number of the second kind which counts the number of ways to partition a set of n objects into k nonempty subsets. The following identity holds

B n,k (1, 1, . . . ) = S n,k . (11) 
Note also that A n (x, x, . . . ) = n k=0 S n,k x k is the classical univariate Bell polynomial denoted by φ n (x) in [START_REF] Temple | Exponential polynomials[END_REF]. Several other identities involve combinatorial numbers. For instance, one has

B n,k (1!, 2!, 3!, . . . ) = n -1 k -1 n! k! , Unsigned Lah numbers A105278 in [30], (12) 
B n,k (1, 2, 3, . . . ) = n k k n-k , Idempotent numbers A059297 in [30], (13) 
B n,k (0!, 1!, 2!, . . . ) = |s n,k |, Stirling numbers of the rst kind A048994 in [START_REF] Sloane | The on-line encyclopedia of integer sequences[END_REF].

We can also nd many other examples in [START_REF] Temple | Exponential polynomials[END_REF][START_REF] Comtet | Advanced Combinatorics: The art of nite and innite expansions[END_REF][START_REF] Mihoubi | Bell polynomials and binomial type sequences[END_REF][START_REF] Wang | General identities on Bell polynomials[END_REF][START_REF] Mihoubi | Partial Bell polynomials and inverse relations[END_REF].

Remark 5. Without loss of generality, when needed, we will suppose a 1 = 1 in the remainder of the paper. Indeed, if a 1 = 0, then the generating function gives

B n,k (a 1 , . . . , a p , . . . ) = a k 1 B n,k 1, a 2 a 1 , • • • , a p a 1 (15) 
and when a 1 = 0, B n,k (0, a 2 , . . . , a p , . . .

) = 0 if n < k n! (n-k)! B n,k (a 2 , . . . , a p , . . . ) if n ≥ k. (16) 
Notice that the ordinary series of the isomorphism types of CP(a) is obtained by setting p i = t i in [START_REF] Corless | On the Lambert W function[END_REF]. Remarking that under this specialization we have p k [h n ] = t nk , we obtain, unsurprisingly, the ordinary generating series of colored (integer) partitions

i>0 1 (1 -t i ) ai . (17) 2.3 
Bell polynomials and symmetric functions

The algebra of symmetric functions [START_REF] Grant | Symmetric functions and Hall polynomials[END_REF][START_REF] Lascoux | Symmetric Functions and Combinatorial Operators on Polynomials[END_REF] is isomorphic to its polynomial realization Sym(X) on an innite set X = {x 1 , x 2 , . . . } of commuting variables, so the algebra Sym(X) is dened as the set of polynomials invariant under permutation of the variables. As an algebra, Sym(X) is freely generated by the power sum symmetric functions p n (X), dened by p n (X) = i 1 x n i , or the complete symmetric functions h n , where h n is the sum of all the monomials of total degree n in the variables x 1 , x 2 , . . . . The generating function for the h n , called Cauchy function, is

σ t (X) = n 0 h n (X)t n = i 1 (1 -x i t) -1 . ( 18 
)
The relationship between the two families (p n ) n∈N and (h n ) n∈N is described in terms of generating series by the Newton formula:

σ t (X) = exp{ n 1 p n (X) t n n }. ( 19 
)
Notice that Sym is the free commutative algebra generated by p 1 , p 2 . . . i.e. Sym = C[p 1 , p 2 , . . . ] and Sym(X) = C[p 1 (X), p 2 (X), . . . ] when X is an innite alphabet without relations on the variables. As a consequence of the Newton Formula [START_REF] Khelifa | New results for the Adomian method[END_REF], it is also the free commutative algebra generated by h 1 , h 2 , . . . . The freeness of the algebra provides a mechanism of specialization. For any sequence of commutative scalars u = (u n ) n∈N , there is a morphism of algebra φ u sending each p n to u n (resp. sending h n to a certain v n which can be deduced from u). These morphisms are manipulated as if there exists an underlying alphabet (so called virtual alphabet)

X u such that p n (X u ) = u n (resp. h n (X u ) = v n ).
The interest of such a vision is that one denes operations on sequences and symmetric functions by manipulating alphabets.

The bases of Sym are indexed by the partitions λ n of all the integers n. A partition λ of n is a nite noncreasing sequence of positive integers (λ 1 ≥ λ 2 ≥ . . .) such that i λ i = n. By specializing either the power sums p i or the complete functions h i to the numbers ai i! , the partial and complete Bell polynomials are identied with well known bases.

The algebra Sym is usually endowed with three coproducts:

• the coproduct ∆ such that the power sums are Lie-like (∆(p n ) = p n ⊗ 1 + 1 ⊗ p n );

• the coproduct ∆ such that the power sums are group-like (∆ (p n ) = p n ⊗ p n );

• the coproduct of Faà di Bruno (see e.g. [START_REF] Doubilet | A Hopf algebra arising from the lattice of partitions of a set[END_REF][START_REF] Sa | Coalgebras and bialgebras in combinatorics[END_REF]).

Most of the formulas on Bell polynomials can be stated and proved using specializations and these three coproducts. Since this is not really the purpose of our article, we have deferred to Appendix A a list of examples which are rewrites of existing proofs in terms of symmetric functions. One of the aims of our paper is to rise some of these identities to other combinatorial Hopf algebras.

3 Hopf algebras of colored set partitions

3.1

The Hopf algebras CWSym(a) and CΠQSym(a)

Let CWSym(a) (CWSym for short when there is no ambiguity) be the algebra dened by its basis (Φ Π ) Π∈CP(a) indexed by colored set partitions associated to the sequence a = (a m ) m≥1 and the product

Φ Π Φ Π = Φ Π Π . (20) 
Example 6. One has

Φ {[{1,3,5},3],[{2,4},1]} Φ {[{1,2,5},4],[{3},1],[{4},2]} = Φ {[{1,3,5},3],[{2,4},1],[{6,7,10},4],[{8},1],[{9},2]} .
Let CWSym n be the subspace generated by the elements Φ Π such that Π n.

For each n we consider an innite alphabet A n of noncommuting variables and we suppose

A n ∩ A m = ∅ when n = m. For each colored set partition Π = {[π 1 , i 1 ], [π 2 , i 2 ], . . . , [π k , i k ]}, we construct a polynomial Φ Π (A 1 , A 2 , . . . ) ∈ C n A n Φ Π (A 1 , A 2 , . . . ) := w=a1...an w, (21) 
where the sum is over the words w = a 1 . . . a n satisfying

• For each 1 ≤ ≤ k, a j ∈ A i if and only if j ∈ π . • If j 1 , j 2 ∈ π then a j1 = a j2 . Example 7. Φ {[{1,3},3],[{2},1],[{4},3]} (A 1 , A 2 , . . . ) = a1,a2∈A3 b∈A1 a 1 ba 1 a 2 .
Proposition 8. The family

Φ(a) := (Φ Π (A 1 , A 2 , . . . )) Π∈CP(a)
spans a subalgebra of C n A n which is isomorphic to CWSym(a).

Proof. First, remark that span(Φ(a)) is stable under concatenation. Indeed,

Φ Π (A 1 , A 2 , . . . )Φ Π (A 1 , A 2 , . . . ) = Φ Π Π (A 1 , A 2 , . . . ).
Furthermore, this shows that span(Φ(a)) is homomorphic to CWSym(a) and that an explicit (onto) morphism is given by

Φ Π -→ Φ Π (A 1 , A 2 , . . . ).
Observing that the family Φ(a) is linearly independent, the fact that the algebra CWSym(a) is graded in nite dimension implies the result.

We turn CWSym into a Hopf algebra by considering the coproduct

∆(Φ Π ) = Π1∪ Π2=Π Π1∩ Π2=∅ Φ std( Π1) ⊗ Φ std( Π2) = Π1,Π2 α Π Π1,Π2 Φ Π1 ⊗ Φ Π2 . (22) 
Indeed, CWSym splits as a direct sum of nite dimension spaces

CWSym = n CWSym n .
This denes a natural graduation on CWSym. Hence, since it is a connected algebra, it suces to verify that it is a bigebra. More precisely:

∆(Φ Π Φ Π ) = ∆(Φ Π Π ) = Π1 ∪ Π2 =Π, Π 1 ∪ Π 2 =Π [n] Π1 ∩ Π2 =∅, Π 1 ∩ Π 2 =∅ Φ std( Π1) std( Π 1 ) ⊗ Φ std( Π2) std( Π 2 ) = ∆(Φ Π )∆(Φ Π ).
Notice that ∆ is cocommutative.

Example 9. For instance,

∆ Φ {[{1,3},5],[{2},3]} = Φ {[{1,3},5],[{2},3]} ⊗ 1 + Φ {[{1,2},5]} ⊗ Φ {[{1},3]} + Φ {[{1},3]} ⊗ Φ {[{1,2},5]} + 1 ⊗ Φ {[{1,3},5],[{2},3]} .
The graded dual CΠQSym(a) (which will be called CΠQSym for short when there is no ambiguity) of CWSym is the Hopf algebra generated as a space by the dual basis (Ψ Π ) Π∈CP(a) of (Φ Π ) Π∈CP(a) . Its product and its coproduct are given by

Ψ Π Ψ Π = Π∈Π Π α Π Π ,Π Ψ Π and ∆(Ψ Π ) = Π Π =Π Ψ Π ⊗ Ψ Π .
Example 10. For instance, one has

Ψ {[{1,2},3]} Ψ {[{1},4],[{2},1]} = Ψ {[{1,2},3],[{3},4],[{4},1]} + Ψ {[{1,3},3],[{2},4],[{4},1]} + Ψ {[{1,4},3],[{2},4],[{3},1]} + Ψ {[{2,3},3],[{1},4],[{4},1]} + Ψ {[{2,4},3],[{1},4],[{3},1]} + Ψ {[{3,4},3],[{1},4],[{2},1]} and ∆(Ψ {[{1,3},3],[{2},4],[{4},1]} ) = 1 ⊗ Ψ {[{1,3},3],[{2},4],[{4},1]} + Ψ {[{1,3},3],[{2},4]} ⊗ Ψ {[{1},1]} + Ψ {[{1,3},3],[{2},4],[{4},1]} ⊗ 1.

Special cases

In this section, we investigate a few interesting special cases of the construction.

Word symmetric functions

The most prominent example follows from the specialization a n = 1 for each n. In this case, the Hopf algebra CWSym is isomorphic to WSym, the Hopf algebra of word symmetric functions. Let us briey recall its construction. The algebra of word symmetric functions is a way to construct a noncommutative analogue of the algebra Sym. Its bases are indexed by set partitions. After the seminal paper [START_REF] Wolf | Symmetric functions of non-commutative elements[END_REF], this algebra was investigated in [START_REF] Bergeron | Invariants and coinvariants of the symmetric groups in noncommuting variables[END_REF][START_REF] Hivert | Commutative combinatorial Hopf algebras[END_REF] as well as an abstract algebra as in its realization with noncommutative variables. Its name comes from its realization as a subalgebra of C A where

A = {a 1 , . . . , a n • • • } is an innite alphabet.
Consider the family of functions Φ := {Φ π } π whose elements are indexed by set partitions of {1, . . . , n}. The algebra WSym is formally generated by Φ using the shifted concatenation product:

Φ π Φ π = Φ ππ [n]
where π and π are set partitions of {1, . . . , n} and {1, . . . , m}, respectively, and π [n] means that we add n to each integer occurring in π . The polynomial realization WSym(A) ⊂ C A is dened by Φ π (A) = w w where the sum is over the words

w = a 1 • • • a n where i, j ∈ π implies a i = a j , if π = {π 1 , . . . , π k } is a set partition of {1, . . . , n}.
Example 11. For instance, one has Φ {{1,4}{2,5,6}{3,7}} (A) = a,b,c∈A abcabbc.

Although the construction of WSym(A), the polynomial realization of WSym, seems to be close to Sym(X), the structures of the two algebras are quite dierent since the Hopf algebra WSym is not autodual. Surprisingly, the graded dual ΠQSym := WSym * of WSym admits a realization in the same subspace (WSym(A)) of C A but for the shue product.

With no surprise, we notice the following fact:

Proposition 12.

• The algebras CWSym(1, 1, . . . ), WSym and WSym(A) are isomorphic.

• The algebras CΠQSym(1, 1, . . . ), ΠQSym and (WSym(A), ) are isomorphic.

In the rest of the paper, when there is no ambiguity, we will identify the algebras WSym and WSym(A).

The word analogue of the basis (c λ ) λ of Sym is the dual basis (Ψ π ) π of (Φ π ) π . Other bases are known, for example, the word monomial functions dened by Φ π = π≤π M π , where π ≤ π indicates that π is ner than π , i.e., that each block of π is a union of blocks of π.

Example 13. For instance, Φ {{1,4}{2,5,6}{3,7}} = M {{1,4}{2,5,6}{3,7}} + M {{1,2,4,5,6}{3,7}} + M {{1,3,4,7}{2,5,6}}

+ M {{1,4}{2,3,5,6,7}} + M {{1,2,3,4,5,6,7}} .

From the denition of the M π , we deduce that the polynomial representation of the word monomial functions is given by M π (A) = w w where the sum is over the words

w = a 1 • • • a n where i, j ∈ π if and only if a i = a j , where π = {π 1 , . . . , π k } is a set partition of {1, . . . , n}. Example 14. M {{1,4}{2,5,6}{3,7}} (A) = a,b,c∈A a =b,a =c,b =c abcabbc.
The analogue of complete symmetric functions is the basis (S π ) π of ΠQSym which is the dual of the basis (M π ) π of WSym.

The algebra ΠQSym is also realized in the space WSym(A): it is the subalgebra of

(C A , ) generated by Ψ π (A) = π!Φ π (A) where π! = #π 1 ! • • • #π k ! for π = {π 1 , . . . , π k }. Indeed, the linear map Ψ π -→ Ψ π (A) is a bijection sending Ψ π1 Ψ π2 to π=π 1 ∪π 2 , π 1 ∩π 2 =∅ π 1 =std(π 1 ), π 2 =std(π 2 ) Ψ π (A) = π 1 !π 2 ! π=π 1 ∪π 2 , π 1 ∩π 2 =∅ π 1 =std(π 1 ), π 2 =std(π 2 ) Φ π (A) = π 1 !π 2 !Φ π1 (A) Φ π2 (A) = Ψ π1 (A) Ψ π2 (A).
With these notations the image of S π is S π (A) = π ≤π Ψ π (A). For our realization, the duality bracket | implements the scalar product | on the space WSym(A) for which

S π1 (A)|M π2 (A) = Φ π1 (A)|Ψ π2 (A) = δ π1,π2 .
The subalgebra of (WSym(A), ) generated by the complete functions S {{1,...,n}} (A) is isomorphic to Sym. Therefore, we dene σ W t (A) and φ W t (A) by

σ W t (A) = n≥0 S {{1,...,n}} (A)t n and φ W t (A) = n≥1 Ψ {{1,...,n}} (A)t n-1 .
These series are linked by the equality

σ W t (A) = exp φ W t (A) , ( 23 
)
where exp is the exponential in (WSym(A), ). Furthermore, the coproduct of WSym consists in identifying the algebra WSym ⊗ WSym with WSym(A + B), where A and B are two alphabets such that the letters of A commute with those of B. Hence, one has

σ W t (A + B) = σ W t (A) σ W t (B).
In particular, we dene the multiplication of an alphabet A by a constant k ∈ N by

σ W t (kA) = n≥0 S {{1,...,n}} (kA)t n = σ W t (A) k .
Nevertheless, the notion of specialization is subtler to dene than in Sym. Indeed, the knowledge of the complete functions S {{1,...,n}} (A) does not allow us to recover all the polynomials using uniquely the algebraic operations. In [START_REF] Bultel | Word symmetric functions and the Redeld-Pólya theorem[END_REF], we made an attempt to dene virtual alphabets by reconstituting the whole algebra using the action of an operad. Although the general mechanism remains to be dened, the case where each complete function S {{1,...,n}} (A) is specialized to a sum of words of length n can be understood via this construction. More precisely, we consider the family of multilinear k-ary operators Π indexed by set compositions (a set composition is a sequence [π 1 , . . . , π k ] of subsets of {1, . . . , n} such that {π 1 , . . . , π k } is a set partition of {1, . . . , n}) acting on words by [π1,...,π k ] (a

1 1 • • • a 1 n1 , . . . , a k 1 • • • a k n k ) = b 1 • • • b n with b i p = a p if π p = {i p 1 < • • • < i p np } and [π1,...,π k ] (a 1 1 • • • a 1 n1 , . . . , a k 1 • • • a k n k ) = 0 if #π p = n p for some 1 ≤ p ≤ k.
Let P = (P n ) n≥1 be a family of a homogeneous word polynomials such that deg(P n ) = n for each n. We set S {{1,...,n}} A (P ) = P n and S {π1,...,π k } A (P ) = [π1,...,π k ] (S {{1,...,#π1}} A (P ) , . . . , S {{1,...,#π k }} A (P ) ).

The space WSym A (P ) generated by the polynomials S {π1,...,π k } A (P ) and endowed with the two products • and is homomorphic to the double algebra (WSym(A), •, ). Indeed, let π = {π 1 , . . . , π k } n and π = {π 1 , . . . , π k } n be two set partitions, one has where the second sum is over the partitions {π 1 , . . . , π k+k } ∈ π π satisfying, for each

S π A (P ) • S π A (P ) = [{1,...,n},{n+1,...,n+n }] S π A (P ) , S π A (P ) = [π1,...,π k ,π 1 [n],...,π k [n]] S {1,...,#π1} A (P ) , . . . , S {1,...,#π k } A (P ) , S {1,...,#π 1 } A (P ) , . . . , S {1,...,#π k } A (P ) = S π π A (P )
k + 1 ≤ i ≤ k + k , std({π 1 , . . . , π k }) = π, std({π k+1 , . . . , π k+k }) = π , #π i = π i . Hence, S π A (P ) S π A (P ) = π ∈π π S π A (P ) .
In other words, we consider the elements of WSym A (P ) as word polynomials in the virtual alphabet A (P ) specializing the elements of WSym(A).

3.2.2

Biword symmetric functions

The bi-indexed word algebra BWSym was dened in [START_REF] Bultel | Word symmetric functions and the Redeld-Pólya theorem[END_REF]. We recall its denition here: the bases of BWSym are indexed by set partitions into lists, which can be constructed from a set partition by ordering each block. We will denote by PL n the set of the set partitions of {1, . . . , n} into lists.

Example 15. {[1, 2, 3], [START_REF] Bouroubi | New identities for Bell's polynomials. New approaches[END_REF][START_REF] Bultel | Word symmetric functions and the Redeld-Pólya theorem[END_REF]} and {[3, 1, 2], [START_REF] Bultel | Word symmetric functions and the Redeld-Pólya theorem[END_REF][START_REF] Bouroubi | New identities for Bell's polynomials. New approaches[END_REF]} are two distinct set partitions into lists of the set {1, 2, 3, 4, 5}.

The number of set partitions into lists of an n-element set (or set partitions into lists of size n) is given by Sloane's sequence A000262 [30]. The rst values are 1, 1, 3, 13, 73, 501, 4051, . . . If Π is a set partition into lists of {1, . . . , n}, we will write Π n.

Set Π Π = Π ∪ {[l 1 + n, . . . , l k + n] : [l 1 , . . . , l k ] ∈ Π } n + n . Let Π ⊂ Π n,
since the integers appearing in Π are all distinct, the standardized std( Π ) of Π is well dened as the unique set partition into lists obtained by replacing the ith smallest integer in Π by i. For example, std({ [START_REF] Bultel | Word symmetric functions and the Redeld-Pólya theorem[END_REF][START_REF] Bergeron | Invariants and coinvariants of the symmetric groups in noncommuting variables[END_REF], [START_REF] Bergeron | Introduction to the Theory of Species of Structures[END_REF][START_REF] Ebrahimi-Fard | Noncommutative Bell polynomials, quasideterminants and incidence Hopf algebras[END_REF], [START_REF] Corless | On the Lambert W function[END_REF][START_REF] Cvijovi¢ | New identities for the partial Bell polynomials[END_REF]

}) = {[3, 1], [2, 6], [4, 5]}.
The Hopf algebra BWSym is formally dened by its basis (Φ Π) where the Π are set partitions into lists, its product Φ ΠΦ Π = Φ Π Π and its coproduct

∆(Φ Π) = ∧ Φ std( Π ) ⊗ Φ std( Π ) , (24) 
where the ∧ means that the sum is over the ( Π , Π ) such that Π ∪ Π = Π and Π ∩ Π = ∅. The product of the graded dual BΠQSym of BWSym is completely described in the dual basis (Ψ Π) Π of (Φ Π) Π by

Ψ Π1 Ψ Π2 = Π= Π 1 ∪ Π 2 , Π 1 ∩ Π 2 std( Π 1 )= Π1 , std( Π 1 )= Π1 Ψ Π.
Now consider a bijection ι n from {1, . . . , n} to the symmetric group S n . The linear map κ : CP(1!, 2!, 3!, . . . ) -→ CL sending

{[{i 1 1 , . . . , i 1 n1 }, m 1 ], . . . , [{i k 1 , . . . , i k n k }, m 1 ]} ∈ CP n (1!, 2!, 3!, . . . ), with i j 1 ≤ • • • ≤ i j nj , to {[i 1 ιn 1 (1) , . . . , i 1 ιn 1 (n1) ], . . . , [i ιn (1) , . . . , i ιn (n ) ]}
is a bijection. Hence, a fast checking shows that the linear map sending Ψ Π to Ψ κ(Π) is an isomorphism. So, we have Proposition 16.

• The Hopf algebras CWSym(1!, 2!, 3!, . . . ) and BWSym are isomorphic.

• The Hopf algebras CΠQSym(1!, 2!, 3!, . . . ) and BΠQSym are isomorphic.

3.2.3

Word symmetric functions of level 2

We consider the algebra WSym (2) which is spanned by the Φ Π where Π is a set partition of level 2, that is, a partition of a partition π of {1, . . . , n} for some n. The product of this algebra is given by The coproduct is dened by

Φ Π Φ Π = Φ Π∪Π [n] where Π [n] = {e[n] : e ∈ Π }
∆(Φ Π ) = Π ∪Π =Π Π ∩Π =∅ Φ std(Π ) ⊗Φ std(Π )
where, if Π is a partition of a partition of {i 1 , . . . , i k }, std(Π) denotes the standardized of Π, that is the partition of partition of {1, . . . , k} obtained by substituting each occurrence of i j by j in Π. The coproduct being co-commutative, the dual algebra ΠQSym 

Cycle word symmetric functions

We consider the Grossman-Larson Hopf algebra of heap-ordered trees SSym [START_REF] Grossman | Hopf-algebraic structure of families of trees[END_REF]. The combinatorics of this algebra has been extensively investigated in [START_REF] Hivert | Commutative combinatorial Hopf algebras[END_REF]. This Hopf algebra is spanned by the Φ σ where σ is a permutation. We identify each permutation with the set of its cycles (for example, the permutation 321 is {( 13), (2)}). The product in this algebra is given by

Φ σ Φ τ = Φ σ∪τ [n] ,
where n is the size of the permutation σ and τ

[n] = {(i 1 + n, i 2 + n, . . . , i k + n) | (i 1 , . . . , i k ) ∈ τ }.
The coproduct is given by

∆(Φ σ ) = Φ std(σ| I ) ⊗ Φ std(σ| J ) , (25) 
where the sum is over the partitions of {1, . . . , n} into 2 sets I and J such that the action of σ lets the sets I and J globally invariant, σ| I denotes the restriction of the permutation σ to the set I and std(σ| I ) is the permutation obtained from σ| I by replacing the ith smallest label by i in σ| I .

Example 18.

∆(Φ 3241 ) = Φ 3241 ⊗ 1 + Φ 1 ⊗ Φ 231 + Φ 231 ⊗ Φ 1 + 1 ⊗ Φ 3241 .
The basis (Φ σ ) and its dual basis (Ψ σ ) are respectively denoted by (S σ ) and (M σ ) in [START_REF] Hivert | Commutative combinatorial Hopf algebras[END_REF]. The Hopf algebra SSym is not commutative but it is cocommutative, so it is not autodual and not isomorphic to the Hopf algebra of free quasi-symmetric functions. Let ι n be a bijection from the set of the cycles of S n to {1, . . . , (n -1)!}. We dene the bijection κ : S n ↔ CP(0!, 1!, 2!, . . . ) by 

κ(σ) = {[support(c 1 ), ι #support(c1) (std(c 1 ))], . . . , [support(c k ), ι #support(c k ) (std(c k ))]}, if σ = c 1 . . . c

One has

κ(32415867) = {[{2}, 1], [{1, 3, 4}, 2], [{5}, 1], [{6, 7, 8}, 1]}.
The linear map K : SSym -→ CWSym(0!, 1!, 2!, . . .) sending Φ σ to Φ κ(σ) is an isomorphism of algebra. Indeed, it is straightforward to see that it is a bijection and furthermore κ(σ ∪ τ [n]) = κ(σ) κ(τ ). Moreover, if σ ∈ S n is a permutation and {I, J} is a partition of {1, . . . , n} into two subsets such that the action of σ lets I and J globally invariant, we check that κ

(σ) = Π 1 ∪ Π 2 with Π 1 ∩ Π 2 = ∅, std(Π 1 ) = κ(std(σ| I )) and std(Π 2 ) = κ(std(σ| J )). Conversely, if κ(σ) = Π 1 ∪ Π 2 with Π 1 ∩ Π 2 = ∅
then there exists a partition {I, J} of {1, . . . , n} into two subsets such that the action of σ lets I and J globally invariant and std(Π 1 ) = κ(std(σ| I )) and std(Π 2 ) = κ(std(σ| J )).

In other words,

∆(Φ κ(σ) ) = Φ κ(std(σ| I )) ⊗ Φ κ(std(σ| J ) ,
where the sum is over the partitions of {1, . . . , n} into 2 sets I and J such that the action of σ lets the sets I and J globally invariant. Hence K is a morphism of cogebras and, as with the previous examples, one has Proposition 20.

• The Hopf algebras CWSym(0!, 1!, 2!, . . .) and SSym are isomorphic.

• The Hopf algebras CΠQSym(0!, 1!, 2!, . . .) and SSym * are isomorphic.

Miscellanous subalgebras of the Hopf algebra of endofunctions

We denote by End the combinatorial class of endofunctions (an endofunction of size n ∈ N is a function from {1, . . . , n} to itself). Given a function f from a nite subset A of N to itself, we denote by std(f ) the endofunction φ • f • φ -1 , where φ is the unique increasing bijection from A to {1, 2, . . . , card(A)}. Given a function g from a nite subset B of N (disjoint from A) to itself, we denote by f ∪g the function from A∪B to itself whose f and g are respectively the restrictions to A and B. Finally, given two endofunctions f and g, respectively of size n and m, we denote by f • g the endofunction f ∪ g, where g is the unique function from {n + 1, n + 2, . . . , n + m} to itself such that std(g) = g. Now, let EQSym be the Hopf algebra of endofunctions [START_REF] Hivert | Commutative combinatorial Hopf algebras[END_REF]. This Hopf algebra is dened by its basis (Ψ f ) indexed by endofunctions, the product

Ψ f Ψ g = std( f )=f,std(g)=g, f ∪g∈End Ψ f ∪g ( 26 
)
and the coproduct

∆(Ψ h ) = f •g=h Ψ f ⊗ Ψ g . ( 27 
)
This algebra is commutative but not cocommutative. We denote by ESym := EQSym * its graded dual, and by (Φ f ) the basis of ESym dual to (Ψ f ). The bases (Φ σ ) and (Ψ σ ) are respectively denoted by (S σ ) and (M σ ) in [START_REF] Hivert | Commutative combinatorial Hopf algebras[END_REF]. The product and the coproduct in ESym are respectively given by

Φ f Φ g = Φ f •g (28) 
and

∆(Φ h ) = f ∪g=h Φ std(f ) ⊗ Φ std(g) . (29) 
Remark : The Ψ f , where f is a bijective endofunction, span a Hopf subalgebra of EQSym obviously isomorphic to SQSym := SSym * , that is isomorphic to CΠQSym(0!, 1!, 2!, . . . ) from (3.2.4). As suggested by [START_REF] Hivert | Commutative combinatorial Hopf algebras[END_REF], we investigate a few other Hopf subalgebras of EQSym.

• The Hopf algebra of idempotent endofunctions is isomorphic to the Hopf algebra CΠQSym(1, 2, 3, . . . ) . The explicit isomorphism sends Ψ f to Ψ φ(f ) , where for any idempotent endofunction f of size n,

φ(f ) = f -1 (i), card({j ∈ f -1 (i) | j ≤ i}) 1 ≤ i ≤ n, f -1 (i) = ∅ . (30) 
• The Hopf algebra of involutive endofunctions is isomorphic to

CΠQSym(1, 1, 0, . . . , 0, . . . ) → ΠQSym.
Namely, it is a Hopf subalgebra of SQSym, and the natural isomorphism from SQSym to CΠQSym(0!, 1!, 2!, . . .) sends it to the sub algebra CΠQSym(1, 1, 0, . . . , 0, . . . ).

• In the same way the endofunctions such that f 3 = Id generate a Hopf subalgebra of SQSym → EQSym isomorphic to the Hopf algebra CΠQSym(1, 0, 2, 0, . . . , 0, . . .).

• More generally, the endofunctions such that f p = Id generate a Hopf subalgebra of SQSym → EQSym isomorphic to CΠQSym(τ (p)) where τ (p) i = (i -1)! if i | p and τ (p) i = 0 otherwise.

About specializations

The aim of this section is to show how the specialization c n -→ an n! factorizes through ΠQSym and CΠQSym.

Notice rst that the algebra Sym is isomorphic to the subalgebra of ΠQSym generated by the family (Ψ {{1,...,n}} ) n∈N ; the explicit isomorphism α sends c n to Ψ {{1,...,n}} . The image of h n is S {{1,...,n}} and the image of

c λ = 1 λ ! c λ1 • • • c λ k is π λ Ψ π where π λ means that π = {π 1 , . . . , π k } is a set partition such that #π 1 = λ 1 , . . . , #π k = λ k and λ ! = λ1•••λ k z λ = i m i (λ)! where m i (λ) denotes the multiplicity of i in λ. Indeed, c λ is mapped to 1 λ ! Ψ {{1,...,λ1}} • • • Ψ {{1,...,λ k }} and Ψ {{1,...,λ1}} • • • Ψ {{1,...,λ k }} = λ ! π λ Ψ π . Now the linear map β a : ΠQSym -→ CΠQSym(a) sending each Ψ π to the element Π π
Ψ Π is a morphism of algebra and the subalgebra ΠQSym := β a (ΠQSym) is isomorphic to ΠQSym if and only if a ∈ (N \ {0}) N .

Let γ a : CΠQSym(a) -→ C be the linear map sending Ψ Π to 1 |Π|! . We have

γ a (Ψ Π1 Ψ Π2 ) = Π=Π 1 ∪Π 2 ,Π 1 ∩Π 2 =∅ std(Π 1 )=Π 1 ,std(Π 2 )=Π 2 γ a (Ψ Π ).
From 

γ a (Ψ Π1 Ψ Π2 ) = 1 (|Π 1 | + |Π 2 |)! |Π 1 | + |Π 2 | |Π 1 | = 1 |Π 1 |!|Π 2 |! = γ a (Ψ Π1 )γ a (Ψ Π2 ).
In other words, γ a is a morphism of algebra. Furthermore, the restriction γa of γ a to ΠQSym is a morphism of algebra that sends β a (Ψ {{1,...,n}} ) to an n! . It follows that if

f ∈ Sym, then one has f (X (a) ) = γa (β a (α(f ))). ( 31 
)
The following theorem summarizes the section: 

Bell polynomials in ΠQSym

Since Sym is isomorphic to the subalgebra of ΠQSym generated by the elements Ψ {{1,...,n}} , we can compute A n (Ψ {{1}} , Ψ {{1,2}} , . . . , Ψ {{1,...,m}} , . . . ). From (23), we have

A n (1!Ψ {{1}} , 2!Ψ {{1,2}} , . . . , m!Ψ {{1,...,m}} , . . . ) = n!S {{1,...,n}} = n! π n Ψ π . (32) 
Notice that, from the previous section, the image of the Bell polynomial

A n (Ψ {{1}} , Ψ {{1,2}} , . . . , Ψ {{1,...,m}} , . . . ) by the morphism γ sending Ψ {{1,...,n}} to 1 n! is γ(A n (1!Ψ {{1}} , 2!Ψ {{1,2}} , . . . , m!Ψ {{1,...,m}} , . . . )) = b n = A n (1, 1, . . . ).
In the same way, we have

B n,k (1!Ψ {{1}} , 2!Ψ {{1,2}} , . . . , m!Ψ {{1,...,m}} , . . . ) = n! π n #π=k Ψ π . (33) 
If (F n ) n is a homogeneous family of elements of ΠQSym, such that |F n | = n, we dene

A n (F 1 , F 2 , . . . ) = 1 n! A n (1!F 1 , 2!F 2 , . . . , m!F m , . . . ) (34) 
and

B n,k (F 1 , F , . . . ) = 1 n! B n,k (1!F 1 , 2!F 2 , . . . , m!F m , . . . ). (35) 
Considering the map β a • α as a specialization of Sym, the following identities hold in CΠQSym(a):

A n   1≤i≤a1 Ψ {[{1},i]} , 1≤i≤a2 Ψ {[{1,2},i]} , . . . , 1≤i≤am Ψ {[{1,...,m},i]} , . . .   = Π n Ψ Π and B n,k   1≤i≤a1 Ψ {[{1},i]} , 1≤i≤a2 Ψ {[{1,2},i]} , . . . , 1≤i≤am Ψ {[{1,...,m},i]} , . . .   = Π n #Π=k Ψ Π .
Example 22. In BΠQSym ∼ CΠQSym(1!, 2!, . . . ), we have

B n,k Ψ {[1]} , Ψ {[1,2]} + Ψ {[2,1]} , . . . , σ∈Sm Ψ {[σ]} , . . . = Π n # Π=k Ψ Π,
where the sum on the right is over the set partitions of {1, . . . , n} into k lists. Considering the morphism sending Ψ {[σ1,...,σn]} to 1 n! , Theorem 21 allows us to recover B n,k (1!, 2!, 3!, . . . ) = L n,k , the number of set partitions of {1, . . . , n} into k lists.

Example 23. In ΠQSym

(2) ∼ CΠQSym(b 1 , b 2 , . . . ), we have B n,k Ψ {{{1}}} , Ψ {{{1,2}}} + Ψ {{{1},{2}}} , . . . , π m Ψ {π} , . . . = Π partition of π n # Π=k Ψ Π ,
where the sum on the right is over the set partitions of {1, . . . , n} of level 2 into k blocks. Considering the morphism sending Ψ {π} to 1 n! for π n, Theorem 21 allows us to recover

B n,k (b 1 , b 2 , b 3 , . . . ) = S (2) 
n,k , the number of set partitions into k sets of a partition of {1, . . . , n}.

Example 24. In SSym * ∼ CΠQSym(0!, 1!, 2! . . . ), we have

B n,k   Ψ[1], Ψ [2,1] , Ψ [2,3,1] + Ψ [3,1,2] , . . . , σ∈Sn σ is a cycle Ψ {π} , . . .    = σ∈Sn σ has k cycles Ψ σ ,
where the sum on the right is over the permutations of size n having k cycles. Considering the morphism sending Ψ σ to 1 n! for σ ∈ S n , Theorem 21 allows us to recover B n,k (0!, 1!, 2!, . . . ) = s n,k , the number of permutations of S n having exactly k cycles. Example 25. In the Hopf algebra of idempotent endofunctions, we have

B n,k Ψ f1,1 , Ψ f2,1 + Ψ f2,2 , Ψ f3,1 + Ψ f3,2 + Ψ f3,3 , . . . , n i=1 Ψ fn,i , . . . = |f |=n,card(f ({1,...,n}))=k Ψ f ,
where for i ≥ j ≥ 1, f i,j is the constant endofunction of size i and of image {j}. Here, the sum on the right is over idempotent endofuctions f of size n such that the cardinality of the image of f is k. Considering the morphism sending Ψ f to 1 n! for |f | = n, Theorem 21 allows us to recover that B n,k (1, 2, 3, . . . ) is the number of these idempotent endofunctions, that is the idempotent number n k k n-k [START_REF] Harris | The number of idempotent elements in symmetric semigroups[END_REF][START_REF] Tainiter | Generating functions on idempotent semigroups with application to combinatorial analysis[END_REF].

Bell polynomials in WSym

Recursive descriptions of Bell polynomials are given in [START_REF] Ebrahimi-Fard | Noncommutative Bell polynomials, quasideterminants and incidence Hopf algebras[END_REF]. In this section we rewrite this result and other ones related to these polynomials in the Hopf algebra of word symmetric functions WSym. We dene the operator ∂ acting linearly on the left on WSym by

1∂ = 0 and Φ {π1,...,π k } ∂ = k i=1 Φ ({π1,...,π k }\πi)∪{πi∪{n+1}} .
In fact, the operator ∂ acts on Φ π almost as the multiplication of M {{1}} on M π . More precisely :

Proposition 26. We have:

∂ = φ • µ • φ -µ,
where φ is the linear operator satisfying M π φ = Φ π and µ is the multiplication by Φ {{1}} .

Example 27. For instance, one has

Φ {{1,3},{2,4}} ∂ = Φ {{1,3},{2,4}} (φ -1 µφ -µ) = M {{1,3},{2,4}} µφ -Φ {{1,3},{2,4},{5}} = (M {{1,3,5},{2,4}} + M {{1,3},{2,4,5}} + M {{1,3},{2,4},{5}} )φ -Φ {{1,3},{2,4},{5}} = Φ {{1,3,5},{2,4}} + Φ {{1,3},{2,4,5}} + Φ {{1,3},{2,4},{5}} -Φ {{1,3},{2,4},{5}} = Φ {{1,3,5},{2,4}} + Φ {{1,3},{2,4,5}} .
Following Remark 4, we dene recursively the elements A n of WSym as

A 0 = 1, A n+1 = A n (Φ {{1}} + ∂). (36) 
So we have

A n = 1(Φ {1} + ∂) n . (37) 
Easily, one shows that A n provides an analogue of complete Bell polynomials in WSym.

Proposition 28.

A n = π n Φ π .
Noticing that the multiplication by Φ {{1}} adds one part to each partition, we give the following analogue for partial Bell polynomials.

Proposition 29. If we set

B n,k = [t k ]1(tΦ {{1}} + ∂) n , (38) 
then we have

B n,k = π n #π=k Φ π .
Example 30. We have We dene w[c

(i) ] = b c (i) [1] • • • b c (i) [ (i) ]
and w[σ] = [π1,...,π k ] (w[c (1) ], . . . , w[c (k) ]) where For instance

π i = {n (i) 1 , . . . , n (i) 
B 4,2 (b 1 , b 1 b 2 , b 1 b 2 b 3 + b 1 b 3 b 2 , b 1 b 2 b 3 b 4 + b 1 b 3 b 2 b 4 + b 1 b 2 b 4 b 3 + b 1 b 3 b 4 b 2 + b 1 b 4 b 2 b 3 + b 1 b 4 b 3 b 2 , . . . ) = Φ {{1},{2,3,4}} [S] + Φ {{2},{1,3,4}} [S] + Φ {{3},{1,2,4}} [S] + Φ {{4},{1,2,3}} [S] + Φ {{1,2},{3,4}} [S] + Φ {{1,3},{2,4}} [S] + Φ {{1,4},{2,3}} [S] = 2b 1 b 1 b 2 b 3 + 2b 1 b 1 b 3 b 2 + b 1 b 2 b 1 b 3 + b 1 b 3 b 2 b 1 + b 1 b 2 b 3 b 1 + b 1 b 3 b 2 b 1 + b 1 b 2 b 1 b 2 + 2b 1 b 1 b 2 b 2 .
Notice that the sum of the coecients of the words occurring in the expansion of B n,k [S] is equal to the Stirling number s n,k . Hence, this specialization gives another word analogue of formula [START_REF] Gelfand | Quasideterminants[END_REF].

5 Munthe-Kaas polynomials 5.1

Munthe-Kaas polynomials from W Sym

In order to generalize the Runge-Kutta method to integration on manifolds, Munthe-Kaas [START_REF] Munthe-Kaas | Lie-Butcher theory for Runge-Kutta methods[END_REF] introduced a noncommutative version of Bell polynomials. We recall here the construction in a slightly dierent variant adapted to our notation, the operators acting on the left. Example 40.

• MB 1 (t) = d 1 t, • MB 2 (t) = d 2 1 t 2 + d 2 t, • MB 3 (t) = d 3 1 t 3 + (2d 2 d 1 + d 1 d 2 )t 2 + d 3 t, • MB 4 (t) = d 4 1 t 4 + (3d 2 d 2 1 + 2d 1 d 2 d 1 + d 2 1 d 2 )t 3 + (3d 3 d 1 + 3d 2 2 + d 1 d 3 )t 2 + d 4 t
. We consider the map χ which sends each set partition π to the integer composition [card(π 1 ), . . . , card(π k )] if π = {π 1 , . . . , π k } where min(π i ) < min(π i+1 ) for any 0 < i < k. The linear map Ξ sending Φ π to d χ(π) [START_REF] Temple | Exponential polynomials[END_REF] • • • d χ(π)[k] is a morphism of algebra. Hence, we deduce Proposition 41.

Ξ (B n,k ) = MB n,k . (45) 
Example 42.

Ξ (B 3,2 ) = Ξ Φ {{1},{2,3}} + Φ {{1,3},{2}} + Φ {{1,2},{3}} = d 1 d 2 + 2d 2 d 1 = MB 3,2 .
We recover a result due to Ebrahimi-Fard et al. [START_REF] Ebrahimi-Fard | Noncommutative Bell polynomials, quasideterminants and incidence Hopf algebras[END_REF].

Theorem 43. If

j 1 +• • •+j k = n, the coecient of d j1 • • • d j k in MB n,k is equal to the number of partitions of {1, 2, . . . , n} into parts π 1 , . . . , π k such that card(π ) = j for each 1 ≤ ≤ k and min(π 1 ) < • • • < min(π k ).

Dendriform structure and quasideterminant formula

The algebra ΠQSym is equipped with a Zinbiel structure. The notion of Zinbiel algebra is due to Loday [START_REF] Loday | Cup-product for Leibniz cohomology and dual Leibniz algebras[END_REF]. This is an algebra equipped with two nonassociative products ≺ and satisfying

• (u ≺ v) ≺ w = u ≺ (v ≺ w) + u ≺ (v w), • (u v) ≺ w = u (v ≺ w), • u (v w) = (u ≺ v) w + (u v) w, • u ≺ v = v u. The Zinbiel structure on ΠQSym is dened for any π n and π m by Φ π ≺ Φ π = Φ π[I]∪π [J] (resp. Φ π Φ π Φ π[I]∪π [J]
) where (resp.

) means the sum is over the partitions I ∪ J = {1, . . . , n + m} ( I ∩ J = ∅) such that card(I) = n, card(J) = m, and 1 ∈ A (resp. 1 ∈ B), and Φ[I] is obtained from π by substituting each by i if I = {i 1 , . . . , i n } and i 1 < • • • < i n . See also [START_REF] Novelli | Construction de trigèbres dendriformes[END_REF][START_REF] Novelli | Hopf algebras and dendriform structures arising from parking functions[END_REF][START_REF] Foissy | Bidendriform bialgebras, trees, and free quasi-symmetric functions[END_REF] for other combinatorial Hopf algebras with a dendriform structure.

We notice that one has

n B n,k (Φ {{1}} , Φ {{1,2}} , . . . )t n = i Φ{{1, . . . , i}}t i → ≺ k (46) with u → ≺ k = u → ≺ k -1 ≺ u and u → ≺ 0 = 1.
Denition 44. Let A n = (a ij ) 1≤i≤j≤n be an upper triangular matrix whose entries are in a Zinbiel algebra. We dene the polynomial

P(A n ; t) = t n k=1 P(A k-1 ) ≺ a k,n and P(A 0 ) = 1. (47) 
Example 45. 

By induction, we nd

P(A n ; t) = ta 1n + 1≤j1<j2 <•••<j k t k (• • • (a 1j1 ≺ (a j1+1,j2 ) ≺ (a j2+1,j3 ) ≺ • • • ≺ a j k-1 +1,j k ) ≺ a j k +1,n ).
Example 47. We have P(A 3 ; t) = t 3 (a 11 ≺ a 22 ) ≺ a 33 + t 2 (a 11 ≺ a 23 + a 12 ≺ a 33 ) + ta 13 .

Hence

P(M 3 ; t) = t 3 (Φ {{1}} ≺ Φ {{1}} ) ≺ Φ {{1}} + t 2 (Φ {{1}} ≺ Φ {{1,2}} + Φ {{1,2}} ) ≺ Φ {{1}} )) + tΦ {{1,2,3}} = t 3 Φ {{1},{2},{3}} + t 2 (Φ {{1},{2,3} + Φ {{1,2},{3}} + Φ {{1,3},{2}} ) + tΦ {{1,2,3}} = t 3 B 3,3 + t 2 B 3,2 + tB 3,1 .
Formula (48) has reminiscence of a well known result on quasideterminants.

Proposition 48 (Gelfand et al. [START_REF] Gelfand | Quasideterminants[END_REF]).

a 11 a 12 a 13 • • • a 1n -1 a 22 a 23 • • • a 2n 0 -1 a 33 • • • a 3n • • • 0 • • • 0 -1 a nn = a 1n + 1≤j1<•••<j k <n a 1j1 a j1+1,2 • • • a j k +1,n (50) 
Furthermore, formula (49) is an analogue of the result of Ebrahimi et al..

Theorem 49 (Ebrahimi et al. [START_REF] Ebrahimi-Fard | Noncommutative Bell polynomials, quasideterminants and incidence Hopf algebras[END_REF]).

MB n (1) = n-1 0 d 1 n-1 1 d 2 n-1 2 d 3 • • • n -1 n -1 d n -1 n-2 0 d 1 n-2 1 d 2 • • • n-2 n-2 d n-1 0 -1 n-3 0 d 1 • • • n-3 n-3 d n-3 • • • 0 • • • 0 -1 0 0 d 1 .
The connection between all these results remains to be investigated.

using the convention A -n = 0 for n > 0. This formula is an emanation of the Jacobi-Trudi formula and is derived from the Cauchy kernel (54), remarking that c n (X (a) X (b) ) = nc n (X (a) )c n (X (b) ) and

h n (X (a) X (b) ) = λ n s λ (X (a) )s λ (X (b) ) = λ n det h (a) λi-i+j (X a ) det h (b) λi-i+j (X b ) , where s λ = det h (a)
λi-i+j is a Schur function (see e.g. [START_REF] Grant | Symmetric functions and Hall polynomials[END_REF]).

A.2 Other interpretations

First we focus on the identity ( 9) and we interpret it as the Cauchy function σ t (k X(a) ) where X(a) is the virtual alphabet such that h i-1 ( X(a) ) = ai i! . This means that we consider the morphism φa : Sym -→ C sending h i to ai+1 (i+1)! . We suppose that a 1 = 1 otherwise we use ( 15) and [START_REF] Hivert | Commutative combinatorial Hopf algebras[END_REF]. With these notations we have Proposition 56.

B n,k (a 1 , a 2 , . . . ) = n! k! h n-k (k X(a) ). (58) 
Example 57. If a i = i we have h i ( X(a) ) = 1 i! and so σ t (k X(a) ) = exp(kt). Hence, we recover the classical result

B n,k (1, 2, . . . , m, . . . ) = n k k n-k . From h n (X + Y) = i+j=n h i (X)h j (Y)
we deduce two classical identities:

k 1 + k 2 k 1 B n,k1+k2 (a 1 , a 2 , . . . ) = n i=0 n i B i,k1 (a 1 , a 2 , . . . )B n-i,k2 (a 1 , a 2 , . . . ) (59) 
and

n k B n-k,k a 1 b 1 , . . . , 1 m + 1 m i=1 m + 1 i a i b m+1-i , . . . = n-k i=k n i B i,k (a 1 , a 2 , . . . )B i,k (b 1 , b 2 , . . . ). (60) 
Indeed, formula (59) is obtained by setting X = k 1 X(a) and X = k 2 X(a) . Formula (60) is called the convolution formula for Bell polynomials (see e.g. [START_REF] Mihoubi | Polynômes multivariés de Bell et polynômes de type binomial[END_REF]) and is obtained by setting (63)

Several related identities are compiled in [START_REF] Mihoubi | Polynômes multivariés de Bell et polynômes de type binomial[END_REF].

Example 59. Taking the coecient of t n-k-1 in the left hand side and the right hand side of the equality d dt σ t ((k + 1)X) = (k + 1) d dt σ t (X) σ t (kX), we obtain (n -k)h n-k ((k + 1)X) = (k + 1)

n-k i=1 ih i (X)h n-i-k (X)
and we recover the identity (see e.g. [START_REF] Cvijovi¢ | New identities for the partial Bell polynomials[END_REF]): The sum X+Y and the product XY of alphabets are two examples of coproducts endowing Sym with a structure of Hopf algebra. The sum of alphabets encodes the coproduct ∆ for which the power sums are of type Lie (i.e. ∆(p n ) = p n ⊗1+1⊗p n ∼ p n (X+Y) = p n (X)+p n (Y) by identifying f ⊗ g with f (X)g(Y)) whilst the product of alphabets encodes the coproduct ∆ for which the power sums are group-like (i.e. ∆ (p n ) = p n ⊗p n ∼ p n (XY) = p n (X)p n (Y)).

The algebra of symmetric functions can be endowed with another coproduct that confers a structure of Hopf algebra: this is the Faà di Bruno algebra [START_REF] Doubilet | A Hopf algebra arising from the lattice of partitions of a set[END_REF][START_REF] Sa | Coalgebras and bialgebras in combinatorics[END_REF]. This algebra is rather important since it is related to the Lagrange-Bürmann formula. The Bell polynomials also appear in this context. As a consequence, one can dene a new operation on alphabets corresponding to the composition of Cauchy generating functions. Let X and Y be two alphabets and set f (t) = tσ t (X) and g(t) = tσ t (Y). The composition X • Y is dened by σ t (X • Y) = 1 t f • g(t). The relationship with Bell polynomials can be established by observing that we have 

. ).

The antipode of the Faà di Bruno algebra is also described in terms of alphabets as the operation which associates to each alphabet X the alphabet X -1 satisfying σ t (X•X -1 ) = 1. More explicitly, one has h n (X -1 ) = n! (2n + 1)!(n + 1) B 2n+1,n (1, -2!e 1 (X), 3!e 2 (X), . . . ),

where e n (X) is the elementary symmetric function dened by n e n (X)t n = 1 σ-t(X) .

Example 61. Let ω(t) = tσ t (X). The Lagrange inversion consists in nding an alphabet X such that φ(t) = σ t (X ). According to (65), it suces to set X = -X -1 . Let F (t) = σ t (Y). When stated in terms of alphabets, the Lagrange-Bürmann formula reads

F (ω(t)) = 1 + n≥1 d n-1 du n-1 [σ u (Y)σ u (-nX -1 )]| u=0 t n n! .
In other words one has, h n-k (-nX -1 ) = (k-1)! (n-1)! B n,k (1, 2!h 1 (X), 3!h 3 (X), . . . ). So we recover a result due to Sadek Bouroubi and Moncef Abbas [START_REF] Bouroubi | New identities for Bell's polynomials. New approaches[END_REF]:

B n,k (1, h 1 (2X), . . . , (m -1)!h m-1 (mX), . . . ) = (n -1)! (k -1)! h n-k (nX).

Example 1 .

 1 Consider the sequence whose rst terms are a = (1, 2, 3, . . . ). The colored partitions of size 3 associated to a areCP 3 (a) = {{[{1, 2, 3}, 1]}, {[{1, 2, 3}, 2]}, {[{1, 2, 3}, 3]}, {[{1, 2}, 1], [{3}, 1]}, {[{1, 2}, 2], [{3}, 1]}, {[{1, 3}, 1], [{2}, 1]}, {[{1, 3}, 2], [{2}, 1]}, {[{2, 3}, 1], [{1}, 1]}, {[{2, 3}, 2], [{1}, 1]}, {[{1}, 1], [{2}, 1], [{3}, 1]}}.The colored partitions of size 3 and cardinality 2 are CP 3,2 (a) = {{[{1, 2}, 1], [{3}, 1]}, {[{1, 2}, 2], [{3}, 1]}, {[{1, 3}, 1], [{2}, 1]}, {[{1, 3}, 2], [{2}, 1]}, {[{2, 3}, 1], [{1}, 1]}, {[{2, 3}, 2], [{1}, 1]}}.

  a) : std( Π) = Π and std( Π ) = Π }.

  andS π A (P ) S π A (P ) = I∪J={1,...,n+n }, I∩J=∅ [I,J] S π A (P ) , S π A (P ) = [π 1 ,...,π k+k ] S {1,...,#π1} A (P ) , . . . , S {1,...,#π k } A (P ) , S {1,...,#π 1 } A (P ) , . . . , S {1,...,#π k } A (P ) ,

( 2 )

 2 := WSym * (2) is commutative. The algebra ΠQSym (2) is spanned by a basis (Ψ Π ) Π satisfying Ψ Π Ψ Π = Π C Π Π,Π Ψ Π where C Π Π,Π is the number of ways to write Π = A ∪ B with A ∩ B = ∅, std(A) = Π and std(B) = Π . Let b n be the nth Bell number A n (1, 1, . . . ). Considering a bijection from {1, . . . , b n } to the set of the set partitions of {1, . . . , n} for each n, we obtain, in the same way as in the previous subsection, the following result Proposition 17. • The Hopf algebras CWSym(b 1 , b 2 , b 3 , . . . ) and WSym (2) are isomorphic. • The Hopf algebras CΠQSym(b 1 , b 2 , b 3 , . . . ) and ΠQSym (2) are isomorphic.

  k is the decomposition of σ into cycles and support(c) denotes the support of the cycle c, i.e. the set of the elements which are permuted by the cycle. Example 19. For instance, set ι 1 (1) = 1, ι 3 (231) = 2, and ι 3 (312) = 1.

(

  i) } for each ≤ i ≤ k. For instance, if σ = 312654 = (132)(46)(5) we have w[(132)] = b 1 b 3 b 2 , w[(46)] = b 1 b 2 , w[(5)] = b 1 and w[σ] = b 1 b 3 b 2 b 1 b 1 b 2 .So, we have B n,k (Φ {{1}} [S], . . . , Φ {{1,...,m}} [S], . . . ) = B n,k [S] =

  Consider an alphabet D = {d 1 , d 2 , . . . }. The algebra C D is equipped with the derivation dened by d i ∂ = d i+1 . The noncommutative Munthe-Kaas Bell polynomials are dened by setting t = 1 in MB n (t) = 1.(td 1 + ∂) n . The partial noncommutative Bell polynomial MB n,k is the coecient of t k in MB n (t).

  M n := (Φ {{1,...,j-i+1}} ) 1≤i≤j≤n , we nd Proposition 46.

B

  n,k (Φ {{1}} , Φ {{1,2}} , . . . ) = [t k ]P(M n ; t).

X- 1 B

 1 = X(a) and Y = X(b) in the left hand side and X = k X(a) and Y = k X(b) in the right hand side.Example 58. The partial Bell polynomials are known to be involved in interesting identities on binomial functions. Let us rst recall that a binomial sequence is a family of functions(f n ) n∈N satisfying f 0 (x) = 1 and f n (a + b) = n k=0 n k f k (a)f n-k (b),(61)for all a, b ∈ C and n ∈ N. Setting h n (A) := fn(a) n! and h n (B) := fn(b) n! , with these notationsf n (ka) = n!h n (kA). Hence, B n,k (1, . . . , if i-1 (a), . . . n,k (a 1 , a 2 , . . . ) if n > 0 1 if n = 0, is binomial and weobtain n k1k2 -1 B n,k1 (1, . . . , i i-1 k -1 B i-1,k2 (a 1 , a 2 , . . . ), . . . ) = n-k1 k1k2-1 B n-k1,k1k2 (a 1 , a 2 , . . . ).

B n,k (a 1 , a 2 ,

 12 1)a i B n-i,k (a 1 , a 2 , . . . ). (64) Example 60. Let (a n ) n>0 and (b n ) n>0 be two sequences of numbers such that a 1 = b 1 = 1 and d n = n! λ n-1 deta λ i -i+j+1 (λi+j+1)! det b λ i -i+j+1 (λi+j+1)! with the convention a -n = b -n = 0 if n ≥ 0.The Cauchy kernel and the orthogonality of Schur functions giveB n,k (d 1 , d 2 , . . . ) = n! k! λ n-k (k 1 !k 2 !) (λ) det B λi-i+j+k1,k1 (a 1 , a 2 , . . . ) (λ i -i + j + k 1 )! det B λi-i+j+k1,k1 (b 1 , b 2 , . . . ) (λ i -i + j + k 1 )! ,for any k 1 k 2 = k. Indeed, it suces to use the fact thath n (kX (a) X (b) ) = λ n s λ (k 1 X (a) )s λ (k 2 X (b)).

  h k-1 (X)B n+1,k (1, 2h 1 (Y), 3!h 2 (Y), . . . ) t n . Equivalently, h n (X • Y) = n k=0 (k+1)! (n+1)! h k (X)B n+1;k+1 (1, 2!h 1 (Y), 3!h 2 (Y), . .

  . The dimensions of this algebra are given by the exponential generating function

i b (2) i t i i! = exp(exp(exp(t) -1) -1).

The rst values are 1, 3, 12, 60, 358, 2471, 19302, 167894, 1606137, . . . see sequence A000258 of [30].

  any subset A of {1, 2, . . . , |Π 1 |+|Π 2 |} of cardinality n, one has std(Π 1 ) = Π 1 , std(Π 2 ) = Π 2 and Π 1 ∩Π 2 = ∅, where Π 1 is obtained from Π 1 by replacing each label i by the ith smallest element of A, and Π 2 is obtained from Π 2 by replacing each label i by the ith smallest element of {1, . . . , |Π 1 | + |Π 2 |} \ A. Since there are |Π 1 | + |Π 2 | |Π 1 | ways to construct A, one has

  Both WSym and ΠQSym admit word polynomial realizations in a subspace WSym(A) of the free associative algebra C A over an innite alphabet A. When endowed with the concatenation product, WSym(A) is isomorphic to WSym and when endowed with the shue product, it is isomorphic to ΠQSym. Alternatively to the denitions of partial Bell numbers in ΠQSym (35) and in WSym, we set, for any sequence of polynomials (F i ) i∈N in C A ,

		1(tΦ {{1}} + ∂) 4 = t 4 Φ {{1},{2},{3},{4}} + t 3 (Φ {{1,2},{3},{4}} + Φ {{1,3},{2},{4}}
		+Φ {{1},{2,3},{4}} + Φ {{1,4},{2},{3}} + Φ {{1},{2,4},{3}} + Φ {{1},{2},{3,4}} )+
		t 2 (Φ {{1,3,4},{2}} + Φ {{1,2,3},{4}} + Φ {{1,2,4},{3}} + Φ {{1,2},{3,4}} + Φ {{1,3},{2,4}}
		+Φ {{1,4},{2,3}} + Φ {{1},{2,3,4}} ) + tΦ {{1},{3},{4},{2}} .
	Hence,					
		B 4,2 = Φ {{1,3,4},{2}} + Φ {{1,2,3},{4}} + Φ {{1,2,4},{3}} + Φ {{1,2},{3,4}}
		+Φ {{1,3},{2,4}} + Φ {{1,4},{2,3}} + Φ {{1},{2,3,4}} .
	4.3	Bell polynomials in C A			
							k
		n≥0	B n,k (F 1 , . . . , F m , . . . )t n =	1 k!	i	F i t i	(39)
	and					
		A n (F 1 , . . . , F m , . . . ) =	B n,k (F 1 , . . . , F m , . . . ).	(40)
			k≥1			
	This denition generalizes (35) and (38) in the following sense:
	Proposition 31. We have			

B n,k (Ψ {{1}} (A), . . . , Ψ {{1,...,m}} (A), . . . ) = B n,k (Ψ {{1}} (A), . . . , Ψ {{1,...,m}} (A), . . . ) and B n,k (Φ {{1}} (A), . . . , Φ {{1,...,m}} (A), . . . ) = B n,k (A).

  P(A 4 , t) = tP(A 3 ) ≺ a 44 + tP(A 2 ) ≺ a 34 + tP(A 1 ) ≺ a 24 + tP(A 0 ) ≺ a 14 = t 4 ((a 11 ≺ a 22 ) ≺ a 33 ) ≺ a 44 + t 3 (a 11 ≺ a 23 ) ≺ a 44 +t 3 (a 12 ≺ a 33 ) ≺ a 44 + t 3 (a 11 ≺ a 22 ) ≺ a 34 + t 2 a 12 ≺ a 34 + at 2 11 ≺ a 24 +ta 14 .
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Proof. The two identities follow from

Equality (39) allows us to show more general properties. For instance, let A and A be two disjoint subalphabets of A and set S A n (A ) = S {{1}} (A ) S {{1,...,n-1}} (A ).

Remarking that n B n,k (S A 1 (A ), . . . , S A m (A ), . . . )t n = t k S {{1},...,{k}} (A ) ( n≥0 S {{1,...,n}} (A )t n ) k = t k S {{1},...,{k}} (A ) σ W t (kA ),

we obtain a word analogue of the formula allowing one to write a Bell polynomial as a symmetric function (see eq. ( 58) in Appendix A):

Proposition 32.

B n,k (S A 1 (A ), . . . , S A m (A ), . . . ) = S {{1},...,{k}} (A ) S {{1,...,n-k}} (kA ).

For simplicity, let us write B A n,k (A ) := B n,k (S A 1 (A ), . . . , S A m (A ), . . . ).

we deduce an analogue of the binomiality of the partial Bell polynomials (see eq. (59) in Appendix A):

Corollary 33. Let k = k 1 + k 2 be three nonnegative integers. We have

Example 34. Consider a family of functions

From (39), we obtain

Hence, iterating (42), we deduce

A ) and f 0 (k) = 1. By (41), the family (f n ) n∈N satises (42). Hence we obtain an analogue of composition formula (see eq. (63) in Appendix A):

A ).

Suppose now A = A 1 + A 2 . By S {{1,...,n}} (A ) = n i=0 S {{1,...,i}} (A 1 ) S {{1,...,n-i}} (A 2 ), Proposition [START_REF] Wolf | Symmetric functions of non-commutative elements[END_REF] allows us to write a word analogue of the convolution formula for Bell polynomials (see formula (60) in Appendix A):

Corollary 35.

Let k 1 and k 2 be two positive integers. We have

Hence, Proposition 36.

4.4 Specialization again

In [START_REF] Bultel | Word symmetric functions and the Redeld-Pólya theorem[END_REF] we have shown that one can construct a double algebra which is homomorphic to (WSym(A), ., ). This is a general construction which is an attempt to dene properly the concept of virtual alphabet for WSym. In our context the construction is simpler, let us briey recall it.

Let F = (F π (A)) π be a basis of WSym(A). We will say that F is shue-compatible if

Hence, one has

Example 37. The bases (S π (A)) π , (Φ π (A)) π and (Ψ π (A)) π are shue-compatible but not the basis (M π (A)) π .

Straightforwardly, one has:

Claim 38. Let (F π (A)) π be a shue-compatible basis of WSym(A). Let B be another alphabet and let P = (P k ) k>0 be a family of noncommutative polynomials of C B such that deg P k = k. Then, the space spanned by the polynomials

is stable under concatenation and shue product in C B . So it is a double algebra which is homomorphic to (WSym(A), ., ). We will call WSym[A (P ) F ] this double algebra and

Example 39. We dene a specialization by setting

where the letters b i belong to an alphabet B. Let σ ∈ S n be a permutation and

i ). Let c (i) ∈ S i be the permutation which is the standardized of the sequence n

A Bell polynomials and coproducts in Sym

In fact, most of the identities on Bell polynomials can be obtained by manipulating generating functions and are closely related to some other identities occurring in literature. Typically, the relation between the complete Bell polynomials A n (a 1 , a 2 , . . . ) and the variables a 1 , a 2 , . . . is very closely related to the Newton Formula which links the generating functions of complete symmetric functions h n (Cauchy series) to those of the power sums p n . The symmetric functions form a commutative algebra Sym freely generated by the complete functions h n or the power sum functions p n . So, specializing the variable a n to some numbers is equivalent to specializing the power sum functions p n . More soundly, the algebra Sym can be endowed with coproducts conferring to it a structure of Hopf algebra. For instance, the coproduct for which the power sums are primitive turns Sym into a self-dual Hopf algebra. The coproduct can be translated in terms of generating functions by a product of two Cauchy series. This kind of manipulations appears also in the context of Bell polynomials, for instance when computing the complete Bell polynomials of the sum of two sequences of variables a 1 + b 1 , a 2 + b 2 , . . . . Another coproduct turns Sym into a non-cocommutative Hopf algebra called the Faà di Bruno algebra which is related to the Lagrange inversion. Finally, the coproduct such that the power sums are group-like can be related also to a few other formulae on Bell polynomials. The aim of this section is to investigate these connexions and in particular to restate some known results in terms of symmetric functions and virtual alphabets. We also give a few new results that are dicult to prove without the help of symmetric functions.

A.1

Bell polynomials as symmetric functions

First, let us recall some operations on alphabets. Given two alphabets X and Y, we also dene (see e.g. [START_REF] Lascoux | Symmetric Functions and Combinatorial Operators on Polynomials[END_REF]) the alphabet X + Y by:

and the alphabet αX (resp XY), for α ∈ C by:

In terms of Cauchy functions, these transforms imply

and

In fact σ t (XY) encodes the kernel of the scalar product dened by p λ , c µ = δ λ,µ with c λ = p λ z λ . Notice that c n = pn n and

From ( 7) and ( 19), we obtain Proposition 50.

Conversely, Equality (55) implies that the morphism φ a sending each c i to ai i! is well dened for any sequence of numbers a = (a i ) i∈N\{0} and φ a (h n ) = 1 n! A n (a 1 , a 2 , . . . ). Let us dene also h 19) and (52) we have

and so, everything works as if we use a special (virtual) alphabet X (a) satisfying c n (X (a) ) = n!a n . More precisely:

Proposition 51.

Example 52. Let 1 be the virtual alphabet dened by c n (1) = 1 n for each n ∈ N. In this case the Newton Formula gives h n (1) = 1. Hence A n (0!, 1!, 2!, . . . , (m -1)!, . . . ) = n! and Example 53. A more complicated example is treated in [START_REF] Bouroubi | New identities for Bell's polynomials. New approaches[END_REF][START_REF] Khelifa | New results for the Adomian method[END_REF] where a i = i i-1 . In this case, the specialization gives σ t (αX (a) ) = exp{-αW (-t)} where W

is the Lambert W function satisfying W (t) exp{W (t)} = t (see e.g. [START_REF] Corless | On the Lambert W function[END_REF]). Hence, σ t (αX (a) ) = W (-t) -t α . But the expansion of the series W (t) t α is known to be:

Hence, we obtain B n,k (1, 2, 3 2 , . . . , m m-1 , . . . ) = n-1 k-1 n n-k . Note that the expansion of W (t) and (57) are usually obtained by the use of the Lagrange inversion.

Example 54. With these notations we have B n,k (a 1 + b 1 , . . .

n (X (a) + X (b) ), and classical properties of Bell polynomials can be deduced from symmetric functions through this formalism. For instance, the equalities c n (X (a) + X (b) ) = c n (X (a) ) + c n (X (b) ) and h n (X (a) + X (b) ) = i+j=n h i (X (a) )h j (X (b) ) give