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Abstract
Partial multivariate Bell polynomials have been defined by E.T. Bell in 1934. These polynomials

have numerous applications in Combinatorics, Analysis, Algebra, Probabilities etc. Many of the
formulæ on Bell polynomials involve combinatorial objects (set partitions, set partitions into lists,
permutations etc). So it seems natural to investigate analogous formulæ in some combinatorial
Hopf algebras with bases indexed with these objects. In this paper we investigate the connexions
between Bell polynomials and several combinatorial Hopf algebras: the Hopf algebra of symmetric
functions, the Faà di Bruno algebra, the Hopf algebra of word symmetric functions etc. We show
that Bell polynomials can be defined in all these algebras and we give analogues of classical results.
To this aim, we construct and study a family of combinatorial Hopf algebras whose bases are
indexed by colored set partitions.
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1 Introduction
Partial multivariate Bell polynomials (Bell polynomials for short) have been defined by E.T. Bell in
[3] in 1934. But their name is due to Riordan [23] which studied the Faà di Bruno formula [10, 11]
allowing one to write the nth derivative of a composition f ◦ g in terms of the derivatives of f and
g [22]. The applications of Bell polynomials in Combinatorics, Analysis, Algebra, Probabilities etc.
are so numerous that it should be very long to detail them in the paper. Let us give only a few
seminal examples.

• The main applications to Probabilities follow from the fact that the nth moment of a proba-
bility distribution is a complete Bell polynomial of the cumulants.

• Partial Bell polynomials are linked to the Lagrange inversion. This follows from the Faà di
Bruno formula.

• Many combinatorial formulæ on Bell polynomials involve classical combinatorial numbers like
Stirling numbers, Lah numbers etc.

The Faà di Bruno formula and many combinatorial identities can be found in [6]. The PhD
thesis of M. Mihoubi [20] contains a rather complete survey of the applications of these polynomials
together with numerous formulæ.

Some of the simplest formulæ are related to the enumeration of combinatorial objects (set par-
titions, set partitions into lists, permutations etc.). So it seems natural to investigate analogous
formulæ in some combinatorial Hopf algebras with bases indexed by these objects. Combinatorial
Hopf algebras are graded bigebras with bases indexed by combinatorial objects such that the prod-
uct and the coproduct have some compatibilities. The graduation implies that the Hopf structure
is equivalent to the fact that the coproduct is a morphism for the product.

In fact, most of the identities on Bell polynomials can be obtained by manipulating generating
functions and are closely related to some other identities occurring in literature. Typically, the
relation between the complete Bell polynomials An(a1, a2, . . . ) and the variables a1, a2, . . . is very
closely relatred to the Newton Formula which links the generating functions of complete symmetric
functions hn (Cauchy series) to those of the power sums pn. The symmetric functions form a
commutative algebra Sym freely generated by the complete functions hn or the power sum functions
pn. So, specializing the variable an to some numbers is equivalent to specializing the power sum
functions pn. More soundly, the algebra Sym can be endowed with coproducts conferring to it
a structure of Hopf algebra. For instance, the coproduct for which the power sums are primitive
turns Sym into a self-dual Hopf algebra. The coproduct can be translated in terms of generating
functions by a product of two Cauchy series. This kind of manipulations appears also in the context
of Bell polynomials, for instance when computing the complete Bell polynomials of the sum of two
sequences of variables a1 +b1, a2 +b2, . . . . Another coproduct turns Sym into a non-cocommutative
Hopf algebra called the Faà di Bruno algebra which is related to the Lagrange inversion. Finally,
the coproduct such that the power sums are group like can be related also to a few other formulae
on Bell polynomials. The aim of Section 2 is to investigate these connexions.

Section 3 is devoted to the study of the Hopf algebras of colored set partitions. After having
introduced this family of algebras, we give some special cases which can be found in the literature.
The main application shows how to factorize the specialization Sym −→ C through this algebra.
This explains that we can recover some identities on Bell polynomials when the variables are
specialized to combinatorial numbers from analogous identities in some combinatorial Hopf algebras.
We show that the algebra WSym of word symmetric functions has an important role for this
construction. Finally, in Section 4, we give a few analogues of complete and partial Bell polynomials
in WSym, ΠQSym = WSym∗ and C〈A〉 and investigate their main properties.
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2 Bell polynomials and symmetric functions
The aim of this section is to restate some known results in terms of symmetric functions and virtual
alphabets. We give also a few new results that are difficult to prove without the help of symmetric
functions.

2.1 Definitions and basic properties
The (complete) Bell polynomials [6, p133] are usually defined on an infinite set of commuting
variables {a1, a2, . . .} by the following generating function:∑

n>0

An(a1, . . . , ap, . . . )
tn

n!
= exp(

∑
m>1

am
tm

m!
) (1)

and the partial Bell polynomials are defined by∑
n>0

Bn,k(a1, . . . , ap, . . . )
tn

n!
=

1

k!
(
∑
m>1

am
tm

m!
)k. (2)

So, one has

An(a1, a2, . . . ) =

n∑
k=1

Bn,k(a1, a2, . . . ),∀n > 1 and A0(a1, a2, . . . ) = 1. (3)

Let Sn,k denote the Stirling number of the second kind which counts the number of ways to
partition a set of n objects into k nonempty subsets. The following identity holds

Bn,k(1, 1, . . . ) = Sn,k. (4)

Note also that An(x, x, . . . ) =
∑n
k=0 Sn,kx

k is the classical univariate Bell polynomial denoted by
φn(x) in [3]. Several other identities involve combinatorial numbers. For instance, one has

Bn,k(1!, 2!, 3!, . . . ) =

(
n− 1

k − 1

)
n!

k!
, Unsigned Lah numbers A105278 in [24], (5)

Bn,k(1, 2, 3, . . . ) =

(
n

k

)
kn−k, Idempotent numbers A059297 in [24], (6)

Bn,k(0!, 1!, 2!, . . . ) = |sn,k|, Stirling numbers of the first kind A048994 in [24]. (7)

We can also find many other examples in [3, 6, 19, 27, 21].

Remark 2.1. Without loss of generality, when needed, we will suppose a1 = 1 in the remainder
of the paper. Indeed, if a1 6= 0, then the generating function gives

Bn,k(a1, . . . , ap, . . . ) = ak1Bn,k

(
1,
a2

a1
, · · · , ap

a1

)
(8)

and when a1 = 0,

Bn,k(0, a2, . . . , ap, . . . ) =

{
0 if n < k
n!

(n−k)!Bn,k(a2, . . . , ap, . . . ) if n ≥ k. (9)
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2.2 Bell polynomials as symmetric functions
The algebra of symmetric functions [18, 17] is isomorphic to its polynomial realization Sym(X)
on an infinite set X = {x1, x2, . . . } of commuting variables, so the algebra Sym(X) is defined as
the set of polynomials invariant under permutation of the variables. As an algebra, Sym(X) is
freely generated by the power sum symmetric functions pn(X), defined by pn(X) =

∑
i>1 x

n
i or the

complete symmetric functions hn, where hn is the sum of all the monomials of total degree n in
the variables x1, x2, . . . . The generating function for the hn, called Cauchy formula, is

σt(X) =
∑
n>0

hn(X)tn =
∏
i>1

(1− xit)−1. (10)

The relationship between the two families (pn)n∈N and (hn)n∈N is described in terms of generating
series by the Newton formula:

σt(X) = exp{
∑
n>1

pn(X)
tn

n
}. (11)

Notice that Sym is the free commutative algebra generated by p1, p2 . . . i.e. Sym = C[p1, p2, . . . ]
and Sym(X) = C[p1(X), p2(X), . . . ] when X is an infinite alphabet without relations on the variables.
As a consequence of the Newton Formula (11), it is also the free commutative algebra generated
by h1, h2, . . . . The freeness of the algebra provides a mechanism of specialization: that is, for any
sequence of commutative scalars u = (un)n∈N, there is a morphism of algebra φu sending each
pn to un (resp. sending hn to a certain vn which can be deduced from u). These morphisms are
manipulated as if there exists an underlying alphabet (so called virtual alphabet) Xu such that
pn(Xu) = un (resp. hn(Xu) = vn). The interest of such a vision is that one defines operations on
sequences and symmetric functions by manipulating alphabets.

The bases of Sym are indexed by the partitions λ ` n of all the integers n. A partition λ of
n is a finite noncreasing sequence of positive integers (λ1 ≥ λ2 ≥ . . .) such that

∑
i λi = n. The

multiplicity mj(λ) of j in λ ` n is the number of parts of λ equal to j, the length `(λ) of λ is its
number of parts, and n is the weight |λ| of λ. We set also zλ =

∏
imi(λ)!imi(λ). Let pλ := pλ1 · · · pλk

for any partition λ = [λ1, . . . , λk].
Given two alphabets X and Y, we also define (see e.g. [17]) the alphabet X + Y by:

pn(X + Y) = pn(X) + pn(Y) (12)

and the alphabet αX (resp XY), for α ∈ C by:

pn(αX) = αpn(X)( resp pn(XY) = pn(X)pn(Y)). (13)

In terms of Cauchy functions, these transforms imply

σt(X + Y) = σt(X)σt(Y) (14)

and
σt(XY) =

∑
λ

1

zλ
pλ(X)pλ(Y)t|λ|. (15)

In fact the σt(XY) encodes the kernel of the scalar product defined by 〈pλ, cµ〉 = δλ,µ with
cλ = pλ

zλ
. Notice that cn = pn

n and
Sym = C[c1, c2, . . . ]. (16)

From (1) and (11), we obtain

Proposition 2.2. hn = 1
n!An(1!c1, 2!c2, . . . ).
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Conversely, Equality (16) implies that the morphism φa sending each ci to ai
i! is well defined

for any sequence of numbers a = (ai)i∈N\{0} and φa(hn) = 1
n!An(a1, a2, . . . ). Let us define also

h
(k)
n (X) = [αk]hn(αX). From (11) and (13) we have

h(k)
n =

∑
λ=[λ1,...,λk]`n

cλ = [tn]
1

k!

∑
i≥1

cit
i

k

and so, all works as if we use a special (virtual) alphabet X(a) satisfying cn(X(a)) = n!an. More
precisely:

Proposition 2.3.

φa(h(k)
n ) = h(k)

n (X(a)) =
1

n!
Bn,k(a1, . . . , ak, . . . ). (17)

Example 2.4. Let 1 be the virtual alphabet defined by cn(1) = 1
n for each n ∈ N. In this case the

Newton Formula gives hn(1) = 1. HenceAn(0!, 1!, 2!, . . . , (m−1)!, . . . ) = n! andBn,k(0!, 1!, 2!, . . . , (m−
1)!, . . . ) = n![αk][tn]

(
1

1−t

)α
= sn,k , the Stirling number of the first kind.

Example 2.5. A more complicated example is treated in [1, 16] where ai = ii−1. In this case, the
specialization gives σt(αX(a)) = exp{−αW (−t)} where W (t) =

∑∞
n=1(−n)n−1 tn

n! is the Lambert

W function satisfying W (t) exp{W (t)} = t (see e.g. [5]). Hence, σt(αX(a)) =
(
W (−t)
−t

)α
. But the

expansion of the series
(
W (t)
t

)α
is known to be:(

W (t)

t

)α
= 1 +

∞∑
n=1

1

n!
α(α+ n)n−1(−t)n. (18)

Hence, we obtain Bn,k(1, 2, 32, . . . ,mm−1, . . . ) =
(
n−1
k−1

)
nn−k. Note that the expansion of W (t) and

(18) are usually obtained by the use of the Lagrange inversion.

Example 2.6. With these notations we have Bn,k(a1 + b1, . . . ) = 1
n!h

(k)
n (X(a) +X(b)), and classical

properties of Bell polynomials can be deduced from symmetric functions through this formal-
ism. For instance, the equalities cn(X(a) + X(b)) = cn(X(a)) + cn(X(b)) and hn(X(a) + X(b)) =∑
i+j=n hi(X(a))hj(X(b)) give

An(a1 + b1, . . . ) =
∑
i+j=n

(
n

i

)
Ai(a1, a2, . . . )Aj(b1, b2, . . . )

and
Bn,k(a1 + b1, . . . ) =

∑
r+s=k

∑
i+j=n

(
n

i

)
Bi,r(a1, a2, . . . )Bj,s(b1, b2, . . . ).

Example 2.7. Another example is given by

An(1a1b1, 2a2b2, . . . ,mambm, . . . ) = n!
∑
λ`n

det

∣∣∣∣Aλi−i+j(a1, a2, . . . )

(λi − i+ j)!

∣∣∣∣
×det

∣∣∣∣Aλi−i+j(b1, b2, . . . )(λi − i+ j)!

∣∣∣∣ ,
using the convention A−n = 0 for n > 0. This formula is an emanation of the Jacobi-Trudi formula
and is derived from the Cauchy kernel (15), remarking that cn(X(a)X(b)) = ncn(X(a))cn(X(b)) and

hn(X(a)X(b)) =
∑
λ`n

sλ(X(a))sλ(X(b)) =
∑
λ`n

det
∣∣∣h(a)
λi−i+j(X

a)
∣∣∣det

∣∣∣h(b)
λi−i+j(X

b)
∣∣∣ ,
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where sλ = det
∣∣∣h(a)
λi−i+j

∣∣∣ is a Schur function (see e.g.[18]).

2.3 Other interpretations
First we focus on the identity (2) and we interpret it as the Cauchy function σt(kX̂(a)) where X̂(a)

is the virtual alphabet such that hi−1(X̂(a)) = ai
i! . This means that we consider the morphism

φ̂a : Sym −→ C sending hi to
ai+1

(i+1)! . We suppose that a1 = 1 otherwise we use (8) and (9). With
these notations we have

Proposition 2.8.

Bn,k(a1, a2, . . . ) =
n!

k!
hn−k(kX̂(a)). (19)

Example 2.9. If ai = i we have hi(X̂(a)) = 1
i! and so σt(kX̂(a)) = exp(kt). Hence, we recover the

classical result
Bn,k(1, 2, . . . ,m, . . . ) =

(
n

k

)
kn−k.

From hn(X + Y) =
∑
i+j=n hi(X)hj(Y) we deduce two classical identities:(

k1 + k2

k1

)
Bn,k1+k2(a1, a2, . . . ) =

n∑
i=0

(
n

i

)
Bi,k1(a1, a2, . . . )Bn−i,k2(a1, a2, . . . ) (20)

and (
n

k

)
Bn−k,k

(
a1b1, . . . ,

1

m+ 1

m∑
i=1

(
m+ 1

i

)
aibm+1−i, . . .

)
=

n−k∑
i=k

(
n

i

)
Bi,k(a1, a2, . . . )Bi,k(b1, b2, . . . ).

(21)

Indeed, formula (20) is obtained by setting X = k1X̂(a) and X = k2X̂(a). Formula (21) is called
convolution formula for Bell polynomials (see e.g. [20]) and is obtained by setting X = X̂(a) and
Y = X̂(b) in the left hand side and X = kX̂(a) and Y = kX̂(b) in the right hand side.

Example 2.10. The partial Bell polynomials are known to be involved in interesting identities on
binomial functions. Let us first recall that a binomial sequence is a family of functions (fn)n∈N
satisfying f0(x) = 1 and

fn(a+ b) =

n∑
k=0

(
n

k

)
fk(a)fn−k(b), (22)

for all a, b ∈ C and n ∈ N. Setting hn(A) := fn(a)
n! and hn(B) := fn(b)

n! , with these notations
fn(ka) = n!hn(kA). Hence,

Bn,k(1, . . . , ifi−1(a), . . . ) =
n!

k!
hn−k(kA) =

(
n

k

)
fn−k(ka). (23)

Notice that from (20), fn(k) =

{ (
n
k

)−1
Bn,k(a1, a2, . . . ) if n > 0

1 if n = 0
, is binomial and we obtain

(
n

k1k2

)−1
Bn,k1(1, . . . , i

(
i−1
k

)−1
Bi−1,k2(a1, a2, . . . ), . . . ) =(

n−k1

k1k2

)−1
Bn−k1,k1k2

(a1, a2, . . . ).
(24)

Several related identities are compiled in [20].
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Example 2.11. Taking the coefficient of tn−k−1 in the left hand side and the right hand side of
the equality d

dtσt((k + 1)X) = (k + 1)
(
d
dtσt(X)

)
σt(kX), we obtain

(n− k)hn−k((k + 1)X) = (k + 1)

n−k∑
i=1

ihi(X)hn−i−k(X)

and we recover the identity (see e.g. [7]):

Bn,k(a1, a2, . . . ) =
1

n− k

n−k∑
i=1

(
n

i

)[
(k + 1)− n+ 1

i+ 1

]
(i+ 1)aiBn−i,k(a1, a2, . . . ). (25)

Example 2.12. Let (an)n>0 and (bn)n>0 be two sequences of numbers such that a1 = b1 = 1 and
dn = n!

∑
λ`n−1 det

∣∣∣aλi−i+j+1

(λi+j+1)!

∣∣∣det
∣∣∣ bλi−i+j+1

(λi+j+1)!

∣∣∣ with the convention a−n = b−n = 0 if n ≥ 0. The
Cauchy kernel and the orthogonality of Schur functions give

Bn,k(d1, d2, . . . ) = n!
k!

∑
λ`n−k

(k1!k2!)`(λ) det

∣∣∣∣Bλi−i+j+k1,k1
(a1, a2, . . . )

(λi − i+ j + k1)!

∣∣∣∣
det

∣∣∣∣Bλi−i+j+k1,k1(b1, b2, . . . )

(λi − i+ j + k1)!

∣∣∣∣ ,
for any k1k2 = k. Indeed, it suffices to use the fact that

hn(kX(a)X(b)) =
∑
λ`n

sλ(k1X(a))sλ(k2X(b)).

The sum X + Y and the product XY of alphabets are two examples of coproducts endowing
Sym with a structure of Hopf algebra. The sum of alphabets encodes the coproduct ∆ for which
the power sums are of type Lie (i.e. ∆(pn) = pn ⊗ 1 + 1 ⊗ pn ∼ pn(X + Y) = pn(X) + pn(Y) by
identifying f ⊗ g with f(X)g(Y)) whilst the product of alphabets encodes the coproduct ∆′ for
which the power sums are group like (i.e. ∆′(pn) = pn ⊗ pn ∼ pn(XY) = pn(X)pn(Y)).

The algebra of symmetric functions can be endowed with another coproduct that confers a
structure of Hopf algebra: this is the Faà di Bruno algebra [8, 15]. This algebra is rather important
since it is related to the Lagrange-Bürmann formula. The Bell polynomials appear also in this
context. As a consequence, one can define a new operation on alphabets corresponding to the
composition of Cauchy generating functions. Let X and Y be two alphabets and set f(t) = tσt(X)
and g(t) = tσt(Y). The composition X ◦ Y is defined by σt(X ◦ Y) = 1

t f ◦ g(t). The relationship
with Bell polynomials can be established by observing that we have

1

t
f ◦ g =

∑
n≥0

(
n+1∑
k=1

k!

(n+ 1)!
hk−1(X)Bn+1,k(1, 2h1(Y), 3!h2(Y), . . . )

)
tn.

Equivalently, hn(X ◦ Y) =
∑n
k=0

(k+1)!
(n+1)!hk(X)Bn+1;k+1(1, 2!h1(Y), 3!h2(Y), . . . ).

The antipode of the Faà di Bruno algebra is also described in terms of alphabets as the operation
which associates to each alphabet X the alphabet X〈−1〉 satisfying σt(X◦X〈−1〉) = 1. More explicitly
one has

hn(X〈−1〉) =
n!

(2n+ 1)!(n+ 1)
B2n+1,n(1,−2!e1(X), 3!e2(X), . . . ), (26)

where en(X) is the elementary symmetric function defined by
∑
n en(X)tn = 1

σ−t(X) .
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Example 2.13. Let ω(t) = tσt(X). The Lagrange inversion consists in finding an alphabet X′ such
that φ(t) = σt(X′). According to (26), it suffices to set X′ = −X〈−1〉.
Let F (t) = σt(Y). When stated in terms of alphabets, the Lagrange-Bürmann formula reads

F (ω(t)) = 1 +
∑
n≥1

dn−1

dun−1
[σ′u(Y)σu(−nX〈−1〉)]|u=0

tn

n!
.

In other words one has, hn−k(−nX〈−1〉) = (k−1)!
(n−1)!Bn,k(1, 2!h1(X), 3!h3(X), . . . ). So we recover a

result due to Sadek Bouroubi and Moncef Abbas [1]:

Bn,k(1, h1(2X), . . . , (m− 1)!hm−1(mX), . . . ) =
(n− 1)!

(k − 1)!
hn−k(nX).

3 Hopf algebras of colored set partitions

3.1 Colored partitions and Bell polynomials
Let a = (am)m≥1 be a sequence of nonnegative integers. A colored set partition associated to the
sequence a is a set of couples

Π = {[π1, i1], [π2, i2], . . . , [πk, ik]}

such that π = {π1, . . . , πk} is a partition of {1, . . . , n} for some n ∈ N and 1 ≤ i` ≤ a#π` for each
1 ≤ ` ≤ k. The integer n is the size of Π. We will write |Π| = n, Π � n and ΠV π. We will denote
by CPn(a) the set of colored partitions of size n associated to the sequence a. Notice that these
sets are finite. We will set also CP(a) =

⋃
n CPn(a). We endow CP with the additional statistic

#Π and set CPn,k(a) = {Π ∈ CPn(a) : #Π = k}.

Example 3.1. Consider the sequence whose first terms are a = (1, 2, 3, . . . ). The colored partitions
of size 3 associated to a are

CP3(a) = {{[{1, 2, 3}, 1]}, {[{1, 2, 3}, 2]}, {[{1, 2, 3}, 3]}, {[{1, 2}, 1], [{3}, 1]},
{[{1, 2}, 2], [{3}, 1]}, {[{1, 3}, 1], [{2}, 1]}, {[{1, 3}, 2], [{2}, 1]},
{[{2, 3}, 1], [{1}, 1]}, {[{2, 3}, 2], [{1}, 1]}, {[{1}, 1], [{2}, 1], [{3}, 1]}}.

The colored partitions of size 3 and cardinality 2 are

CP3,2(a) = {{[{1, 2}, 1], [{3}, 1]}, {[{1, 2}, 2], [{3}, 1]}, {[{1, 3}, 1], [{2}, 1]},
{[{1, 3}, 2], [{2}, 1]}, {[{2, 3}, 1], [{1}, 1]}, {[{2, 3}, 2], [{1}, 1]}}.

It is well known that the number of colored set partitions of size n for a given sequence a = (an)n
is equal to the evaluation of the complete Bell polynomial An(a1, . . . , am, . . . ) and that the number
of colored set partitions of size n and cardinality k is given by the evaluation of the partial Bell
polynomial Bn(a1, a2, . . . , am, . . . ). That is

#CPn(a) = An(a1, a2, . . . ) and #CPn,k(a) = Bn,k(a1, a2, . . . ).

Now, let Π = {[π1, i1], . . . [πk, ik]} be a set such that the πj are finite sets of nonnegative
integers such that no integer belongs to more than one πj , and 1 ≤ ij ≤ a#(πj) for each j. Then,
the standardized std(Π) of Π is well defined as the unique colored set partition obtained by replacing
the ith smallest integer in the πj by i.

Example 3.2. For instance:

std({[{1, 4, 7}, 1], [{3, 8}, 1], [{5}, 3], [{10}, 1]}) =
{[{1, 3, 5}, 1], [{2, 6}, 1], [{4}, 3], [{7}, 1]}

8



We define two binary operations ] : CPn,k(a)⊗ CPn′,k′(a) −→ CPn+n′,k+k′(a),

Π ]Π′ = Π ∪Π′[n],

where Π′[n] means that we add n to each integer occurring in the sets of Π′ and
d: CPn,k ⊗ CPn′,k′ −→ P(CPn+n′,k+k′) by

Π dΠ′ = {Π̂ ∪ Π̂′ ∈ CPn+n′,k+k′(a) : std(Π̂) = Π and std(Π̂′) = Π′}.

Example 3.3. We have

{[{1, 3}, 5], [{2}, 3]} ] {[{1}, 2], [{2, 3}, 4]} = {[{1, 3}, 5], [{2}, 3], [{4}, 2], [{5, 6}, 4]},

and

{[{1}, 5], [{2}, 3]} d {[{1, 2}, 2]} = {{[{1}, 5], [{2}, 3], [{3, 4}, 2]},
{[{1}, 5], [{3}, 3], [{2, 4}, 2]}, {[{1}, 5], [{4}, 3], [{2, 3}, 2]},
{[{2}, 5], [{3}, 3], [{1, 4}, 2]}, {[{2}, 5], [{4}, 3], [{1, 3}, 2]}, {[{3}, 5], [{4}, 3], [{1, 2}, 2]}}.

The operator d provides an algorithm which computes all the colored partitions

CPn,k(a) =
⋃

i1+···+ik=n

ai1⋃
j1=1

· · ·
aik⋃
jk=1

{[{1, . . . , i1}, j1]} d · · · d {[{1, . . . , ik}, jk]}. (27)

Nevertheless each colored partition is generated more than once using this process. For a triple
(Π,Π′,Π′′) we will denote by αΠ

Π′,Π′′ the number of pairs of disjoint subsets (Π̂′, Π̂′′) of Π such that
Π̂′ ∪ Π̂′′ = Π, std(Π̂′) = Π′ and std(Π̂′′) = Π′′.

Remark 3.4. Notice that for a = 1 = (1, 1, . . . ) ( i.e. the ordinary set partitions), there is an
alternative simple way to construct efficiently the set CPn(1). It suffices to use the induction

CP0(1) = {∅},
CPn+1(1) = {π ∪ {{n+ 1}} : π ∈ CPn(1)} ∪ {(π \ {e})

∪{e ∪ {n+ 1}} : π ∈ CPn(1), e ∈ π}}.
(28)

Applying this recurrence the set partitions of CPn+1(1) are each obtained exactly once from the set
partitions of CPn(1).

3.2 The Hopf algebras CWSym(a) and CΠQSym(a)

Let CWSym(a) (CWSym for short when there is no ambiguity) be the algebra defined by its
basis (ΦΠ)Π∈CP(a) indexed by colored set partitions associated to the sequence a = (am)m≥1 and
the product

ΦΠΦΠ′ = ΦΠ]Π′ . (29)

Example 3.5. One has

Φ{[{1,3,5},3],[{2,4},1]}Φ{[{1,2,5},4],[{3},1],[{4},2]} = Φ{[{1,3,5},3],[{2,4},1],[{6,7,10},4],[{8},1],[{9},2]}.

Let CWSymn be the subspace generated by the elements ΦΠ such that Π � n.
For each n we consider an infinite alphabet An of noncommuting variables and we suppose

An ∩ Am = ∅ when n 6= m. For each colored set partition Π = {[π1, i1], [π2, i2], . . . , [πk, ik]}, we
construct a polynomial ΦΠ(A1,A2, . . . ) ∈ C 〈

⋃
nAn〉

ΦΠ(A1,A2, . . . ) :=
∑

w=a1...an

w, (30)

where the sum is over the words w = a1 . . . an satisfying
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• For each 1 ≤ ` ≤ k, aj ∈ Ai` if and only if j ∈ π`.
• If j1, j2 ∈ π` then aj1 = aj2 .

Example 3.6.
Φ{[{1,3},3],[{2},1],[{4},3]}(A1,A2, . . . ) =

∑
a1,a2∈A3
b∈A1

a1ba1a2.

Proposition 3.7. The family Φ(a) := (ΦΠ(A1,A2, . . . ))Π∈CP(a) spans a subalgebra of C 〈
⋃
nAn〉

which is isomorphic to CWSym(a).

Proof. First remark that span(Φ(a)) is stable under concatenation. Indeed,

ΦΠ(A1,A2, . . . )ΦΠ′(A1,A2, . . . ) = ΦΠ]Π′(A1,A2, . . . ).

Furthermore, this shows that span(Φ(a)) is homomorphic to CWSym(a) and that an explicit
(onto) morphism is given by ΦΠ −→ ΦΠ(A1,A2, . . . ). Observing that the family Φ(a) is linearly
independent, the fact that the algebra CWSym(a) is graded in finite dimension implies the result.

We turn CWSym into a Hopf algebra by considering the coproduct

∆(ΦΠ) =
∑

Π̂1∪Π̂2=Π

Π̂1∩Π̂2=∅

Φstd(Π̂1) ⊗ Φstd(Π̂2) =
∑

Π1,Π2

αΠ
Π1,Π2

ΦΠ1
⊗ ΦΠ2

. (31)

Indeed, CWSym splits as a direct sum of finite dimension spaces

CWSym =
⊕
n

CWSymn.

This defines a natural graduation on CWSym. Hence, since it is a connected algebra, it suffices
to verify that it is a bigebra. More precisely:

∆(ΦΠΦΠ′) = ∆(ΦΠ]Π′)

=
∑

Π̂1∪Π̂2=Π,Π̂′1∪Π̂′2=Π′[n]

Π̂1∩Π̂2=∅,Π̂′1∩Π̂′2=∅

Φstd(Π̂1)]std(Π̂′1) ⊗ Φstd(Π̂2)]std(Π̂′2)

= ∆(ΦΠ)∆(ΦΠ′).

Notice that ∆ is cocommutative.

Example 3.8. For instance,

∆
(
Φ{[{1,3},5],[{2},3]}

)
= Φ{[{1,3},5],[{2},3]} ⊗ 1 + Φ{[{1,2},5]} ⊗ Φ{[{1},3]}+

Φ{[{1},3]} ⊗ Φ{[{1,2},5]} + 1⊗ Φ{[{1,3},5],[{2},3]}.

The graded dual CΠQSym(a) (CΠQSym for short when there is no ambiguity) of CWSym is
the Hopf algebra generated as a space by the dual basis (ΨΠ)Π∈CP(a) of (ΦΠ)Π∈CP(a). Its product
and its coproduct are given by

ΨΠ′ΨΠ′′ =
∑

Π∈Π′dΠ′′

αΠ
Π′,Π′′ΨΠ and ∆(ΨΠ) =

∑
Π′]Π′′=Π

ΨΠ′ ⊗ΨΠ′′ .
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Example 3.9. For instance, one has

Ψ{[{1,2},3]}Ψ{[{1},4],[{2},1]} = Ψ{[{1,2},3],[{3},4],[{4},1]} + Ψ{[{1,3},3],[{2},4],[{4},1]}

+ Ψ{[{1,4},3],[{2},4],[{3},1]} + Ψ{[{2,3},3],[{1},4],[{4},1]}

+ Ψ{[{2,4},3],[{1},4],[{3},1]} + Ψ{[{3,4},3],[{1},4],[{2},1]}

and

∆(Ψ{[{1,3},3],[{2},4],[{4},1]}) = 1⊗Ψ{[{1,3},3],[{2},4],[{4},1]} + Ψ{[{1,3},3],[{2},4]} ⊗Ψ{[{1},1]}

+ Ψ{[{1,3},3],[{2},4],[{4},1]} ⊗ 1.

3.3 Special cases
In this section, we investigate a few interesting special cases of the construction.

3.3.1 Word symmetric functions

The most prominent example follows from the specialization an = 1 for each n. In this case, the
Hopf algebra CWSym is isomorphic to WSym, the Hopf algebra of word symmetric functions.
Let us recall briefly its construction. The algebra of word symmetric functions is a way to construct
a noncommutative analogue of the algebra Sym. Its bases are indexed by set partitions. After the
seminal paper [26], this algebra was investigated in [?, 4, 13] as well as an abstract algebra as in
its realization with noncommutative variables. Its name comes from its realization as a subalgebra
of C〈A〉 where A = {a1, . . . , an · · · } is an infinite alphabet.

Consider the family Φ := {Φπ}π whose elements are indexed by set partitions of {1, . . . , n}.
The algebra WSym is formally generated by Φ using the shifted concatenation product: ΦπΦπ′ =
Φππ′[n] where π and π′ are set partitions of {1, . . . , n} and {1, . . . ,m}, respectively, and π′[n] means
that we add n to each integer occurring in π′. The polynomial realization WSym(A) ⊂ C〈A〉 is
defined by Φπ(A) =

∑
w w where the sum is over the words w = a1 · · · an where i, j ∈ π` implies

ai = aj , if π = {π1, . . . , πk} is a set partition of {1, . . . , n}.

Example 3.10. For instance, one has Φ{{1,4}{2,5,6}{3,7}}(A) =
∑

a,b,c∈A abcabbc.

Although the construction of WSym(A), the polynomial realization of WSym, seems to be
close to Sym(X), the structures of the two algebras are quite different since the Hopf algebra
WSym is not autodual. Surprisingly, the graded dual ΠQSym := WSym∗ of WSym admits a
realization in the same subspace (WSym(A)) of C〈A〉 but for the shuffle product.

With no surprise, we notice the following fact:

Proposition 3.11.

• The algebras CWSym(1, 1, . . . ), WSym and WSym(A) are isomorphic.

• The algebras CΠQSym(1, 1, . . . ), ΠQSym and (WSym(A), ) are isomorphic.

In the rest of the paper, when there is no ambiguity, we will identify the algebras WSym and
WSym(A).

The word analogue of the basis (cλ)λ of Sym is the dual basis (Ψπ)π of (Φπ)π.
Other bases are known, for example, the word monomial functions defined by Φπ =

∑
π≤π′Mπ′ ,

where π ≤ π′ indicates that π is finer than π′, i.e., that each block of π′ is a union of blocks of π.

Example 3.12. For instance,

Φ{{1,4}{2,5,6}{3,7}} = M{{1,4}{2,5,6}{3,7}} +M{{1,2,4,5,6}{3,7}} +M{{1,3,4,7}{2,5,6}}

+M{{1,4}{2,3,5,6,7}} +M{{1,2,3,4,5,6,7}}.
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From the definition of the Mπ, we deduce that the polynomial representation of the word
monomial functions is given byMπ(A) =

∑
w w where the sum is over the words w = a1 · · · an where

i, j ∈ π` if and only if ai = aj , where π = {π1, . . . , πk} is a set partition of {1, . . . , n}.

Example 3.13. M{{1,4}{2,5,6}{3,7}}(A) =
∑

a,b,c∈A
a6=b,a6=c,b6=c

abcabbc.

The analogue of complete symmetric functions is the basis (Sπ)π of ΠQSym which is the dual
of the basis (Mπ)π of WSym.

The algebra ΠQSym is also realized in the space WSym(A): it is the subalgebra of (C〈A〉, )
generated by Ψπ(A) = π!Φπ(A) where π! = #π1! · · ·#πk! for π = {π1, . . . , πk}. Indeed, the linear
map Ψπ −→ Ψπ(A) is a bijection sending Ψπ1

Ψπ2
to∑

π=π′1∪π
′
2, π

′
1∩π
′
2=∅

π1=std(π′1), π2=std(π′2)

Ψπ(A) = π1!π2!
∑

π=π′1∪π
′
2, π

′
1∩π
′
2=∅

π1=std(π′1), π2=std(π′2)

Φπ(A)

= π1!π2!Φπ1
(A) Φπ2

(A) = Ψπ1
(A) Ψπ2

(A).

With these notations the image of Sπ is Sπ(A) =
∑
π′≤π Ψπ′(A). For our realization, the

duality bracket 〈 | 〉 implements the scalar product 〈 | 〉 on the space WSym(A) for which
〈Sπ1

(A)|Mπ2
(A)〉 = 〈Φπ1

(A)|Ψπ2
(A)〉 = δπ1,π2

.
Since the subalgebra of (WSym(A), ) generated by the complete functions S{{1,...,n}}(A) is

isomorphic to Sym, we define σWt (A) and φWt (A) by σWt (A) =
∑
n≥0 S{{1,...,n}}(A)tn and φWt (A) =∑

n≥1 Ψ{{1,...,n}}(A)tn−1. These series are linked by the equality

σWt (A) = exp
(
φWt (A)

)
, (32)

where exp is the exponential in (WSym(A), ). Furthermore, the coproduct of WSym consists
in identifying the algebra WSym⊗WSym with WSym(A+B), where A and B are two alphabets
such that the letters of A commute with those of B. Hence, one has σWt (A+B) = σWt (A) σWt (B).
In particular, we define the multiplication of an alphabet A by a constant k ∈ N by

σWt (kA) =
∑
n≥0

S{{1,...,n}}(kA)tn = σWt (A)k.

Nevertheless, the notion of specialization is subtler to define than in Sym. Indeed, the knowledge
of the complete functions S{{1,...,n}}(A) does not allow us to recover all the polynomials using
uniquely the algebraic operations. In [2], we made an attempt to define virtual alphabets by
reconstituting the whole algebra using the action of an operad. Although the general mechanism
remains to be defined, the case where each complete function S{{1,...,n}}(A) is specialized to a sum
of words of length n can be understood via this construction. More precisely, we consider the family
of multilinear k-ary operators Π indexed by set compositions (a set composition is a sequence
[π1, . . . , πk] of subsets of {1, . . . , n} such that {π1, . . . , πk} is a set partition of {1, . . . , n}) acting on
words by [π1,...,πk](a

1
1 · · · a1

n1
, . . . , ak1 · · · aknk) = b1 · · · bn with bip` = ap` if πp = {ip1 < · · · < ipnp} and

[π1,...,πk](a
1
1 · · · a1

n1
, . . . , ak1 · · · aknk) = 0 if #πp 6= np for some 1 ≤ p ≤ k.

Let P = (Pn)n≥1 be a family of a homogeneous word polynomials such that deg(Pn) = n for
each n. We set S{{1,...,n}}

[
A(P )

]
= Pn and

S{π1,...,πk}

[
A(P )

]
= [π1,...,πk](S{{1,...,#π1}}

[
A(P )

]
, . . . , S{{1,...,#πk}}

[
A(P )

]
).

The space WSym
[
A(P )

]
generated by the polynomials S{π1,...,πk}

[
A(P )

]
and endowed with the

two products · and is homomorphic to the double algebra (WSym(A), ·, ). Indeed, let π =
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{π1, . . . , πk} � n and π′ = {π′1, . . . , π′k′} � n′ be two set partitions, one has

Sπ
[
A(P )

]
· Sπ′

[
A(P )

]
= [{1,...,n},{n+1,...,n+n′}]

(
Sπ
[
A(P )

]
, Sπ′

[
A(P )

])
= [π1,...,πk,π′1[n],...,π′

k′ [n]]

(
S{1,...,#π1}

[
A(P )

]
, . . . , S{1,...,#πk}

[
A(P )

]
,

S{1,...,#π′1}
[
A(P )

]
, . . . , S{1,...,#π′

k′}
[
A(P )

])
= Sπ]π′

[
A(P )

]
and

Sπ
[
A(P )

]
Sπ′

[
A(P )

]
=

∑
I∪J={1,...,n+n′}, I∩J=∅

[I,J]

(
Sπ

[
A(P )

]
, Sπ′

[
A(P )

])
=

∑
[π′′1 ,...,π

′′
k+k′ ]

(
S{1,...,#π1}

[
A(P )

]
, . . . , S{1,...,#πk}

[
A(P )

]
,

S{1,...,#π′1}
[
A(P )

]
, . . . , S{1,...,#π′

k′}
(
A(P )

])
,

where the second sum is over the partitions {π′′1 , . . . , π′′k+k′} ∈ π d π′ satisfying, for each k + 1 ≤
i ≤ k + k′, std({π′′1 , . . . , π′′k}) = π, std({π′′k+1, . . . , π

′′
k+k′}) = π′, #π′′i = πi. Hence,

Sπ

[
A(P )

]
Sπ′

[
A(P )

]
=

∑
π′′∈πdπ′

Sπ′′
[
A(P )

]
.

In other words, we consider the elements of WSym
[
A(P )

]
as word polynomials in the virtual

alphabet A(P ) specializing the elements of WSym(A).

3.3.2 Biword symmetric functions

The bi-indexed word algebra BWSym was defined in [2]. We recall its definition here: the bases
of BWSym are indexed by set partitions into lists, which can be constructed from a set partition
by ordering each block. We will denote by PLn the set of the set partitions of {1, . . . , n} into lists.

Example 3.14. {[1, 2, 3], [4, 5]} and {[3, 1, 2], [5, 4]} are two distinct set partitions into lists of the
set {1, 2, 3, 4, 5}.

The number of set partitions into lists of an n-element set (or set partitions into lists of size n)
is given by Sloane’s sequence A000262 [24]. The first values are

1, 1, 3, 13, 73, 501, 4051, . . .

If Π̂ is a set partition into lists of {1, . . . , n}, we will write Π � n. Set Π̂]Π̂′ = Π̂∪{[l1+n, . . . , lk+n] :
[l1, . . . , lk] ∈ Π̂′} � n+ n′. Let Π̂′ ⊂ Π̂ � n, since the integers appearing in Π̂′ are all distinct, the
standardized std(Π̂′) of Π̂′ is well defined as the unique set partition into lists obtained by replacing
the ith smallest integer in Π̂ by i. For example, std({[5, 2], [3, 10], [6, 8]}) = {[3, 1], [2, 6], [4, 5]}.

The Hopf algebra BWSym is formally defined by its basis (ΦΠ̂) where the Π̂ are set partitions
into lists, its product ΦΠ̂ΦΠ̂′ = ΦΠ̂]Π̂′ and its coproduct

∆(ΦΠ̂) =

∧∑
Φstd(Π̂′) ⊗ Φstd(Π̂′′), (33)

where the
∧∑

means that the sum is over the (Π̂′, Π̂′′) such that Π̂′ ∪ Π̂′′ = Π̂ and Π̂′ ∩ Π̂′′ = ∅.
The product of the graded dual BΠQSym of BWSym is completely described in the dual basis

(ΨΠ̂)Π̂ of (ΦΠ̂)Π̂ by
ΨΠ̂1

ΨΠ̂2
=

∑
Π̂=Π̂′1∪Π̂′2, Π̂′1∩Π̂′2

std(Π̂′1)=Π̂1, std(Π̂′1)=Π̂1

ΨΠ̂.
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Now consider a bijection ιn from {1, . . . , n} to the symmetric group Sn. The linear map
κ : CP(1!, 2!, 3!, . . . ) −→ CL sending

{[{i11, . . . , i1n1
},m1], . . . , [{ik1 , . . . , iknk},m1]} ∈ CPn(1!, 2!, 3!, . . . ),

with ij1 ≤ · · · ≤ ijnj , to

{[i1ιn1
(1), . . . , i

1
ιn1

(n1)], . . . , [i
`
ιn` (1), . . . , i

`
ιn` (n`)

]}

is a bijection. Hence, a fast checking shows that the linear map sending ΨΠ to Ψκ(Π) is an isomor-
phism. So, we have

Proposition 3.15.

• The Hopf algebras CWSym(1!, 2!, 3!, . . . ) and BWSym are isomorphic.

• The Hopf algebras CΠQSym(1!, 2!, 3!, . . . ) and BΠQSym are isomorphic.

3.3.3 Word symmetric functions of level 2

We consider the algebra WSym(2) which is spanned by the ΦΠ where Π is a set partition of level
2, that is, a partition of a partition π of {1, . . . , n} for some n. The product of this algebra is given
by ΦΠΦΠ′ = ΦΠ∪Π′[n] where Π′[n] = {e[n] : e ∈ Π′}. The dimensions of this algebra are given by
the exponential generating function∑

i

b
(2)
i

ti

i!
= exp(exp(exp(t)− 1)− 1).

The first values are
1, 3, 12, 60, 358, 2471, 19302, 167894, 1606137, . . .

see sequence A000258 of [24].
The coproduct is defined by ∆(ΦΠ) =

∑
Π′∪Π′′=Π
Π′∩Π′′=∅

Φstd(Π′)⊗Φstd(Π′′) where, if Π is a partition of
a partition of {i1, . . . , ik}, std(Π) denotes the standardized of Π, that is the partition of partition
of {1, . . . , k} obtained by substituting each occurrence of ij by j in Π. The coproduct being co-
commutative, the dual algebra ΠQSym(2) := WSym∗(2) is commutative. The algebra ΠQSym(2) is
spanned by a basis (ΨΠ)Π satisfying ΨΠΨΠ′ =

∑
Π′′ C

Π′′

Π,Π′ΨΠ′′ where CΠ′′

Π,Π′ is the number of ways
to write Π′′ = A ∪B with A ∩B = ∅, std(A) = Π and std(B) = Π′.

Let bn be the nth Bell number An(1, 1, . . . ). Considering a bijection from {1, . . . , bn} to the
set of the set partitions of {1, . . . , n} for each n, we obtain, in the same way as in the previous
subsection, the following result

Proposition 3.16.

• The Hopf algebras CWSym(b1, b2, b3, . . . ) and WSym(2) are isomorphic.

• The Hopf algebras CΠQSym(b1, b2, b3, . . . ) and ΠQSym(2) are isomorphic.

3.3.4 Cycle word symmetric functions

We consider the Grossman-Larson Hopf algebra of heap-ordered trees SSym [12]. The combina-
torics of this algebra has been extensively investigated in [13]. This Hopf algebra is spanned by the
Φσ where σ is a permutation. We identify each permutation with the set of its cycles (for example,
the permutation 321 is {(13), (2)}). The product in this algebra is given by ΦσΦτ = Φσ∪τ [n], where
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n is the size of the permutation σ and τ [n] = {(i1 + n, i2 + n, . . . , ik + n) | (i1, . . . , ik) ∈ τ}. The
coproduct is given by

∆(Φσ) =
∑

Φstd(σ|I) ⊗ Φstd(σ|J ), (34)

where the sum is over the partitions of {1, . . . , n} into 2 sets I and J such that the action of σ lets
the sets I and J globally invariant, σ|I denotes the restriction of the permutation σ to the set I
and std(σ|I) is the permutation obtained from σ|I by replacing the ith smallest label by i in σ|I .

Example 3.17.

∆(Φ3241) = Φ3241 ⊗ 1 + Φ1 ⊗ Φ231 + Φ231 ⊗ Φ1 + 1⊗ Φ3241.

The basis (Φσ) and its dual basis (Ψσ) are respectively denoted by (Sσ) and (Mσ) in [13]. The
Hopf algebra SSym is not commutative but it is cocommutative, so it is not autodual and not
isomorphic to the Hopf algebra of free quasi-symmetric functions.
Let ιn be a bijection from the set of the cycles of Sn to {1, . . . , (n− 1)!}. We define the bijection
κ : Sn ↔ CP(0!, 1!, 2!, . . . ) by

κ(σ) = {[support(c1), ι#support(std(c1))(c1)], . . . , [support(c1), ι#support(std(ck))(ck)]},

if σ = c1 . . . ck is the decomposition of σ into cycles and support(c) denotes the support of the cycle
c, i.e. the set of the elements which are permuted by the cycle.

Example 3.18. For instance, set

ι1(1) = 1, ι3(231) = 2, and ι3(312) = 1.

One has
κ(32415867) = {[{2}, 1], [{1, 3, 4}, 2], [{5}, 1], [{6, 7, 8}, 1]}.

The linear map K : SSym −→ CWSym(0!, 1!, 2!, . . .) sending Φσ to Φκ(σ) is an isomorphism
of algebra. Indeed, it is straightforward to see that it is a bijection and furthermore κ(σ ∪ τ [n]) =
κ(σ) ] κ(τ). Moreover, if σ ∈ Sn is a permutation and {I, J} is a partition of {1, . . . , n} into two
subsets such that the action of σ lets I and J globally invariant, we check that κ(σ) = Π1 ∪ Π2

with Π1 ∩Π2 = ∅, std(Π1) = κ(std(σ|I)) and std(Π2) = κ(std(σ|J)). Conversely, if κ(σ) = Π1 ∪Π2

with Π1 ∩ Π2 = ∅ then there exists a partition {I, J} of {1, . . . , n} into two subsets such that the
action of σ lets I and J globally invariant and std(Π1) = κ(std(σ|I)) and std(Π2) = κ(std(σ|J)).

In other words,
∆(Φκ(σ)) =

∑
Φκ(std(σ|I)) ⊗ Φκ(std(σ|J ),

where the sum is over the partitions of {1, . . . , n} into 2 sets I and J such that the action of σ lets
the sets I and J globally invariant. Hence K is a morphism of cogebras and, as for the previous
examples, one has

Proposition 3.19.

• The Hopf algebras CWSym(0!, 1!, 2!, . . .) and SSym are isomorphic.

• The Hopf algebras CΠQSym(0!, 1!, 2!, . . .) and SSym∗ are isomorphic.

3.3.5 Miscellanous subalgebras of the Hopf algebra of endofunctions

We denote by End the combinatorial class of endofunctions (an endofunction of size n ∈ N is a
function from {1, . . . , n} to itself). Given a function f from a finite subset A of N to itself, we
denote by std(f) the endofunction φ ◦ f ◦φ−1, where φ is the unique increasing bijection from A to
{1, 2, . . . , card(A)}. Given a function g from a finite subset B of N (disjoint from A) to itself, we
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denote by f ∪ g the function from A ∪ B to itself whose f and g are respectively the restrictions
to A and B. Finally, given two endofunctions f and g, respectively of size n and m, we denote by
f • g the endofunction f ∪ g̃, where g̃ is the unique function from {n+ 1, n+ 2, . . . , n+m} to itself
such that std(g̃) = g.
Now, let EQSym be the Hopf algebra of endofunctions [13]. This Hopf algebra is defined by its
basis (Ψf ) indexed by endofunctions, the product

ΨfΨg =
∑

std(f̃)=f,std(g̃)=g,f̃∪g̃∈End

Ψf̃∪g̃ (35)

and the coproduct
∆(Ψh) =

∑
f•g=h

Ψf ⊗Ψg. (36)

This algebra is commutative but not cocommutative. We denote by ESym := EQSym∗ its graded
dual, and by (Φf ) the basis of ESym dual to (Ψf ). The bases (Φσ) and (Ψσ) are respectively
denoted by (Sσ) and (Mσ) in [13]. The product and the coproduct in ESym are respectively given
by

ΦfΦg = Φf•g (37)

and
∆(Φh) =

∑
f∪g=h

Φstd(f) ⊗ Φstd(g). (38)

Remark : The Ψf , where f is a bijective endofunction, span a Hopf subalgebra of EQSym obviously
isomorphic to SQSym := SSym∗, that is isomorphic to CΠQSym(0!, 1!, 2!, . . . ) from (3.3.4).

As suggested by [13], we investigate a few other Hopf subalgebras of EQSym.

• The Hopf algebra of idempotent endofunctions is isomorphic to the Hopf algebra CΠQSym(1, 2, 3, . . . )
. The explicit isomorphism sends Ψf to Ψφ(f), where for any idempotent endofunction f of
size n,

φ(f) =

{[
f−1(i), card({j ∈ f−1(i) | j ≤ i})

]∣∣∣∣1 ≤ i ≤ n, f−1(i) 6= ∅
}
. (39)

• The Hopf algebra of involutive endofunctions is isomorphic to

CΠQSym(1, 1, 0, . . . , 0, . . . ) ↪→ ΠQSym.

Namely, it is a Hopf subalgebra of SQSym, and the natural isomorphism from SQSym to
CΠQSym(0!, 1!, 2!, . . .) sends it to the sub algebra CΠQSym(1, 1, 0, . . . , 0, . . . ).

• In the same way the endofunctions such that f3 = Id generate a Hopf subalgebra ofSQSym ↪→
EQSym which is isomorphic to the Hopf algebra CΠQSym(1, 0, 2, 0, . . . , 0, . . .).

• More generally, the endofunctions such that fp = Id generate a Hopf subalgebra ofSQSym ↪→
EQSym isomorphic to CΠQSym(τ(p)) where τ(p)i = (i− 1)! if i | p and τ(p)i = 0 otherwise.

3.4 About specializations
The aim of this section is to show how the specialization cn −→ an

n! factorizes through ΠQSym and
CΠQSym.

Notice first that the algebra Sym is isomorphic to the subalgebra of ΠQSym generated by
the family (Ψ{{1,...,n}})n∈N; the explicit isomorphism α sends cn to Ψ{{1,...,n}}. The image of
hn is S{{1,...,n}} and the image of cλ = 1

λ! cλ1 · · · cλk is
∑
π�λ Ψπ where π � λ means that π =

{π1, . . . , πk} is a set partition such that #π1 = λ1, . . . ,#πk = λk and λ! = λ1···λk
zλ

=
∏
imi(λ)!
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where mi(λ) denotes the multiplicity of i in λ. Indeed, cλ is mapped to 1
λ! Ψ{{1,...,λ1}} · · ·Ψ{{1,...,λk}}

and Ψ{{1,...,λ1}} · · ·Ψ{{1,...,λk}} = λ!
∑
π�λ Ψπ.

Now the linear map βa : ΠQSym −→ CΠQSym(a) sending each Ψπ to the element
∑
ΠVπ

ΨΠ is

a morphism of algebra and the subalgebra Π̃QSym := βa(ΠQSym) is isomorphic to ΠQSym if and
only if a ∈ (N \ {0})N.

Let γa : CΠQSym(a) −→ C be the linear map sending ΨΠ to 1
|Π|! . We have

γa(ΨΠ1
ΨΠ2

) =
∑

Π=Π′1∪Π′2,Π
′
1∩Π′2=∅

std(Π′1)=Π1,std(Π′2)=Π2

γa(ΨΠ).

From any subset A of {1, 2, . . . , |Π1|+ |Π2|} of cardinality n, one has std(Π′1) = Π1, std(Π′2) = Π2

and Π′1 ∩ Π′2 = ∅, where Π′1 is obtained from Π1 by replacing each label i by the ith smallest
element of A, and Π′2 is obtained from Π2 by replacing each label i by the ith smallest element of

{1, . . . , |Π1|+ |Π2|} \A. Since there are
(
|Π1|+ |Π2|
|Π1|

)
ways to construct A, one has

γa(ΨΠ1ΨΠ2) =
1

(|Π1|+ |Π2|)!

(
|Π1|+ |Π2|
|Π1|

)
=

1

|Π1|!|Π2|!
= γa(ΨΠ1)γa(ΨΠ2).

In other words, γa is a morphism of algebra. Furthermore, the restriction γ̂a of γa to Π̃QSym
is a morphism of algebra that sends βa(Ψ{{1,...,n}}) to an

n! . It follows that if f ∈ Sym, then one has

f(X(a)) = γ̃a(βa(α(f))). (40)

The following theorem summarizes the section:

Theorem 3.20. The diagram

CΠQSym(a) oo ? _

γa '' ''PPPPPPPPPPPPP Π̃QSym oooo βa

γ̂a
����

ΠQSymOO

α

� ?
C = Sym[X(a)] Symoooo

is commutative.

4 Word Bell polynomials

4.1 Bell polynomials in ΠQSym

Since Sym is isomorphic to the subalgebra of ΠQSym generated by the elements Ψ{{1,...,n}}, we
can compute An(Ψ{{1}},Ψ{{1,2}}, . . . ,Ψ{{1,...,m}}, . . . ). From (32), we have

An(1!Ψ{{1}}, 2!Ψ{{1,2}}, . . . ,m!Ψ{{1,...,m}}, . . . ) = n!S{{1,...,n}} = n!
∑
π�n

Ψπ. (41)

Notice that, from the previous section, the image of the Bell polynomialAn(Ψ{{1}},Ψ{{1,2}}, . . . ,Ψ{{1,...,m}}, . . . )

by the morphism γ sending Ψ{{1,...,n}} to 1
n! is γ(An(1!Ψ{{1}}, 2!Ψ{{1,2}}, . . . ,m!Ψ{{1,...,m}}, . . . )) =

bn = An(1, 1, . . . ).
In the same way, we have

Bn,k(1!Ψ{{1}}, 2!Ψ{{1,2}}, . . . ,m!Ψ{{1,...,m}}, . . . ) = n!
∑
π�n

#π=k

Ψπ. (42)
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If (Fn)n is a homogeneous family of elements of ΠQSym, such that |Fn| = n, we define

An(F1, F2, . . . ) =
1

n!
An(1!F1, 2!F2, . . . ,m!Fm, . . . ) (43)

and
Bn,k(F1, F2, . . . ) =

1

n!
Bn,k(1!F1, 2!F2, . . . ,m!Fm, . . . ). (44)

Considering the map βa◦α as a specialization of Sym, the following identities hold in CΠQSym(a):

An

 ∑
1≤i≤a1

Ψ{[{1},i]},
∑

1≤i≤a2

Ψ{[{1,2},i]}, . . . ,
∑

1≤i≤am

Ψ{[{1,...,m},i]}, . . .

 =
∑
Π�n

ΨΠ

and

Bn,k

 ∑
1≤i≤a1

Ψ{[{1},i]},
∑

1≤i≤a2

Ψ{[{1,2},i]}, . . . ,
∑

1≤i≤am

Ψ{[{1,...,m},i]}, . . .

 =
∑
Π�n

#Π=k

ΨΠ.

Example 4.1. In BΠQSym ∼ CΠQSym(1!, 2!, . . . ), we have

Bn,k

(
Ψ{[1]},Ψ{[1,2]} + Ψ{[2,1]}, . . . ,

∑
σ∈Sm

Ψ{[σ]}, . . .

)
=
∑
Π̂�n

#Π̂=k

ΨΠ̂,

where the sum on the right is over the set partitions of {1, . . . , n} into k lists. Considering the
morphism sending Ψ{[σ1,...,σn]} to 1

n! , Theorem 33 allows us to recover Bn,k(1!, 2!, 3!, . . . ) = Ln,k,
the number of set partitions of {1, . . . , n} into k lists.

Example 4.2. In ΠQSym(2) ∼ CΠQSym(b1, b2, . . . ), we have

Bn,k

(
Ψ{{{1}}},Ψ{{{1,2}}} + Ψ{{{1},{2}}}, . . . ,

∑
π�m

Ψ{π}, . . .

)
=

∑
Π partition of π�n

#Π̂=k

ΨΠ,

where the sum on the right is over the set partitions of {1, . . . , n} of level 2 into k blocks. Considering
the morphism sending Ψ{π} to 1

n! for π � n, Theorem 33 allows us to recover Bn,k(b1, b2, b3, . . . ) =

S
(2)
n,k, the number of set partitions into k sets of a partition of {1, . . . , n}.

Example 4.3. In SSym∗ ∼ CΠQSym(0!, 1!, 2! . . . ), we have

Bn,k

Ψ[1],Ψ[2,1],Ψ[2,3,1] + Ψ[3,1,2], . . . ,
∑
σ∈Sn

σ is a cycle

Ψ{π}, . . .

 =
∑
σ∈Sn

σ has k cycles

Ψσ,

where the sum on the right is over the permutations of size n having k cycles. Considering the
morphism sending Ψσ to 1

n! for σ ∈ Sn, Theorem 33 allows us to recover Bn,k(0!, 1!, 2!, . . . ) = sn,k,
the number of permutations of Sn having exactly k cycles.

Example 4.4. In the Hopf algebra of idempotent endofunctions, we have

Bn,k
(
Ψf1,1

,Ψf2,1
+ Ψf2,2

,Ψf3,1
+ Ψf3,2

+ Ψf3,3
, . . . ,

∑n
i=1 Ψfn,i , . . .

)
=∑

|f |=n,card(f({1,...,n}))=k

Ψf ,
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where for i ≥ j ≥ 1, fi,j is the constant endofunction of size i and of image {j}. Here, the sum on
the right is over idempotent endofuctions f of size n such that the cardinality of the image of f is
k. Considering the morphism sending Ψf to 1

n! for |f | = n, Theorem 33 allows us to recover that
Bn,k(1, 2, 3, . . . ) is the number of these idempotent endofunctions, that is the idempotent number(
n
k

)
kn−k [14, 25].

4.2 Bell polynomials in WSym

Recursive descriptions of Bell polynomials are given in [9]. In this section we rewrite this result and
other ones related to these polynomials in the Hopf algebra of word symmetric functions WSym.
We define the operator ∂ acting linearly on the left on WSym by

1∂ = 0 and Φ{π1,...,πk}∂ =

k∑
i=1

Φ({π1,...,πk}\πi)∪{πi∪{n+1}}.

In fact, the operator ∂ acts on Φπ almost as the multiplication of M{{1}} on Mπ. More precisely :

Proposition 4.5. We have:
∂ = φ−1 ◦ µ ◦ φ− µ,

where φ is the linear operator satisfying Mπφ = Φπ and µ is the multiplication by Φ{{1}}.

Example 4.6. For instance, one has

Φ{{1,3},{2,4}}∂ = Φ{{1,3},{2,4}}(φ
−1µφ− µ)

= M{{1,3},{2,4}}µφ− Φ{{1,3},{2,4},{5}}
= (M{{1,3,5},{2,4}} +M{{1,3},{2,4,5}} +M{{1,3},{2,4},{5}})φ
−Φ{{1,3},{2,4},{5}}

= Φ{{1,3,5},{2,4}} + Φ{{1,3},{2,4,5}} + Φ{{1,3},{2,4},{5}}
−Φ{{1,3},{2,4},{5}}

= Φ{{1,3,5},{2,4}} + Φ{{1,3},{2,4,5}}.

Following Remark 17, we define recursively the elements An of WSym as

A0 = 1, An+1 = An(Φ{{1}} + ∂). (45)

So we have
An = 1(Φ{1} + ∂)n. (46)

Easily, one shows that An provides an analogue of complete Bell polynomials in WSym.

Proposition 4.7.
An =

∑
π�n

Φπ.

Noticing that the multiplication by Φ{{1}} adds one part to each partition, we give the following
analogue for partial Bell polynomials.

Proposition 4.8. If we set
Bn,k = [tk]1(tΦ{{1}} + ∂)n, (47)

then we have Bn,k =
∑
π�n

#π=k

Φπ.
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Example 4.9. We have

1(tΦ{{1}} + ∂)4 = t4Φ{{1},{2},{3},{4}} + t3(Φ{{1,2},{3},{4}} + Φ{{1,3},{2},{4}}
+Φ{{1},{2,3},{4}} + Φ{{1,4},{2},{3}} + Φ{{1},{2,4},{3}} + Φ{{1},{2},{3,4}})+
t2(Φ{{1,3,4},{2}} + Φ{{1,2,3},{4}} + Φ{{1,2,4},{3}} + Φ{{1,2},{3,4}} + Φ{{1,3},{2,4}}
+Φ{{1,4},{2,3}} + Φ{{1},{2,3,4}}) + tΦ{{1},{3},{4},{2}}.

Hence,
B4,2 = Φ{{1,3,4},{2}} + Φ{{1,2,3},{4}} + Φ{{1,2,4},{3}} + Φ{{1,2},{3,4}}

+Φ{{1,3},{2,4}} + Φ{{1,4},{2,3}} + Φ{{1},{2,3,4}}.

4.3 Bell polynomials in C〈A〉
Both WSym and ΠQSym admit word polynomial realizations in a subspace WSym(A) of the
free associative algebra C〈A〉 over an infinite alphabet A. When endowed with the concatenation
product, WSym(A) is isomorphic to WSym and when endowed with the shuffle product, it is
isomorphic to ΠQSym. Alternatively to the definitions of partial Bell numbers in ΠQSym (44) and
in WSym, we set, for any sequence of polynomials (Fi)i∈N in C〈A〉:

∑
n≥0

Bn,k(F1, . . . , Fm, . . . )t
n =

1

k!

(∑
i

Fit
i

) k

(48)

and
An(F1, . . . , Fm, . . . ) =

∑
k≥1

Bn,k(F1, . . . , Fm, . . . ). (49)

This definition generalizes (44) and (47) in the following sense:

Proposition 4.10. We have

Bn,k(Ψ{{1}}(A), . . . ,Ψ{{1,...,m}}(A), . . . ) = Bn,k(Ψ{{1}}(A), . . . ,Ψ{{1,...,m}}(A), . . . )

and
Bn,k(Φ{{1}}(A), . . . ,Φ{{1,...,m}}(A), . . . ) = Bn,k(A).

Proof. The two identities follow from

Ψπ1
(A) Ψπ2

(A) =
∑

π=π′1∪π
′
2, π

′
1∩π
′
2=∅

std(π′1)=π1, std(π′2)=π2

Ψπ(A).

Equality (48) allows us to show more general properties. For instance, let A′ and A′′ be two
disjoint subalphabets of A and set

SA′
n (A′′) = S{{1}}(A′) S{{1,...,n−1}}(A′′).

Remarking that∑
n

Bn,k(SA′
1 (A′′), . . . , SA′

m (A′′), . . . )tn =

tkS{{1},...,{k}}(A′) (
∑
n≥0

S{{1,...,n}}(A′′)tn) k = tkS{{1},...,{k}}(A′) σWt (kA′′),

we obtain a word analogue of (19):

20



Proposition 4.11.

Bn,k(SA′
1 (A′′), . . . , SA′

m (A′′), . . . ) = S{{1},...,{k}}(A′) S{{1,...,n−k}}(kA′′).

For simplicity, let us write BA
′

n,k(A′′) := Bn,k(SA′
1 (A′′), . . . , SA′

m (A′′), . . . ).
Let k = k1 + k2. From

S{{1},...,{k1}}(A
′) S{{1},...,{k2}}(A

′) =

(
k

k1

)
S{{1},...,{k}}(A′)

and
S{{1,...,n−k}}(kA′′) =

∑
i+j=n−k

S{{1,...,i}}(k1A′′) S{{1,...,i}}(k2A′′),

we deduce an analogue of (20):

Corollary 4.12. Let k = k1 + k2 be three nonnegative integers. We have(
k

k1

)
BA
′

n,k(A′′) =

n∑
i=0

BA
′

i,k1
(A′′) BA

′

n−i,k2
(A′′). (50)

Example 4.13. Consider a family of functions (fk)k such that fk : N −→ C〈A〉 satisfying

f0 = 1 and fn(α+ β) =
∑
n=i+j

fi(α) fj(β). (51)

From (48), we obtain

Bn,k(f0(a), . . . , fm−1(a), . . . )tn =
1

k!

∑
i1+···+ik=n−k

fi1(a) · · · fik(a).

Hence, iterating (51), we deduce

Bn,k(f0(a), . . . , fm−1(a), . . . ) =
1

k!
fn−k(ka).

Set fn(k) = k!BA
′

n,k(A′′) and f0(k) = 1. By (50), the family (fn)n∈N satisfies (51). Hence we
obtain an analogue of (24):

k1!Bn,k1
(1, . . . , k2!BA

′

m−1,k2
(A′′), . . . ) = (k1k2)!BA

′

n−k1,k1k2
(A′′).

Suppose now A′′ = A′′1 + A′′2 .
By S{{1,...,n}}(A′′) =

∑n
i=0 S{{1,...,i}}(A′′1) S{{1,...,n−i}}(A′′2), Proposition (44) allows us to

write a word analogue of the convolution formula for Bell polynomials (21).

Corollary 4.14.

S{{1},...,{k}}(A′) BA
′

n,k(A′′) =

n∑
i=0

BA
′

i,k(A′′1) BA
′

n−i,k(A′′2). (52)

Let k1 and k2 be two positive integers. We have∑
n

Bn,k1
(BA

′

k2,k2
(A′′), . . . , BA

′

k2+m−1,k2
(A′′), . . . )tn =

1

k1!

∑
m≥1

BA
′

k2+m−1,k2
(A′′)tm

 k1

= tk1S{{1},...,{k2k1}}(A
′) σWt (k1k2A′′).

Hence,

Proposition 4.15.

Bn,k1(BA
′

k2,k2
(A′′), . . . , BA′k2+m−1,k2

(A′′), . . . ) = BA
′

n−k1+k1k2,k1k2
(A′′). (53)
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4.4 Specialization again
In [2] we have shown that one can construct a double algebra which is homomorphic to (WSym(A), ., ).
This is a general construction which is an attempt to define properly the concept of virtual alphabet
for WSym. In our context the construction is simpler, let us recall briefly it.

Let F = (Fπ(A))π be a basis of WSym(A). We will say that F is shuffle-compatible if

F{π1,...,πk}(A) = [π1,...,πk]

(
F{{1,...,#π1}}(A), . . . , F{{1,...,#πk}}(A)

)
.

Hence, one has

Fπ1
(A) Fπ2

(A) =
∑

π=π′1∪π
′
2,π
′
1∩π
′
2=∅

std(π′1)=π1,std(π′2)=π2

Fπ and Fπ1
(A).Fπ2

(A) = Fπ1]π2
(A).

Example 4.16. The bases (Sπ(A))π, (Φπ(A))π and (Ψπ(A))π are shuffle-compatible but not the
basis (Mπ(A))π.

Straightforwardly, one has:

Claim 4.17. Let (Fπ(A))π be a shuffle-compatible basis of WSym(A). Let B be another alphabet
and let P = (Pk)k>0 be a family of noncommutative polynomials of C〈B〉 such that degPk = k.
Then, the space spanned by the polynomials F{π1,...,πk}[A

(P )
F ] := [π1, . . . , πk] (P#π1 , . . . , P#πk)

is stable under concatenation and shuffle product in C〈B〉. So it is a double algebra which is
homomorphic to (WSym(A), ., ). We will call WSym[A(P )

F ] this double algebra and f [A(P )
F ] will

denote the image of an element f ∈ WSym(A) by the morphism WSym(A) −→ WSym[A(P )
F ]

sending F{π1,...,πk} to F{π1,...,πk}[A
(P )
F ].

With these notations, one has

Bn,k(P1, . . . , Pm, . . . ) = Bn,k[A(P )
Φ ].

Example 4.18. We define a specialization by setting

Φ{{1,...,n}}[S] =
∑
σ∈Sn
σ1=1

bσ[1] . . . bσ[n],

where the letters bi belong to an alphabet B. Let σ ∈ Sn be a permutation and σ = c1 ◦ · · · ◦ ck its
decomposition into cycles. Each cycle c(i) is denoted by a sequence of integers (n

(i)
1 , . . . , n

(i)
`i

) such

that n(i)
1 = min{n(i)

1 , . . . , n
(i)
`i

). Let c̃(i) ∈ S`i be the permutation which is the standardized of the
sequence n(i)

1 . . . n
(i)
`i
. The cycle support of σ is the partition

support(σ) = {{n(1)
1 , . . . , n

(1)

`(i)
}, . . . , {n(k)

1 , . . . , n
(k)

`(k)}}.

We define w[c(i)] = b
c̃(i)[1]

· · · b
c̃(i)[`(i)]

and w[σ] = [π1,...,πk](w[c(1)], . . . , w[c(k)]) where πi =

{n(i)
1 , . . . , n

(i)

`(i)
} for each 1 ≤ i ≤ k.

For instance, if σ = 312654 = (132)(46)(5) we have w[(132)] = b1b3b2, w[(46)] = b1b2, w[(5)] =
b1 and w[σ] = b1b3b2b1b1b2.

So, we have

Bn,k(Φ{{1}}[S], . . . ,Φ{{1,...,m}}[S], . . . ) = Bn,k[S] =
∑
π�n

#π=k

Φπ[S] =
∑
σ∈Sn

#support(σ)=k

w[σ].
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For instance

B4,2(b1, b1b2, b1b2b3 + b1b3b2, b1b2b3b4 + b1b3b2b4 + b1b2b4b3 + b1b3b4b2 + b1b4b2b3 + b1b4b3b2, . . . )
= Φ{{1},{2,3,4}}[S] + Φ{{2},{1,3,4}}[S] + Φ{{3},{1,2,4}}[S] + Φ{{4},{1,2,3}}[S] + Φ{{1,2},{3,4}}[S]+
Φ{{1,3},{2,4}}[S] + Φ{{1,4},{2,3}}[S]
= 2b1b1b2b3 + 2b1b1b3b2 + b1b2b1b3 + b1b3b2b1 + b1b2b3b1 + b1b3b2b1 + b1b2b1b2 + 2b1b1b2b2.

Notice that the sum of the coefficients of the words occurring in the expansion of Bn,k[S] is
equal to the Stirling number sn,k. Hence, this specialization gives another word analogue of formula
(7).

5 Conclusion
In brief, we have shown that many identities on Bell polynomials come from algebraic and cogebraic
structures. The algebra of symmetric functions provides an interesting frame for the study of the
Bell polynomials. Indeed, the mechanism of specialization makes it possible to reinterpret some
classical formulæ. Three coproducts pn → pn(X) + pn(Y), pn → pn(X)pn(Y) and hn → hn(X ◦ Y)
have been investigated in this context. Each of them makes it possible to prove and understand a
lot of formulæ.
The mechanism of specialization has been described in other combinatorial Hopf algebras in order
to obtain some equalities on word Bell polynomials with no multiplicities by manipulating directly
the combinatorial objects. These formulæ project on known identities. Analogues of the first
coproduct and its consequences on word Bell polynomials have also been studied. It remains to
investigate word analogues of the other two coproducts. In particular, it should be interesting to
define a word Faà di Bruno algebra.

Acknowledgments
This paper is partially supported by the PHC MAGHREB project IThèM and the ANR project
CARMA.

References
[1] Sadek Bouroubi and Moncef Abbas. New identities for Bell’s polynomials. New approaches.

In Rostock. Math. Kolloq, volume 61, pages 49–55, 2006.

[2] Jean-Paul Bultel, Ali Chouria, Jean-Gabriel Luque, and Olivier Mallet. Word symmetric
functions and the Redfield-Pólya theorem. FPSAC’2013, DMTCS Proceedings, (01):563–574,
2013.

[3] Eric Temple Bell. Exponential polynomials. Annals of Mathematics, pages 258–277, 1934.

[4] Nantel Bergeron, Christophe Reutenauer, Mercedes Rosas, and Mike Zabrocki. Invariants
and coinvariants of the symmetric groups in noncommuting variables. Canad. J. Math.,
60(2):266–296, 2008.

[5] R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey, and D. E. Knuth. On the Lambert
W function. Advances in Computational Mathematics, 5:329–359, 1996.

[6] Louis Comtet. Advanced Combinatorics: The art of finite and infinite expansions. Springer,
1974.

[7] Djurdje Cvijović. New identities for the partial Bell polynomials. Applied Mathematics
Letters, 24(9):1544–1547, 2011.

23



[8] Peter Doubilet. A Hopf algebra arising from the lattice of partitions of a set. Journal of
Algebra, 28(1):127–132, 1974.

[9] Kurusch Ebrahimi-Fard, Alexander Lundervold, and Dominique Manchon. Noncommutative
Bell polynomials, quasideterminants and incidence Hopf algebras. International Journal of
Algebra and Computation, 24(05):671–705, 2014.

[10] Francesco Faà di Bruno. Sullo sviluppo delle funzioni. Annali di Scienze Matematiche e
Fisiche, 6:479–480, 1855.

[11] Francesco Faà di Bruno. Note sur une nouvelle formule de calcul différentiel. Quarterly J.
Pure Appl.Math., 1:359–360, 1857.

[12] Robert Grossman and Richard G Larson. Hopf-algebraic structure of families of trees. Journal
of Algebra, 126(1):184–210, 1989.

[13] Florent Hivert, Jean-Christophe Novelli, and Jean-Yves Thibon. Commutative combinatorial
Hopf algebras. Journal of Algebraic Combinatorics, 28(1):65–95, 2008.

[14] Bernhard Harris and Lowell Schoenfeld. The number of idempotent elements in symmetric
semigroups. Journal of Combinatorial Theory, 3(2):122–135, 1967.

[15] SA Joni and Gian-Carlo Rota. Coalgebras and bialgebras in combinatorics. Stud. Appl. Math,
61(2):93–139, 1979.

[16] S. Khelifa and Y. Cherruault. New results for the Adomian method. Kybernetes., 29(n3):332–
355, 2000.

[17] A. Lascoux. Symmetric Functions and Combinatorial Operators on Polynomials. CBMS
Regional Conference Series in Mathematics, American Mathematical Society, 2003.

[18] Ian Grant Macdonald. Symmetric functions and Hall polynomials. Oxford University Press,
1998.

[19] Miloud Mihoubi. Bell polynomials and binomial type sequences. Discrete Mathematics,
308(12):2450–2459, 2008.

[20] Miloud Mihoubi. Polynômes multivariés de Bell et polynômes de type binomial. Thèse de
Doctorat, L’Université des Sciences et de la Technologie Houari Boumediene, 2008.

[21] Miloud Mihoubi. Partial Bell polynomials and inverse relations. J. Integer Seq, 13(4), 2010.

[22] John Riordan. Derivatives of composite functions. Bulletin of American Mathematical Soci-
ety, 52:664–667, 1946.

[23] John Riordan. An Introduction to Combinatorial Analysis. John Wiley & Sons, New York,
1958 ; Princeton University Press, Princeton, NJ, 1980.

[24] N. J. A. Sloane. The on-line encyclopedia of integer sequences, 2003.

[25] Melvin Tainiter. Generating functions on idempotent semigroups with application to combi-
natorial analysis. Journal of Combinatorial Theory, 5(3):273–288, 1968.

[26] Margarete C Wolf. Symmetric functions of non-commutative elements. Duke Mathematical
Journal, 2(4):626–637, 1936.

[27] Weiping Wang and Tianming Wang. General identities on Bell polynomials. Computers and
Mathematics with Applications, 58(1):104–118, 2009.

24


	Introduction
	Bell polynomials and symmetric functions
	Definitions and basic properties
	Bell polynomials as symmetric functions
	Other interpretations

	Hopf algebras of colored set partitions
	Colored partitions and Bell polynomials
	The Hopf algebras CWSym( a) and CQSym( a)
	Special cases
	Word symmetric functions
	Biword symmetric functions
	Word symmetric functions of level 2
	Cycle word symmetric functions
	Miscellanous subalgebras of the Hopf algebra of endofunctions

	About specializations

	Word Bell polynomials
	Bell polynomials in QSym
	Bell polynomials in WSym
	Bell polynomials in C"426830A A"526930B 
	Specialization again

	Conclusion

