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Abstract. This chapter overviews a recently introduced network-based model

of combinatorial landscapes: Local Optima Networks (LON). The model com-

presses the information given by the whole search space into a smaller mathe-

matical object that is a graph having as vertices the local optima and as edges the

possible weighted transitions between them. Two definitions of edges have been

proposed: basin-transition and escape-edges, which capture relevant topological

features of the underlying search spaces. This network model brings a new set of

metrics to characterize the structure of combinatorial landscapes, those associated

with the science of complex networks. These metrics are described, and results

are presented of local optima network extraction and analysis for two selected

combinatorial landscapes: NK landscapes and the quadratic assignment problem.

Network features are found to correlate with and even predict the performance of

heuristic search algorithms operating on these problems.

Keywords: fitness landscapes, complex networks, combinatorial optimization,

local optima, basin of attraction, NK landscapes, Quadratic Assignment Problem

1 Introduction

The fitness landscape metaphor appears most commonly when describing the dynam-

ics of evolutionary algorithms, and its origins are attributed to the population geneticist

Sewall Wright [50]. However, the metaphor can be used for computational search in

general; the search space can be regarded as a spacial structure where each point (can-

didate solution) has a height (objective function value) forming a landscape surface. In

this scenario, the search process would be an adaptive-walk over a landscape that can

range from having many peaks of high fitness boarding deep cliffs to valleys of low

fitness, to being smooth, with low hills and gentle valleys.

Identifying the landscape features affecting the effectiveness of heuristic search al-

gorithms is relevant for both predicting their performance and improving their design.

Some properties of landscapes that are known to have a strong influence on heuristic

search are the number of local optima or peaks in the landscape, the distribution of the

local optima in the search space, the correlation between fitness values of neighboring

points in the landscape, the topology of the basins of attraction of the local optima, and

the presence of neutrality (different search points having the same objective value). Sta-

tistical methods have been proposed to measure some of these properties, for example,
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fitness-distance correlation [19], distributions of solutions density [37], landscape cor-

relation functions [47], and the negative slope coefficient [42]. These metrics work by

sampling the landscape surface to provide an approximation of its shape. An alternative

view, first introduced in chemical physics in the study of energy landscapes [39], is to

construct a network formed by the landscape local optima (minima or maxima). In this

view of energy surfaces, the network’s vertices are energy minima and there is an edge

between two minima if the system can jump from one to the other with an energy cost

of the order of the thermal energies. Usually this “transition state” goes through a low

energy barrier such as a saddle point in the surface. The resulting graph has been re-

ferred to as inherent network. Recent work by Doye and coworkers and by Caflish and

coworkers [13, 14, 34] has shown the benefits of this approach: it provides a synthetic

view of the energy landscape and the network can be studied using appropriate statis-

tical methods to characterize it in various ways [30]. For example, Doye et al. [13, 14]

found that the inherent networks of the energy landscapes of small atomic clusters are

often of the scale-free type with a power-law degree distribution function, featuring a

kind of single or multiple “funnel” structure. The global energy minimum is the most

highly connected node at the bottom of the funnel. This means that the path to the global

energy minimum is easy to follow starting anywhere in the energy landscape. The con-

cept of community structure of a network, introduced first for social networks [30], has

also been applied, showing that in some cases energy minima split into almost separate

groups or communities [27]. This effect is even more spectacular for polypeptides [17].

This kind of information is invaluable for understanding the dynamics induced on the

energy landscape such as cluster rearrangements or protein folding.

The local optima networks fitness landscape model, described in this chapter, adapts

the notion of the inherent network of energy surfaces to the realm of combinatorial (dis-

crete) search spaces. As for energy surfaces (which exist in continuous space), the ver-

tices correspond to solutions that are minima or maxima of the associated combinatorial

problem, but edges are defined differently. The combinatorial counterpart considers ori-

ented and weighted edges. In a first version, the weights represent an approximation to

the probability of transition between the respective basins in a given direction [32, 33,

41, 44, 45]. This definition, although informative, produced densely connected networks

and required exhaustive sampling of the basins of attraction. A second version, escape

edges was proposed in [43], which does not require a full computation of the basins.

Instead, these edges account for the chances of escaping a local optimum after a con-

trolled mutation (e.g. 1 or 2 bit-flips in binary space) followed by hill-climbing. As a

first benchmark case in the study of local optima networks, the well studied family of

abstract landscapes, the Kauffman’s NK model, was selected [20, 21]. In this model the

ruggedness, and hence the difficulty of the landscape, can be tuned from easy to hard.

Two NK models incorporating neutrality (i.e. extended regions of equal or quasi-equal

fitness) were considered: the NKp (‘probabilistic’ NK) [3], and NKq (‘quantized’

NK) [29] families. Subsequently, a more complex and realistic search space was stud-

ied. Specifically, the quadratic assignment problem (QAP) introduced by Koopmans

and Beckmann [24], which is known to be NP-hard [38].

The local optima network model captures in detail the number and distribution of

local optima in the search space; features which are known to be of utmost importance
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for understanding the search difficulty of the corresponding landscape. This understand-

ing may be exploited when designing efficient search algorithms. For example, it has

been observed in many combinatorial landscapes that local optima are not randomly

distributed, rather they tend to be clustered in a “central massif” (or “big valley” if we

are minimizing). This globally convex landscape structure has been observed in the NK
family of landscapes [20, 21], and in many combinatorial optimization problems, such

as the traveling salesman problem [6], graph bipartitioning [28], and flowshop schedul-

ing [35]. Search algorithms exploiting this global structure have been proposed [6, 35].

For the travelling salesman problem, the big-valley structure holds in much of the search

space. However, it has been recently found that the big-valley structure disappears, giv-

ing rise to multiple funnels, around local optima that are very close to the global opti-

mum [18]. A specialized crossover operator has been proposed to exploit and overcome

this multi-funnel structure [49].

The analysis of local optima networks so far has shown interesting correlations be-

tween network features and known search difficulty on the studied combinatorial prob-

lems. This chapter overviews the conception and analysis of local optima networks. A

brief account of the science of complex networks is given before describing the combi-

natorial landscapes, relevant definitions and methods employed. A summary of the most

relevant results of the analysis is presented, and finally, the prospects of this research

effort are discussed.

2 The Science of Complex Networks

The last few years have seen an increased interest in the structure of the big networks

that form part of our daily environment such as the World Wide Web, the Internet, trans-

portation and electrical power networks, web-based social networks such as Facebook,

and many others. These networks have properties that are unparalleled in simple graphs

such as lattices, properties that are akin to those of complex systems in general. In these

systems, it is difficult or even impossible to infer global behaviors given the rules that

are obeyed by the system components and their interactions. For this reason, these big

networks are called complex networks and their structure gives rise to a wide range of

dynamical behaviors. Since this chapter draws heavily on complex network nomencla-

ture and methods, to make it self-contained to a large extent, we give a brief introduction

to the field. There exist many references on complex networks: a technical but still very

readable introductory book is [12], while [31] is a comprehensive reference.

Mathematically, networks are just graphs G(V,E) where V is the set of vertices and

E is the set of edges that join pairs of vertices. A complex network class that enjoys a

precise mathematical description is random graphs which are introduced below. Ran-

dom graphs are a useful abstraction that can sometimes be used to model real networks

or, at least, to compare with actual complex networks.

2.1 Random Graphs

The random-graph model was formally defined by Erdös and Rényi at the end of the

1950s. In its simplest form, the model consists of N vertices joined by edges that are
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placed between pairs of vertices uniformly at random. In other words, each of the pos-

sible N(N −1)/2 edges is present with probability p and absent with probability 1−p.

The model is often referred to as GN,p to point out that, rigorously speaking, there is

no such thing as a random graph, but rather an ensemble GN,p of equiprobable graphs.

Another closely related model of a random graph considers the family of graphs

GN,M with N vertices and exactly M edges. For 0 ≤ M ≤
(

N
2

)

, there are s =
(

N(N−1)/2
M

)

graphs with M edges. If the probability of selecting any one of them is 1/s,

then the ensemble GN,M is called the family of uniform random graphs. For M ≃ pN ,

the two models are very similar, but we shall use GN,p in what follows.

A few simple facts are worth noting about random graphs. The average degree k̄ of

a graph G is the average of all the vertex degrees in G: k̄ = (1/N)
∑N

j=1 kj , where kj
is the degree of vertex j. If |E| = M is the number of edges in G, then M = (Nk̄)/2,

since
∑N

j=1 kj = 2M (each edge is counted twice).

The expected number of edges of a random graph belonging to GN,p is clearly

(1/2)N(N − 1)p, but since each edge has two ends, the average number of edge ends

is N(N − 1)p, which in turn means that the average degree of a vertex in a random

graph is

k̄ =
N(N − 1)p

N
= (N − 1)p ≃ Np (1)

for sufficiently large N .

An important property of a connected random graph is that the average path length,

i.e the mean distance between nodes, is of the order of logN , which means that any two

nodes are only a short distance apart since logN grows very slowly with increasing N .

2.2 Other Network Topologies

Random graphs are interesting objects as they obey, in a probabilistic sense, general

mathematical properties. They are also a useful model for generating problem instances

for testing network algorithms, and they are used in other ways too. But are random

graphs a useful model of the networks that permeate society? Actually, social scientists

felt qualitatively as early as the 1950s that social and professional links and acquain-

tances did not follow a random structure. For example, if a person has some relationship

with two others, then the latter two are more likely to know each other than are two arbi-

trary persons. This does not fit the random-graph model, however, where the likelihood

that two given nodes are connected is the same independent of any other considera-

tion. In a ground-breaking paper, Watts and Strogatz [46] proposed a simple network

construction algorithm that gives rise to graphs having the following properties: the

path length from any node to any other node is short, as in random graphs; but, unlike

random graphs, there is local structure in the network. Watts and Strogatz called their

networks small-world networks, a term that has been in use for a long time in the field

of social games to indicate that there is a small separation between any two persons in

a large social network.

The discovery of these new properties was made possible by the abundance of online

network data and the computer power to analyze these data; something that was not
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available to social scientists at earlier times. Many networks have been studied since,

both man-made and natural: the Internet, the World Wide Web, scientific collaboration

and coauthorship networks, metabolic and neural networks, air traffic, telephone calls,

e-mail exchanges, and many others [31]. Most of these studies have confirmed that,

indeed, real networks are not random in the sense of random-graph theory, and they

possess a number of quite interesting properties.

Some definitions of global and local network properties that will be used in the rest

of the chapter are described below.

2.3 Some Graph Statistics

Drawing and visualizing a network with up to a few tens of nodes may help in un-

derstanding its structure. However, when there are thousands of nodes, this is no longer

possible. For this reason, a number of statistics have been proposed to describe the main

features of a graph. Taken together, these statistics characterize the nature of a network.

Four statistics are particularly useful: the average degree, already defined in Sect.

2.1, the clustering coefficient, the average path length, and the degree distribution func-

tion. We shall now briefly describe these graph measures. A fuller treatment can be

found in [31].

Clustering Coefficient. Here we use the following definition of clustering: consider a

particular node j in a graph, and let us assume that it has degree k, i.e. it has k edges

connecting it to its k neighboring nodes. If all k vertices in the neighborhood were

completely connected to each other, forming a clique, then the number of edges would

be equal to
(

k
2

)

. The clustering coefficient Cj of node j is defined as the ratio between

the e edges that actually exist between the k neighbors and the number of possible edges

between these nodes

Cj =
e
(

k
2

) =
2e

k(k − 1)
(2)

Thus Cj is a measure of the “cliquishness” of a neighborhood: the higher the value

of Cj , the more likely it is that two vertices that are adjacent to a third one are also

neighbors of each other.

For example, in Fig. 1, the leftmost case has Cj = 0 since none of the links between

node j’s neighbors is present. In the middle figure, three out of the possible six links

are present and thus Cj = (2× 3)/(4× 3) = 6/12 = 0.5, while in the rightmost case

Cj = 1 since all six links between j’s neighbors are present.

The average clustering coefficient C̄ is the average of Ci over all N vertices i ∈
V (G): C̄ = (1/N)

∑N
i=1 Ci. The clustering coefficient of a graph G thus expresses the

degree of locality of the connections.

The clustering coefficient of a random graph is simply k̄/N ≃ p = C̄, where N

is the total number of vertices and p is the probability that there is an edge between

any two vertices since all edges are equiprobable and uncorrelated. One thus sees that

the clustering coefficient of a random graph decreases with the graph size N and ap-

proaches 0 for N → ∞. The clustering coefficient of a complete graph is 1, since each

of a node’s neighbors are connected to each other by definition.



6

j

Cj=0

j

Cj=0.5

j

Cj=1

Fig. 1. In the left image the clustering coefficient of node j, Cj = 0 since there are no links

among j’s neighbors. In the middle image Cj = 0.5 because three out of the possible six edges

among the neighbors of j are present. In the right image Cj = 1 as all the edges that could be

there are actually present (it is a clique).

Average Path Length. The distance between two nodes i and j is defined as the number

of edges between i and j. We denote the shortest path between nodes i, j ∈ V (G) by

lij as being the path with the shortest distance. The average, or mean, path length L̄ of

G is then defined as

L̄ =
2

N(N − 1)

N
∑

i=1

∑

j>i

lij (3)

The normalizing constant 2/N(N − 1) is the inverse of the total number of pairs of

vertices. If there is no path between any two nodes, their distance is conventionally set

to ∞ (note that Eq. 3 does not hold in this case).

The mean path length gives an idea of “how long” it takes to navigate a connected

network. Random graphs and small-world networks share the property that L̄ scales as

logN and thus most vertices in these networks are connected by a short path. This is not

the case in d-dimensional regular lattice graphs, where L̄ scales as N1/d. For instance,

in a ring L̄ scales linearly with N and is inversely proportional to k, the number of

neighbors.

Degree Distribution Function. The degree distribution P (k) of an undirected graph G
is a function that gives the probability that a randomly selected vertex has degree k.

P (k) can also be seen as the fraction of vertices in the graph that have degree k. Similar

definitions also apply for the in-links and out-links of the vertices in a directed graph

for which one can define a degree distribution function for both the outgoing Pout(k)
and the the incoming Pin(k) links.

For a random graph with connection probability p, the probability P (k) that a ran-

dom node has degree k is given by

P (k) =

(

N − 1

k

)

pk(1− p)N−1−k (4)
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This is the number of ways in which k edges can be selected from a certain node

out of the N − 1 possible edges, given that the edges can be chosen independently of

each other and have the same probability p. Thus P (k) is a binomial distribution peaked

at P (k̄) ≃ Np, as already found in Equation (1). Since this distribution has a rapidly

diminishing tail, most nodes will have similar degrees. Low- and high-degree nodes,

say a few standard deviations away from the mean, have a negligible probability, since

the tails fall off very rapidly. Networks having this degree distribution will thus be rather

homogeneous as far as the connectivity is concerned. For large N and for pN constant,

the binomial distribution can be well approximated by the Poisson distribution of mean

k̄ = Np:

P (k) = e−k̄ k̄k

k!
(5)

Another rapidly-decaying degree distribution function that appears in model graphs is

the exponential distribution:

P (k) ∝ e−k/k̄ (6)

This degree distribution results when nodes are progressively added to a growing net-

work such that a new node has the same probability of forming a link with any of the

already existing nodes. Most real networks, however, do not show this kind of behav-

ior. Instead, the so called scale-free networks, a model of which was first proposed by

Barabásis and Albert [2], seem to be closer to real life networks. In these networks,

P (k) follows a power-law distribution:

P (k) = c k−γ , (7)

where c and γ are positive constants.

In scale-free networks, while most nodes have a low degree, there is a small but non-

negligible number of highly connected nodes. This structure has a profound influence

on the dynamics of processes taking place on those networks. It is worth mentioning

that this model has been recently criticized [8] as it turns out that, upon close inspection,

many empirical data-sets in the literature that were previously assumed to have a power-

low distribution are better modeled by alternative distributions.

Poisson, exponential, and power-law distributions are characteristic of model ran-

dom and scale-free graphs respectively. The empirical distribution functions found for

real-life graphs are seldom of this type though, because it is almost impossible to find

such “pure” networks among finite sampled ones. However, most real networks have

degree distributions that are fat-tailed, i.e. the right part of the distribution extends

to regions that would have negligible probability for a Poisson distribution; in other

words, nodes with high degree exist with non-negligible probability. Two distributions

that have been useful to fit real data are the power-law with exponential cutoff and the

stretched exponential. Both forms take into account that in a finite network there must

be a maximum finite degree. As an example, the following is an exponentially-truncated

power-law:

P (k) ∝ k−γ exp(−k/kc), (8)
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where kc is a “critical connectivity”. When k approaches kc the exponential term tends

to 0 and P (k) decreases faster than a power-law due to the exponential cutoff.

To conclude, we can say that the degree distribution function, together with the other

statistics, are a kind of rough “signature” of the type of network and can be helpful in

predicting the main aspects of the properties of the network. The reader should be aware

that there are other measures beyond those described here, such as those that say which

are the most “central” actors. Likewise, the picture has been one of static networks: their

dynamical properties, have been neglected here. A good source for advanced material

is [31].

2.4 Weighted Networks

Weighted networks are a useful extension of the network model. Weights w(e) are

assigned to edges e ∈ E and could represent, for instance, the bandwidth of a com-

munication line, the number of passengers transported on a given air route, the dis-

tance between two metro stations, and many other real-life aspects of networks. Here,

weights will represent transition probabilities among optima and their basins in fitness

landscapes. We denote wij as the transition probability between local optima i and j,

which in our model is generally different than the transition from j to i, denoted by wji

(see Section 4.2 for more details).

Statistics for weighted networks are more or less straightforward extensions of those

used for unweighted networks. Those that will be used in the rest of the chapter are

briefly outlined below. The reader is refereed to [4] for more details.

Suitable distribution functions can also be defined for weighted networks. For ex-

ample, it can be of interest to know the function P (we) which indicates the frequency

of weight w among the edges e in a given weighted network. Since our networks are

directed, we use Pin(we) and Pout(we) which give the probability that any given edge

e has incoming or outgoing weight w.

Strength. The vertex strength, si, is defined as si =
∑

j∈V(i)−{i} wij , where the sum is

over the set V(i)−{i} of neighbors of vertex i. This metric is, therefore, a generalization

of the node’s degree giving information about the number and importance of the edges.

Weighted Clustering Coefficient. The standard clustering coefficient (described in Sec-

tion 2.3) does not consider weighted edges. We thus use the weighted clustering mea-

sure proposed by [4], which combines the topological information with the weight dis-

tribution of the network:

cw(i) =
1

si(ki − 1)

∑

j,h

wij + wih

2
aijajhahi

where si is the vertex strength, si =
∑

j∈V(i)−{i} wij , anm = 1 if wnm > 0, anm = 0

if wnm = 0 and ki =
∑

j 6=i aij .

This metric cw(i) counts, for each triple formed in the neighborhood of vertex i
(indicated in the equation by aijajhahi), the weight of the two participating edges of

vertex i. The normalization factor si(ki − 1), ensures that the metric is in the range
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[0, 1]. It is customary to define Cw as the weighted clustering coefficient averaged over

all vertices of the network.

Disparity. The disparity measure Y2(i), gauges the heterogeneity of the contributions

of the edges of node i to the total weight (strength):

Y2(i) =
∑

j 6=i

(

wij

si

)2

Shortest Paths. For weighted graphs, computing the shortest paths depends on the

meaning of the edge weights. For example, if the weight represents e.g. a frequency

of interaction, an electrical load, the number of passengers transported or a probability

of transition, then the higher the weight, the “nearer” the two end points. In this case the

path length between any two connected vertices is taken as the sum of the reciprocal of

the weights
∑

1/wij where the sum is over all edges {ij} traversed along the path from

the start node to the end node. On the other hand, if weights represent “costs” of some

kind and the aim is to have low total cost, then the length is simply the sum of the costs

of all edges along the path and the minimal length is that of the path with minimum

cost.

In the local optima network model, we measure the shortest distance between two

nodes as the expected number of operator moves to go from one node to the other. Given

that the transition probability between two nodes i and j is given by wij , we calculate

the distance between them as dij = 1/wij . The length of a path between two arbitrary

connected nodes is, therefore, the sum of these distances along the edges connecting

them. The average path length of the whole network is the average value of all the

possible shortest paths.

2.5 Community Structure in Networks

A last theme in this section that we want to treat briefly is the “intermediate” structure

of large networks since it will play a role in the following and is an important feature

of complex networks. Model networks grown according to the Barabási–Albert recipe

[2] or randomly generated have little structure in the sense that there are few or no

recognizable sub-networks. That is, if one looks at a picture of the network it appears

to be rather homogeneous on a global scale.

On the contrary, many observed networks, especially those arising from social inter-

actions, show the presence of clusters of nodes. These clusters are called communities.

It is difficult, if not impossible, to give a precise and unique mathematical definition of

a community. An intuitive definition of a community is the following: nodes belonging

to a community are more strongly associated with each other than they are with the

rest of the network. In other words, the intra-community connectivity is higher than the

inter-community connectivity. Of course, the definition is somewhat circular but in the

last few years several algorithms have been proposed for community detection. Since

this task is a hard computational problem, machine learning algorithms and heuristics

have been used and in practice these work satisfactorily.
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3 Example Combinatorial Landscapes

3.1 The NK model

The idea of an NK landscape is to have N “spins“or “loci”, each with two possible

values, 0 or 1. The model is a real stochastic function Φ defined on binary strings s ∈
{0, 1}N of length N , Φ : s → R+. The value of K determines how many other gene

values in the string influence a given gene si, i = 1, . . . , N . The value of Φ is the

average of the contributions φi of all the loci:

Φ(s) =
1

N

N
∑

i=1

φi(si, si1 , . . . , siK )

By increasing the value of K from 0 to N − 1, NK landscapes can be tuned from

smooth to rugged. For K = 0 all contributions can be optimized independently which

makes Φ a simple additive function with a single maximum. At the other extreme, when

K = N − 1, the landscape becomes completely random. The probability of any given

configuration being the optimum is 1/(N+1), and the expected number of local optima

is 2N/(N + 1). Intermediate values of K interpolate between these two extremes and

have a variable degree of “epistasis”, i.e. of gene interaction [21, 22, 25].

The K variables that form the context of the fitness contribution of gene si can

be chosen according to different models. The two most widely studied models are the

random neighborhood model, where the K variables are chosen randomly according

to a uniform distribution among the N − 1 variables other than si, and the adjacent

neighborhood model, in which the K variables are closest to si in a total ordering

s1, s2, . . . , sN (using periodic boundaries). No significant differences between the two

models were found in terms of global properties of the respective families of landscapes,

such as mean number of local optima or autocorrelation length [48, 21]. Similarly, our

preliminary studies on the characteristics of the NK landscape optima networks did

not show noticeable differences between the two neighborhood models. Therefore, the

study in this chapter considers the more general random model.

3.2 The Quadratic Assignment Problem

The Quadratic Assignment Problem (QAP) is a combinatorial problem in which a set of

facilities with given flows has to be assigned to a set of locations with given distances in

such a way that the sum of the product of flows and distances is minimized. A solution

to the QAP is generally written as a permutation π of the set {1, 2, ..., n}. The cost

associated with a permutation π is given by:

C(π) =

n
∑

i=1

n
∑

j=1

aijbπiπj

where n denotes the number of facilities/locations and A = {aij} and B = {bij} are

referred to as the distance and flow matrices, respectively. The structure of these two

matrices characterizes the class of instances of the QAP problem.
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The results presented in this chapter are based on two instance generators proposed

in [23]. These generators were originally devised for the multi-objective QAP, but were

adapted for the single-objective QAP and used for the local optima network analysis in

[9, 10]. In order to perform a statistical analysis of the extracted local optima networks,

several problem instances of the two different problem classes were considered. The

first generator produces uniformly random instances where all flows and distances are

integers sampled from uniform distributions. This leads to the kind of problem known

in literature as Tainna, being nn the problem dimension [40]. The second generator

produces flow entries that are non-uniform random values. This procedure, detailed

in [23] generates random instances of type Tainnb which have the so called “real-

like” structure since they resemble the structure of QAP problems found in practical

applications.

4 The Local Optima Network Model

This section formally describes the the local optima network model of combinatorial

landscapes. We start by defining the notion of fitness landscapes, and follow by formal-

izing the notions of nodes and edges of the network model.

A fitness landscape [36] is a triplet (S, V, f) where S is a set of potential solutions

i.e. a search space; V : S −→ 2S , a neighborhood structure, is a function that assigns

to every s ∈ S a set of neighbors V (s), and f : S −→ R is a fitness function that can

be pictured as the height of the corresponding solutions.

Local optima networks have been analyzed for the two combinatorial landscapes

discussed in section 3. Therefore, two search spaces or solution representations have

been studied: binary strings (NK landscapes) and permutations (QAP). For each case,

the most basic neighborhood structure is considered, as described in Table 1. The single

bit-flip operation changes a single bit in a given binary string, whereas the pairwise

exchange operation exchanges any two positions in a permutation, thus transforming it

into another permutation.

Table 1. Search space and neighborhood structure characteristics.

Representation Length Search space size Neighborhood Neighborhood size

Binary N 2N single bit-flip N
Permutation N N ! pairwise exchange N(N − 1)/2

4.1 Definition of Nodes

We start by describing the HillClimbing algorithm (Algorithm 1) used to determine

the local optima, and therefore define the basins of attraction. The algorithm defines a

mapping from the search space S to the set of locally optimal solutions S∗. Hill climb-

ing algorithms differ in their so-called pivot or selection rule. In best-improvement local
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Algorithm 1: Best-improvement local search (hill-climbing).

Choose initial solution s ∈ S
repeat

choose s
′

∈ V (s), such that f(s
′

) = maxx∈V (s)f(x)

if f(s) < f(s
′

) then

s← s
′

end if

until s is a Local optimum

search, the entire neighborhood is explored and the best solution is returned, whereas in

first-improvement, a neighbor is selected uniformly at random and is accepted if it im-

proves on the current fitness value. We consider here a best-improvement local search

heuristic (see Algorithm 1). For a comparison between first and best-improvement local

optima network models, the reader is referred to [33].

This best-improvement local search (or hill-climbing) algorithm is used to deter-

mine the local optima. The neighborhoods used for each of the studied representation

can be seen in Table 1. These local optima will represent the nodes of the network as

discussed below.

Nodes. A local optimum (LO), which is taken to be a maximum here, is a solution s∗

such that ∀s ∈ V (s), f(s) ≤ f(s∗).
Let us denote by h(s) the stochastic operator that associates each solution s to

its local optimum, i.e. the solution obtained after applying the best-improvement hill-

climbing algorithm (see Algorithm 1) until convergence. The size of the landscape is

finite, so we can denote by LO1, LO2, LO3 . . . , LOp, the local optima. These LOs are

the vertices of the local optima network.

4.2 Definition of Edges

Two edge models have been considered: basin-transition and escape edges.

Basin-transition edges. The basin of attraction of a local optimum LOi ∈ S is the set

bi = {s ∈ S | h(s) = LOi}. The size of the basin of attraction of a local optimum i is

the cardinality of bi, denoted ♯bi. Notice that for non-neutral4 fitness landscapes, as are

standard NK landscapes, the basins of attraction as defined above produce a partition

of the configuration space S. Therefore, S = ∪i∈S∗bi and ∀i ∈ S ∀j 6= i, bi ∩ bj = ∅.

We can now define the weight of an edge that connects two feasible solutions in the

fitness landscape.

For each pair of solutions s and s
′

, p(s → s
′

) is the probability to pass from s to s
′

with the given neighborhood structure. These probabilities are given below for the two

solution representations studied (see Table 1), with length N or size N and considering

uniform selection of random neighbors.

4 For a definition of basins that deals with neutrality, the reader is referred to [45].
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Binary representation:

if s
′

∈ V (s) , p(s → s
′

) = 1
N and

if s
′

6∈ V (s) , p(s → s
′

) = 0.

Permutation representation:

if s
′

∈ V (s) , p(s → s
′

) = 1
N(N−1)/2 and

if s
′

6∈ V (s) , p(s → s
′

) = 0.

The probability ( p(s → bj) ≤ 1) to go from solution s ∈ S to a solution belonging to

the basin bj , is:

p(s → bj) =
∑

s′∈bj

p(s → s
′

)

Thus, the total probability of going from basin bi to basin bj , i.e. the weight wij of edge

eij , is the average over all s ∈ bi of the transition probabilities to solutions s
′

∈ bj :

p(bi → bj) =
1

♯bi

∑

s∈bi

p(s → bj)

Escape edges. The escape edges are defined according to a distance function d (min-

imal number of moves between two solutions), and a positive integer D > 0. There

is an edge eij between LOi and LOj if a solution s exists such that d(s, LOi) ≤ D
and s h(s) = LOj . The weight wij of this edge is wij = ♯{s ∈ S | d(s, LOi) ≤
D and h(s) = LOj}. This weight can be normalized by the number of solutions,

♯{s ∈ S | d(s, LOi) ≤ D}, within reach at distance D.

4.3 Local optima network

The weighted local optima network Gw = (N,E) is the graph where the nodes ni ∈ N
are the local optima, and there is an edge eij ∈ E, with weight wij , between two nodes

ni and nj if wij > 0.

According to both definitions of edge weights, wij may be different than wji. Thus,

two weights are needed in general, and we have an oriented transition graph.

Figures 2 and 3 illustrate the alternative local optima network (LON) models. All

figures correspond to a real NK landscape with N = 18, K = 2. Figure 2 illustrates the

basin-transition edges, while Figure 3 the escape edges with D = 1 (left) and D = 2
(right). Notice that the basin-transition edges (Figure 2) produce a densely connected

network, while the escape edges (Figure 3) produce more sparse networks.

5 Results of the Network Analysis

The purpose of this section is to give an overview of the main results of the analysis of

local optima networks for the two example combinatorial landscapes: NK landscapes

(Section 5.1) and the Quadratic Assignment Problem (Section 5.2). For each example,

the empirical set up and instances analyzed are discussed. The values obtained from the

study of basins of attraction, general network metrics and connectivity, are reported and

discussed.
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Fig. 2. Local optima network with basin-transition edges for an NK-landscape instance with N

= 18, K = 2. The size of the nodes is proportional to the basin sizes. The nodes’ color represent

the fitness values: the darker the color, the highest the fitness value. The edges’ width scales with

the transition probability (weight) between local optima.

5.1 The NK model

For the NK model, the two definitions of edges, i.e. basin-transition and escape edges

(section 4.2), are considered. Moreover, an initial study correlating network metrics

with search difficulty is also presented.

Results are presented for landscapes with N = 18 and varied values of K (K ∈
{2, 4, 6, 8, 10, 12, 14, 16, 17}. N = 18 represents the largest size for which an exhaus-

tive sample of the configuration space was computationally feasible in our implementa-

tion. Metrics are generally calculated as averages of 30 independent instances for each

K value.

Basins of attraction. We start by analyzing the structure of the basins of attraction,

namely, their size, shape and fitness of the corresponding local optima. These features

are independent of the network edge definition. They are, however, relevant as the time

complexity of local search heuristics is known to be linked to the size and spreading of

attraction basins [16].

The distribution of basin sizes for given N and K values is not uniform; instead it

follows a right-skewed distribution with a faster-than-exponential decay (see Figure 4,



15
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Fig. 3. Local optima network with escape edges (with D = 1 and D = 2) for an NK-landscape

instance with N = 18, K = 2. Since this model does not require the calculation of the basins

sizes, these are not depicted in the plots. The nodes’ color represent the fitness values: the darker

the color, the highest the fitness value. The edges’ width scales with the transition probability

(weight) between local optima.

left, with semi-logarithmic scale). With increasing ruggedness (K values), the distribu-

tion shifts to the left and decays faster. This suggest that as the landscape ruggedness

increases, the basin sizes decrease. In particular, with increasing ruggedness, the de-

crease of the relative size of global optimum basin is approximately exponential (Fig. 4,

Right).

With respect to the fitness of local optima and the size of their basins, a strong

positive correlation was observed. Surprisingly, the average Spearman correlation coef-

ficient is above 0.8 for all K values. Figure 5 (left) provides an example for N = 18,

K = 8. This is an encouraging feature suggesting that local optima with high fitness

should be easier to locate by hill-climbing. NK landscapes can thus be imagined as

mountain ranges where wider mountain basins belong to higher peaks. But intuitions

can be misleading, a striking finding is that these mountains are hollow; for all the ob-

served instances, the average size of the basin interior is always less than 1% of the size

of the basin itself. In other words, most solutions sit on the basin frontier and neighbor-

ing basins are richly interconnected [41].

General network features. Table 2 reports some general features for the two network

models: basin-transition edges and escape edges (with distances (D = {1, 2}); specif-

ically, the number of nodes (which is independent of the edges model), the relative

number or density of edges, and the average path length to the global optimum, where

the distance between two nodes i and j is given by 1/wij .
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Fig. 4. Size of the basins of attraction for NK Landscapes. Left: cumulative distribution of basin

sizes for landscapes with N = 18, and selected values of K. Right: average normalized size of the

basin of the global optimum. Averages (points) and standard deviation (bars) refer to 30 instances

for each K value.
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its strength, i.e. the sum of the weights of its incoming transitions. Averages (points) and 0.95
confidence intervals (bars) are estimated by a t-test over 30 instances.

The number of local optima (Table 2, 2nd column) rapidly increases with the value

of K (1st column). Escape edges produce much less dense networks (3rd, 4th, and 5th

columns), which confirms the visual inspection of Figures 2 and 3. For all the models,

the density of edges decreases, whereas the path length to the global optimum (6th,7th,

and 8th columns) increases with increasing values of K. Since a low density of edges

and a long path length to the optimum would hinder heuristic search, these observations

confirm that the network metrics capture the search difficulty associated with increasing

landscape ruggedness. These findings also suggest that the two models of edges are

consistent, which is encouraging as calculating the escape-edges is less computationally

expensive.

A study of the network’s local connectivity shows differences between the two edge

models. As Fig. 6 (left) shows, the basin-transition edges produce networks with higher
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Table 2. General network features for NK landscapes. K = epistasis value of the corresponding

NK landscape (N = 18); Nv = number of vertices; Dedge = density of edges (Ne/(Nv)
2
×

100%); Lopt = average shortest path to reach the global optimum (dij = 1/wij). Values are

averages over 30 random instances, standard deviations are shown as subscripts.

K
Nv Dedge (%) Lopt

all Basin-trans. Esc.D1 Esc.D2 Basin-trans. Esc.D1 Esc.D2

2 43.027.7 74.18213.128 8.2984.716 22.7509.301 21.28.0 16.84.7 33.514.1
4 220.639.1 54.0614.413 1.4630.231 7.0660.810 41.710.5 19.25.1 53.712.4
6 748.470.2 26.3431.963 0.4690.047 3.4660.279 80.019.1 22.23.9 66.712.9
8 1668.873.5 12.7090.512 0.2280.009 2.2010.066 110.113.8 24.04.9 76.69.1
10 3147.6109.9 6.2690.244 0.1320.004 1.5310.036 152.819.3 27.35.0 90.78.4
12 5270.3103.9 3.2400.079 0.0880.001 1.1150.015 185.123.8 30.36.7 108.312.3
14 8099.6121.1 1.7740.035 0.0640.001 0.8380.009 200.216.0 38.99.6 124.78.6
16 11688.1101.3 1.0300.013 0.0510.000 0.6470.004 211.815.0 47.911.4 146.211.2
17 13801.074.1 0.8010.007 0.0470.000 0.5740.002 214.317.5 55.712.5 155.912.2

out degree (i.e. number of transitions leaving a node). Clustering coefficients are also

higher in this case (they are indeed higher than those of a random graph), which is

probably due to the higher density of basin-transition edges (Fig. 6, right). There is,

however, a common decreasing trend for all models in this metric with increasing K,

as seen in Fig. 6, right. The varying difference between the two models might lie in

the size of the basins of attraction. For low K values, large basins produce high edge

density and thus high clustering coefficients in the basin-transition model; whereas for

large values of K, basins are so small that the two models show a similar structure. The

escape-edges reproduce the basin topology.
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Fig. 6. Local connectivity for NK landscapes. Left: Average out-degree. Right: Average clus-

tering coefficient. Averages (points) and 0.95 confidence intervals (bars) are estimated by a t-test

over 30 random instances with N = 18.



18

Transitions among local optima. Edges weights wij can be interpreted as the expected

number of moves it takes to go from basin bi to basin bj (or from local optimum i to

basin bj in the escape-edge model). For both edge models, the weights of self-loops

(wii) are an order of magnitude higher than wij,j 6=i. Therefore, it is more probable for a

random move to remain in the same basin than to escape from it. Self-loop probabilities

are then correlated with basin sizes, and display a similar exponential decrease with

the landscape ruggedness K. We analyze, therefore, in more detail the weights wij,j 6=i.

Figure 7 (left) shows the cumulative distribution of basin-transition weights for wij,j 6=i

for selected values of K. The curves illustrate that low K values have longer tails,

whereas mid and high K values produce a faster decay. Figure 7 (right), shows the

average weight out-going transition for all edge models and K values. For the escape-

edges model, the out-going weights decrease smoothly, with a slower decrease for D =
1. The trend is different for basin-transition edges where the out-going weights decrease

with increasing ruggedness but only up to K = 6, and then they increase in value.
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Fig. 7. Network transitions for NK landscapes. Left: Cumulative probability distribution of the

network weights wij,j 6=i with basin-transition edges, N = 18, and selected K values. Right:

Average out-going wij values for all edge models and K values. Averages (points) and 0.95
confidence intervals (bars) are estimated by a t-test over 30 landscapes with N = 18.

A relevant question is whether there are preferential directions when leaving a par-

ticular node in the network. Specifically, whether for a given optimum i, all the out-

going weights wij,j 6=i, are equivalent. This can be revealed by the disparity Y2 metric

(discussed in section 2.4), which gauges the heterogeneity of the contributions of the

edges of node i to its total strength si. If a dominant weight does not exist, the value

Y2 ≈ 1/k, were k is the node out-degree. Figure 8 (left) illustrates the relationship

between disparity and out-degree for basin-transition edges and selected K values. The

figure also shows the limit case Y2 ≈ 1/k (labeled as random). For calculating this plot,

the nodes’ disparity values Y2(i) were grouped and averaged by node out-degree. The

curves suggest that there are preferential directions for low values of K. However, with

increasing K, the transition probabilities to leave a given basin appear to become more

uniform (i.e closer to the limit case Y2 = 1/k). Figure 8 (right) shows the disparity

metric for all models and K values. In all cases, disparity values are higher than those
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expected in the limit case (Y2 ≈ 1/k, labeled as random), indicating that preferential

transitions are present. For the basin-transition edges and the escape edges wit D = 2,

disparity values get closer to the limit case of large K values.
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Fig. 8. Weight disparity for outgoing edges in NK landscapes. Left: relationship between dispar-

ity and out-degree for the basin-transition edges, and selected values of K. Right: relationship

between disparity and landscape ruggedness (K) for the two network models. Averages and con-

fidence intervals are estimated on the 30 analyzed instances. Dotted lines (labeled as random)

present the limit case Y2 = 1/k, where k is the node out-going degree.

Search difficulty and network metrics. While the previous sections described relevant

network features, this section explores correlations between these features and the per-

formance of local search heuristics running on the underlying combinatorial optimiza-

tion problem. The ultimate goal is to have predictive models of the performance of spe-

cific search heuristics when solving a given problem instance, and thus select a method

according to this predication.

Daolio et al [11], conducted a first study using iterated local search and the NK
family of landscapes (with escape edges, D = 2). Iterated local search is a relatively

simple but powerful single point heuristic. It alternates between a perturbation stage

and an improvement stage. This search principle has been rediscovered multiple times,

within different research communities and with different names [5]. The term iterated

local search (ILS) was proposed in [26]. Algorithm 2 outlines the procedure.

In our implementation, the LocalSearch stage corresponds to the best-improvement

hill-climber described in section 4 (Algorithm 1), which stops when reaching a local

optimum, and uses the single bit-flip move operator. The Perturbation stage considers a

stronger operator,i.e. 2-bit-flip mutation. A simple greedy acceptance is used (i.e. only

improvement moves are accepted). The search terminates at the global optimum, which

for benchmark problems is known a priori, or when reaching a pre-set limit of fitness

evaluations FEmax.

As the performance criterion, we selected the expected number of function eval-

uations to reach the global optimum (success) after independent restarts. This mea-

sure accounts for both the success rate (ps ∈ (0, 1]) and the convergence speed [1].
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Algorithm 2: Iterated Local Search

s0 ← GenerateInitialSolution;

s∗ ← LocalSearch(s0);
repeat

s′ ← Perturbation(s∗);

s′∗ ← LocalSearch(s
′

);
s∗ ← AcceptanceCriterion(s∗, s′∗);

until termination condition met;

The function evaluations limit was set to 1/5 of the size of the search space, i.e.

FEmax ≃ 5.2 · 104, for binary strings of length N = 18. The success rate ps and

running time of successful runs Ts were estimated on 500 random restarts per instance.

Figure 9 (left), shows the distribution of the expected iterated local search (ILS,

Algorithm 2) running times to success with respect to K. As expected, the running

times increase steadily with increasing K. As an example of the correlations arising

between LON features and the performance of ILS, the right plot in Figure. 9, illustrates

the relationship between the running time and the shortest path length to the global

optimum. A strong positive correlation is observed, suggesting that LON features are

able to capture search difficulty in combinatorial landscapes. Other network metrics

also revealed positive correlations with search performance, namely, the average out-

degree, the average disparity, and the degree of assortativity [11]. A multiple regression

analysis was also conducted using the most significant network metrics. The model

obtained was able to predict about 85% of the variance observed in the expected running

times
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Fig. 9. Performance of ILS on NK landscapes. Left: distribution of the expected running times

to success for different K values. Right: correlation between the expected running times and the

average shortest path to the global optimum. The regression line is dashed. The legend gives the

ratio of variance explained by the regression, R2, and the Pearson correlation coefficient, r, with

the asterisks indicating its significance level.
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5.2 The Quadratic Assignment Problem

This section summarises the main results for the QAP problem. In this case, only the

basin-transition edges are considered. The study of escape-edges will be the subject of

future work. An analysis of the LON communities structure is also presented. This was

not done for the NK landscape as our analysis revealed little cluster structure of local

optima in these more random landscapes. Their search spaces seem isotropic from the

point of view of basin inter-connectivity. An initial study correlating QAP local optima

network metrics with heuristic search performance is reported elsewhere [7].

Two QAP instance classes were considered: real-like and uniform instances as de-

scribed in section 3.2. For the general network analysis, 30 random uniform and 30 ran-

dom real-like instances have been generated for each problem dimension in {5, ..., 10},

and metrics are given as averages of these 30 independent instances. To the specific

purpose of community detection, 200 additional instances have been produced and an-

alyzed with size 9 for the random uniform class, and size 11 for the real-like instances

class. Problem size 11 is the largest permitting an exhaustive sample of the configura-

tion space. Only the basin-transition edges are studied. The escape-edges will be the

subject of future work.

Basins of attraction. Figure 10 (left) shows the size of the global optimum basin of

attraction (normalized by the whole search space size). This value decreases expo-

nentially with the problem size for both instance classes. The real-like instances have

larger global optimum basins, which can be explained by their smaller local optima

networks (as discussed below). The relative size of the global optimum basin is related

to the probability of finding the best solution with a local search algorithm from a ran-

dom starting point. The exponential decrease confirms that the larger the problem, the

smaller the probability for a local search algorithm to locate the global optimum. The

separation between the curves in fig. 10 (left) is consistent with recent empirical results

indicating that real-like instances are easier to solve than uniform instances for heuristic

search algorithms such as simulated annealing and genetic algorithms [7].

Figure 10 (right), shows the correlation between the fitness value of a local optimum

and the size of its basin of attraction. As with the NK landscape, there is a strong

positive correlation between the fitness of a local optimum and the size of its basin. This

is an encouraging feature suggesting that local optima with high fitness should be easier

to locate by stochastic local search. The correlation coefficients are generally higher for

the uniform instances, which also show noticeably lower variance. More details about

QAP basins of attraction and network features can be found in [10].

General network features. Table 3 reports relevant features for the two classes of QAP

instances and problem sizes from 5 to 10; specifically, the number of vertices (Nv),

the density of edges (Dedge = Ne/(Nv)
2), the weighted clustering coefficient (Cw)

and the disparity in out-going transitions (Y2). The number of local optima grows ex-

ponentially with the problem dimension for both instance classes. For a given problem

size, however, real-like instances produce much smaller networks, i.e. they have signif-

icantly fewer local optima. The size difference between the two instance classes also

grows almost exponentially with the problem dimension. This is again consistent with
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Fig. 10. Basins of attraction in QAP instances. Left: Normalized size of the basin of the global

optimum. Right: Pearson correlation coefficient between the fitness value of an optimum and the

logarithmic size of its basin. Averages (points) and 0.95 confidence intervals (bars) are estimated

with a t-test over 30 instances for each combination of problem class and size.

the empirical studies indicating that real-like instances are easier to solve by common

metaheuristics [7].

The QAP networks are notably dense, with density of edges close to one (Table 3,

Dedge), much more dense than than those of the NK landscapes which operate on

binary spaces. This is not surprising as the neighborhood size is larger for permuta-

tion search spaces (see Table 1). Local optima networks are almost complete graphs

for QAP. Moreover, the average weighted clustering coefficient Cw is higher than what

would be expected from network density alone, indicating that the interconnected triples

are more likely formed by edges with larger weight. The studied QAP instances show

very high local connectivity. The clustering coefficient decreases with the problem di-

mension and is higher for real-like instances.

The last row in Table 3 reports the disparity coefficient in out-going transitions for

both classes with respect to the problem dimension. High diversity indicates preferential

transitions. The decreasing trend reflects that, with increasing problem size, the out-

going transition to neighbouring optima tend to become equally probable. This trend is

more evident for uniform instances whose LONs have higher cardinality.

Path lengths. Figure 11 (left )displays the average shortest path length between optima

and the average shortest path length to the global optimum. Both metrics clearly in-

crease with problem size. Values are noticeably higher for the uniform instances, which

have a larger number of local optima than the real-like instances for the same problem

dimension. The figures support that the search difficulty increases with the problem size

and the number of local optima.

Clustering of local optima. The manner in which local optima are distributed in the

configuration space is relevant for heuristic search. Several questions can be raised. Are

they uniformly distributed, or do they cluster in some non-homogeneous way? If the

latter, what is the relation between objective function values within and among differ-

ent clusters and how easy is it to go from one to another? As discussed in section 2.5,
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Table 3. General network features for QAP instances. Nv = number of vertices; Dedge = den-

sity of edges (Ne/(Nv)
2); Cw = weighted clustering coefficient; Y2 = disparity in out-going

transitions. Values are averages over 30 instances with standard deviations in subscripts.

class
size

5 6 7 8 9 10

Nv
real-like 1.6670.802 2.7671.48 3.9002.25 6.1332.99 12.5675.73 25.70013.8
uniform 3.3331.27 6.8002.37 19.1007.39 51.30020.53 137.30054.84 414.133177.5

Dedge
real-like 1.0000.000 0.9930.026 0.9940.030 0.9990.006 0.9920.025 0.9880.035
uniform 0.9980.007 0.9930.019 0.9690.030 0.9400.036 0.9090.035 0.8740.053

Cw real-like 1.0000.000 0.9880.032 0.9950.024 0.9990.005 0.9950.015 0.9930.020
uniform 0.9980.008 0.9950.014 0.9820.016 0.9700.017 0.9610.015 0.9520.020

Y2
real-like 0.8880.193 0.7390.251 0.5330.270 0.3690.171 0.2210.118 0.1430.058
uniform 0.6490.271 0.2860.093 0.1360.061 0.0740.048 0.0400.013 0.0230.008
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Fig. 11. Shortest paths in QAP instances. Left: average path length. Right: average length of the

shortest paths to the global optimum. Averages (points) and 0.95 confidence intervals (bars) are

estimated with a t-test over 30 instances for each combination of problem class and size.

clusters or communities in networks are groups of nodes that are strongly connected

between them and poorly connected with the rest of the graph. The topological distri-

bution of local optima can be directly investigated by means of community detection

on the local optima network. In [9], we conducted a community detection study on the

two classes of QAP instances. Problems of size of 11 for the real-like class and 9 for

the uniform class were considered as LONs for these two cases have comparable sizes

in terms of number of vertices.

Community detection is a difficult task, but today several good approximate algo-

rithms are available [15]. In [9], we used two of them: (i) a method based on greedy

modularity optimization, and (ii) a spin glass ground state-based algorithm in order to

double check the community partition results. Figure 12 shows the modularity score

(Q) distribution for each algorithm/instance-class. The higher the Q score of a parti-
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tion, the crisper the community structure [15]. The plot indicates that the two instance

classes are well separated in terms of Q, regardless of the algorithm used.

rl.1 uni.1 rl.2 uni.2

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

M
o
d
u
la

ri
ty

 Q

Fig. 12. Network modularity for QAP instances. Boxplots of the modularity score Q on the y-

axis with respect to class problem (rl stands for real-like and uni stands for random uniform) and

community detection algorithm (1 stands for fast greedy modularity optimization and 2 stands

for spin glass search algorithm).

The real-like instances have significantly more cluster structure than the uniform

instances. This can be appreciated visually in Fig. 13 illustrating the community struc-

tures of two particular instances. These two selected cases have the highest Q values

of their respective classes, but they represent a general trend. For the real-like instance

(Fig. 13, right) the groups of local optima are recognizable and form well separated

clusters (encircled with dotted lines), which is also reflected in the high corresponding

modularity value Q = 0.79. In contrast, the the LON of the uniform instance (Fig. 13,

left) has some modularity, with a Q = 0.53, but the communities are hard to represent

graphically, and thus are not shown in the picture.

The LONs community structure is likely to have consequences on the heuristic al-

gorithms used to search the corresponding landscapes. According to the level of modu-

larity, different search strategies would be more efficient. For example, we can envision

that for real-like instances, a local search algorithm may require stronger perturbation

mechanisms to escape a cluster of local optima with poor quality solutions.

6 Conclusions

A network-based model of combinatorial landscapes is described and a thorough anal-

ysis is presented for two example combinatorial landscapes: NK landscapes and the
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Fig. 13. Visualization of network communities in QAP instances. Left: a uniform instance of size

9. Right: a real-like instance of size. Node size is proportional to basin size, and node color to

fitness (the darker, the better). Communities are highlighted in the right picture, which was not

possible in the left one.

Quadratic Assignment Problem. A network model requires defining its nodes and edges.

Nodes are the landscape local optima obtained with a best-improvement hill-climbing

algorithm; edges are defined in two alternative ways: one is based on the transition prob-

abilities between basins of attraction, the other on the transition (escape) probabilities

from local optima. The model, therefore, compresses the fitness landscapes into a more

manageable mathematical object. New features can be measured in this model, com-

ing from the science of complex networks such as the degree distribution, clustering

coefficient, shortest path length, disparity and community structure. Results from the

studied landscapes show that local optima networks share some features with complex

networks: basin sizes are not uniformly distributed, weight distributions are not normal,

path lengths to the global optimum can be short, clustering coefficients can be high, and

networks can have community structure.

The results clearly show that the search difficulty on the studied landscapes, which

may be either known a priori or empirically estimated, correlate with some fundamental

LON features such as the number of nodes, size of basins, shortest path length to the

global optimum, out-degree, disparity, and degree of assortativity. Indeed, some of these

metrics were used successfully to construct a statistical predictive model of search per-

formance. The network analysis also revealed interesting topological differences on the

distribution of local optima for different classes of problem instances. These differences

may lead to designing search heuristics that can adapt and thus exploit the landscape

structure.

Local optima networks can be seen as a generic model of combinatorial landscapes

based on defining convergence points of simple heuristics in the search space. In this

work, the convergence points are local optima, and edges are transition probabilities
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between these points which also reflect the path of a local search. From a mathematical

point of view, LONs reduce the study of the whole transition matrix between solutions

of a local search by a smaller transition matrix between local optima. The search dy-

namic is then decomposed into two time scales: one to reach local optima, the other

to traverse between local optima. From LON graphs and their corresponding transition

matrices, it should be possible to conduct a Markov chain analysis and thus compute

running times or expected performance.

Another research direction is to use LONs for automated parameter tuning and

design of heuristic search methods. Some network metrics can be estimated without

knowing the global optimum beforehand. These metrics coupled with adequate perfor-

mance prediction models open up exciting possibilities. Our current analysis requires

the exhaustive enumeration of the search space; with standard sampling methods, larger

search spaces could be studied. We plan to continue working on the afore mentioned

directions and extend this analysis to other combinatorial optimization problems.
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