

Comparison of regularized phase retrieval algorithms for X-ray phase contrast tomography - application on experimental data

L. Weber^{1,2}, M. Langer^{1,2}, P. Cloetens², F. Peyrin^{1,2}

itis, Université de Lyon, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Villeurbanne, France opean Synchrotron Radiation Facility, Grenoble, France.

In-line phase contrast tomography

Setup: propagation-based parallel beam phase micro- CT

- X-ray phase contrast imaging offers several advantages versus absorption X-ray imaging
- With coherent X-rays, a simple experimental setup based on propagation can be used [1]
- Phase contrast is achieved by moving the detector downstream
- The object is modelled by the complex refractive index $n=1-\delta+i\beta$, where δ is the refractive index decrement and β the absorption index
- It depends on the material and the energy of the incoming beam. For soft tissue, at low energies (as used in radiology), δ is three order of magnitude larger than β
- · Propagation modelled by Fresnel diffraction
- In holotomography [1], images are acquired at:
 - several source-to-sample distances
 - under different angles of rotations
- Phase projections are obtained by combining these multidistance projections for each angle $\boldsymbol{\theta}$ using phase retrieval.

Image reconstruction

Modeling of the Direct Problem

Attenuation B and phase shift ψ induced by the object described as projections perpendicular to the propagation direction z, with $\mathbf{x} = (x,y)$

$$B(\mathbf{x}) = \frac{2\pi}{\lambda} \int \beta \, dz \, and \, \psi(\mathbf{x}) = \frac{2\pi}{\lambda} \int \delta \, dz$$

 $B(\mathbf{x}) = \frac{2\pi}{\lambda} \int \beta \, dz \, \text{and} \, \psi(\mathbf{x}) = \frac{2\pi}{\lambda} \int \delta \, dz$ At each angle θ , the interaction between the objet and the X-ray can be described as a transmittance function

$$T_{\theta}(\mathbf{x}) = \exp[-B_{\theta}(\mathbf{x}) + i \psi_{\theta}(\mathbf{x})]$$

The free space propagation over a distance ${\bf D}$ can be modeled by the Fresnel transform involving the propagator $\boldsymbol{P}_{\!D}$

$$T_{0P}(\mathbf{x}) = (T_0 * P_0)(\mathbf{x})$$

 $T_{\theta,D}(\bm{x}) = (T_{\theta}*P_D)(\bm{x})$ • The intensity recorded by the detector at a distance D is

$$I_{\theta,D}(\mathbf{x}) = |T_{\theta,D}(\mathbf{x})|^2$$

Inverse problem

- · Can be split in two steps
- Phase retrieval: calculate the phase shift $\psi_{\theta}(\mathbf{x})$ from the phase contrast images at different propagation distances { $I_{\theta,D}(\mathbf{x}), D=D1...Dn$ }
 - → III-posed inverse problem, which requires regularization.

$$\widehat{\psi}_{\theta}(\mathbf{x}) = \arg\min_{\psi} \sum_{D} \left[|\widehat{I}_{\theta,D,\psi}(\mathbf{x}) - I_{\theta,D}(\mathbf{x})|^2 + \alpha |\psi_{\theta}(\mathbf{x}) - \psi_{\theta,0}(\mathbf{x})|^2 \right]$$

- Tomographic reconstruction: reconstruct the 3D refractive index image from the phase shifts $\widehat{\psi}_{\theta}(\mathbf{x})$ at different projection angles
- Usually solved by filtered back-projection.

Regularized phase retrieval

Design of prior

- No prior (i.e. $\psi_{0,0}(\textbf{x})$ =0) induces low-frequency noise. Possible introduction of **prior** information to alleviate this problem.
- Homogeneous object: prior is designed assuming that phase is proportional to the attenuation (δ/β -ratio is constant) and applied in the projection domain [3].

$$\psi_{\theta,0}(\boldsymbol{x}) = f(\boldsymbol{x}) * \frac{\delta}{2\beta} ln[l_{\theta,0}(\boldsymbol{x})]$$
 For `heterogeneous` object of known material, the prior can be

- designed using several δ/β -ratios:

 - > by thresholding the attenuation scan [4] > by assuming that the δ/β -ratio is a (continuous) function of the attenuation coefficient [5]

Application on phantom [5]

- Phase retrieval using homogeneous [A] and heterogeneous [B] prior.
- The sample is a phantom composed of multiple wires (Al, PET and PP and Al2O3), mounted inside a glass capillary.

Application on 3D cell cultures

4 distances

Introduction [6]

- Biomaterial (Skelite®) that can be used for 3D cell culture and artificial bone scaffolds in surgery
- Composed of Si-TCP(67%) and β-TCP/HA (33%)
- 3 scaffolds imaged: discs of 9 mm diameter, seeded with osteoblasts

Experimental conditions

- o 2000 projections
- o 30 keV
- 4 sample-to-detector distances
- o Pixel size=5 μm
- o Field of view = 10.2 mm

Regularization

- Reconstruction using the homogeneous approach (method 1) allows quantification of scaffolds but causes artifacts in soft tissue [7]
- We applied 3 heterogeneous objects approaches to improve soft tissue
 - using thresholding (1st and 2nd threshold correspond to methods 2 and 3 respectively)
 - using a functional relationship between the attenuation coefficient and δ/β values (method 4)

Example of a filtered slice of the attenuation scan, and the corresponding histogram; the histogram is clearly tri-modal, so that 2 different thresholds are possible. They were used in method 2 and method 3.

Functional relationship attenuation and the used in δ/θ values. method 4

 $Crop\ of\ a\ reconstructed\ slice,\ using\ homogeneous\ approach\ [A],\ heterogeneous\ approach\ with\ 1^{st}\ threshold\ [B]\ or\ 2^{nd}$ threshold [C], and heterogeneous approach with a functional relationship [D].

Histograms of mass densities of the reconstructed slice with the 4 methods

Thresholded slice reconstructed with method 3

- Theoretical mass densities:
 - o ρ(air)=1.3*10-3 g/cm3
 - o ρ(Collagen)=1 g/cm3
 - o ρ(Skelite®)=1.8 g/cm3

- Only 3 modes are visible using methods 1 and 2, while we can distinguish 4 modes with methods 3 and 4.
- Method 1 presents fringes around soft tissue
- Phase contrast artefacts are visible using methods 2 and 4.
- Method 3 seems more quantitative, and image quality is improved with regards to the other methods.

Conclusions

- Heterogeneous object approaches can clearly improve image quality
- Choice of good parameters (threshold, function) is of crucial importance

Perspectives

- Introduce spatial constraints in prior, i.-e. reconstruction while getting rid of the glass capillary
- Further quantitative studies using a calibrated phantom for example.

- S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, *Nature*, pp. 335–338, 1996.
 P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, *Appl. Phys. Lett.*, p. 2912, 1999.
 M. Langer, P. Cloetens, and F. Peyrin, *IEEE Trans. Image Process*, pp. 2428–36, 2010.
 M. Langer, P. Cloetens, A. Pacureanu, and F. Peyrin, *Opt. Lett.*, pp. 2151–3, 2012.
 M. Langer, P. Cloetens, B. Hesse, H. Suhonen, A. Pacureanu, K. Raum, and F. Peyrin, *Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.*, 2014.
 M. Langer, Y. Liu, F. Tortelli, P. Cloetens, R. Cancedda and F. Peyrin, *Journal of Microscopy*, 236(3), 2010.

Acknowledgements

This work was supported by the LABEX PRIMES (ANR-11-LABX-0063) of Université de Lyon, within the program "Investissements d'Avenir" (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).