
HAL Id: hal-00945428
https://hal.science/hal-00945428

Submitted on 12 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

bCMS-SPL case study: A proposition based on the
Cloud Component Approach

Jean-Baptiste Lezoray, An Phung Khac, Antoine Beugnard

To cite this version:
Jean-Baptiste Lezoray, An Phung Khac, Antoine Beugnard. bCMS-SPL case study: A proposition
based on the Cloud Component Approach. MODELS 2011 : Workshop Comparing Modeling Ap-
proaches, Oct 2011, Wellington, Nouvelle-Zélande. 21 p. �hal-00945428�

https://hal.science/hal-00945428
https://hal.archives-ouvertes.fr

bCMS-SPL case study:

A proposition based on the Cloud Component Approach.

Jean-Baptiste Lézoray, An Phung-Khac, and Antoine Beugnard

TELECOM Bretagne, Département Informatique

Technopôle Brest-Iroise - CS 83818 - 29238 Brest Cedex 3

{jb.lezoray, an.phungkhac, Antoine.Beugnard}@telecom-bretagne.eu

August 5, 2011

Contents

1 Introduction 2

2 Cloud Component Metamodel 2
2.1 Basic concepts . 2
2.2 Sectors on cloud components . 3
2.3 Composite cloud components . 4
2.4 Types of bindings . 5
2.5 The CC metamodel . 5
2.6 Example: The Generic Data Transmitter CC. 6

3 Model for Variable Refinement Processes (MVRP) 7
3.1 MVRP . 7
3.2 Features implementation . 8

4 Modeling the bCMS-SPL using CCs and MVRPs 9
4.1 bCrash System . 9
4.2 Common Coordinator Process . 11
4.3 Station Coordinator Process . 11
4.4 Information aggregator . 11
4.5 Others . 12
4.6 Variations . 12

5 Conclusion 13

Appendices 15

Abstract

This paper is a model for the Comparing Modeling Approaches workshop. It presents
the cloud component model and a Model for Variability of Refinement Processes used to
model the proposed use case [1, 2]. Our targets are high-level and architectural design, and

1

evolution. Runtime support will be tackled, but is not in the main focus of our paper. We
introduce:

• A single system: on the basis of a custom component model, the cloud component
model. The latter is dedicated to the modeling of distributed applications [1].

• The whole SPL: on the basis of an MDE refinement process model that has the prop-
erty of being variable. Its specification is inspired by previous works on refinement
and feature models dedicated to provide adaptation capabilities to component-based
architectures [2].

1 Introduction

This paper presents an interpretation of the bCMS-SPL use case. Our approach for modeling
Software Product Lines (SPL) is based on Component Based Software Engineering (CBSE),
Model Driven Architecture (MDA), and model trans.

We provide a development process for adaptive distributed components. From the architec-
tural point of view, we rely on cloud components for modeling the software. A cloud component
(CC) is a distributed component where the main idea is that CCs hold the distribution, on the
contrary of bindings which are made local to a node. This reversal of the pattern commonly
used for components for distribution – distributed bindings and local components – raises some
interesting properties. For instance, it hides the distribution-specific properties that are usually
delegated to bindings inside the component (QoS, deployment, security, protocols). Thereby,
those properties become non-functional properties of the component [1].

From the development process point of view, we combine SPL and MDA using a Model of
Variable Refinement Processes (MVRP), that is inspired by Feature Models. The feature mod-
eling method is used for the separation of functional concerns. Each concern is a variation point
and alternative solutions to this concern are variations. In MVRP, concerns are implemented
using model transformations. Therefore, to build a system variant corresponding to a feature
configuration, the base model of the system is step by step transformed from a high abstraction
level to the implementation level. Each transformation is compliant with the MDA pattern, i.e.
a concern-independent model is transformed into a concern-specific model.

The Section 2 presents the CC metamodel. Section 3 discusses the Model for Variable Refine-
ment Processes we used to model the bCMS-SPL. Finally, sections 4 and 5 respectively present
the modeling of the bCMS-SPL using CCs and MVRP, and conclude the proposition. The
complete models for bCMS-SPL are available in the appendices.

2 Cloud Component Metamodel

This section provides details about the three most fundamental notions involved in CCs: border,
sectors, and connectors.

2.1 Basic concepts

A CC model is a component model for distributed systems [1]. In fig.1, we present the central
concept behind CC models. Traditionally, components are localized and bindings hold the dis-
tribution. The left part of fig.1 represents this case, component A is a client of component B.
Components A and B are both deployed in specific locations and the binding is the glue between
those components, implemented for instance using web services or any other binding protocol.
Two CCs are depicted in the right part of fig.1. Unlike the common scheme, CCs are distributed

2

and bindings are local. To distinguish cloud components with “common” ones, we represent
them with an ellipse shape in the graphical model instead of the common rectangle shape.

Szyperski gives a well recognized definition of a component as “a unit of composition with
contractually specified interfaces and explicit context dependancies only. A software component
can be deployed independently and is subject to composition by third parties” [3, p.41]. Despite
an original view of the distribution side, components modeled as CC are fully compliant with
this definition, and are therefore components.

component A component B

LocalDistributedLocal

cc. A cc. B

Distributed Local Distributed

Figure 1: Distribution of components and bindings in common components (left) versus in CCs
(right).

The border of a CC is the part of the architectural specification that is accessible to the
final user of the component, on the contrary to the internal architecture which is hidden by the
border. From an internal architecture point of view, CCs are composite components. They are
build on top of other components, being cloud or common components, that are deployed on
some of its sectors. These components are linked with each others on the basis of connectors
that follow specific rules.

The reader may refer to fig.2 throughout the reading of this section, as it presents a sample
complete architecture for a cloud component that is part of our implementation of the bCMS
System. Its purpose is to implement an inter-sector communication service. It transmits messages
from one point of the architecture to another: from send<dataType> interfaces to get<dataType>
ones. Inner components of this CC will be detailed in section 2.6.

[0..*] [0..*]

get
<dataType>

send
<dataType>

Buffer

serializer
<dataType>

un serializer
<dataType>

Cipher
encipher decipher

Message transmitter

send receive

Figure 2: An architectural specification of the generic Data Transmitter CC

3

2.2 Sectors on cloud components

CCs can be divided in sectors. Sectors are part of the specification of the border of CCs, as well
as interfaces. A sector denotes a location in a CC. It is similar to the UML concept of node, and
roughly corresponds to physical devices.

Each sector is associated with a multiplicity within [n..m] with n ≤ m, n ∈ N and m ∈ N∗.
When deployed, each sector from a CC has a cardinality property that describes how many times
it was deployed to specific locations. The multiplicity is a range in terms of valid cardinalities, and
sectors cardinalities must observe this range. If a single cardinality does not fulfill its multiplicity,
then the whole CC is said to be in an inconsistent or unstable state, and may fail to render the
services for some of its interfaces. Despite being close concepts, the cardinality property is not
directly linked to the notion of “instantiating objects”: it rather corresponds to the capability
of having multiple copies of a sector at the same time in a single CC. We consider that this
“duplication” is a deployment issue as it simply brings a sector to a specific location, which is
somehow different of object’s instanciations. That said, for the seek of simplicity and clarity, we
will refer to this duplication property as “instanciations”.

Each interface is assigned to a sector, and each sector may hold zero, one, or more interfaces.
During deployment, sectors duplicate each interface so that each one is accessible from multiple
locations.

On the Data Transmitter CC (fig.3), two sectors are defined. Their multiplicity of [0..∗]
suggests that their respective interfaces, send<dataType> and get<dataType>, may be accessible
from an unconstrained number of locations.

[0..*] [0..*] get <dataType>send <dataType>

Figure 3: Border of the generic Data Transmitter CC.

2.3 Composite cloud components

The composite term refers to a strong aggregation relation, where parts are owned by a single
composite, and their life cycle depends on the composite one. CCs are always composite: they
encompass sub-components that can be either CCs (also composite) or common components
(either primitive or composite). On the contrary, a common component may embed another
component but cannot embed a CC. Composition of CCs must observe several rules. Composite
CCs behave differently from composite common components. We will not dwell on the composite
common components case as it behaves like in any other hierarchical component model. When
being embedded in a composite CC, CCs and common components are not equivalent. Common
components are assigned to a single sector, but this constraint does not apply for CCs: it can
be in between sectors of the composite. In both cases, the border of the composite hides them
completely, and their life cycle depends on that of the composite. Embedded CCs are not part
of the border specification of the composite, and are then considered as implementation-related
issues. Embedded CCs must observe the multiplicities of the sectors of the composite. In other
words, the whole set of interfaces of a sector must be assigned to strictly one sector of the
composite. These sectors matching rules are based on the fact that a sector from an embedded
CC is instantiated exactly as many times as the composite one: its multiplicity should support
the multiplicity of the composite’s sector. fig.4 presents valid and invalid sector matchings. This

4

rule can be formalized as follows:

General rule: A sector A with a multiplicity of [nA..mA] can be embedded in a sector B with
a multiplicity of [nB ..mB] iff nA ≤ nB and mA ≥ mB .

[0..1] [0..*][0..1] [0..3] [0..2] [0..*][1..1] [0..1] [1..1] [0..*][0..1] [0..*]

Figure 4: Valid and invalid embedded sector matchings.

When an embedded CC does not match the sectors of the composite, some of its sectors can
be duplicated. The set of interfaces are duplicated along with the sector. A duplication does
not affect the border, and a CC with duplicated sectors is strictly equivalent to the original
one although its representation is different. The fig.5 presents a sector duplication. A cloud
component B is to be embedded in a cloud component A. Sectors of B do not match A ones:
The [0..1] from B matches [0..1] from A, but [1..∗] from B must be duplicated to match with both
[1..1] and [0..∗] from A. The result of the duplication is two sectors with the same multiplicity
than A. The reader should notice that i) the δ interface has been duplicated along with the sector
and is then available in two sectors of A, ii) the duplication do not affect B’s border which is
equivalent to the unduplicated one from a conceptual point of view, and iii) other solutions may
exist to embed B in A. The general rule for duplicating [n..m] sectors is as follows:

General rule: A sector with a multiplicity of [n..m] can be duplicated in two sectors with
cardinalities of [n′..m′] and [n′′..m′′], iff n′ + n′′ ≤ n and m′ +m′′ ≤ m.

[0..1] [1..*]

[0..1] [0..*]

[1..1]

[0..1]
[0..*]

[1..1]

δ

δ

δ

A:

B:

A ⊃ B :

[0..1]
[0..*]

[1..1]

Figure 5: Sector duplication.

2.4 Types of bindings

Composite CCs are built on top of two types of bindings: the promote interface binding, and the
functional interface binding. The interface promotion binding is the promotion of either the
interface of a component or of a CC to the border of the composite. The graphical representation
for this type of binding is a dashed arrow (see fig.2). The functional interface binding
is the connection of two compatible interfaces including a required one and a provided one.
The graphical representation is a line with a semicircle on the ’provided’ side (see fig.2). By
definition, both those bindings cannot cross any border. All promote interface bindings and
functional interface bindings must have their both ends in a single sector.

5

2.5 The CC metamodel

The fig.6 presents the CC metamodel. Greyed elements correspond to meta elements involved
in the modeling of the border of the CC.

isIn
1

containsCC
0..*

hasArg
0..*

itfDef
0..1

hasMethod
0..*

name: EString
implementation : EString

BasicComponent

name : EString
Cloud

name : EString
isServer : EBoolean
signature : EString

Role

CloudRole

roles
0..*

roles
0..*

sectors
1..*

containsBC
0..*

Binding

RolePromotion
bindings

0..*

rolePromotions
0..*

name : EString
multiplicity-min : EString
multiplicity-max : EString

Sector

onSector
1

client
1

server
1

promoted
1

target
1

fromCloud
1

onComponent
1

ComponentRole

IsIn
1

isIn
1

contains
0..*

Root

clouds
*

multiplicity-min : EString
multiplicity-max : EString

PartOfDuplication

of
1

name : EString
returnType : EString

Method

name : EString
type : Estring

Argument

InterfaceDef
ofRole

1

Figure 6: The CC metamodel.

2.6 Example: The Generic Data Transmitter CC.

In the sample architectural specification of the generic Data Transmitter CC depicted in fig.2,
the two types of sub-components are depicted: common components (serializer<dataType>,
unserializer<dataType>, Buffer), and cloud components (Cipher and Message Transmitter).
The specification of the sub-CCs are depicted in fig.7. These two CCs, Cipher and Message

Transmitter, are similar because they both do not include any sub-CCs. However, they are
very different in their spirit. The Cipher CC does not include any communication. It is a logical
aggregation of the cipherer and decipherer, that by definition should not communicate with each
other. This logical aggregation expresses that the elements are linked together. For instance,
the adaptation of one implies the adaptation of the other. On the other hand, in the Message

transmitter CC, the communication between the sectors is based on a broadcast of each mes-
sage received by message senders to each message receiver. The way messages are routed between
these components is not represented, and therefore depends on the implementation of Message
Sender and Message Receiver components. Of course, a configuration of the communication
is necessary for both those components, but it is not part of the model.

3 Model for Variable Refinement Processes (MVRP)

To model the bCMS product line, we rely on a model of refinement processes, that has the
property of being variable: the Model for Variable Refinement Processes (MVRP). Its syntax is
based on the syntax of Feature Models (FM) defined by Czarnecki [4]. However, its semantic
slightly changes to represent the fact that MVRP features are model refinements. The latter
property implies major differences on the semantic of features and configurations.

6

encipher decipher

encipher decipher

[0..*] [0..*]

send receive

sender receiver

[0..*] [0..*]

Figure 7: The cipher CC (left) and the message transmitter CC (right)

MVRP models are based on our previous work on a feature model implementation that
describes hierarchies of component-based architectures using feature models, in order to provide
dynamic adaptation capabilities [2].

3.1 MVRP

MVRPs are dedicated to CC models1. Each CC is associated with an MVRP model that defines
some architectural variants of it, on the basis of a set of refinement processes. Indeed, each feature
of an MVRP is implemented using a model transformation, and thus is a part of the refinement of
the architecture. Moreover, an MVRP also includes solutions, which are parameters for features.
A solution is equivalent to advices in Aspect-Oriented Modeling approaches. The question of the
implementation of each feature with a model transformation will be tackled in section 3.2.

The root feature introduces the border of the CC, including its sectors and its interfaces.
Other features introduce architectural elements that are considered as nonfunctional from the
final CC user point-of-view. In other words, sub-sequent features do not modify the border of
the CC (unless explicitly, as explained bellow). This consideration is important as it implies that
all the sub-sequent variants are compliant with the border of the CC.

Configurations of MVRPs can be chosen by a designer, similarly as for FMs. A configuration
represents a set of choices in the variation points offered by the MVRP. When a configuration is
chosen from an MVRP, the selected set of features represents a sequence of transformations, that,
when being executed, produces an architectural variant of the CC. We base our approach on the
staggedconfiguration as described by Czarnecki [4]: features can get a multiplicity in MVRP.
The MVRP undergoes a first refinement stage when it is added to a composite. This first stage
configures all the features that have an influence on the border definition. Those features can be
identified by an affect link, which is described thereafter.

A set of refinements is not a simple juxtaposition of features. Indeed, when a feature gets
refined by another one, it can naturally loose some of its functional and nonfunctional properties.
This is a major difference with FMs as the features of an FM must be independent. Keeping
the independency of features when configuring an FM is a major problem, which is known as
the feature interaction problem [5]. With MVRP, it is natural from the designer point of view
that a feature may affect other ones, as the selection of a feature in a configuration naturally
leads to a modification of the architecture. Moreover, we also consider that the selection of some
configurations is done by the designer at the same time than specification and generation. Indeed,
feature interactions can be monitored in each step of the configuration. This particularity limits
the number of available variants from an MVRP, but increases the designer control over what is

1They may be applicable to other metamodels of architecture, but we have not yet studied how they might

apply. This is for us a clear perspective of work.

7

generated with the processes, and also resolves problems on point-cut specifications (not detailed
here).

The fig.8 presents an example of MVRP for the Message Transmitter CC and its sub-CCs.
The <data>transmitter, Message transmitter, and Cipher are the roots of three MVRPs.
They are linked with each other using MVRP references, which are similar to FM references [4].
During the configuration of the CC, the MVRP references are unfolded, and are made part of
the configuration.

<data>transmitter

Transmission

Cipher

<data>Type Buffer

instructions crisis details

individual
statuses

includes

cipher

Symmetric-key algorithm

Cipher

Bindings

Message
transmitter after

Protocol

proprietary HTTPS

SOAP

Advanced

Message
transmitter

afterafter

messages

affect

MVRP ref.

A feature.

LEGEND

A solution

Mandatory

Optional

Exclusive or

Constraint

HTTP

SOAP

Advanced

Figure 8: Model of Variable Refinement Process (MVRP) for the generic Message Transmitter
CC.

There are some constraints defined on MVRP models that express a sequential ordering on
the execution of the features. The after constraint is one of them. When an after constraint
is defined between two features, it indicates that the feature at the source of it must be executed
after the feature of its target. It can be because it needs some of its elements at that point for
the definition of a point-cut, to reuse or transform them. Another type of constraints is defined
in MVRP models: the affect constraints. The target of affect constraints is always its direct
root feature of the MVRP. An affect constraint expresses that the border of the component is
modified by the transformation that implements the feature: multiplicities, sectors, interfaces...
Then, when it is encompassed in a CC, its border may be modified to match the needs of the
composite one.

8

3.2 Features implementation

We base our approach for the implementation of features for MVRP and CCs on previous works
in our team [7]. As depicted in fig.9, the approach of those previous works (on top of the figure)
contrasted with AOM approaches (on bottom of the figure). With AOM, all the flexibility is
in the advice and in the point-cut definitions, as the weaver is universal. On the other hand,
with this approach, the designer first designs the solution metamodel and then creates a model
transformation that injects this concern in the base model. Then, the flexibility is both in the
solution model and in the transformation: the solution becomes highly reusable [6]. The price for
this high flexibility and reusability is that it requires an important engineering time to implement
the features.

To implement the features for MVRP and CCs, we choose intermediate approaches. We
base the approach on two feature schemes. Each feature may be implemented in the one or
the other. First, we dedicate our features to MVRPs and CCs. This way, we simplify features
implementation by not requiring any sort of human activity during the specification of the feature
implementation. Second, we still separate the solution implementation metamodel and the base
metamodel. This implies that the solution of each feature is expressed in a metamodel that is
different from the base metamodel, unlike classical AOM approaches, and keeps its reusability.

4 Modeling the bCMS-SPL using CCs and MVRPs

The bCMS-SPL system modeled using CCs and MVRPs is presented in the appendices. It
consists in the description of four MVRPs. Each MVRP is associated with a sample CC, that
results of a configuration of the MVRP. The four MVRPs are the followings:

• the bCrashCC System CC (fig.10, fig.11),

• the common Coordinator Process CC (fig.12, fig.13),

• the Station Coordinator Process CC (fig.14, fig.15),

• the information aggregator CC (fig.16, fig.17).

4.1 bCrash System

The bCrash System CC (fig.10, fig.11) is the main component of our model for the bCMS
system. It represents a whole bCMS System architecture. The root feature of the bCrash System
introduces the border of the CC: its interfaces (Station GUI, GPS GUI, hand held device GUI)
and sectors (with multiplicities of [1..1], [0..∗] and [0..∗]). The sectors describe respectively a
station (either a police station or a fire station), a GPS device in a vehicle (either a police car
or a fire truck), and a hand held device for an individual (either police man or firemen). The
MVRP is composed of two sub-features:

The first one, “design a station”, is a composite feature that aims at introducing a station
in the MVRP. During the configuration of this MVRP, a partial configuration of this feature is
proceeded each time a station has to be introduced in the system [4]. This partial configuration
results in a new feature with a [1..1] multiplicity. Each time this feature is executed as a model
transformation, it adds three sectors to the CC, resulting in a new station to be introduced in
the system. The border is modified by this addition, so affect constraint is then specified from
the “design a station” feature to the root feature. The “station feature” and its single solution
“SCP” introduces a “station coordinator process” in between each sectors of the station, and

9

Tm

cc

cc'

cc

MM

(input)

(output)

Metamodel

Model

Model flow

Conforms to Specific to a process

Specific to feature implementation

Specific to feature execution

Colors

UW

m

m'

advice

MM

(input)

(output)

pointcut

A basic AOM feature

implementation

pointcut

MMuniversal

weaver

model

transformation

cc

cc'

(input)

(output)

generic weaver

Solutions for feature

implementation,

dedicated to cloud

components

sol(Tm)

solution decision

solution transfor

transfor.

DSL

GW

Universal

More
reusable
solutions

More
specialized

weaver

More
specific

solutions

More
generic
weaver

DMM

UML

 MM

cc

MM

<<use>>

MM'

Tm

m

m'

sol(Tm)

solutionMM(input)

(output)

model

transformation

DMM

decision

human

process

Legend

Kaboré's feature

implementation

(simplified view)

Figure 9: Sample schemes for features implementation.

10

the “promote bindings” promotes the interfaces of this component to the global one (see fig.11).
The introduction of the Station Coordinator Process may also affect the bCrash system’s border,
when it has to add an interface to communicate with vehicles that are not in his scope (e.g.,
citizen vehicles).

The second sub-feature of the root feature, “coordinator”, introduces a “common coordinator
process CC” in between each station sector of the architecture. This component is composed of
a single sector, but the latter is duplicated to match the number of station sectors of the bCrash
System. This CC, its functionalities and its MVRP are described in details thereafter.

4.2 Common Coordinator Process

The Common Coordinator Process CC (fig.12, fig.13) is a component that enables an inter-
station communication. The data it transmits are “crisis details”, this is why it is based on a
“message transmitter CC” with the “crisis details” feature selected (see fig.8), as this selection
determines the data type held by the “Message Transmitter component”. The reader may note
that this “Common Coordinator Process CC” does not hold any variation, and there is only one
refinement process that corresponds to its MVRP. However, as it embeds a “message transmitter
CC”, it inherits its variations and thus there are still some variants for it.

4.3 Station Coordinator Process

The Station Coordinator Process CC (fig.14, fig.15) describes the architecture for a single station,
that can be either a police station or a fire station. Thus the CC includes several components
such as :

• A route planner CC, in charge of computing and transmitting routes to vehicle GPS devices.

• An information aggregator CC, that collects information for each station and manages a
coordination with other stations. This CC is described in details bellow. One of its sectors
was duplicated to match both the individuals and the vehicles sectors.

• A data transmitter CC, that is another variant for the “generic Message Transmitter CC”.

• An authentication system CC, that provides authentication capabilities to identify the
station users and individuals (either police officers or firemen) of the system.

• An instructions manager is a common component that is in charge of preparing and sending
instructions to individuals as well as GPS coordinates to vehicles to go to the crash place.
It is under control of the station coordinator agent (via the “GUI” element).

• Other components includes: GUI, Auth Screen, GPS, and device.

On the MVRP side, there are not many variations in it, except on the authentication which
is optional, and on the types of communications that are allowed (with station vehicles and/or
citizen vehicles). The latter may affect the border of this CC by adding interfaces to communicate
with other stations vehicles, or with citizen vehicles, that both are not actors in the scope of the
Station Coordinator Process CC. This case is not represented in the figure.

4.4 Information aggregator

The information aggregator CC (fig.16, fig.17) is the CC where details on the crisis are stored.
It includes a database component (“DB”) to store crisis details, two components to update and

11

access the database (“DB updater” and “DB access”), a message transmitter to collect database
update transactions from either individuals or vehicles, and a coordinator which is a daemon
that forwards every update in the DB to any other stations. It is interesting to note that, from
the border point of view, the localization of the data managed by the information aggregator is
not important, and for instance could have been replicated on each client sector.

4.5 Others

We previously presented the following CCs and their MVRP, so we will not elaborate any more
on them:

• the generic message transmitter CC (fig.8, fig.2),

• the cipher CC (fig.8, fig.7),

• the Message Transmitter CC (fig.8, fig.7).

Moreover, for a seek of conciseness, the two following CCs will not be detailed further:

• the authentication system CC (fig.18),

• the route planner CC (fig.18).

However their architecture follows a similar scheme as the ones previously presented

4.6 Variations

In this section, we will comment on how each variation is handled using the model.

(7.1) Police and Fire Stations multiplicity. The multiplicity of the “design a station”
feature of the bCrash System CC can handle this variation during the configuration of the
MVRP (see fig.10).

(7.2) Vehicles Management. The management of the possibility of sending to and receiving
messages from vehicles is handled in the Station Coordinator Process (fig.14, fig.15), during the
configuration of the “vehicle management” feature. Moreover, as a Station Coordinator Process
manages a single station, the inter-station vehicles communication and the communication with
citizen vehicles is also reified in the bCrash System CC (fig.10, fig.11).

(7.3) Vehicles Management Communication Protocol. The management of this vari-
ability is done when configuring each “generic Message Transmitter CC”, by selecting the right
features “HTTP”/“HTTPS”/“SOAP” features (see fig.8).

(7.4) Crisis Multiplicity. We are not able to model this variation using our approach because
we are modeling architectures. Modeling this variation implies updating primitive components
implementations, which case we cannot handle (e.g., in the DB component, or in the coordinator
in fig.17).

(7.5) Confidentiality of Data Communication. This variability is handled by selecting the
“Cipher” feature in the “generic Message Transmitter CC” (see fig.8). This adds the “Cipher
CC”, and creates interfaces on the “serializer” components, and adds the bindings.

12

(7.6) Authentication of System’s Users. This variability is handled by selecting the op-
tional authentication feature in the “Station Coordinator process CC” (see fig.14). This adds
the “Authentication System CC”, the two “Auth screen” components, adds the interfaces on the
“Gui” and “device” components, and creates the bindings. Here, the variations on the MVRP of
the ”Authentication System CC” are not depicted in the model, however it would create variants
of the “Authentication System CC”.

(7.7) Communication Layer. This variability is handled by selecting the right “Protocol”
feature in the “message Transmitter CC” (see fig.8). This modifies the reference to the imple-
mentation of the “sender” and “receiver” components in the “message transmitter CC”, so that
it can handle each protocol.

5 Conclusion

This approach has several benefits. The CC model offers the possibility of making logical aggre-
gations of distributed component, giving the opportunity to model distributed architectures in a
convenient manner. Those logical aggregations ease the specification of nonfunctional properties
on communication. The MVRP model offers to the designer the possibility to take advantage
of the properties of the underlying component architecture (e.g., a border hides its internals)
during the specification of the refinements of the architecture. This properties limits the impact
of feature interactions. Moreover, the MVRP model makes feature interactions more explicit by
modeling the refinements instead of independent features. The implementation of the features
using original model transformations schemes offers the possibility to reuse features solutions
(models and metamodels) in numerous situations, and offers more expressivity in to those mod-
els as they are not expressed in the base metamodel.

The original goal of our work is to reach runtime reconfiguration of distributed components
architectures [2]. At runtime, a variant can be replaced by another one by a reconfiguration
platform. This platform, which is also a cloud component, uses information from the variable
refinement process to achieve the planning and the execution of the reconfiguration actions.

As our approach is essentially oriented on the architecture level, we were not able to model fine
grained situations such as the one described in sections 4 and five of the Requirement Definition
Document. However, we plan to study in the near future how feature implementations could be
extended by integrating other informations, such as feature models artifacts, adaptation specific
information, or the generation of code for primitive components. We believe that our future
implementation will be able to handle such fine grained situations.

References

[1] J.-B. Lézoray, A. Phung-Khac, M.-T. Segarra, J.-M. Gilliot, and A. Beugnard, “Cloud
Components: Modeling Cloud-like Architectures”. Submitted on August 2011 to the
26th Symposium On Applied Computing, Software Engineering Track.

[2] A. Phung-Khac. “A model-driven feature-based approach to runtime adaptation of dis-
tributed software architectures”. PhD thesis manuscript, Institut Télécom - Télécom Bre-
tagne, UR1-UEB, 2010.

[3] C. Szyperski with D. Gruntz, and S. Murer. “Component Software, beyond Object-Oriented
Programming”. Addison-Wesley and ACM Press, Second Edition, ISBN 0-201-74572-0,
2002.

13

[4] K. Czarnecki, S. Helsen, and U. Eisenecker. “Staged configuration using feature models”.
SPLC 2004, LNCS 3154, Springer, pp.266?283, 2004.

[5] S. Apel and C. Kästner. “An Overview of Feature-Oriented Software Development”. Journal
of Object Technology (JOT), 8(5):49?84, July 2009.

[6] C.E. Kaboré, A. Beugnard. “Interests and drawbacks of AOSD compared to MDE. A posi-
tion paper”. Proc. of the 3rd WS on Models and Aspects, Handling Crosscutting Concerns
in MDSD, 21st European Conference on Object-Oriented Programming, Berlin, Germany,
2007.

[7] C.E. Kaboré, A. Beugnard. “Implementing a Data Distribution Variant with a Metamodel,
Some Models and a Transformation”. Lecture Notes in Computer Science, Volume 5053,
Distributed Applications and Interoperable Systems, Pages 224-237, 2008.

[8] “Aspectj, crosscutting Objects for better modularity”, http://www.eclipse.org/aspectj,
Last visit on August 2011.

14

Appendices

bCrashSystem

coordinator

common coordinator

design a
station

SCP

promote bindingsstation

bindings of SCP

after

after

Station
coordinator

process

FM reference

A feature.

LEGEND

A solution Mandatory Optional

Exclusive or

common coordinator
process

after Constraint

affect
[1..*]

after

affect

Figure 10: MVRP for the bCrash System CC.

15

Police station
Coordinator process

Police station
Coordinator

GUI

Police car

Police officer

police car
GPS GUI

Police station police
officer hand
held device

GUI

Common
Coordinator

process

coordination

coordination

[0..*]

[0..*]

[0..*]

[0..*]
Firemen

hand held
device GUI

Fire truck
GPS GUI

Fire station
Coordinator

GUI

Fire station
Coordinator process

Fire truck

Firemen

Fire station

[1..1]

[1..1]

LEGEND

Actor (GUI)

Computational

Functional binding Cloud component

Common componentInterface promotion

[0..*] Sector Multiplicity

Figure 11: A sample bCrash System CC with two stations.

16

Common coordinator
process

introduce
component

send/receive
db updates

<crisisDetails>
transmitter

after

Figure 12: MVRP for the common Coordinator Process CC.

[2..*]

coordination

Data

transmitter

get crisis
details

send crisis
details

send / receive
db updates

Figure 13: A sample common Coordinator Process CC.

17

station coordinator
process CC

route
planner

information
aggregator

<instruction>
Transmitter

Authentication

Basic
Instr.Man.

Instructions Manager
introduction

after

instructions
management

route
planning

GPS

after

GUI

afterafter

after

after

Authentication
system CC

Auth GUI

Auth
Screens

after

Instructions
interpreter

device

Vehicle
Management

w/ Station
Vehicles

w/ Citizen
Vehicles

<message>
Transmitter

affect

Figure 14: MVRP for the Station Coordinator Process CC.

18

station
Coordinator

GUI

Vehicle

individual
assistant device

car GPS GUI

Station

[1..1]

[0..*]

[0..*]

individual
hand held
device GUI

coordination w/
other stations

route planner

push
vehicle
status

set Crash
GPS coord

get route
plan

Authentication
system

authenticate

manage
users

data
transmitter

get
instructions

send
instructions

push Crisis
details

Auth
screen

GUI

Auth
screen

device

GPS

Info aggregatorinstructions
manager

access crisis details

authenticate

authenticate

Figure 15: A sample Station Coordinator Process CC.

19

Information aggregator
CC

DB
introduction

Basic DB

<Status/crisisDetails>
transmitter

after

DB
coordinator

Basic DB
coordinator

after

DB accessor

Basic
accessor

DB updator

Basic
updator

Figure 16: MVRP for the information aggregator CC.

access
crisis details

coordination w/
other stations

[1..1]

[0..*]DB

send status /
Crisis details

get status /
Crisis details

[0..*] [0..*]

Message
transmitter

send
status

coordinator
DB

updator

DB
access

Figure 17: A sample information aggregator CC.

20

Route planner

[1..*] [0..*]push vehicles
statuses

set Crash
GPS coord

get route
plan

[0..*] [1..1]
auth

manage
users

Authentication
sub-system

Figure 18: The borders of the authentication system CC and of the route planner CC.

21

