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QUANTUM SINGULAR COMPLETE INTEGRABILITY

THIERRY PAUL AND LAURENT STOLOVITCH

ABSTRACT. We consider some perturbations of a family of pairwise commuting linear quantum
Hamiltonians on the torus with possibly dense pure point spectra. We prove that the Rayleigh-
Schrodinger perturbation series converge near each unperturbed eigenvalue under the form of
a convergent quantum Birkhoff normal form. Moreover the family is jointly diagonalised by a
common unitary operator explicitly constructed by a Newton type algorithm. This leads to the
fact that the spectra of the family remain pure point. The results are uniform in the Planck
constant near i = 0. The unperturbed frequencies satisfy a small divisors condition and we
explicitly estimate how this condition can be released when the family tends to the unperturbed
one.
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1. INTRODUCTION

Perturbation theory belongs to the history of quantum mechanics, and even to its pre-
history, as it was used before the works of Heisenberg and Schrédinger 1925/1926. The
goal at that time was to understand what should be the Bohr-Sommerfeld quantum condi-
tions for systems nearly integrable [MB], by quantizing the perturbation series provided by
celestial mechanics [HP]. After (or rather during its establishment) the functional analysis
point of view was settled for quantum mechanics, the “modern” perturbation theory took
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2 THIERRY PAUL AND LAURENT STOLOVITCH

place, mostly by using the Neumann expansion of the perturbed resolvent, providing effi-
cient and rigorous ways of establishing the validity of the Rayleigh-Schrodinger expansion
and leading to great success of this method, in particular the convergence under a simple
argument of size of the perturbation in the topology of operators on Hilbert spaces [TK],
and Borel summability for (some) unbounded perturbations [GG, BS]. On the other hand,
by relying on the comparison between the size of the perturbation and the distance between
consecutive unperturbed eigenvalues, the method has two inconveniences: it remains local
in the spectrum in the (usual in dimension larger than one) case of spectra accumulating
at infinity and is even inefficient in the case of dense point unperturbed spectra which can
be the case in the present article. Finally it breaks down for small values of the Planck
constant by accumulation of the semiclassical unperturbed spectrum.

In the present article, we consider some commuting families of operators on L?(T¢) close
to a commuting family of unperturbed Hamiltonians whose spectra are pure point and
might be dense. As already emphasized, standard (Neumann series expansion) perturbation
theory does not apply in this context. Nevertheless, we prove that the pure point property
is preserved and moreover, we show that the perturbed spectra are analytic functions of
the unperturbed ones. All these results are obtained using a method inspired by classical
local dynamics, namely the analysis of quantum Birkhoff forms. Let us first recall some
known fact of (classical) Brikhoff normal forms.

In the framework of (classical) local dynamics, Riissman proved in [Ru] (see also [Bru])
the remarkable result which says that, when the Birkhoff normal form (BNF), at any
order, depends only on the unperturbed Hamiltonian, then it converges provided that the
small divisors of the unperturbed Hamiltonian do not accumulate the origin too fast (we
refer to [Ar2] for an introduction to this subject). This leads to the integrability of the
perturbed system. On the other hand, Vey proved two theorems about the holomorphic
normalization of families of { —1 (resp. [) of commuting germs of holomorphic vector fields,
volume preserving (resp. Hamiltonian) in a neighborhood of the origin of C' (resp. C%)
(and vanishing at the origin) with diagonal and independent 1-jets [JV1, JV2].

These results were extended by one of us in [LS1, LS2], in the framework of general local
dynamics of a families of of 1 < m < [ commuting germs of holomorphic vector fields near
a fixed point. It is proved that under an assumption on the formal (Poincaré) normal form
of the family and and under a generalized Brjuno type condition of the family of linear
parts, there exists an holomorphic transformation of the family to a normal form. This fills
up therefore the gap between Riissman-Brjuno and the complete integrability of Vey. In
these directions, we should also mention works by H. Ito [It] and N.-T. Zung [Zu] in the
analytic case and H. Eliasson [El] in the smooth case.

In [GP] one of us (the other) gave with S. Graffi a quantum version of the Riissmann
theorem in the framework of perturbation theory of the quantization of linear vector fields
on the torus T!. Moreover, in this setting, it is possible to read on the original perturbation
if the Riissman condition is satisfied and the results are uniform in the Planck constant
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belonging to [0, 1]. The method seats in the framework of Lie method perturbation theory
initiated in classical mechanics in [De, Ho|] and uses the quantum setting established in
[BGP].

The goal of the present paper is to provide a full spectral resolution for certain families
of commuting quantum Hamiltonians, not treatable by standard methods due to possi-
ble spectral accumulation, through the convergence of quantum normal Birkhoff forms
and underlying unitary transformations. These families generalize the quantum version of
Riilsmman theorem treated in [GP], to the quantum version of “singular complete integra-
bility” treated in [LS1]. The methods use the quantum version of the Lie perturbative
algorithm together with a newton type scheme in order to overcome the difficulty created
by small divisors.

Let m < | € N*. For w = (w;)i=1..m With w; = (wg)jzl___l e R!, let us denote by
L, = (Ly,)i=1..m, the operator valued vector of components

L, = —ihw;.V, = —z’hZ W i=1...m

7

on L*(T).
We define the operator valued vector H = (H;)i=1..;m by

H=L,+V, (1.1)

where V' is a bounded operator valued vector on L?(T') whose action is defined after a
function V : (z,&,h) € T*T x [0,1] — V(x,&, ) € R™ by the formula (Weyl quantization)

Vo = [ Viernend T g Jere. 0

R! xR

We make the following assumptions.

Main assumptions

(A1)  There exist v > 0,7 > [ such that the family of frequencies vectors w fulfills the
generalized Brjuno condition

0

log M
ZM < +oo where My, := min  max  [{w;, ¢)| " (1.3)
" ok 1<i<m 0#|q|<M
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We will sometimes impose to w tu fulfill the strongest collective Diophantine
condition

Ygez', q#0, min [wi )| <lal" (14)

1

Remark : usually, o

is denoted by w), in the literature [Bru, LS]]

(A2) VY takes the form, for some V' : (Z,z,h) € R™ x T' x [0,1] — V'(Z,x,h) € R™,
analytic in (Z,x) and kth times differentiable in A,

V(z,&h) =V (wi &, ..., wn.& x,h), (1.5)
(A3)  The family H satisfies
[Hi, Hj] =0, 1<ij<m, 0<h<Ll (1.6)

Moreover we will suppose that the vectors w;, j = 1...m are independent over R. The
case where they are not being easily reducible to the case of the n < m independent ones
of the family, the m — n other being linear combination of the preceding.

We define o
wom Sl - 35 () 0

Let us define for p > 0, ke {0}uNand V' : (Z,z,1) e R" x T x [0, 1] — V'(Z,z,h) € R™

%

pvgvk”

m k ~ m k
e = 23 2 10Vl emxangr o and YV |pun = max 73502,V
j=17r=0

j=1r=0

where  denotes the Fourier transform on S (R™ x T') and L) , . (R™ x Z') is the L' space
equipped with the weighted norm > § |f(p,q)|(1 + |w - p| + |g|)zer Pl gp,

qeZ! R™
Let us remark that |V'|,.r < oo implies that V' is analytic in a complex strip Sz <
p, ¢ < pw and kth time differentiable in # € [0, 1].

We will denote by V/(Z) := ﬁ $o V(B x)dx.

Our main result reads (see Theorems 26, 27 and 36 for more precise and explicit state-
ments):

Theorem 1. Let k € Nu {0} and p > 0 be fized. Let H satisfy the Main Assumption above
and | V|| pwis | VV | pwr be small enough.

Then there exists a family of vector-valued functions BE (), é’%BgO() being holomorphic
in {|Sz| < £,i=1...m} uniformly with respect to h € [0,1] and 0 < j < k, such that the
family H is jointly unitary conjugated to B (L,,) and therefore the spectrum of each H; is
pure point and equals the set {(BL);(w-n), n e Z'}.
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Here we denoted w - n = (< w;, n >)i=1..m-
Our results being uniform in 4 we get as a partial bi-product of the preceding result the
following global version of [LS1]:

Theorem 2. Let p > 0 be fized. Let ‘H be a family of m < | Poisson commuting classical
Hamiltonians (H;)iz1..m on T*T' of the form H = H° +V, H(z, &) = wé, w and V
satisfying assumption (A1) and V on the form V(z,§) = V'(w1.§,. .. ,wn.& x). Let finally
IV pws [VV | po be small enough (here we consider V' as a function constant in h).

Then H is (globally) symplectomorphically and holomorphically conjugated to BY (HO).

Once again let us mention that our results are much more explicit and precise as expressed
in Theorems 26, 27 and 36 and Corollary 32.

Moreover it appears in the proofs that the statement in Theorem 1, as well as in Theorems
26, 27 and 36 and Corollary 32, is valid for fixed value of the Planck constant i under the
Main Assumption lowed down by restricting (1.6) to % fixed. More precisely under the Main
Assumption with (A3) restricted to, e.g., i = 1, the Theorem 1 is still valid by putting in
the statement £ = 0 and » = 1. Let us mention also that, as in the original formulations
in [Ru]-[LS1], one easily sees that condition (A2) can be replaced by the fact that the
quantum Birkhoff normal form (see section 2 below for the precise definition) at each order
is a function of (w1.£, ..., wy,.€) only.

Finally let us emphasize the two extreme cases, that is m = [ and m = 1.

Corollary 1 (Quantum Vey theorem). Assume that the w; € R, j = 1,...,1, are inde-
pendent over R. Assume that the H; = L, + Vi, i = 1,...,1 are pairwise commuting. Let
the perturbation V; be the quantization of any small enough analytic function V;. Then the
family H is jointly unitary conjugated to B (L,) as defined in theorem 1.

We emphasized that this last result do not require neither a small divisors condition nor
a condition on the perturbation.

Corollary 2 (consolidated Graffi-Paul theorem). Assume that w € R' satisfies Brjuno
condition (m = 1). Assume that H = L, + V', where the perturbation V is small enough
and V(§,x) = V'(w.§,x). Then H is unitary conjugated to Bl (L) as defined in theorem
1.

The main difference between this last result and the main result of [GP] is the small
divisors condition used. See Section 10 for the proofs.

Le us finally mention a by-product of our resul, a kind of inverse result, obtained thanks
to the fact that we carefully took care of the precise estimations and constants all a long
the proofs. This result is motivated by the remark that, though a small divisors condition
is necessary to obtain the perturbed integrability (and Brjuno condition is sufficient), such
a condition should disappear when the perturbation vanishes, as the Hamiltonian H° is
always integrable, whatever the frequencies w are. Our last result quantifies this remark.

Let us define, for w satisfying (1.4) and o < 2log 2,

Ba(v,7) = 2log [Tv(é)T]
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(note that B,(v,7) — o0 as v and/or 7 — o).
The next Theorem shows that, in the Diophantine case, the small divisors condition can
be released as B, (7, 7) diverging logarithmically as the perturbation vanishes.

Theorem 3. Let k € Nu {0} and p > 0 be fized. Let w and V satisfy (A1) (Diophantine
case), (A2) and (AS3), and let 0 <w_ < w < w, <0 and |V, &, vy
enough (depending only on k).

Then there exist a constant C,, such that the conclusions of Theorems 1 hold as soon
as, for some o < p/2, a < 2log?2,

pw, k be small

1 1
B,(v,7) < zlog | ——— | +C,, .
3 Hv|pvg+7k -

See Corollary 37 for details and the Remark after on the case of the Brjuno condition.
Let us remark that an equivalent result for Theorem 2 is straightforwardly obtainable.

Let us finish this section by mentioning three comments and remarks concerning our
results.

First of all, as mentioned earlier, no hypothesis on the minimal distance between two
consecutive unperturbed eigenvalues is required in our article. More, the spectra of our
unperturbed operators L, might be dense (actually in the Diophantine case for m =
1, I > 1 they are) so the Neumann series expansion is not possible. For m > 1 the non
degeneracy of the unperturbed eigenvalues is not even insured by the arithmetical property
of w because it relies on the minimum over ¢ < m of the inverse of the small denominator
of the vector w;. In fact, for a resonant w; the operator H; will have an eigenvalue with
infinite degeneracy, so the projection of the perturbation V; on the corresponding and
infinite dimensional eigenspace, which leads to the first order perturbation correction to
the unperturbed eigenvalue, might have continuous spectrum. Nevertheless our results
show that the perturbed spectra are analytic functions of the spectra of the L,,’s.

Secondly, because of the fact that non degeneracy of some of the unperturbed spectra is
not even guaranteed by our assumptions, the standard argument on existence of a common
eigenbasis of commuting operators with simple spectra cannot be involved here. This
existence is a bi-product of our results.

Finally let us mention that, as it was the case in [GP], though our hypothesis on the
perturbations are restrictive, our results, compared with the usual construction of quasi-
modes [Ra, CdV, PU, Pol, Po2], have the property of being global in the spectra (full
diagonalization), and exact (no smoothing or O(h*) remainder), together of course with
sharing the property of being uniform in the Planck constant.

Let us point out that this paper has been written in order to be self-contained

NOTATIONS

Function valued vectors in R" will be denoted in general in calligraphic style, and operator
valued vectors by capital letters, e.g. V = (V))i=1..m or V = (V))i=1..m-
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For ¢, 5 € 2" we will denote by -;; or - ;; when - has already an index, the matrix element
of an (vector) operator in the basis {e;, e;(x) = ¢9%/(27)2,0 € T'}, namely
Vij = (Vl,z‘j)lzl...m = ((eiuwej)LQ(T")>l:1...ma
and by V the diagonal part of V:
Vij = Viiij,
together with

Y = (QW)lJ Vdzx.
T

We will denote by | - | the Euclidean norm on R™ (or C™), |Z|*> = >, |Z|?, and by
1

| | z2(t)—r2¢r1) the operator norm on the Hilbert space L*(T').
Finally for w = (w; € RY);—1_, and £ € Rl, pe R™, ¢ € 7! we will denote

w-§=(<wi,& >p)i=1..m €R™, (1.8)

pw = (Z pwf) e R (1.9)
=1 j=1..1

and

m 1
pw.qg=) Y pwlg =P w Q. (1.10)

i=1j=1

2. STRATEGY OF THE PROOFS

The general idea in proving Theorem 1 will be to construct a Newton-type iteration
procedure consisting in constructing a family of unitary operators U, such that (norms will
be defined later)

U;l(Bf(Lw) + V;")Ur = B?Jrl(Lw) + V;’+1> (2-1)
with [Vig1lri1 < Dra|V2]7 and Bj(Ly) = Ly, Vo =V.
U, will be chosen of the form
U, = ei%, W, self-adjoint. (2.2)

It is easy to realize that (2.2) implies (2.1) if W, satisfies the (approximate) cohomological
equation

1
—[B! (L), W] + Vi = Drsa(La) + O(IVi ), (2.3)
or equivalently
1
—[B(Lo), Wo] + Vi = Drya(Le) + O(IV2[7), (2.4)

for any V< such that |V — V.|, = O(|V,|]?).

We will solve for each r the equation (2.4) where V. will be obtained by a suitable
“cut-off” in order to have to solve (2.4) with only small denominators of finite order (see
Brjuno condition (1.3)).
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In fact we will see in Section 3 that we can find a (scalar) solution of the (vector) equation
(2.4) satisfying

1
B (L), Wl + Vi = By (L) + Ry, (2.5)

where | R.|x+1 = O(|V,|?). To do this we will remark that since the components of B"(L,,)+
V. commute with each other (since the ones of L, + V' do) we have that

[(Br (L)), (Vo)e] = LB (L)), Vil = [(Vie, (Vi)i] = O(V) (2.6)

which is an almost compatibility condition (see Section 3 for details).
Summarizing, the solution W, of (2.4) will provide a unitary operator U, such that (2.1)
will hold with B!',; = B! + D,; and V. being the sum of three terms:

o Vi = U (BN L) + V2)U, = (BY(Lo) + V) — 5B} (Lw), W]
V=TV
s V;%H =R,

The choice of the family of norms | - ||, will be made in order to have that

Visillrir = HV7»1+1 + Vr2+1 + Vr?:rlHrH < D, 41| V|2

with D, satisfying
R
[[p¥ " <c*.
r=1

Hence, we have
[Visalrer < (CVolo)*"

so that |[Vgii|re1 — 0as R — o0 if [V = Vo< C7!and | - | exists.

3. THE COHOMOLOGICAL EQUATION: THE FORMAL CONSTRUCTION
In this section we want to show how it is possible to construct the solution of the equation
1
%[Bh(Lw)a W] +V = D(Lw) + O(V2)7 (31)
i
where we denote by L, w = (w; € R/ )i=1..m, the operator valued vector of components (with
a slight abuse of notation) L,, = —ihw;.V,, i = 1...m on L2(T!) and V is a “cut-off’ed.

Vij = 0 for [i — j| > M.

We will present the strategy only in the case of the Brjuno condition, the Diophantine
case being very close.

Let us recall also that equation (3.1) is in fact a system of m equations and that it might
seem surprising at the first glance that the same W solves (3.1) for all £ = 1...m.
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3.1. First order. At the first order the cohomological equation is

Lo W
%'szpg([/w), l=1...m (32)
solved on the eigenbasis of any L, by Dy(L,) = diag(V;) and
V, — D)y
w, = — ez Doy (3.3)
iwe - (2= J)

In (3.3) we will picked up, for every ij such that |i — j| < M, an index ¢ = ¢;_; which
minimize the quantity

o, ™" = min [wi, @)™ < M. (3.4)
We define W by
Vi )i
Wi = — Ve, )i i—j#0 (3.5)

iwéifj ’ (Z - j)’
Since [Hy, Hy] = 0, then we have that [LyVy] + [V, L¢] = —[Vi, Vir]. Therefore, evaluating
the operators on e; and taking the scalar product with e;, leads to

wp - (1= 3)(Ve)ij = we - (1 = 5)(Ver)ij — ([Ve, Vil )i (3.6)

that is
Vg V)i (Vs Verl)s
we-(i—g)  we-(i—j) we-(i—=jwe-(i—J)
. —([Ve; V)i
(note that when wy - (i — j) = 0 on has (Vi);; = W)
Let us remark that, though [V, Vi] is quadratic in]V, it has the same cut-off property
as V, namely ([V,, Vir])i; = 0if |i — j| > M as seen clearly by (3.6).
This means that W defined by (3.5) satisfies

L N
[qu+V=D@@+V
1h
where
5 V,Vi_. i

Z.M&fj ’ (Z - j)
Note that this construction is different from the one used in [LS1].

3.2. Higher orders. The cohomological equation at order r will follow the same way, at
the exception that L, has to be replaced by B(L,).
The corresponding cohomological equation is therefore of the form

[BHL.). W]

LV, = OV, (33)
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equivalent to
By (hw - i) — B (hw - j)
ih
Lemma 4. For B! close enough to the identity there exists a m x m matriz A™(i,j) such
that

(W)ig + (Vi)iy = O((V2)?). (3.9)

)
where I is the m x m identity matriz and w.(i — j) = (w;. (7

i —7))i=1..m. Moreover
|A™ (7, )l em—em < HV(B:? - Bg)”((cmﬁ(cm)@)LOO(Rm) < s %nZ ij(Bf - Bg)iHLw(Rm)_ (3.11)
e &

Proof. We have

Bf(hw-i)i—hl?f(hw'j) — wli—g)+ Lat [(Bf—Bg)(thw.iJr(1—t)hw-j)]%

= w@—jy+f[vaﬁ—B@@mm+ml—wmgﬂ-w@—Jﬂﬁ

0
so A"(3, ) So — B})(thw.i + (1 — t)hw.j)dt and the first part of (3.11) follows. The
second part is a standard estimate of the operator norm. l

Plugging (7.5) in (3.9) we get that W must solve

w.(i = Wiy = (I + A(i, ) [=(Vo)is + O((V)*)] (3.12)
and we are reduced to the first order case with V, — V" where
V= (1 + A7) (V)i (3.13)

3.3. Toward estimating. We will first have to estimate V™ this will be done out of its

matrix coefficients given by (3.13) by the method developed in Section 5.1. We will estimate
~ o0

(I + A7(i,7))”" V" in section 6 by using the formula (I + A™(i,§))" = 3 (=A"(4, j))* and

a bound of the norm of ( - A" (i, NEVT of the form |C|* times the norm of V" leading to a

bound of (I + A"(i,§))"" V" of the form times the norm of V", by summation of the

1- \C |
a0
geometric series >, C*, possible at the condition that |C| < 1.

k=0
We will then have to estimate W defined through

Ve, )is
iwéifj ’ (Z - j)’
with again (%’;ﬁ)ij =0 for |i — j| > M. We get

(Wis| < Marl (Ve )il

Wy = — i—j#0 (3.14)

and we will get an estimate of W, |[W| < My||V"], for a norm | - | to be specified later.
Finally we will have to estimate
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(V")i; = (V7 Vi D
e Z.M&fj ’ (Z_])

~ WV ve 1
We will get immediately [V < My|P[, P; = ——=— and the estimate of the
commutator will be done by the method developed in Section 5.

In the two next sections we will define the norms and the Weyl quantization procedure

used in order to precise the results of this section,

(3.15)

4. NORMS

Let m, [ be positive integers. For F € C*®(R™ x T! x [0, 1];C) we will use the following
normalization for the Fourier transform.

Definition 5 (Fourier transforms). Let p € R™ and ¢ € Z!

]?(p,x,ﬁ) = F(&, x, h)e ’<p’5>d§ (4.1)
j-:(f,q; h) = J (&, x;h)e K%y (4.2)
Fp,q.h) = J F(&, x, h)e —iPE=KLT) e dy (4.3)
mXTl
= F(&,q,h)e Pode (4.4)
= p,x h)e S0 dy (4.5)
Note that
F(&x,n) = F(p x, h)e"PE dp (4.6)
qe7!
_ Z ]: p q,h Z<p7£>+i<q,w> dp (4.8)

qezl R

Set now for ke NU {0} and p-w = ( X pj.w))iz1.i:
j=1l..m

we(p,q) = (L4 |p-w* + [g)2 (4.9)

(note that i1, (p—p', g — ¢') < 221, (p, Q)1 (P, ') because |z — 2/|* < 2(|zf> + [2/[?) and that
lp - w| — 0 as |p| — oo because the vectors (w?);_;. ; are independent over R).

Definition 6 (Norms I). For p >0, F € C*(R™ x T! x [0, 1]; C) we introduce the weighted
norms
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P = 1P o= s | 307G et dp (410)
— (wlpl+lal)
Pl = [Pl = Zf 5 0 T D (11
Note that w is given by (1.7) and | - |1, = | - |}

Definition 7 (Norms II). Let O, be the set of functions F : Rl x T! x [0,1] — C such that
F(& zh) = F(w- & x,h) for some F': R™ x T! x [0,1] — C. Define, for F € O,,:

[Fllpae 2= [F 1} i (4.12)
We will also need the following definition for F € O,,:
| FUS e = ZJ > iki(p.q Q) F (p, q, )] erelrl*lab gy, (4.13)
qez!
Let us note that, obviously, || - ||}, < | | pwr-

We will need an extension of the previous definition to the vector case. Consider now
FeC®®R™x T x [0,1];C™) and G € C*(R™ x [0,1];C™). The definition of the Fourier
transform is defined as usual, component by component.

Definition 8. [Norms I1I] Let F = (Fi)iz1..m € C®(R™ x T! x [0,1];C™). We define

(1)

(2) Let
= {F = (Fictm R x T x [0,1] > C™/ F;€ Oy,i=1...m} (4.15)
Let F € O}. We define:
H}—Hp,%k = Z HFin,g,k (4.16)
i=1

Let
O™ = {F = (Fij)ijet.m : R™ x T x [0,1] - C™/ Fije Ou,ij =1, .m} - (4.17)
Let F e O™ . We define:

| F e = sup Z | Fisll oot (4.18)

m]lm
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(3) Finally we denote F' the Weyl quantization of F recalled in Section 5 and

HFHp,%k = H]:Hp,g,k (4.19)
Tpw) = AF[IFI}pn < 0}, (4.20)
Tipw) = (F|FeFl(pw)} (4.21)
Ti(pw) = {F € Oul|Flpur <}, (4.22)
Slp,w) = AF[Fe T(pw)} (4.23)
Ti(pw) = {F € Ou]|Flpur <} (4.24)
Ji(pw) = {F|FeJi(pw)} (4.25)
T (pw) = {F e OF [|Flpwr < 0}, (4.26)
Ji'(p,w) {F|Fed"(pw)} (4.27)
T M pw) = A{F e OF " [|Flpwr < o0}, (4.28)
S pw) = AF[Fe J " (p,w)} (4.29)

and J°(p,w) = J,2o(p,w), J°(p,w) = JiLo(p,w) ¥Q € {f,m,m x m}.
When there will be no confusion we will forget about the subscript , in the
label of the norms and also denote by J.(p) = J.2(p,w).

5. WEYL QUANTIZATION AND FIRST ESTIMATES

We express the definitions and results of this section in case of scalar operators and
symbols. The extension to the vector case is trivial component by component. The reader
only interested by explicit expression can skip the beginning of the next paragraph and go
directly to Definition 5.4.

5.1. Weyl quantization, matrix elements and first estimates. In this section we
recall briefly the definition of the Weyl quantization of T*T!. The reader is referred to [GP]
for more details (see also e.g. [Fol).

Let us recall that the Heisenberg group over T*T' x R, denoted by H;(R' x Z! x R), is
(the subgroup of the standard Heisenberg group H;(R! x R x R)) topologically equivalent to
R'xZ' xR with group law (u,t)-(v, s) = (u+v,t+s+1Q(u, v)). Here u := (p,q),p € R, q € Z/,
t € R and Q(u,v) is the canonical 2—form on R' x z': Q(u,v) := (uy, ve) — (v, uz).

The unitary representations of H;(R' x z' x R) in L?(T') are defined for any n # 0 as
follows

(Un(p,q,0)f) () := ™M@ HPDR f (g 4 hp) (5.1)

Consider now a family of smooth phase-space functions indexed by &, A(¢,x,h) : Rl x
T! x [0,1] — C, written under its Fourier representation

A&, z,h) = Jl > Alp, g; )@+ gy (5:2)

R* 4ezt
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Definition 9 (Weyl quantization I). By analogy with the usual Weyl quantization on
T*R![Fol, the (Weyl) quantization of A is the operator A(h) defined as

27T J ZApaqa Uﬁ p7Q7O)d (53)

qezt
(note that the factor (27)! in (5.3) is due to the (convenient for us) normalization of the

Fourier transform in Definition 5).

It is a straightforward computation to show that, considering f € L(T!) as a periodic
function on R', we get the equivalent definition
Definition 10 (Weyl quantization II).

AN = [ A+ w2 ene T ) S (5.4

13

Remark 11. The expression (10) is exactly the same as the definition of Weyl quantization
on T*R! except the fact that f is periodic. Note that A(h)f is periodic thanks to the fact
that A(x, &, h) is periodic:

L(x+2m—y)
h

(A((x+ 21 +y)/2,€)el Fly)2e = S A((z + 27 +y +2m) /2, et (y+27r) —
§A((z +y)/2 + 27, €)er* <‘wy L4x+yV2@5@”ﬂw€%=@va@>

The first results concerning this definition are contained in the following Proposition.

d§ dy

(z—y)
h

Proposition 12. Let A(h) be defined by the expression (5.4). Then:
(1) Vp > 0,Yk =0 we have:

LA 2ty 2y < [1Allp.x (5.5)
and, if A(&,2,1) = A'(w - €, ;1)
|A(n )HL?(TZ —L2(T!) HA'HM (5.6)

(2) Let, forneZ, e,(z) = &T)l Then for all m,n in Z,

{m, A(h)en) 2ty = A((m + n)i/2,m — n, h) (5.7)
(3) Reciprocally, let A(h) be an operator whose matrix elements satisfy (5.7) for some
A belonging to J©, @ e {f,m,m x m}. Then A(n) is the Weyl quantization of A.
Proof. (5.7) is obtained by a simple computation. It also implies that

[ AR em 72y = X, M(r(m + g)/2,m — g, m)]* < SupZIAﬁq, ).

£erl

qez! qezt

So that

JA®) Y emem gy < ZW%WEMs% < (Nlenl?) | 3 sup A, g, 1)

1
7l R jezt 7! gez! ER
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And therefore, since by (4.6)-(4.7)-(4.8) A(&, ¢, h SRl (p. q, h)e=5#>dp so that |A(€, ¢, h)]
< SRI |Av(p7 q, h)|dp7

|A®) | 22y < Y sup [A(E, q,0)] < JZ [ A(p, g, )ldp < | Al i, ¥p > 0,k > 0.

qez! ger! Rl qe7!
(5.8)
In the case A(&, x,h) = A'(w - &, x;h) we get, Vp > 0,k = 0:

|M®memm\§hwvm@,N=Z;$}MKmW<J§]@mmww<LMM-

qeZ! qe7! Rrm qEL!

(3) is obvious. O
5.2. Fundamental estimates. This section contains the fundamental estimates which

will be the blocks of the estimates needed in the proofs of our main results. These primary
estimates are contained in the following Proposition.

Proposition 13. We have:
(1) For F,G € Jk(p), FG € J.(p) and fulfills the estimate
[FGlon < (k+ 18| F|pp - |Gl (5.9)

(2) There exists a positive constant C' such that for F € J™(p) and for G € J}(p), we
have, Y61 > 0,0 = 0,p > 0 + 61,

2(k +1)8*

[F, G]
— < ———||F _ 5.1
S = e balCle-ss (5:10)
1 , 1 201+ k)8
MG Y@ s < e (Y e, e
d times
and [ !
L, G w
w 7] < =G 5.12
=] < Sl (5.12)
(3) For F,Ge Tkp), FG e Tk(p) and
|FGlpw < (& + 14| F e - |G or (5.13)
(4) Let V = (Vi)i=1..m € JJ"(p) and let W be defined by {e;,, We,) = Lm where,
Vm,n € Z, wy, . is such that [{w,, ,m —mn)|~!:= 1I<r11<n [{wi;,m —n)|~! . Then
TT
[Wp—ar < WWHVHM (5.14)
in the Diophantine case and (obviously)
[Wpx < M| V| (5.15)

in the case of the Brjuno condition.
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(5) Let finallyV = (Vi)i=1..m € J;*(p) and let P be defined by (P,);; = W for any

choice of (i, §) — li_j. Then P = (P)ic1.m € Jf(p—8),761 > 0,6 > 0,p > 6 + 6,
and

2(k + 1)8*

—_— _ 1
6251(5+51)HVH07/€HVHP 0.k (5 6)

[Plp—s-51k <

(6) Moreover let F : £ € R™ — F(§) € R™ be in J"(p). Let us define VF the matriz
((V-F>ij>i,j:1___m with

(VF)ij = 0¢. Fj. (5.17)

Then, for all 6 >0, VF € J"*™"(p—0) and

1
IVFlo-se < 51 F o (5.18)

Let us remark that, as the proof will show, Proposition 13 remains valid when the norm
I+ % is replaced by the norm | - | .

Proof. Ttems (1) and (2) are simple extension to the multidimensional case of the cor-
responding results for m = 1 proven in [GP]. For sake of completeness we give here an
alternative proof in the case m = 1. The proof will use the three elementary inequalities,

k
e+, a+4d) < 22m(p, Qv q) (5.19)
(pw.q —pw.g)/2l" < (p,q)p(®,q) (5.20)
,;smhxh < |$|k+1 (5.21)
prw gl < w max [pflg] < wlplldl (5.22)

where we have used the notation (1.10) and the definition (1.7).
(in order to prove (5.19), (5.20), (5.21) and (5.22) just use | X + X'|* < 2(|X|* +

| X'[?) for all X, X' € RY, |(pw.q' — pw.q)/2> < (Ip-w> + |g)(Ip- w'|® + |¢'[?), 22t =
Zl pjl|w;llq| by Cauchy-

Jj=

x m l ] m
yeos(shyds and |p-w - qf < X pill Dwjal = 2 Ipillw; -l <
0 = i= j=
Schwarz, respectively).
We start with (5.9). Since F,G € J'(p) we know that there exist two functions F’,G’

such that the symbols of F,G are F(§,z) = F'(w.£,x), G(&, z) = G'(w.&, x). By (5.7) we
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have that

(FG)mn = Z qu’Gq’n

q’EZl

_ z:f(

~ I+
_q/>g<q 2nh,q,_n)
q'ez!

~ / 2
_ (Eiﬁiﬁhm_n_d)g(q+7%ﬂ)

q eZl

2
~ +n+q =, "+ 2
' (

q’EZl
~ +n+ =, "+m+n—(m-—
- Zf’(w-wh,m—n—q)g' W LT n2 (m n)h,Q5)23)
qIEZl

Calling P the symbol of FG we have that, by (5.7) again, (FG)m, = P(£, q) with & = minp,

and ¢ = m — n. Therefore

9= F (w.& tw- %h,q - q’) g <w.£ TR 2—th q’) : (5.24)

q/€Zl

so we see that P(,-) depends only on w.§: P(§,x) = P'(w.£,z). Moreover, since by

(4.3) P'(p,-) = W Sam P/(Z,-)e =EP>d= we get easily by simple changes of integration
variables and the fact that the Fourier transform of a product is a convolution,

P’p, J Z

q'ez!

(]_—/ p p q-— )ei%(p—p’)-w-q’> <§/(p/’q’)eigp’-w-(q’—q))> dp'. (5_25)
Therefore |FG|,x is equal to the maximum over s € [0, 1] of

k
ZJ Z —~ (D q)|o) []—"’(p P,q—q)e % ((p—p')-w.q'—p'" w.(¢— q))g (P, q)} |ep(w|p|+\q\)dpdp

(9,9 )€z

(5.26)
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Writing, by (5.20), that

|5v [.7:’(;0 p q_q)eg((p p')w.q —p'w.(g— q))g(p q)p

N (7 H
) ( >|( S — ol — )| O D) G )|

)
-

VRS

<o

" M) T F = v a = I~ p)wd — v w.a—d)/2"10G (V)

N
L
YR
)
N———
<
Il
o
7N
R

o
—. P(F,Q) (5.27)
S (O (7 v
S 2(#) S e =pa = @m0 )l F (0 = a = 4)|ng (v, )]
n=0 v=0
changing p — ', v > 1 =y -9 —v)
v ~ = N
< ) <v’) > < 5 )Nv (P =14 = Wty (0, )| O F'(p =0’y = @)l|0n G’ (0, 4)]
4'=0 V=0

k k Py ~
Z 2* Z %1y (p =10, q = )iy (0, )L Fr(p— 9 g — )0V G (P, )|

=0 v'=0

N

(5.28)
using (5.19) under the form

k
(P, q) < 22pe(p =00 — ¢ )P’ )

together with the fact that ug(p, q) is increasing in k and pugpir = fogyr-
We find that

[k »y(p, qQ)P(F,G)

k
Z Z [ok—yy—y = (D = D' @ — @) ooy —r (P Q)|5V]:'(P p.a—q))é] G (p q)|

wla~

(replacmg 2% by 2* to avoid heavy notations and since k — ' — v/ <k —~/, k— 1/ )
ko k — ~
< 8> > =1 a— )y (@, )Y Flp— 10— e G W, ) (5.29)

v'=0v'=0
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k

Note that v disappeared from (5.29) so the . in (5.26) gives a fractor (1+k). We get that
v=0

(14 k)™'8%|FG||,x is majored by the maximum over i € [0,1] (note the change v/ — )

k —~ ~
> f D bt (0, D EF (. ) iy (9, 4137 G (9 ) P P ¥l e Dy (5.30)

gzt VF y,9/=0

which is equal to
[kl Gl

The proof of (5 10) follows the same lines, except that it is easy to see that, in (5.25),

'z ((p—p)wd'—p'w.(4-4)) has to be replaced by QSm( (p—17p). w.q’—p’.w.(q—q’))), since
(5.23) becomes

[F, G] . qu/Gq/n — qu/Fq/n
< in ) 2 ih

q’GZl
1 []f_(ernJrq’hm_n_q,)§<m+n+q’—(m—n)hq,)
th’ezl 2 2
s(m+n+dq s(m+n+q—(m-—

It generates in (5.26) the replacement of |((p — p').w.¢' — p'.w.(¢ — ¢'))/2|"by the term

2/((p—phw.d —pw(g—a)2"" <pwp—1,¢— )@, d)|p-w-qd—p w-q)

thanks to (5.20), and we get by a discussion verbatim the same than the one contained in
equations (5.27)-(5.30) that

k
I[F, GY/itllps-a ke < (14 )" ] f D bt (0, )ty (9, ) Qipdy',  (5.32)

gqent VB y4/=0

where thanks to (5.22),

Q = [QF@ollp-w-d|+|p-wg)|o] G0, ¢) el eI+
< |6V F (p, )||57 (p q)|e” p+|q|)+(p5)(gp’+|q’|)] (wlpl|d'] +g|p/||q|)e*(5+51)(g\p\+|q|)*51(glp’|+\Q’\))
2 / /
'y]:/ a“f eP@lpl+la)+(p=8)(wlp’|+1d']) 5.33
6251(5+5)|(/h (pu )|| (p q)| ( )
because (e7* < 1,z > 0 and)
1
sup ze ¥ = —. (5.34)
reR+ ew

(5.10) follows immediatly from (5.32).
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The proof of (5.12) follows also the same line and is obtained thanks to the remark
(5.34): indeed since
Lo, W :
<g) = —iw - (m —n) Wy,

th
we see, again by (5.7), that the symbol Q(&, x) of [L,, W]/ih is given trough the formula

m+n

é(gaQ) = ([Lwa W]/Zh)mn for § =

hand ¢ = m — n.

Therefore Q(€,q) = (—iw - Q)W(E, q), so Q(&, ) = Q' (w.€, ) with
@(w.{,q) = —iw.q W’(w.{,q).

We get immediatly

O (p. )elr-Delbltla) <« Ly o eplelpl+la)
Q(p,q)e 5V pa)e

and (5.12) follows.

(5.11) is easily obtained by iteration of (5.10) and the Stirling formula: consider the
finite sequence of numbers §, = %5. We have 6p = 6, 03 = 0 and d5_; — d, = g. Let us
define Gy := F and G,y := =[G, G,], for 0 < s < d — 1. According to (5.10), we have

Ck

Gslp=s, . < ==
(Gele-tee, < 257

|Gl G smrll 60—

where
cr = 2(k 4+ 1)8%,

Hence, by induction, we obtain

1 ! i
aHGde*% < d!eQ(d—l)(SO...5d_2(§)d—1HGHp |Gl p-64m (5.35)
d
Cy d
< G|YF
d!62d50 . 5d—15d—1(g)d_1 H Hp” HP
d
< ok telklalk
dle2dd)(8)ds, (2)d-1"”
1 de2 d 1 d
S G| F
= (55) e,
2
1 d 2 d,—d
21 \ 42 d! P
1 CL d
< o (5) IGIIF,
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. |
since m > 1. This weel know inequality can be seen from Binet’s second expression

for the logI'(z) [WW][p. 251] :

| 0
o8 (=) =2 arctan(t/n) 4, —
(5) Vam ) Tl em

Finally (5.13) is obtained by noticing that |FG|, has the same expression as |F G|,
after removing the term ez« ~r'«4) in (5.25).
To prove (4) 1t is enough to notice that by (5.7) the symbol of W satisfies W/ (f, q,h) =

Viy &) q’h) , so that W(p, q,h) = Vlfje(ip;h and therefore, for all r € N,
q

Weq

0:W (P, g, )| < vlqlTl_S}lp 165V i(p, . ) < Alal™ Y163V i(p, g, b)]

=1

out of which we deduce (5.14) by standard arguments (z7¢™*" < (Z)7, = > 0) in the
Diophantine case, and

=1...m

=

—

from which (5.15) follows.

— P~
—

To prove (5.18) we just notice that d¢, F;(p, q, h) = pz}" (p,q,h). So

106, F3 (9, 0, B)| < |piF;(p, 4, )] < |};(p,q,ﬁ)llp|-

Therefore |é’7"&§ (p, g, h) PPl < L |é’7"5§ 3 (p, q,n)|e!Pl and (5.18) follows.
(5) is an easy extension of (5. 10) Indeed we find immediately, by (5.7) and the
fact that [;,_; depends only on z' — j, that the Fourier transform of the symbol of P is

75(p,q, h) = é?lq(p,q, h) where Xl 1s the Fourier transform of the symbol of the oper-

ator X, = [Vl;;/lq]. Therefore |(/2qu(p,q, h)| < max |(3”Xl(p,q, n|,vr = 0,q € Z!. So

|Pilp-s < mace |1Vi Vil il and | Plos < o |IVe Vel il < 35 IVe Vel it ms

and we conclude by using (5.10). O

6. FUNDAMENTAL ITERATIVE ESTIMATES: BRJUNO CONDITION CASE

In all this section the norm subscripts w and k are omitted.
Let us recall from Sections 2 and 3 that we want to find W, such that

¢ (Hy + Vi) % = Hopy + Vi (6.1)
where H,., = H, + hyy1 and H, = B,(Ly), hyy1 =V, = D,(L,) and, for 0 < § < p < 0,
[hriilly = IVilo < 1Villps  1Visall—s < DeVA S, (6.2)
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and that we look at W, solving:

1 N
’_h[H’"’ W, + Veor = Veor 4 V7
2

with
yeor — V;» o VMT.
VMr g given by

Viﬁur = (Vr)ij if i — j| > M,, VMr — () otherwise.

v

(note that Veor = V).
V" = (V])i=1..m is given by

- (V7 Vit )Di

(V;r)ij = ‘7;; = ([ + AT(Z’])) Vco yeor —

ihwi(i—j) - (Z —J) v

where A"(7, j) is the matrix given by Lemma 4, that is:

B, (hw 1) — B.(hw - j)
1h

=+ A(i,7)) w.(i —J).

Let
Zy = 2(k + 1)8".

‘/T’_VMra

Let us denote ady, the operator H — [W, H]. The Lh.s. of (6.1) is then:

[o0]

1 1 1
H, +V"+ —[H,, W,] —_— d] V. ———ad
+ pl + Z ST (V) +j§ oy,

that is
R o0 1 o0
H, +Veor + Vi V=V + o
Zzl (—zh)ﬂj Z:: —ih)J
or
Ho+ho1 + (V.= Vo) + V. + R + Ry
Let us set

‘/;«Jrl = (‘/T - VCO’T> + ‘77“ + Rl + RQ.

We want to estimate V.. We first prove the following proposition.

Proposition 14. Let W be in Ji(p) and 0 < § < p. Then

1

I[H W/iklps < —(w + Zi|V (B = Bg)[,) [W],-

ed

v (H.,)

adjy, (H,).

(6.4)

(6.6)

(6.9)
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and for d = 2,

1 d Ow h h Zi\ d
WY V)5 < oo+ 2V @ - 891 (55) WL (610
d times
Let now W, be the (scalar) solution of (6.3). Then, we have
M T
Wi, < 5 V2l (6.11)

1= Z| D(B: — Bp)ll,
and therefore for d = 2,

1
L

27TZk/5 1_ZkHD(Bﬁ_Bg)Hp re

(6.12)

[ W] )]s <

d times

(M is defined in (1.3) and |DB|, is meant for max > VB ,)-

j=1l..m

Proof. We first prove (6.9). Note that the proof is somehow close to the proof of Proposition
13, items (1) and (2).
Since B°(L,) = L, (5.12) reads

. W
Lo, Wl fitly5 < W, (6.13)

Note that ([H, — Ho, W,|/h);; = LR8N where G7(Y) = BX(Y) — Y, Y € R™
(note that G" has an explicit dependence in 4 that we omit to avoid heaviness of notations).
Indeed, since each L, is self-adjoint on L*(T'), B"(L,) can be defined by the spectral

theorem. Hence, we have
[Br (L), Wij = (eq, [B(Lw), Wle) = (5, Bl (Lu)We; — WBJ(Ly)e:)
(B! (w.ih) — Bl (w.jh))(e;, We;).

Using (5.13) we get that
\LH, — Ho W finl s < 1X,,s (6.14)
where X, is defined through (X, );; = M(WT)U

In order to estimate the norm of X" we geed to express its symbol &,.. This is done
thanks to formula (5.7) and the fact that we know the matrix elements of X,.
Expressing (X,);; as a function of ((i + j)n/2,i — j) through i, = 52 + =L and using (5.7)
we get that

X.(€,q,h) = ot +odf?) ; L w'qn/Q)M(W-S, q,h) = Xl(w.€,q,h),

so that, using (remember that we denote p.w.q= >, >; pjqui)
I

j=l..mi=1...

J (G"(Z + w.qh/2) — G"(E — w.qh/2))e "==P>dp = 2sin [p.w.qh/2] J G (Z)e =P dp,
R™ .
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f Gr(p Sm[(p p')w.qh/2) ==

h

X’ (p,q,h W'.(p', ¢, h)dp.

Therefore || X, [|,—s is equal to

ZZJ dePIQZuk +(p,q)0% l@"(p—p)sm o= D) 25 11 gy | eto-oretoisia

h
i=1 qez!

ZZJZ%M% iE()( )X

in ((p — )w qh/2)

2|07 "Gl (p — )| |6y AW, (', g, )| e lplHaD gy (6.15)

Using now the inequalities (5.21) and (5.22), we get,

IZmynA2§<>c ﬂm“@w oyl @ = D) G 35 o )

h

< w max |p;—p] |Q|Z/~Lk +(p.q 22 (Z)(fy )W 4G ()| (p—p) gl W (0 0, ).

j o

Therefore we notice (after changing ¢ < ¢’) that ||.X,[,_s is majored by the maximum over
€ [0,1] of

ZJ Z te—y (s @)w max. |p] PIP(G, W, ) elP=Olpl+lah gy (6.17)

(g,9")ez?

where P is defined in (5.27) and

GI(Z,x) = G/ (Z) so that G/ (p,q) = G} ()d—o-

Therefore we can verbatim use the argument contained between formulas (5.27)-(5.29) and
we arrive, in analogy with (5.30), to the fact that (1 + k)78 7% X, |,_s is majored by the
maximum over 4 € [0, 1] of

Z J W max |pj||q| Z tk— (P, q )|5gg(p, Q) (1 7)oy W (p ¢ )P0 lpl+elpI+lal+1aD g gy

q,q'€z! ¥y'=0

2f wmwmmzh%wmwwumwmeWW¢wﬂMwwwwa

q'ez! v,Y'=0
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Since |G! (p)lIp;] = |G} (p)ps| = [V;GF (p)], we get that (use p—3 < p and again |¢'|e~*11 <
1
)

(1 + k’)8 2w

REPEES = IVGT W, < o5 IV (B = By)l Wil (6.18)
Here |V(B! — B})|, is understood in the sense of (5.17)-(4.18).
(6.9) follows form (6.13) and (6.14)-(6.18).

We will prove (6.10) by the same argument as in the proof of Proposition 13. Take
(5.35) with Gy := L[W,, H,], Go1 = L[W,,G,] and 7, = S5 for 1 < s <d — 1, 5 = 6,

Yd—1 = g.
We get
zZi!
il < : »
Z it
S e (d)2d 2HW 151Gl p—s/a
1+ 7 n

dldle2d— 1( )2d 1
Y n h e~%/2md d
< m(l + Zk| V(B = By)ll,) ( p 52 HW 1%

7d2

and we get (6.10) by < P
In order to prove (6.11) we first estimate V|, defined by (6.5) where A"(¢, 7) is given
by (7.5).

Lemma 15. Let V' be defined by V/; = A"(i, j)VS°. Then
V', < Zk| DBy = Bo)lo[Vp- (6.19)

4 <1and d®e !> 1if d > 2, and setting p = pr, % = .

Proof. The proof will actually be close to the one of (6.9). A" (i, j)w.(i—j) = w
S0
1
A'(i,7) = J VG (1 — t)w.jh + tw.ih)dt.
0
Therefore

- f Z VoG (1 — t)w.jh + tw.ih) Vodt

SO

V| < sup Z VoG (1 — t)w.jh + tw.ik) V.

O<t<1

Let X, be defined through

(X0 = FuG (1= )i+ i) (Vi) = VG (- 220 — (1= 20)(i = 1)) (Vi)
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By the argument as before, using (5.7), we get that the symbol of X" satisfies

Xi(6,) = VaG (@€~ (1-2005) Vi€ ) = (X)) (€, ) == Vol (€~ (1-20)02) (Vi) (€, )

since V¢° has the same structure as V so there exists (V5°)" such that V°(¢, x) = (V) (w -
1), o

Taking now the Fourier transform of (X7)(Z, ¢) with respect to = one gets by translation-
convolution

—
—~—

(wal(p’ q, h) _ J V/n\gr(p . p/)ei(p—p’)-w.q(1_2t)h/2)};c}(p/’ q, h)dp'.
Rm

So, as before,

14

) S i(p—p' = Y\ (Y — K
TG (p — ) S0 e g ) (u) ( )dp'

v

Lo —— = VLT
< [ NS o ) - plal/2) AV ) (M) ( )dp'
Rm

Following the same lines than in the proof of (6.9) we get that (remember that, by definition,
X7 = 2 Xl [ Xalle = [(22)'ll, by Definitions 8 and 7)

X7 < 2 )5 2 IVaGi1alVilo < Zimax VG, 3 Vil < Ze[ VG 1,V

i=1n=1 n=1
and the Lemma is proved. O
Corollary 16. Let V" defined by Vi = (1 + A"(i,7))'Vi5°. Then
! 1 co
V7, < [Vl (6.20)

1= Z| V(B! = Bp)l,

(6.11) is now a consequence of (5.15) and the fact that [|[V<|, < [|V|,.
(6.12) is obtained by putting (6.11) in (6.10). The proposition is proved. O

We need finally the following obvious Lemma:

Lemma 17. Define
V(@ &) = > V(&)™ (6.21)
lg|=M
Then
V¥ ]p-5 < MV, (6.22)
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Corollary 18. Let VM be defined by
Vil = Vi;  whenl|i—jl=M
0

when |i — j| < M.

Then
VM pms < €MV ], (6.23)

Proof. Just notice that the symbol of VM VM satisfies, by (5. 7) M(¢ q,n) = 0 when
lg| < M and apply Lemma 17. O

Let us define, for a decreasing positive sequence (p;),=o..0, pPri1 = pr— 0, to be specified
later,
G, = |D(B!~ By, = max 3 [Vi(B: B, (6.24)
wam A4
We are now in position to derive the following fundamental estimates of the five terms in

(6.7):

HhT+1HPr75r < Hhr‘i’alr = HVCO,THPT = H‘/THPT (625)
M e Mror 2
Ve =Vl = 1V s, < (T ) W (6.26)
V7,
~ Zk/\/:;]ﬁ“
Vs, < ——2—|V,|? 6.27
Vo, < 7= Vel (6:27)
Zlc(; M,
2(1—2,Gr)
|1 Ri]p,—s, < g TR (6.28)
V= Zigi=zia |V o
kM?V[TH(l‘i'ZkGT)
53(1-21,Gr)?
| Rallp, -5, < pYivs V22, (6.29)
1- Zk52(1 Z,Gr) H Hpr

Indeed, (6.25) is obvious and (6.26) is nothing but Corollary 18.
6.27) is derlved by using Proposition 13, item (5) equation (5.16), Lemma 16 and equation
5). Note that, as pointed out before, V" is cut-offed as V" thanks to (3.6).

(

(6. |

(6.28) is obtained through the definition Ry, = 377, mad{%(%), the fact that, by
(5.1

D, Imiggadiv, (Villp—s, < (Zu/67V [Vil, W3, and (6.11), so that

o0 " MM 7
Bl s < jz_]fzk/wwm (%mm) .

00

(6.29) is proven by the definition Ry = )] Wad{%([—[,ﬁ) and the fact that, by (6.12) we
j=2

Z Mar, /82 J
have that | —hadiy, (Hy)lp,-s, < w8 (A2 ), ).
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Collecting all the preceding estimates together with the definition (6.8) :
Vigr = (V, = V) + V' + Ry + Ry,

we obtain:
Proposition 19. Forr =0,1,... , we have
1Visilo—s, < FVAIS, + eV, ], (6.30)
with ™
7 1—-7,.G,) + Mrw1+ZGr
F= i\/lMZCk} . <1+( - )MM RN (6.31)
7"( — 4k 7") 1- 1— Zkér 32 HV Hpr
7. FUNDAMENTAL ITERATIVE ESTIMATES: DIOPHANTINE CONDITION CASE
In all this section also the norm subscripts w and k£ are omitted.
Let 0 <6 < p. Let us recall that we want to find W, such that
(H +Vi)e S = Hyy + Vi (7.1)
where H,,; = H, + h,4, and H, = B"(L,), hys1 =V, = D,(L,,) and
1Prsaly = 1Ville < IVilps  [Visalo-s < Do VAI. (7.2)
In the case where w satisfies the Diophantine condition (1.4) we look at W, solving:
1 o~
’_h[HT’ W, =V, +V" (7.3)
7
with V' = (YA/[)Z:L”m given by
- (V7 Vit D ~ .
V)i = Vii= I+ ALi,7)" (Vi) 7.4
() = =y Vg o= (1 AL ) 04, (7.4
Here A"(i,7) is the matrix given by Lemma 4, that is:
B (hw - i) — B, (hw - j v o
o D BT 1 4 i yeti — ), (75)
The Lh.s. of (7.1) is
1 S <
Hr ‘/r s Hra Wr . H
- +zh[ ]+Z(—z h)Jj Z —ih)J WT( r)
Jj=1 ]:2
that is
1 0
H,+V +V +27m)39' ; = ]]l adyy, (H,).
or

H, + hr+1 + ‘77" + R+ Ry (76)
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Proposition 20. Let W, the (scalar) solution of (7.3).Then, ford =2, 0 < < p < 0,

1 ow Z
A Vs < 2 2w sl (Z) s, @
d tzmes
(5E)"
Wilo—s < = Vil s 7.8
Wl p—s 1 — Z| DB} - Bg)HpH o (7.8)
S0
! L+ 2| D(B} — By, 2(5)" '
H,, Wy h)%llp—s < - S V;
LW i) < w2 B (v,
d tzmes
(7.9)
(let us recall that My is defined in (1.3) and |DB|, is meant for max > VB,
J=lem; Tm

Proof. The proof of Proposition 20 is the same than the one of Proposition 14 done in
details in Section 6. The only minor difference is the discussion of the small denominators
and is adaptable without pain. We omit the details here. U

Using notation (6.24), Proposition 13, last item (5.10), and Proposition 14 we can derive
the following fundamental estimates of the four terms in (7.6)

[rsallon—s. < Ihrsallor = Vel

2247y(5)7

~ kK™ 52 9
Vil s < —m ———— ‘/r
H HPT Or (1 . ZkGr)Q H H -

()"
k a2 (1 ZkG'r)

Y(g5)7
Zk52(1 52 Gr) IV

| Ballps, < V215,

HPT

(v(;5:)7)?w(1+Z5Gr)
kT3 (1 zkcr)

| Rallp—s, < Vi1,

Zk52(1 eézr Gy [Vl
Collecting all the preceding results we get:

Proposition 21. Forr =0,1,..., |Vii1],—s < F/|V,]3 with

B 7(%)7216 92+7 i (1 - ZkGr) + l(iy (1 + ZkGr>
T52(1 — 2 (5
07 (1 = ZxGy) 1- L&) Ly,

T 1-Z,G,

(7.10)
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8. STRATEGY OF THE KAM ITERATION

In the case of the Diophantine condition, the strategy consists in finding a sequences o,
such that, with £ given by (7.10),

o0 r
Y6 =6<ow and [[DF <R”, R>0. (8.1)
r=1 =1

o0
Indeed when (8.1) is satisfied and thanks to Proposition 21, the series > V;, and therefore

r=1

oo 0
> h, = >V, are easily shown to be convergent in Jy(p — 0, w) for p > §, at the condition
r=1 r=1

that
V]

This last sum is the quantum Birkhoff normal form B! of the perturbation. Estimates on
the solution of the cohomological equations provide also the existence of a limit unitary
operator conjugating the original Hamiltonian to its normal form.

The case of the Brjuno condition follows the same way, except that one has also to find
a sequence of numbers M, so that (6.31) holds. The main difference comes from the extra
linear and non quadratic term in Proposition 19. This difficulty is overcome by deriving
out of |V,wr a sequence of quantities with a quadratic growth as in (7.10). This leads
to an extra condition for the convergence of the iteration, condition involving only the
arithmetical properties of w and which can be removed by a scaling argument.

pvgvk < R'

These ideas will be implemented in the following section which is organized as follows.
We first prove the convergence of the KAM iteration in the Brjuno case with a restriction on
w (Theorem 26), restriction released in Theorem 27 thanks to the scaling argument already
mentioned. This proves and precises Theorem 1. We then prove the corresponding
classical version (Corollary 32, global Hamiltonian version of the singular integrability of
[LS1], leading to Theorem 2 precised. We end the section by more refined results under
Diophantine condition on w, Theorem 36, leading to the criterion contained in Theorem

3.

9. PROOF OF THE CONVERGENCE OF THE KAM ITERATION

In this section the norm subscripts w and £ might be committed in the body
of the proofs. They are nevertheless reestablished in the main statements.

Proposition 22. Let us fir 0 < C <n <1, p> 0 and let us choose
po=p, 6, =027, 0<a<log2, and M,=2". (9.1)
For E = Ey defined below by (9.13) let us suppose:

0 1 1 log Z,.FE
r=0

2r—1 or or
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and, for 1 <r <1,

G, <n—CJr, (9.3)
3
5—7‘6(67‘+1M7‘+1_267‘M7") > 2 (9 4)
0711 '
and Mo 7 .
M, Lk
together with
ZryGo = 0, (9.6)
3
%e@Ml%Mo) > 2 (9.7)
1
an M2 1
Mo 2k
|V, < 5 93)
Then, forr =0
r+1
[Visillosn < (DR)* . (9.9)
where ,
eA e “a
Note that Gy = 0 and that, taking (9.3) for r = 1 we get:
1>n>Z;|VV|, and C < n— Z|VV'|,. (9.11)
Therefore we will impose the condition
_ n—
vV, < 9.12
v, < L (912

Proof. We first prove the two following Lemmas.

Lemma 23. Under the hypothesis (6.30), (9.3) and (9.5), and n < 1, we have that, if

3a+ (1 +n)wM;(w)

B> M)

—: E, (9.13)
then
M3, ZLE
M
The proof is immediate by noticing that, under proposition 19, (9.3) and (9.5), (6.31)
gives that, forr =1,...,

[Vesillorr < delVil5, + e Ve, with d, =

Mg, Zy, Mo, B
Fr<5§(1—77+0/r)2 (3+2 5, w(l+n C’/r))

so, for r =0,1,...

Z
P < Mz (3+2MMT

=g (e ).
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The case r > 1 is obtained out of the preceding inequality, and the case r = 0 comes form
the fact that Z,Gy =0 < 7.

3+w(1+n) ”T(w) < 3wl Miw)/a _ atw(ltn)Mi(w)
(1-n)2 MMr( y o A=mPMa(w)/e (1-n)2 My (w)

increasing with M, and the Lemma is proved.

Therefore ¥ must be >

since My, is

M3 b ZLE

Lemma 24. Let V, = |V,|,, + St where d, =

24, , Vi satisfy (6.31) and Vg =
V. po, = p. Then

Vi < d, V2 (9.14)

— 28, My
The proof reduces to completing the square in Proposition 19 and noticing that < 77 R

SO S 0 by (9.4), since Moy, > Moy,

The Lemma has for consequence the fact

2,1 ,
the

Vi < [ [d VY < (9V0)? (9.15)

This concludes the proof of Proposition 22 since |V, |,, < V. O

Proposition 25. Let |V,|,. < (Dy)* with Dy < e and D, < M, M and P defined
below by (9.23) and (9.20). Then (9.3), (9.4) and (9.5) hold.

e @]
Note that ] §, = 2a.

r=0
Proof. (9.4):
it is trivial to show that (9.4) is satisfied when a < 2log 2.
(9.5):
(9.5)-(9.8) are equivalent to
1 logé?  log Z,, 1 1 C
—1 — . log D — log = (1 — — 1
o log Mg, — — =+ —— +log Di < o 0g2( 7I+T) (9.16)
and
1
log M, — log 63 + log Z;, + log Dy, < log 3 (9.17)
which is implied by
a0
|[log Myr.| . . logéd? —log Z;
logD, < — TZ;) — T ig(f) o - A (9.18)
1 2
2 g Mo | OgMMT —log Z + 2logar — — — A (9.19)
- e
which is implied by
1 2
log Dy, < — ZM—long———A:: —P (9.20)
e

r=0
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where

r=1

1 1 1
Az—inf{Q—logé(l—nJrg),logi}<ooforn<1. (9.21)
" r

Note that A > 0, P > 0.
(9.3):
— —/
remember that B,,; = B, + V.., and HBTHHpTH < HBerrﬂ + HVT’+1HPT+1 < HBerr +
— —/
WVrsilor So [ DBriilpry < IDBpfpyy + 1DV,ilppsn-

7/7' 1, r+1
Moreover one has, by (5.18), HDerHer < % QHVH(SL*“ < Q(D%)je out
of which we conclude that
G <n—=Clr = ZyGr1 <n—C/(r+1),vr > 1, if
py" ¢ C© C
27—k - — = (9.22)
a277e r  r+1 r(r+1)
which is implied by D, < M for
. —(r+1) 1/4
a2eC \? aeC
M =inf | ——— = 1 2
= <2Zkr(r n 1)> <8Zk > = (9:23)
since a < log2, Z;, = 8 and C < 1. O
Proposition 25 together with Proposition 22 shows clearly that
(9.12) and [Dy < e ¥ and Dy, < M| = |V, ],, < (Di)* (9.24)

where Dy, is given by (9.10) i.e. Dy, := % |V, + k¢ ;SMO Note that since M < 1 so is

D, < M leading ot the superquadratic convergence of the sequence (V;),—o... In order
for Dy, to satisfy the two conditions of the bracket in the L.h.s. of (9.24) the two terms in
Dy, will have to both satisfy the two conditions. This remark will be the key of the main
theorem below.

Let us denote by w]?, j=1...m, ¢=1...1 be the ith component of the vector w;. Let
us remark that

: 1 1
M (w) = ]Ir%mmm and M) ]mla%(mmlm jwi]. (9.25)
Let us denote
0
| log Mo |
B = —_— 2

DENE (9.26)

We have that, by (9.2) and (9.20),
Cr(w) = 2B(w) — 6loga + 6log2 + 2log (Z;E). (9.27)

and 5
P(w) = B(w) + log Zy, + g + A. (928)
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Theorem 26. [Brjuno case] Let «, p,n, and C be strictly positive constants satisfying

a<2log2, p>2a 0<C<n<l. (9.29)

. C aeC i
Let us define, for A = —gﬁ%log%(l —n+ ) and M = <82k) )

_ (1—n)'Mi(w)®  afe?Pl)  (e-Bl)-a
Ry (w) = Ba+ (L+NuM@) 272 min | M b (9.30)

Let us suppose that, in addition to Assumptions (A1), (A2) Brjuno case and (A3), w
satisfies

1 3_,—2B(w) —B(w)—A
3a + (1 +n)wM;(w) < ¥ e L€ M (9.31)
260‘(1 — 7))2M1(w)3 26Zk 21/eZk
and the perturbation V satisfies
— - C
Vlpaok < i), [VV ] < *5 (932)

Then the BNF as constructed in section 2 converges in the space j,j(p — 2a,w) to Bl
and

185, = Billp-2ak = OVI5u) as [V]pwr — 0. (9-33)

pyw,k
That is to say that there exists a (scalar) unitary operator Uy, such that the family of
operators H = (H;)i=1..m, H; = Ly, + Vi, satisfies, Vi € (0, 1],

U tHU,, = B (Ly). (9.34)
Uy is the limit as r — oo of the sequence of operators U, = e e constructed in
Section 2 and
Ar E2r
U — Up 2@ty r2(nty < - = O p as r — oo for some E < 1,

here A, is defined by (9.53).
Moreover, Uy, — I € JI'(p — 20, w) and

Vlpw
V= 1 s = 0 (P22) s V0 0, (9.39
and, for any operator X for which there exists Y;W such that for all W € Ji(p,w),
: Ly~
ILXs Wil g5k < 53 X W o (9.36)

U XUy — X € Ji(p— 2a — §,w) and

_ Vi, .
U5 ' XU — X p—20—6k < sup Xppy =0 <| Iyt sup Xk,p’) (9.37)
P

2
—2a<p'<p 0 p—2a<p'<

D
62,
where D is given by (9.57).
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Note that the second condition in (9.32) “touches” only the average V and not the full
perturbation V. It can also be replaced for any p' > p by [V, < |V, < BPIZ—;’) since
IVV]|,—s < % for any § > 0.

Before we start the proof of theorem 26, let us show the way of overcoming the condition
(9.31).

We first notice that multiplying the family L, +V by A > 0 preserves of course integrability.
Moreover A(L, + V) = Ly, + A\V.
On the other side we see easily that:

B(\w) = B(w)—2log A, M;(M\w) = A"'M;(w) and therefore wM; is invariant by scaling.

(9.38)
Let us show that, for A large enough, (9.31) will be satisfied for wy := Aw. More precisely,
let us define

a+2[(1—n)a+ (1+n)wM;(w)] 297

ro= 2e2(1 —n)?M;(w)? ade—2Bw)
efB(w)fA
YT otz
we easily see that the following number \q is uniquely defined:
Ao = Ao(w) :=inf {\ > 0 such that M — p =0 and vA* — > 0} = sup {%, (E)a}
v

(9.39)
Elementary algebra leads to
Lemma. Yw, VA > A\, (w), (9.31) is satisfied for wy := Aw.
Since the BNF of A\H is the BNF of H multiplied by A we get that the latter will exist
and be convergent if \|V|, or < Rr(Aw) and A[VV' |, a0k < )\%. we get the

Theorem 27. Let a, p,n, and C be strictly positive constants satisfying
a<2log2, p>2a, 0<C<n<l. (9.40)
1

1 2—(r+1)
: c aeC |4 : a2”"eC
Let us define A = —g{% logz(1—n+%), M = <82k) = 71,121{ <2Z§r(r+1)> and,
for A= Xo(w) given by (9.39),

Rk(Aw) (1 - 77)4M1(w)2 abe2B(w) ] QGfB(w)—A
N =2 NS Mt (941
Ry r(w) A (Ba+ (14 nwM;(w))? 2672 min 17 (9.41)
Let us suppose that the general assumption (A1), (A2) Brjuno case and (A3) hold and
n—=C

[V ]pawk < Ban(w), [VV]prwn <

7 (9.42)
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Then the BNF as constructed in section 2 converges in the space j,j(p — 20, \w) to B
and
185 = Bill 2000k = OUIVI5 pw)- (9.43)
That is to say that there exists a (scalar) unitary operator Uy, Uy — I € Ji(p — 2ar, \w)
such that the family of operators H = (H;)i=1..m, H; = Ly, + Vi, satisfies, Y € (0,1],

U 'HU, = B (Ly,). (9.44)

Uy is the limit as r — oo of the sequence of operators U, = e e constructed in
Section 2 and

Ar E2r
HUOO - UT‘|L2(’]1‘Z)—>L2(’]I‘I) < — = O ( 3

. )asrﬁooforsomeE<1,

here A, is defined by (9.53).
Moreover, Uy, — I € JI'(p — 2, \w) and

Vo0
U= 1 sasan = O (P20} s Va0 0, (9.45)
and, for any operator X for which there exists Xy, such that for all W € Ji(p, \w),
Ly~
I Wit < S5 X ko a W g xec s (9.46)

U XUy — X € Ji(p — 2a — 6, \w) and

D _ Vi _
U XUs — X p20—6 00k < 52 Suwp Xippr=0 <w sup Xk,pz,x) (9.47)

p—2a<p'<p 92 p—2a<p'<p
where D is given by (9.57).

Remark 28. Note that, for X\ large enough, Rj;(w) = ARj(w). Therefore the radius of
convergence increases by dilating w. But this fact is compensated by the fact that the
norm in the condition of convergence (9.42) (we take here V = 0), |[V'[, 000 < Bax(w),
increases at least as A (an actually highly non sharp estimate as the Gaussian case shows
clearly) when A is large, as shown by the following lemma. Therefore the optimization on
A of (9.42) remains between bounded values of .

Lemma 29. For ' > w, | Flaws — | Flowi > (& —)p| VF s

The proof is an immediate consequence of

X —erX = P X (WX 1) > X (p) — p)X, X = 0.

Proof of Theorem 26. First notice that B —B" | =V, = V.(-,0,1) so B =B, < 3| Vil
1

which is convergent under (9.31) and (9.32). What is left is to show that the sequence of
unitary operators U, := €' e el 5 converges to a unitary operator on LQ(TI) This is
done by proving that the sequence U, is Cauchy (€ (0,1]). For p > n let us denote

Wnip  Wnip—1 Wny1

E,=¢"n e n e =1 (9.48)

np
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so that U, ., — U, = E,,U,. We have for all r,

1
Zt W’"

e'" =1 +T, with T, = dt. (9.49)
0
Therefore
hHTrHLz(vﬂ-l)Hp(Tz) < HWTHLQ(TI)A,LQ(TI) < HWerr,k‘- (9.50)
By (6.11) we have also that
MM MM or
Wil = W, < ——————IV» <———D;, 1>0

H HPT H Hp'mk 1— n + C/T H Hpr,k 1 — n + C/T k

Wolp = [Wollor < Muf[V],x (9.51)
B(w)2"

Note that, by the Brjuno condition, we have for all r M, < e and, by the condition

on Dy, insuring the convergence of the BNF, D, < e~ B« so that:

0 s

MM r (€B(W)Dk)2
A= DY . .52
Lo 1o < (9.52)

We also define, for n > 1,
- MM or

A, = ——Ds . .53
Z;L 1—n+C/r* (9:53)

Note that A, = O(E?") as n — o« for E = ePD;, < 1 by (9.24).
By (9.49) we get that

Wnip Wnip

Enp = e Enpfl_]’"i_eZ h

Wnip

i
= € =n Enpfl'i‘Tner

Wnip Wnip-2 Wnip

— e T T By € Ty + Ty (9.54)
By iteration we find easily that

n+p Whtp—k+1 Whntp
ntp—k+1 j—ntp
Z m Tn+p—k +e Tn+p—1 + Tn+p

Wy

and, by unitarity of e+ and (9.50),
P p

HENPHL2(TZ)—>L2(T[) < Z |‘Tn+k|‘L2(Tl —L2(T!) < Z HT"‘HCHpn-Hc =
k=0

Z HWn+kan+k

— (0 asn — oo since A < 0.

o h

So || Enp r2(t)—r2(rty — 0 as n — oo and so does Uy, — U, = E,,U, by unitarity of U,
and U, converges to Uy, in the operator topology. Moreover we get as a by-product of the
preceding estimate that

Ay
HU(X) - U”'HLQ(Tl)HL2(Tl) < ?
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Since Uy is a perturbation of the identity which doesn’t belong to any J(p), p > 0,
there is no hope to estimate |Uy|,wk- Nevertheless, and somehow more interesting, we
will estimate Uy, — I in the || - [|,—200,0 topology. In the sequel of this proof we will denote
|1, =1 [ pwo and use the fact that | - |,. = |- |l,—2, Vr € N.

We first remark that, for 7 > 0, since | - ||} < | - |,
0 1 Wil Zo|Wrl pyr
W e (Zo) 5N, T =1
[Tl g = €™ = T o0 < e = 1] < 3 : L=
=1 J! Zo

We first remark also that
(I + TT‘+1)UT = Ur+1-
Therefore, denoting P, = U, — I,

Pr+1 = (I + Tr+1>Pr + Tr+1

SO
1 1
1Prstlly < 1B (Zol Trally + 1) + [Tl = (15l + Z) 1 (Zol Trsallp + 1) =
50 | Prsallp + 75 < (1P + ) 1(Z0] Trsalp + 1) and
1 1 r+1 1 r+1 IW;jlp;
|Prsillp2a + — < (1Pl + —H (Zol Tl + 1) < (1Rolly+ ) [ e
Z 0j=1 Zo j=1
&l W lp, 1
= et " (IR + =
= (Rl + )
A 1
< e (|P)" 4+ =
(IR} + )

Therefore

, s (MiVI, 1
A R e

Let us note that, by construction, A = O(%) and that D depends on 1 through (9.10).

Lemma 30. 3n = n(|V||,) such that

D2
—kn = O(|[Vll,) as V], — 0.

Proof. By looking at the expression of the radius of convergence which tends to 0 as n — 1
we see that as V' — 0 one can take values of n — 1 which makes the second term in the
definition of Dy, of order |V, and the ratio T of order |V|,. O

By application of the Lemma we find that

M|V 1 VI
—JII? Pl < G L+ - — )
1Uss pr2a |Poll < e ( 5 * Zo ~ Zo =0 h

which gives (9.45).
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In order to prove (9.47) we first denote V, = e
We have, actually for any operator X, that V, XV ! — X = Z l, ( ).

Let us suppose now that 3X ,; such that for all W e Ji(p)

Zy,
ILX W]/ibllp-s < =3 X e [W ] (9.55)
(-8 Xip = [X|,p)-
Using (5.11) we get (since 27l > 1) we get
- | £,
[ViEV s < 5, (9.56)
- F W,

and also (let us recall again that p,.1 = p. — 6., po = p)

Ly,

7j—1
ot (osmps < (55) I Wil i,

lhj
Zo\'™!
< <§> |[(X, W, fin s | Wi 5,

out of which we get
|[X, Wol/in] oy

T Z W,
by ViVoXVy Vit = ViX V7 = i(Vo XVt = X)L and (9.56)
IVoX Vg = X5
EEATTAN

[[X, Wol/in] po—s
(1= 5 IWol,) (1 = [,

and by iteration

|[X, Wol/in] oy

VoXVg ! = X <

[ViVoX Ve Vit = ViX Vs

U, XU~ UV X VU s
o A= ZIWol,)-.. (1~ ZW,],)

and by X — V; XV,
|[X, Whl/in] gy s

U Ve XV = U,V W XV
o A= ZWil,) .. (L - Z[Wil,.)

X, W, inl, s

HVXV*I—XH s <
r r Pr+1 S — %HWTHpT
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So that by summing the telescopic sequence we get

|0 XU = Xlpns < Z |[X, Wl /in

s=0

s—0 o Zitar
’ Hl HWHpJ

X - Z 10g(1**§|\Wij~)
Z kps Zk pse Jj=s % ’

N

and since (1 —a)(1 +2a) =1 if O<a 1/2

X, 3 rog (254 1W31,,)
Z 5 Z| Wil o€ ]

N

)
Z
Xk Z Wil
A k,ps 52 J
~
52
Zy
- Z kasZk e ]Zo 5 IWilo,
~
52
sup - Xy,
p—2a<p'<p
<
52
sup Xy
p—2a<p'<p
< D
52

X Zy27 M]M

with B = ZkM HVHP + Z szj < o0 and

D = Zy(My|[V], + A)e*” = O(|V],)

by Lemma 30.
Therefore we get, by letting r — oo so that p, — p — 2a,,

D _
U5 ' XUy — X p—20—s5 < 5 Sup Xy

p—2a<p'<p

_ Vv —
0 > U ' XU — X p-20-5 = O <| lo sup Xlap’)

92 p—2a<p'<p
The theorem is proved.

Remark 31. [Diophantine case] In the Diophantine case one immediately sees that

B(w) < 2log [y27]

(9.57)

(9.58)

(9.59)

(9.60)

Moreover one easily sees that Rjy(w) and Ry jx(w), together with A\g(w), are decreasing
functions of B(w). Therefore Ry(w) = Ry (w) and Ry x(w) = RY}(w) where R (w) and
RY°(w) are obtain by replacing B(w) by 2log[727] in the r.h.s. of (9.30) and (9.41). It
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follows that Theorem 26 (resp. Theorem 27) is valid with R{(w) in place of Ri(w) (resp.
R§%(w) in place of R, (w)).

Since all the estimates are uniform in &, the methods of the present paper allow to prove
the following result

Corollary 32. Let H a family of m <1 classical Hamiltonians (H;)i=1..m on T* ('JI‘l) of the
form H(z,&) = w-E+V(2,8) = HO(w- &) + V' (w- &, ). Then, under the hypothesis on w
of Theorem 27 (resp. Theorem 26) and the conditions

{Hi,H;} = 0 1<uj<m

VI, < Raolw) (resp. < Ro(w))
n—¢
Zy
H is (globally) symplectomorphically and holomorphically conjugated to B (w.£): for all
0 >0,
there exist a symplectomorphism ®! such that
Hod, ' =B (Ho).

Moreover, @' — I € J(p—2a —0) (in particular ®' is holomorphic) and for any positive
0 <p,

vV, <

_ D
H(IDOO1 - IHp—2a—5 < g“vup (961)

where D is given by (9.68) below.
Finally, for any function X satisfying (9.66), we have

D — V -
|Xo® ! — X, 005<—= sup Xoy=0 <¥ sup Xo,pr) (9.62)

02 p—2a<p'<p 0 p—2a<p'<p
where X, is defined in (9.66).
Proof. Once again the function B is by construction uniform in # € [0, 1] so it has a limit
B% as n — 0. Tt is easy to get convinced that the construction of BY is the same as the

one of Bl after the substitution (we use capital letters for operators and calligraphic ones
for their symbols at h = 0):

AB — AxB

A B
ABL 4B
1h
ez‘% L eEw
. W- . W
elTlezTQ — i o b

- W - W
enAe ' —> Aoefw.

Here x is the usual function multiplication, {.,.} denotes the Poisson bracket and e“W the
Hamiltonian flow at time 1 of Hamiltonian W (Lie exponential).
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What is left is to prove the convergence of the sequence of flows e“Wr ... ™ = @7 as
r — o0. This is done by the same Cauchy argument than in the proof of Theorem 26.

2l
For & : T*T' — T*T' we denote |®[, = >} |®;|, where ®; are the components of ® and

i=1

we define &, by

L L
Ep = € Wntp 0 @ Wntp-1 0.0 Wt — [u e,

so that @"*? — Q" = £, 0 O™,
We will need the following

Lemma 33. Let F(z,60) be analytic in {|Sz|, |30| < p}. Then,
[ Fl e 311901<0) < [ F - (9.63)

Proof. As in section 5 write

F0)=1Y] f Flp, q)e e iom>p < 3 f Flp.g)lervDdp = | P,
q q

We will denote
|15 =1 (a1, 1501<p0)-

Proposition 34. Let H, = {(2,0). |3z| < p and |30| < p}.
Under the hypothesis of Theorems 26 and 27, ®" is analytic H, — H,, .

r—1
Remember that p. = p— >} 6,, 6, = a27".
5=0

Proof. Let us first remark that the “rule” [Al.’f] —> {A, B} is in fact (and of course) a
Lemma.

Lemma 35. Let F e J"(p), Ge J'p). Then % is the Weyl quantization of a function
o, on T*T and
;liii%ah =09 = {F,G}.

The proof is an easy exercise which consists (again) in computing the symbol of %
through its matrix elements using Proposition 12, after expressing these matrix elements
out of the ones of F, G, themselves expressed through the symbols F,G of F,G thanks
of formula (5.7). The limit » — 0 leads naturally to the Poisson bracket. Since these
techniques have been extensively used through the present article, we omit the details.

Let us, by a slight abuse of notation, define again ad,y the operator F — {W, F}.
Being uniform in &, the formula (5.11) taken with k& = 0 leads, for any F € J™(p,), to

Lo ZY’ i
ﬁl\adm(f)|\pr—m< 3 |F (o W15,
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o0
Let us denote o, = e“¥r and adyy, (F) := {W,, F}. Since F o * Z l, ( ) we get

| F o

Fopt < ——"—
H 807' HPT+1 = 1 - ?_é)HWTHpT

Therefore, under the hypothesis of Theorem 27 (resp. Theorem 26), F o ¢, ! is analytic in

H, ., for all F analytic in H, and so ¢, ' maps analytically H, ., to H, and so ¢, maps
analytically H, to H, . . Writing ®" = ¢, 0 ¢, 0--- 0, gives the result. U

Let us write now for all r in N,

Yr = I + 7;7
with, as for (5.18),
W5
T 00 < I T2l -5, = ZH s S IVWL s, = maXZH (ViWe)ilp—s. < =5
and so .
HVTH HVWTHPT_6T/2 < HWTHZ{; < HWTHZ{i
pr=tr S e, /2 €22 82
In analogy with (9.54) we write
gnp = ¢n+p o (gnp—l + I) -1 = ¢n+p o (gnp—l + I) - Qpn+p + (¢n+p - I)
SO
1Empllo2a < IVOntplosalEnp-illy-oa + [Tatplo-2a
and, by induction,
p—1 p—1
1€l 20 < D 1Ttk na [ [UVPnsslF 20) + 1 Tl 20
k=0 s=k
p—1 p—1
< D Tkl 0 [ [+ IV Tassl 7 20) + 1 T 20
k=0 s=k
p o
< DTkl [ [+ IV Tnsl 7 00)
k=0 s=k
_ Z Watilows £,
n+k
< Ane — 0 asn — 0.
Here we defined
= MM 2l
A= ! D; < oo, 9.64
25T+ ot (564
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Z +C/l) D? — 0 as n — o since A < o0 (9.65)

and used (9.51).

So ®" converges to ®* in the L*(H,) topology.

The proof of (9.62) is exactly the one of (9.47) by using the dictionary expressed earlier.
Since it is a by-product of the proof of (9.61) we repeat it here. We denote | - |, := || - ||
and use the fact that | - ||,, = | - [|,—20—s, VreN.

® )

We have, actually for any operator X, that X o ;1 — X = 3] %ad{/w(é\f).
j=1

Taking (9.55) at k& = 0 we have

2o

X W5 < 3 = Xo,WI, (9.66)
We have
- I1F 1l
|F o o7t pms < 520, (9.67)
’ 1 - %HWTHp

and also (let us recall again that p,.1 = p. — 6., po = p)

Zo\’~
o O < () G0 il W

Zo\'~
< 5—3 H{X W}/ZFLHPT sIWr Hpr )

out of which we get

0 X, Wo't po—
H‘Xvowol _Xle—(S < i ZOO}HPO 5
1= 2w,

be080810<Pf1—X0g0f1 _ (XOQOSI—X)OQOII and (9.67)
[ X 0pgt = Xlps
- Z W],
{X, Wolllpo—s
(1= 2 Woll,)(1 = 2 Wilp)
and by iteration
P p— |0
(1= ZWol,)--. (1 - BIW],)

|X 0wt ot — X o p—s

~

]\Xo@;l—/\fo<pooq);1
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By the same argument we get

H{X7W1}HP1 J
(1= 2 Willp) .- (1= ZIWs

|X opoo®, ' —Xopgopi 0@ ,,,—s <

ps)

] 2, Wil s
X 00 = Xy < DT lesd
oo ~ Bl

so that by summing the telescopic sequence

L X -3 log(l—z—gwjp~>
Z 52¢ Zo|Ws| e 7= g ’
s=0

and since (1 —a)(1+2a)=>1 if 0<a<1/2

N

) 1og(1+220 IW;lo; ) 2 3 21w,
,ps s J ,ps ' 63 J
\2 52 —Zo| Wil p.e™ < 2 52 —5—Zo|Wep.e =%
. . swwp Xiy
Xk ps 2) 52 Wil p—2a<p'<p
= ;) 62 Zo| Wil p.e =0 S 02 ZOZ
sup kal
p—2a<p'<p
< 5D
X Zo2i M
with B = ZM,|V|, + Z aQOTJFg/J)DW < o0 and
D = Zo(Mu| V], + A)e** = O(|V],) (9.68)

by Lemma 30.
Therefore we get, by letting » — oo so that p, — p — 2a,

D — V —
HX o (I);Ol — XHP,QQ,(; < ) sup Xk,pf =0 <Q sup Xk,p’) . (969)

J p—2a<p’'<p 02 p—2a<p’'<p

Let now X € {&,...,&, 1, ..., 11}, { X, Wl} = +0=)WW, where = is the conjugate quantity
to X. Therefore {X Wotlp—s < [V Wolp—s < :[Whl,- Therefore X, =1 and | X o @, —
Xpiis < 527 VX € {&,...,&,x1,. .., 2} which means that

. D
1@ = Tlpiis < 55 (9.70)

In fact we just proved that &' = I + & with ]@pr,g:p,ga,g < 2. Corollary 32 is

proved. O
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Though the Diophantime case is covered by the Theorem 26 (see Remark 31), we can
also use directly Proposition 21 in order to low down the hypothesis of the Theorem.
In fact Proposition 21 shows that the same proof will be possible by only replacing
Mo, (w) by v(55-)7 and (9.13) by
22T+ 2[a + (1 + n)wy(Z)7]
(1 =n)*y ()
Indeed (7.10) is verbatim the same as (6.31) after replacing My, (w) by 7(;5-)" and the

first term in the parenthesis, namely 1, by 22*7. Therefore the proof will be the same by
replacing B(w) by B(v,T)

— E, (9.71)

=

o0
T —r T \r T T \r
Bo(v,7) = Zolog (v(e—ér)T)2 = 2log [v(a) ] + 27log2 = 2log [2 v(a) ]

and of course C} and P by the corresponding expressions Cj, P’

The very last change will concern Dy which now will be Dy, = %[ V||, because the
estimate of Proposition 21 reads now directly V"], _s < F/||V"[2: this will imply that
in the Diophantine case there is no condition for w similar to (9.31), and no condition
a < 2log2. We get:

Theorem 36. [Diophantine case] Let o, p,n,C' and E be strictly positive constants satis-
fying

p>2a, 0<C<n<l (9.72)

1

Let us define, for A = — 11>1§ Llogl(l—n+ %) and M — <aeC’)Z’

87y,

6

) = (g ) ) e { TS )
2247a + 2la+ (L +nwy(5)7]) 202227 (Z)7)* vz )
(9.73)
Then if
7 n-¢C
HVHp,%k < Ri(w), [VV Hp,g,k < (9.74)

Zy

the same conclusions as in Theorem 26 and Corollary 32 hold.

As mentioned in the introduction we can use Theorem 27 to estimate the rate of diver-
gence of the Brjuno constant as the system remains integrable while the perturbation is
vanishing.

Let us suppose that we let w vary in a way such that w remain in a bounded set [w_,w, |
of (0, +0). (9.73) tells us that, in order that Theorem 36 holds, w can be taken as we want

n—C

as soon as as v and 7 satisfy |V|,.x < r.hs. of (9.73) and |[VV|,wr < = 1t is easy
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to check that, since B, (v, 7) := 2log [ZTW(é)T] — o0 as 7, T or both of them diverge, we
have, for B, (v, 7) large enough (in order that the min in (9.73) is reached by the first term
and that 2277 < B,(v, 7)),

Rk(&]) > 2K673Ba(’y,7)
with K = (1-n)a® . Therefore for |[VV’

(a+2(1+m)w _)2621/e 73
(namely |V ,wr < 2Ke 3B~ where By is the smallest value of B,(7,7) which makes the
min in (9.73) reached by the first term and which is larger than 2**7), we have

lpwke < % and |V, small enough

Corollary 37. The conclusions of Theorem 36 hold as soon as

1 1
B.(7, “log [ ———
(7,7) < 3 og<|V

|p7£+7k

1

Remark. In the case of the Brjuno condition, Theorem 26, it happens that Ag(w) ~
C"e*P@) and Ry, ) ~ C as B(w) — o for some bounded constants C,C’. Therefore our
condition of convergence takes the form |V'||, cre25),r < C. This leads to a sufficient
condition on B(w) depending on the way V' — 0. For example it is easy to check that,
if V—0asV = €elp, € > 0 and Vj with a symbol Vj whose Fourier transform in ¢ is
compactly supported, one gets a condition of the form B(w) < Dlog log% + D’ for some
constants D, D’.

10. THE CASE m =1

Lemma 38. Let the vectors wj, j =1...m =1, be independent over R. Then
(1) any V satisfies (1.5)
(2) inf max lwj.q| =1 (there is no small denominator).
qeZt j=1...

Proof. Let Q = (£i5);.j=1..1 with Q;; := wf Then €2 is invertible by the independence of the
w;s. This proves (1). Moreover one has immediately that 1 < |q| < I|Q7| max lwj.q|. O
Jj=1...

Therefore the main assumption reduces to:
Main assumptions (extreme case)

w;eRY j=1...1, are independent over R and [H,H;] =0, V1<i,j <l (10.1)
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