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Abstract 

 

Whereas fisheries acoustics data processing mainly focused on the detection, 

characterization and recognition of individual fish schools, here we addressed the 

characterization and discrimination of fish school clusters. The proposed scheme relied on 35 

the application of the Bags-of-Features (BoF) approach to acoustic echograms. This 

approach is widely exploited for pattern recognition issues and naturally applies here, 

considering fish schools as the relevant elementary objects. It relies on the extraction and 

categorization of fish schools in fisheries acoustic data. Echogram descriptors were 

computed per unit echogram length as the numbers of schools, in different school 40 

categories. We applied this approach to the discrimination of juvenile and adult anchovy 

(Engraulis ringens) off Peru. Whereas the discrimination of individual schools is low 

(below 70%), the proposed BoF scheme achieved between 89% and 92% of correct 

classification of juvenile and adult echograms for different survey datasets and significantly 

outperformed classical school-based echogram characteristics (about 10% of improvement 45 

of the correct classification rate). We further illustrate the potential of the proposed scheme 

for the estimation of the spatial distribution of juvenile and adult anchovy populations. 

 

Keywords: fisheries acoustics, pelagic ecosystems, fish schools, school categorization, 

bags-of-features. 50 

 



Introduction 

Fisheries acoustics provide a unique remote sensing device to monitor pelagic 

ecosystems, especially pelagic resources (Simmonds and MacLennan 2005). While the 

analysis of acoustic echograms serves as a basis for the operational assessment of a number 55 

of pelagic stocks, fisheries acoustics data can characterize the spatial distribution of marine 

resources. Such a characterization is of key interest for the development of the ecosystem 

approach to fisheries (Koslow 2009). Among others, one may cite the discrimination of 

physical structures (e.g. oxycline depth (Bertrand et al. 2010)), biological communities 

(e.g., zooplankton and pelagic fish; ( Kloser et al. 2009, Lebourges-Dhaussy et al. 2009, 60 

Ballon et al. 2011,), the description of schooling behaviour (Axelsen et al. 2001, Gerlotto et 

al. 2004, Bertrand et al. 2006) as well as descriptors of the patchiness of pelagic fish 

distribution (Barange 1994, Bertrand et al. 2004, Gutierrez et al. 2007). 

For gregarious fish, the school is ‘‘an essential life unit in which fish feed, breed, 

rest, and flee” (Aoki 1980, p.3). This schooling behavior of pelagic fish suggests that 65 

school-based procedures provide the most natural approaches to the analysis of fisheries 

acoustics data (Fréon and Misund 1999, Simmonds and MacLennan 2005). Early 

developments have focused on the detection, characterization and recognition of fish 

schools (Haralambous and Georgakarakos 1996, Scalabrin et al. 1996). More recently, 

species-based school discrimination has seen renewed interest using multi-frequency 70 

characterization and advanced pattern recognition models (Jech and Michaels 2006, 

Anderson et al. 2007, Lefort et al. 2011). Though schools appear to be the key unit 

structures of the distribution of pelagic fish, other analysis scales are of interest, such as 



clusters of fish schools (Hammond et al. 2001, Petitgas et al. 2001, Burgos and Horne 

2008). The characterization of fish school clusters relies on the definition of global features 75 

of the echograms (typically, echograms of a few nautical miles). In contrast to the school-

level analysis mentioned above, this approach is referred to hereafter as an echogram-level 

analysis and will rely on the extraction of echogram-level characteristics. Very few works 

have addressed such an echogram-level analysis (Petitgas et al. 2001, Burgos and Horne 

2008). Petitgas et al. (2001) investigated such an approach to match echograms to species 80 

mixtures, whereas Burgos and Horne (2008) showed that echogram-level features 

discriminated pollock school patterns.  

In this work, we propose a novel approach to extract school-based echogram-level 

characteristics. Whereas such descriptors were derived as univariate statistics of each 

school feature in previous works (Petitgas et al. 2001, Burgos and Horne 2008), we exploit 85 

a multivariate approach based on a prior categorization of fish schools, termed in the 

pattern recognition literature as "Bag-of-Features" (BoF) (Sivic and Zisserman 2003). This 

representation, derived from the “Bag-of-Words” which is used in text document analysis 

(Salton and McGill 1983), provides a meaningful while compact characterization of the 

distribution of fish schools within an echogram through the count of schools assigned to 90 

each school category. This methodology is applied to the discrimination of juvenile and 

adult anchovy (Engraulis ringens) populations off Peru.  

The Peruvian anchovy fishery is the world’s largest (in weight) (Chavez et al. 

2008). The follow-up of the state of the anchovy population mainly relies on seasonal 

acoustic surveys. The management of this fishery involves fishing-free areas with a view to 95 

protecting the juvenile population. The definition of these fishing-free areas relies on 



scientific surveys, as well as at-sea observers and landings monitoring. In particular, areas 

in which juvenile anchovy make up more than 10% of the total catch may be closed to 

fishing. Here we show that the proposed echogram-level analysis could enable the 

discrimination and  mapping of the juvenile and adult anchovy populations from fisheries 100 

acoustics survey data. We analyze the relevance of the results with respect to inter-survey 

variabilities and expert interpretation and discuss potential prospects offered by the 

proposed approach. 

Material and methods 

Data 105 

Biannual scientific surveys carried out by IMARPE (Peruvian Sea Institute) off Peru 

provided datasets comprising fisheries acoustics data along with trawl catch data (Gutierrez 

et al. 2007, Simmonds et al. 2009) Since 2008, bi-frequency acoustic echograms have been 

acquired with a 38 kHz and 120 kHz hull mounted Simrad EK60 echosounder along 

transects of the Peruvian coast. Both frequencies were processed using Echoview software 110 

to achieve the extraction and the characterization of the fish schools observed in the 

echograms. Only schools observed at both frequencies were retained for our analysis. 

Based on a preliminary analysis of variance (significance level of 0.25) and correlation 

(correlation coefficients lower than 0.9) of energetic and geometric school features for the 

considered survey datasets, we considered the following school descriptors: area (A), 115 

compactness (C, i.e. the ratio between the perimeter and the squared-root surface), the 

elongation (E, i.e. the ratio between the height and the width), shape rugosity (R, i.e. the 

ratio between the perimeter and the squared-root surface), mean acoustic energy density 



(acoustic volume backscattering strength, SV), the coefficient of variation (CV), skewness 

(Sk) and kurtosis (K) of acoustic energy values within the school, the school depth for the 120 

38 kHz frequency as well the difference between the surface and mean and total acoustic 

energies at both frequencies.  

In addition to fisheries acoustics data, trawl catch data were also available (Fig. 1). 

These included the distribution in weight of fish species in the catches as well as the 

associated length distributions. Each trawl catch was associated with an acoustic echogram 125 

(typically, the 6 nautical mile -nmi- echogram including the trawled area). In this study, we 

focused on the anchovy population and retained the echograms for which anchovy 

represented more than 50% of the total weight of the catches. It is known that sexual 

maturity typically occurs for the Peruvian anchovy at about one year old, between 10 and 

12 cm in length (Zuzunaga 2002). We then discriminated between juvenile and adult 130 

anchovy echograms as follows: when the number of individuals below 11 cm represented 

more than 75% of the captured anchovy, the echogram was classified as juvenile anchovy. 

Conversely, when the individuals above 11 cm represented more than 75% of the captured 

anchovy, the echogram was classified as adult anchovy.  

As a result, we were provided with a two-class dataset of echograms. This 135 

procedure was applied to three scientific surveys, namely, those carried out in the Austral 

summer 2010, spring 2010 and summer 2011. We summarized the data available for each 

survey (Table 1) and reported examples of acoustic echograms (Figure 2). 



Echogram-level descriptors from school clustering 

Our study relied on the application of the Bags-of-Features (BoF) approach to 140 

acoustic echograms (Sivic and Zisserman 2003) and exploited a multivariate analysis of 

school characteristics within an echogram. By contrast, the analysis of school feature 

quantiles as in (Burgos and Horne 2008, Petitgas et al. 2001) processes each school feature 

independently and does not convey information on the relationships between school 

features. Here, with the the BoF approach, we achieve a multivariate characterization of the 145 

distribution of the schools within an echogram. 

We report an overview of the main processing steps of the BoF approach in Figure 

3. It involves two main steps: the definition of fish school categories from an unsupervised 

analysis of fish school characteristics and the computation of the BoF vector for any 

echogram from the categorization of the schools detected in the echogram. We detail  these 150 

two steps subsequently.  

Definition of fish school categories from unsupervised clustering: The proposed 

framework initially performed unsupervised feature-based clustering (categorization) of the 

school dataset using a Gaussian mixture model (GMM) (Bishop 2006). A GMM was 

applied to the dataset formed by the feature vectors of all the schools detected in the 155 

considered echograms. Formally, it resorted to modeling the distribution of the schools in 

the considered feature space as: 

 



where Xs is the feature vector associated with any school s, K the number of components of 

the mixture model (i.e., the number of school categories), πk the prior probability of the k
th

 160 

component of the mixture model and g(.|M,Σ) a multivariate Gaussian distribution with 

mean M and covariance Σ. Mk and Σk refer to the mean and covariance of the k
th

 component 

of the mixture model. Given a school dataset with associated feature vector dataset {Xs}, 

we used the EM (Expectation-Maximization) procedure to estimate the parameters πk, Mk 

and Σk of each component of the mixture model according to the maximum likelihood 165 

criterion (Bishop 2006), Here, the GMM was parameterized with 20 components (K=20) 

and diagonal covariance models were considered. An empirical sensitivity analysis in terms 

of classification performance demonstrated that this parameter setting is a good trade-off 

between computational complexity and robustness. The GMM was implemented using 

Matlab and the Netlab toolbox (The Netlab toolbox can be downloaded from the webpage: 170 

http://www1.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/).  

Computation of echogram-level BoF vectors: Given the estimated GMM model, the BoF 

vector is defined as the number of times a given school category occurs in a processed 

echogram. This computation then relied on the assignment of any school to one of the 

identified school categories. For a given school s, the assigned category cs was the most 175 

likely one given school characteristics Xs, i.e.: 

 

The classification rule was evaluated from the estimated parameters of the mixture model 

as: 

 180 



At the level of an echogram E, we computed the vector HE of the numbers of schools 

assigned to each category. Here HE is a 20-dimensional vector. This vector is termed BoF 

in the pattern recognition literature (Sivic and Zisserman 2003). It has been shown to 

provide a relevant and powerful global characterization of documents (text, images, videos) 

where the categories refer to words in documents or local signatures or objects in images 185 

and videos (Salton and McGill 1983, Sivic and Zisserman 2003). From a statistical point of 

view, BoF representation can be regarded as a multivariate characterization of the 

distribution of object sets, where the objects (here, the schools) are characterized by a 

multidimensional feature vector. In this work, the BoF vector HE was normalized by the 

actual length of the echogram to resort to the numbers of schools per echogram unit length 190 

(here, nautical mile) in each school category, referred to hereafter as the densities of each 

school category in the processed echogram.  

For comparison purpose, we also investigated school-based descriptors of the 

echograms issued from percentiles of each feature in the echograms similarly to (Burgos 

and Horne 2008, Petitgas et al. 2001). We computed for each echogram the 10
th

, 20
th

, 30
th

, 195 

40
th

, 50
th

, 60
th

, 70
th

, 80
th

 and 90
th

 percentiles of the marginal of each school feature. They 

are referred to hereafter as the echogram-level marginal statistics Note that here we focused 

on school-based features and did not consider features computed from the raw acoustic 

echogram as in (Burgos and Horne 2008). 

Discrimination of juvenile and adult anchovy clusters off Peru 200 

Given echogram datasets as described above, we addressed the discrimination of 

juvenile and adult anchovy clusters off Peru based on the proposed echogram-level 

characterization. We exploited statistical learning, namely Support Vector Machines 



(SVMs). SVMs are among the most powerful supervised classifiers (Schölkopf and 

Alexander 2002) and were previously applied to fisheries acoustics data (Fablet et al. 205 

2009). Additional experiments, not reported here, proved that similar performance could be 

reached using other classifiers (e.g., random forests (Breiman 2001, Fernandes 2009)). 

SVMs aim at maximizing the discrimination margin between classes and perform a 

non-linear classification using a kernel-based approach (Schölkopf and Alexander 2002). 

Here, we used a Gaussian kernel. SVMs were applied to the discrimination of juvenile and 210 

adult anchovy echograms from the echogram-level feature vectors described above. A 10-

fold cross-validation procedure was applied to determine SVM hyper-parameters and 

estimate the correct classification rates for the two classes (Schölkopf and Alexander 2002). 

SVM hyper-parameters included kernel parameters (here, the standard deviation of the 

Gaussian kernel, the SVM regularity parameter) and a feature selection procedure. This 215 

procedure involved initially sorting the echogram features according to their one-way 

ANOVA F-test statistics and evaluating SVM models trained with the n first features where 

n was incremented from 1 to the total number of features. When using the BoF framework, 

this procedure aimed at selecting the n best school categories for the discrimination task. 

When using the echogram-level marginal statistics, the SVM kernel was a Gaussian 220 

function of the sum of the distance between the marginal statistics for the considered school 

features and the feature selection procedure resorted to the selection of the n best school 

features (i.e., n among the 10 school features considered here). We implemented the SVM 

using the libsvm package for Matlab (Chang and Lin 2011). 

We applied SVM classification to the three survey datasets separately. To test for 225 

the applicability of a classification model trained from a given survey to subsequent 



surveys, we also evaluated the classification performances of SVM models trained on one 

dataset to discriminate echograms from another dataset.   

Application to the spatial mapping of juvenile and adult anchovy populations 

As an application of the proposed echogram classification model, we considered the 230 

spatial mapping of the areas depicting predominantly juvenile and adult anchovy from 

survey data. For a given survey, we proceeded as follows. We first determined the spatial 

distribution of the anchovy population, termed below as the anchovy zone, from experts' 

species-based interpretation of the acoustic schools and trawl catches. We then trained a 

SVM classification model, as described above, for the set of acoustic echograms associated 235 

with trawl catch data. We considered 6 nmi-long acoustic echograms. Similarly the acoustic 

transect data was segmented in 6 nmi-long acoustic echograms. Each resulting echogram 

within the anchovy zone was then classified as juvenile anchovy or adult anchovy by the 

trained SVM model. The resulting scattered data was interpolated to produce a map of the 

spatial distribution of juvenile and adult anchovy. For comparison purposes, we computed 240 

such a map using only trawl catch data. 

Results 

Discrimination performances from different echogram-level characteristics 

We evaluated the performance of the proposed echogram-level characteristics and 

classification models, termed as SVM-BoF, for the discrimination of juvenile and adult 245 

anchovy clusters off Peru (Table 1). Our quantitative analysis involved a SVM model based 

on echogram-level marginal statistics of each school feature, termed as SVM-marginals, as 

well as (to?) the classification rates of a school-level SVM model, termed as SVM-school, 



trained to discriminate juvenile and adult anchovy schools. For this school-level 

classification model, all anchovy schools in an acoustic echogram termed as juvenile 250 

anchovy were assigned to a juvenile school class, whereas schools in acoustic echograms 

termed as adult anchovy were assigned to an adult school class.  

Reported results (Table 2) indicated that the discrimination of juvenile and adult 

anchovy could not be correctly achieved at the scale of the fish schools and a correct 

classification rate below 70% was reported. They also demonstrated the clear 255 

improvements of the proposed echogram-level characterization (SVM-BoF) over 

echogram-level features computed as school feature quantiles (90% vs. 80% of average 

correct classification rate over the three datasets). Overall correct classification rates 

between 89% and 94% were reported for the three datasets for the proposed SVM-BoF 

framework, indicating that juvenile and adult anchovy clusters depicted significantly 260 

different school BoF statistics. The SVM-BoF reached slightly greater classification rate 

for the adult class (an average, for the three datasets, of 93% of correct classification rate 

for adult anchovy clusters compared to 87% for juvenile anchovy clusters). 

We evaluated the sensitivity of the classification performance with respect to the 

definition of the dataset of juvenile and adult echograms (i.e., the length of the echogram, 265 

the minimum percentage (in weight) of anchovy in the catches and the minimum 

percentage of individuals below or above 11cm in the anchovy catches). Classification 

performance proved stable (i.e., below 2% of variations of the mean correct classification 

rate) for echogram lengths between 3 and 6 nmi. For echogram length greater than 6 nmi, 

poorer discrimination was reported (e.g., a loss of 8% of correct classification for summer 270 

2010 data). Regarding the minimum percentage of anchovy in the catches (50% in the 



results reported in Table 2) and the minimum percentage of individuals below or above 11 

cm in the anchovy catches (75% in the results reported in Table 2), setting parameters more 

restrictively than those used for the experiments reported in Table 2 could lead to improved 

discrimination performance, at the expense, however, of a reduction of the number of 275 

echograms in the processed datasets, which might impact the applicability of the model. 

Bi-frequency vs. single-frequency school features  

We tested whether or not the bi-frequency characterization of fish schools led to 

improved discrimination performances compared to a single-frequency analysis. We 

compared the classification performance reported above using both 38 kHz and 120 kHz to 280 

those obtained when using only one of the two frequencies (Table 3). Overall, a bi-

frequency characterization led to a more robust discrimination with a mean gain of 2% in 

correct recognition. It might be noted that a single-frequency (120 kHz) characterization 

outperformed the bi-frequency analysis for the summer 2010 dataset. However, for other 

datasets (resp. spring 2011 and summer 2011), the 38 kHz and 120 kHz school 285 

characteristics used alone resulted in a loss greater than 6% in correct classification. 

Overall, neither 38 kHz nor 120 kHz school features appeared significantly more 

discriminative and the bi-frequency characterization appeared as a relevant trade-off. 

Inter-survey applicability 

The Northern Humboldt Current system is known for its high temporal variability, 290 

depicting, for instance, important temporal variabilities in the spatial distribution of the 

biological components (e.g., patchiness of forage fish) (Gutierrez et al. 2007, Bertrand et al. 

2008a). In this respect we evaluated to which extent a model obtained from a given survey 



dataset could be relevant to processing data from subsequent surveys. Results were 

evaluated in terms of mean correct classification rate (Table 4). In all cases, we observed a 295 

decrease in the discrimination performance of juvenile and adult anchovy clusters 

compared to the results reported above (Table 2). For instance, whereas an overall 

discrimination rate of 91% was reported for the spring 2011 dataset, only 70% of correct 

classification was obtained when considering a model trained from the summer 2010 

dataset. Similar observations were drawn from other combinations. 300 

Estimation of the spatial distribution of juvenile and adult anchovy 

As an application of the proposed echogram-level classification, we addressed the 

mapping of the distribution of the juvenile and adult anchovy populations. The estimated 

spatial distribution for the summer 2010 dataset was compared to a mapping issued from 

the sole analysis of trawl catch data without any consideration of the available acoustic data 305 

(Fig. 4). Overall, both mappings shared similar global characteristics. This stressed the 

consistence of the obtained echogram classification model compared to the sole use of 

catch data, which can be regarded as a coarse reference. The proposed approach also 

resulted in a finer mapping of the distribution of juvenile and adult anchovy, whereas the 

necessarily sparse sampling associated with catch data might fail to identify some adult or 310 

juvenile clusters (e.g., the southern coastal area). 

Discussion 

Echogram-level analysis and characterization of fisheries acoustics data  

The analysis of fisheries acoustics data generally relies on the extraction and 

characterization of individual fish schools or on the echo-integration of the acoustic energy 315 



within a predefined layer (Simmonds and MacLennan 2005). As proven here, such analysis 

may not provide the relevant scale for the characterization of clusters of schools.  

In this respect, we developed an echogram-level analysis, where an echogram 

typically corresponds to a few nautical miles along the survey transects. We aimed at 

characterizing the distribution and organization of the schools within an area. Following 320 

(Burgos and Horne 2008, Petitgas et al. 2001), we stressed for Peruvian anchovy that a 

spatial scale of a few nautical miles reveals key information on the spatial organization of 

pelagic fish. We showed that variations in the densities of different types of school 

categories could be a discriminative marker of this spatial organization (here, in relation to 

maturity level), whereas individual schools could only be poorly discriminated. This 325 

echogram-level scale does not involve a single fish school but rather corresponds to groups 

or clusters of fish schools, generally comprising different types of schools. As such, the 

proposed approach could provide the basis for further exploring the spatial organization of 

pelagic fish beyond the scale of a single school, for instance the relationships between this 

spatial organization and environmental factors, especially physical forcing (e.g., Barange 330 

1994, Bertrand et al. 2008b). This issue was typically addressed based on patchiness 

descriptors and mean school features. The proposed school cluster analysis might relevantly 

complement these studies with the analysis of the joint spatial distribution of different 

school types and of the characteristic scale of the clusters, especially for multispecific 

pelagic communities (Petitgas et al., 2001, Gutierrez et al. 2007). It might be noted that the 335 

echogram-level analysis could operate at a coherent analysis scale with respect to satellite 

ocean sensing data (e.g., sea surface temperature, ocean colour,.etc..). As a peculiar 

example, it could enable determination of the extent to which physical forcing may lead to 



a shift in aggregation patterns (e.g, smaller and deeper vs. larger and shallower schools), or 

only to smooth variations of mean school features. This is of key interest in coastal 340 

upwelling systems, especially the Humboldt Current System strongly affected by global 

ENSO climate forcing (Bertrand et al. 2008b).  

From a methodological point of view, in contrast to the few previous works 

investigating this issue (Burgos and Horne 2008, Petitgas et al. 2001), we did not restrict 

ourselves to univariate marginal statistics of school features but we also evaluated the 345 

densities of school categories. The latter were determined from an unsupervised 

categorization of fish schools. The interest of the resulting echogram-level characteristics 

was two-fold. Since school categories referred to different types of schools (e.g., deeper vs. 

shallower schools and/or larger vs. smaller schools), these characteristics first revealed the 

school categories associated with each echogram. Though these school categories could not 350 

be specifically assigned to any of the two classes (juvenile vs. adult anchovy), echograms 

could be discriminated not only from the presence or absence of given school categories but 

also from differences in the school densities of each category. The resulting echogram-level 

descriptors were shown to significantly outperform echogram-level statistics (Burgos and 

Horne 2008, Petitgas et al. 2001). Compared to features proposed by Burgos et al. (2008), 355 

such as the overall density in schools or the overall occupancy (i.e., rate of pixels within 

fish schools), we distinguished different school categories and the reported results 

suggested that school clusters here differed in the occurrences and co-occurrences of 

different school types.  

The considered BoF statistics emerged relatively recently as a powerful object-360 

based representation of image contents (Sivic and Zisserman 2003). It appeared particularly 



suited to fisheries acoustics data as fish schools provided a natural object concept for the 

computation of BoF. Future work will further explore this methodology in two directions. 

On the one hand, BoF could be complemented by an actual characterization of the spatial 

patterns formed by fish schools based on point process statistics and models (Nguyen et al. 365 

2012). On the other hand, local signatures (Nguyen et al. 2012) widely used for image 

processing and computer vision might also provide relevant alternatives, especially when 

fish schools are poorly defined (e.g., for night data).   

Application to the discrimination of juvenile and adult anchovy clusters off Peru  

We applied the proposed school-based echogram-level characteristics to the 370 

discrimination of juvenile and adult anchovy clusters off Peru. Relevant discrimination 

performance (about 90% correct classification) was reported for the three processed survey 

datasets. We showed that a bi-frequency characterization of fish schools slightly improved 

classification performance (typically, a mean gain of 2% of correct classification). Besides, 

poor recognition rates below 70% were obtained at the scale of individual schools.  375 

Consequently, though discriminative features specific to juvenile or adult anchovy 

schools were not identified (i.e., they both involved large as well as small schools), adult 

and juvenile areas differed significantly in the relative school densities of the 20 different 

categories we identified. A unique and efficient discriminative model could not, however, 

be obtained for all three datasets. We further investigated the differences between 380 

predominantly juvenile and adult areas, from the analysis of schools densities with respect 

to school characteristics (Table 5). Different patterns, which were consistent across 

datasets, were identified for each class of echogram. In predominantly juvenile areas, 

school densities were greater compared to the densities for predominantly adult areas, for 



small schools depicting distributions of the backscattered energies with large mean values 385 

and less acute peaks around the mean (Table 5, variables S, SV and K, p<0.01 for all 

datasets). This was in agreement with experts' priors on the behaviour of juvenile and adult 

anchovy. By contrast, school depth and compactness as well as the difference in mean 

backscattered energy at 38 kHz and 120 kHz did not depict such general patterns common 

to all datasets. Noticeably, juvenile anchovy clusters were not characterized by lower 390 

densities of more superficial schools. The identified general patterns were, however, only 

relative as the slopes of these trends depicted great variabilities. This might explain why a 

generic classification model valid for all surveys could not be identified. 

The distribution of the Peruvian anchovy population depicts great temporal 

variabilities induced by a strong bottom-up structuring of the North Humboldt current 395 

system, with the physical forcing itself being particularly variable (Bertrand et al. 2008b, 

2011, Chavez et al. 2008,). The exhibited differences between juvenile and adult anchovy 

clusters might then be interpreted as differences in the responses of juvenile and adult fish 

to their variable environment. Meanwhile, the ongoing conditions of the system, such as the 

presence or absence of strong Kelvin waves (Bertrand et al. 2008b) (and the strength of the 400 

upwelling (Gutierrez et al. 2007, Bertrand et al. 2008b, Swartzman et al. 2008) might 

strongly drive the characteristics of anchovy school clusters (Bertrand et al. 2008a) and 

explain the observed temporal variability. The proposed school cluster characteristics 

provide the methodological basis to further investigate these relationships and provide a 

better understanding of the forcing variables of the spatial organization of school clusters of 405 

anchovy and other pelagic species in the Humboldt Current system.  



The discrimination of juvenile and adult anchovy school clusters is a critical issue 

for the management of the Peruvian anchovy fishery. During the fishing season, anchovy 

landings are monitored in real time, and fishing zones in which juvenile anchovy catches 

represent more than 10% of the total catch (in weight) are declared fishing-free zones for a 410 

few days. A method allowing to determine, in real time, if juveniles dominate a given area 

should allow for a better distribution of the fishing effort and limit the discarding of 

juveniles. Here, we showed that the analysis of fisheries acoustics data could help in the 

monitoring of predominantly juvenile anchovy areas. We demonstrated the refinement 

obtained compared to the sole analysis of catch data. Such a mapping could be of great 415 

interest for the definition and update of fishing-free zones to preserve the juvenile anchovy 

population. So far, they can only be obtained afterward.  

From an operational perspective, the analysis of the acoustic data acquired by 

professional fishing vessels equipped with scientific echosounders (which represent the 

majority of the industrial fishing fleet of the Peruvian anchovy fishery) would be of great 420 

interest in delivering a "real-time" monitoring of the juvenile anchovy areas. The 

recognition performances reported using single-frequency school features provide the basis 

for investigating this issue in future work. Cluster and school size and shape depend on 

meso- to submeso-scale physical features (e.g. upwelling plumes, eddies, oxygen 

conditions) (Bertrand et al. 2006, 2008a). However, in the Humboldt Current system, the 425 

high variability of the physical forcing, which further shapes the aggregation patterns of 

anchovy (Bertrand et al., 2008a,b) might make the definition of robust patterns difficult. It 

could be expected to be more efficient for species recognition and adult/juvenile 

discrimination in ecosystems characterised by a more stable environment. Furthermore,, the 



proposed model could also be used in a quantitative framework for the evaluation of 430 

juvenile and adult anchovy biomasses.  

Prospects  

We presented a novel approach for the school-based echogram-level 

characterization of fisheries acoustics data and demonstrated its relevance for an echogram 

classification task. The proposed descriptors, computed as the density of different school 435 

categories, provided a compact yet meaningful representation of the distribution of fish 

schools within an echogram. Applied here to the discrimination of juvenile and adult 

anchovy school clusters, it could provide a synoptic representation of the temporal and/or 

spatial variations of the spatial distribution of fish at intermediate spatial scales (typically 

from a few nautical miles to an entire survey zone). 440 

It could not only reveal changes in species mixtures but also provide a descriptor of 

modifications of the spatial structuring of given fish species, for instance, induced by 

changes in the environmental conditions. Whereas the analysis of fish school characteristics 

would not allow to perceive smooth variations in the distribution of fish schools, the 

proposed echogram-level features could detect both abrupt shifts in the observed types of 445 

fish schools as well as smoother relative changes in the densities of different school 

categories, which is typically expected to occur with school clusters involving species 

mixtures. We exploited here the BoF representation for classification purpose in this work, 

but it could be combined to any other type of multivariate statistical analysis in relation to 

the considered application. As such, we believe that it provides a relevant basis for 450 

improving the exploitation of fisheries acoustics data in the context of the ecosystem 

approach to fisheries (Koslow 2009). 
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Figure 1. Example of a typical acoustic survey sampling off Peru, which consists of a 570 

series of coast-to-offshore transects from the north to the south of the Peruvian coast. Bi-

frequency acoustic echograms are acquired with a 38 kHz and 120 kHz hull mounted 

Simrad EK60 echosounder. Besides trawl catch, data are sampled within each transect.  

Figure 2. Example of acoustic echograms associated with juvenile and adult anchovy 

school clusters. Acoustic echograms associated with catch data predominantly depicting 575 

juvenile anchovy (more than 75% of anchovy smaller than 11 cm) (panel a, left), acoustic 

echograms associated with catch data predominantly depicting juvenile anchovy (more than 

75% of anchovy larger than 11 cm) (panel b, right). In both cases, both small and large 

school structures were observed. In all echograms the horizontal bar refers to 0.1 nautical 

mile and the vertical one to 20 meters. 580 

 
Figure 3. Sketch of the proposed echogram-level characterization. It involves two main 

steps: (i) the extraction of fish school categories from an unsupervised clustering within the 

considered fish school feature space for the dataset formed by all the schools detected in the 

processed series of acoustic echograms (left); and (ii) the computation of the descriptor of a 585 

given echogram from a counting of the number of schools of the echogram falling in each 

school category (right). 

 

 



Figure 4. Mapping of the spatial distribution of areas of predominantly juvenile and adult 590 

anchovy off  Peru during summer 2010 from catch data alone (a) and using the proposed 

approach based on a joint use of fisheries acoustics and catch data (b). As an effect of the 

catch sampling during the survey with a greater sampling effort on the juvenile anchovy 

population, the mapping issued from catch data alone might overestimate the area of the 

region predominantly involving juvenile anchovy. By contrast, the joint use of catch and 595 

fisheries acoustics data seemed to deliver a finer analysis of the spatial distribution of the 

juvenile population. 
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Table 1. Processed survey data 610 

Table 2. Comparison of classification performances of different models. SVM-BoF and 

SVM-Marginals refer to echogram-level SVM classification models based on echogram 

feature vectors given respectively BoF (Bags-of-Features) and school marginals (see 

Material and Methods). SVM-school refers to a SVM classification model of individual 

schools from the school feature vector. The best performance is emphasized in each case 615 

(bold). 

Table 3. Classification performances using single-frequency or bi-frequency school 

characteristics. we compared mean correct classification rate using only single-frequency 

school features (resp., 38 kHz and 120 kHz school features) to the results reported in Table 

2 (third line). The best performance is emphasized in each case (bold). 620 

Table 4. Classification performance of a model trained using a given survey dataset and 

applied to another survey dataset.  

Table 5. Analysis of the intra-survey variability of school cluster characteristics between 

the predominantly juvenile anchovy clusters and the adult anchovy clusters, as a function of 

school characteristics using rank-based correlation tests. We report the sign of the 625 

correlation (,  or ) and the associated p-value when significant (*: p < 0.1, ** 

p<0.05, ***: p< 0.001) with respect to six school features: depth (D), area (A), SV value 

(SV), kurtosis (K) and the difference in SV values at 38 kHz and 120 kHz signatures (dSV). 

 



Survey Nº of detected 

schools 

Nº of trawls Nº of trawls 

with 

predominantly 

adult anchovy  

Nº of trawls 

with 

predominantly 

juvenile 

anchovy  

Summer 2010 39237 75 13 16 

Spring 2010 40611 77 8 11 

Summer 2011 38985 129 32 7 

Table 1. 630 

 

 

 
Model Summer 2010 Spring 2010 Summer 2011 Mean 

SVM-BoF 94%±1% 91%±3% 89%±1% 91% 

SVM-

Marginals 

79%±2% 80%±2% 79%±1% 79% 

SVM-School 68% ±0.5% 69% ±1% 69% ±0.5% 69% 

Table 2. 

 635 

 



Bi-frequency 

vs. single-

frequency 

school features 

Summer 2010 Spring 2010 Summer 2011 Mean 

38 kHz 94%±1% 83%±3% 89%±2% 89% 

120 khZ 96%±1% 87%±3% 83%±2% 89% 

38-120 kHz 94%±1% 91%±3% 89%±1% 91% 

Table 3. 

 

Training dataset Test dataset Mean correct 

classification rate 

Summer 2010 Spring 2010 70%±3% 

Summer 2010 Summer 2011 75%±3% 

Spring 2010 Summer 2011 78%±2% 

Table 4. 

640 



 640 

Survey A D C SV K dSV 

Summer 2010  (***)  (-)  (***)  (***)  (***)  (***) 

Spring 2010  (***)  (***)  (-)  (***)  (***)  (-) 

Summer 2011  (***)  (***)  (*)  (***)  (***)  (-) 

Table 5.  

 


