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CONTROL AND STABILIZATION OF THE BENJAMIN-ONO EQUATION

IN L2(T)

CAMILLE LAURENT, FELIPE LINARES, AND LIONEL ROSIER

Abstract. We prove the control and stabilization of the Benjamin-Ono equation in L
2(T),

the lowest regularity where the initial value problem is well-posed. This problem was already
initiated in [31] where a stronger stabilization term was used (that makes the equation of
parabolic type in the control zone). Here we employ a more natural stabilization term related
to the L

2 norm. Moreover, by proving a theorem of controllability in L
2, we manage to prove

the global controllability in large time. Our analysis relies strongly on the bilinear estimates
proved in [36] and some new extension of these estimates established here.

1. Introduction

In this paper, we consider the BO equation posed on the periodic domain T = R/(2πZ):

ut +Huxx − uux = 0, x ∈ T, t ∈ R, (1.1)

where u is real valued and the Hilbert transform H is defined via Fourier transform as

(Ĥu)(ξ) = −i sgn(ξ)û(ξ), ξ ∈ Z.

The BO equation, posed on the line, arises as a model in waves propagation in stratified fluids
(see [6], and [40]) and has widely been studied in many different contexts (see [1], [2], [3], [8],
[10], [14], [15], [16],[18], [20], [23], [25],[37],[38], [35], [39], [49], [50]).

In the periodic setting the best known result up to date regarding well-posedness for the
Cauchy problem was obtained by Molinet [33] (see also [36]) which guarantees the global well-
posedness of the problem (1.1) for initial L2 data.

The BO equation possesses an infinite number of conserved quantities (see [9]). The first two
conserved quantities are

I1(t) =

∫

T

u(x, t) dx

and

I2(t) =

∫

T

u2(x, t) dx.

Since the BO equation was derived to study the propagation of interfaces of stratified fluids,
it is natural to think I1 and I2 as expressing conservation of volume (or mass) and energy,
respectively.

Here we will study the equation (1.1) from a control point of view with a forcing term f =
f(x, t) added to the equation as a control input:

ut +Huxx − uux = f(x, t), x ∈ T, t ∈ R, (1.2)
1
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where f is assumed to be supported in a given open set ω ⊂ T. In control theory the following
problems are essential:

Exact Control Problem: Given an initial state u0 and a terminal state u1 in a certain
space, can one find an appropriate control input f so that the equation (1.2) admits a solution
u which satisfies u(·, 0) = u0 and u(·, T ) = u1?

Stabilization Problem: Can one find a feedback law f = Ku so that the resulting closed-
loop system

ut +Huxx − uux = Ku, x ∈ T, t ∈ R+

is asymptotically stable as t → +∞?
Those questions were first investigated by Russell and Zhang in [48] for the Korteweg-de Vries

equation, which serves as a model for propagation of surface waves along a channel:

ut + uxxx − uux = f, x ∈ T, t ∈ R. (1.3)

In their work, in order to keep the mass I1(t) conserved, the control input was chosen of the
form

f(x, t) = (Gh)(x, t) := a(x)
(
h(x, t) −

∫

T

a(y)h(y, t) dy
)

(1.4)

where h is considered as a new control input, and a(x) is a given nonnegative smooth function
such that {x ∈ T; a(x) > 0} = ω and

2π[a] =

∫

T

a(x) dx = 1.

For the chosen a, it is easy to see that

d

dt

∫

T

u(x, t) dx =

∫

T

f(x, t)dx = 0 ∀t ∈ R

for any solution u = u(x, t) of the system

ut + uxxx − uux = Gh, x ∈ T, t ∈ R. (1.5)

Thus the mass of the system is indeed conserved.
The control of dispersive nonlinear waves equations on a periodic domain has been extensively

studied in the last decade: see e.g. [48, 45, 28] for the Korteweg-de Vries equation, [32] for
the Boussinesq system, [47] for the BBM equation, and [12, 43, 26, 46, 27] for the nonlinear
Schrödinger equation. By contrast, the control theory of the BO equation is at its early stage.
The linear problem was studied by Linares and Ortega [29]. They established the following
results regarding control and stabilization in this case.

Theorem A ([29]). Let s ≥ 0 and T > 0 be given. Then for any u0, u1 ∈ Hs(T) with [u0] = [u1]
one can find a control input h ∈ L2(0, T,Hs(T)) such that the solution of the system

ut +Huxx = Gh, u(x, 0) = u0(x) (1.6)

satisfies u(x, T ) = u1(x).

In order to stabilize (1.6), they employed a simple control law

h(x, t) = −G∗u(x, t) = −Gu(x, t).
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The resulting closed-loop system reads1

ut +Huxx = −GG∗u.

Theorem B ([29]). Let s ≥ 0 be given. Then there exist some constants C > 0 and λ > 0 such
that for any u0 ∈ Hs(T), the solution of

ut +Huxx = −GG∗u, u(x, 0) = u0(x),

satisfies

‖u(·, t) − [u0]‖Hs(T) ≤ Ce−λt‖u0 − [u0]‖Hs(T) ∀t ≥ 0.

One of the main difficulties to extend the linear results to the nonlinear ones comes from the
fact that one cannot use the contraction principle in its usual form to establish the local well-
posedness of BO in Hs

0(T) = {u ∈ Hs(T), [u] = 0} for s ≥ 0 (see [38]). The method of proof in
[33] and [36] used strongly Tao’s gauge transform, and it is not clear whether this approach can
be followed when an additional control term is present in the equation. Nevertheless, Linares and
Rosier in [31] obtained the first results regarding stabilization and control for the BO equation.
For completeness we will briefly describe these results.

In [31], it was considered the following feedback law

h = −D(Gu),

where D̂u(ξ) = |ξ| û(ξ), to stabilize the BO equation. Thus scaling in (1.3) by u gives (at least
formally)

1

2
‖u(T )‖2L2(T) +

∫ T

0
‖D 1

2 (Gu)‖2L2(T)dt =
1

2
‖u0‖2L2(T), (1.7)

which suggests that the energy is dissipated over time. On the other hand, (1.7) reveals a
smoothing effect, at least in the region {a > 0}. Using a propagation of regularity property in
the same vein as in [12, 26, 27, 28], it was proved that the smoothing effect holds everywhere,
i.e.

‖u‖
L2(0,T ;H

1
2 (T))

≤ C(T, ‖u0‖). (1.8)

Using this smoothing effect and the classical compactness/uniqueness argument, it was shown
that the corresponding closed-loop equation is semi-globally exponentially stable. More precisely,

Theorem C ([31]). Let R > 0 be given. Then there exist some constants C = C(R) and
λ = λ(R) such that for any u0 ∈ H0

0 (T) with ‖u0‖ ≤ R, the weak solutions in the sense of
vanishing viscosity of

ut +Huxx − uux = −G(D(Gu)), u(x, 0) = u0(x), (1.9)

satisfy

‖u(t)‖ ≤ Ce−λt‖u0‖ ∀t ≥ 0.

Using again the smoothing effect (1.8), it was possible to extend (at least locally) the expo-
nential stability from H0

0 (T) to Hs
0(T) for s > 1/2.

1Actually, it is easy seen that G is self-adjoint (i.e. G∗ = G). However, we shall keep the usual notation for the
feedback h = −G∗

u throughout .
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Theorem D ([31]). Let s ∈ (12 , 2]. Then there exists ρ > 0 such that for any data u0 ∈ Hs
0(T)

with ‖u0‖Hs(T) < ρ, there exists for all T > 0 a unique solution u(t) of (1.9) in the class

C([0, T ],Hs
0(T))∩L2(0, T,H

s+ 1

2

0 (T)). Furthermore, there exist some constants C > 0 and λ > 0
such that

‖u(t)‖s ≤ Ce−λt‖u0‖s ∀t ≥ 0.

Finally, including the same feedback law h = −D(Gu) in the control input to obtain a smooth-
ing effect, it was derived an exact controllability result for the full equation as well. More
precisely,

Theorem E ([31]). Let s ∈ (12 , 2] and T > 0 be given. Then there exists δ > 0 such that for
any u0, u1 ∈ Hs

0(T) satisfying

‖u0‖Hs(T) ≤ δ, ‖u1‖Hs(T) ≤ δ

one can find a control input h ∈ L2(0, T,Hs− 1

2 (T)) such that the system (1.5) admits a solution

u ∈ C([0, T ],Hs
0 (T)) ∩ L2(0, T,H

s+ 1

2

0 (T)) satisfying

u(x, 0) = u0(x), u(x, T ) = u1(x).

Our main purpose here is to obtain the control and stabilization result in the largest space
where local well-posedness is known for the BO equation, that is, for initial data in L2(T). As
we commented above the main difficulty to treat the problem for data in L2 was to use the

gauge transform w = − i
2P+(ue

− i
2
F ) introduced in [50]. We first consider the Cauchy problem

associated to the BO equation with a forcing term, that is,
{
ut +Huxx − uux = g, x ∈ T, t > 0,

u(x, 0) = u0(x)
(1.10)

for data in L2(T) and g ∈ L2([0, T ], L2(T)). Then, we establish the well-posedness theory for
(1.10). The main tool used is the bilinear estimates approach employed by Molinet and Pilod
[36] to show the local well-posedness of the BO equation in both cases in the real line and
in the periodic setting for data in L2(T) (see [18] for the first proof of this result in L2(R)).
The argument in [36] takes advantage of uniform estimates for small data for which the gauge
transform is well defined and a scaled argument (subcritical) to consider any size data. In our
case, we apply some Sobolev estimates which avoid the use of uniform estimates and we apply
directly the argument in [36]. Then we have to analyze the gauge transform for large frequency
data, for which this transformation has a bad behavior. Doing so we extend previous estimates
to overcome this difficulty. For instance we refine the bilinear estimates and obtain an extra
time factor (see Lemma 2.8) used to deal with large data as well as intermediate estimates to
treat the same situation (see the Appendix).

Next we describe the main results in this paper.
We begin with the exact controllability result. More precisely,

Theorem 1.1.
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(i) (Small data) For any T > 0, there exists some δ > 0 such that for any u0, u1 ∈ L2(T)
with

‖u0‖ ≤ δ, ‖u1‖ ≤ δ and [u0] = [u1]

one can find a control input h ∈ L2([0, T ], L2(T)) such that the solution u of the system
{
ut +Huxx − uux = Gh,

u(x, 0) = u0(x)
(1.11)

satisfies u(x, T ) = u1(x) on T.

(ii) (Large data) For any R > 0, there exists a positive T = T (R) such that the above property
holds for any u0, u1 ∈ L2(T) with

‖u0‖ ≤ R, ‖u1‖ ≤ R and [u0] = [u1].

Remark 1.1. We will give the proof of the theorem assuming that [u0] = [u1] = 0. The general
case can be done after the change of variables ũ(x, t) = u(x − t[u0], t) − [u0] is made in the
equation in (1.11). The results in Theorem A remain valid for the new equation in ũ.

The argument of proof is as follows. The control result for large data (ii) will be a combination
of a stabilization result presented below and of the result (i) for small data, as is usual in control
theory (see for instance [13, 12, 26, 27, 28]). The local control result (ii) will be proved using a
perturbation argument from the linear result [29]. The difficulty comes from the fact that we
need some estimates at higher order for the nonlinear equation, which are quite complicated
due to the absence of a direct Duhamel formulation. Indeed, we need to have an expansion
for all the elements used for the well-posedness theory. These estimates will come from the
Benjamin-Ono equation verified by u, from the equation verified by the gauge transform w and
from the “inversion” of the gauge transform. For example, we will need some estimates of the
form 2iw = P+u+ o(‖(u, v)‖2X) and some Lipschitz type estimates of this fact.

In order to stabilize (1.11), we employ a simple control law

h(x, t) = −G
∗u(x, t).

where G∗ denotes the adjoint operator of G. Thus the resulting closed-loop system is

ut +Huxx + uux = −GG
∗u.

Theorem 1.2. There exist some nondcreasing functions c, λ : R+ → R+ such that for any
u0 ∈ L2(T), the solution of {

ut +Huxx − uux = −GG∗u,

u(x, 0) = u0(x)
(1.12)

satisfies

‖u(·, t) − [u0]‖L2(T) ≤ Ce−λt‖u0 − [u0]‖L2(T) ∀t ≥ 0

where λ = λ(‖u0‖), C = C(‖u0‖).
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Remark 1.2. After the change of variables ũ(x, t) = u(x− t[u0], t)− [u0] described in Remark
1.1, we are left with some solutions with [ũ] = 0 and with the same equation but with G replaced
by Gµ defined by

(Gµh)(x, t) := a(x− µt)
(
h(x− µt, t)−

∫

T

a(y)h(y, t) dy
)

(1.13)

with µ = [u0].
We will give the proof of the theorem assuming that µ = [u0] = 0 and detail in some remarks

the necessary modifications when G is replaced by Gµ.

The proof of the stabilization theorem will be obtained by an observability estimate proved by
the compactness-uniqueness method. The difference from the case of the nonlinear Schrödinger
equation (see for instance [12, 26, 27]) or other nonlinear conservative equations ([13, 28, 42, 41])
comes again from the use of the gauge transform. We need to propagate some information from
the zone of damping to the whole space. Yet, the absence of Duhamel formulation prevents from
doing that directly on the solution u. The idea is to transfer this information from the solution
u to the gauge transform w, next to apply some propagation results to w and finally to obtain
the expected result by returning to the original solution u.

As it was already mentioned, one of our main ingredients in our analysis is the study of the
well-posedness of the IVP{

∂tu+H∂2
xu− u∂xu = g, x ∈ T, t > 0,

u(x, 0) = u0(x),
(1.14)

for data u0 ∈ L2(T) and where g ∈ L2([0, T ], L2(T)).
More precisely,

Theorem 1.3. For any u0 ∈ L2(T), g ∈ L2([0, T ], L2(T)) and T > 0, there exists a solution

u ∈ C([0, T ], L2(T)) ∩X−1,1
T ∩ L4

TL
4(T) (1.15)

of (1.14) such that

w = ∂xP+(e
− i

2
∂−1
x ũ) ∈ X2 (1.16)

where

ũ = u(x− t[u0], t)− [u0] and ∂̂−1
x :=

1

iξ
, ξ ∈ Z∗.

The solution u is unique in the class

u ∈ L∞((0, T );L2(T)) ∩ L4((0, T ) × T) and w ∈ X
0,1/2
T .

Moreover, u ∈ C([0, T ];L2(T)) and the flow map data–solution: (u0, g) → u is locally Lipschitz
continuous from L2(T) into C([0, T ];L2(T)).

The proof of this theorem does not follow directly from the theory established by Molinet and
Pilod [36]. We have to distinguish two cases, small and large data instead. To apply the scale
argument in [36] there is a need of some uniform estimates that do not hold when we introduced
the source term g and consider any data. To deal with large data we have to go around the
gauge transform since in this case it not “invertible”. We prove the theorem when [u0] = 0. The
general case follows as we commented above.
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The plan of the paper is as follows: in Section 2 we introduce some notations and establish
estimates needed in our analysis. General estimates which do not depend on the size of the
data are derived in Section 3. In Section 4 we deduce estimates used to complete the proof
of Theorem 1.3 for small data. Next in Section 5 we establish Theorem 1.3 for large data.
The control results are proved in Section 6. Section 7 contains preliminary tools to establish
Theorem 1.2. The stabilization is demonstrated in Section 8, and finally we include an appendix
containing some technical results.

2. Notations and Preliminary Estimates

We use standard notation in Partial Differential Equations. In addition, we will use C to
denote various constants that may change from line to line. For any positive numbers a and b,
we use the notation a . b to mean that there exists a constant C such that a ≤ C b.

For a 2π-periodic function f we define its Fourier transform on Z by

f̂(ξ) =

∫

T

e−ixξ f(x) dx, ξ ∈ Z.

The free group associated with the linearized Benjamin-Ono equation denoted by U(·) is
defined as

Û(t)f(ξ) = eit|ξ|ξf̂(ξ).

The norm of Sobolev spaces Hs(T) will be denoted by ‖ · ‖s and when s = 0 the notation ‖ · ‖
will be used.

We will use the following projection operators: for N ∈ N∗ we define

P̂±f = χR±
f̂ , P̂≤0f = χ{ξ≤0}f̂ , P̂≥Nf = χ{ξ≥N}f̂

P̂≤Nf = χ{ξ≤N}f̂ , P̂0f = f̂(0), P̂Nf = χ{|ξ|≤N}f̂ ,
(2.1)

and
Q̂Nf = χ{|ξ|>N}f̂ . (2.2)

For s, b ∈ R we define the spaces Xs,b, Zs,b and Z̃s,b via the norms

‖v‖Xs,b =
(∫ ∫

〈τ + |ξ|ξ〉2b〈ξ〉2s |v̂(ξ, τ)|2 dξdτ
)1/2

‖v‖Zs,b =
( ∫

(

∫
〈τ + |ξ|ξ〉b〈ξ〉s |v̂(ξ, τ)| dξ)2dτ

)1/2
,

and

‖v‖Z̃s,b = ‖P0v‖Zs,b +
(∑

N

‖vN‖2Zs,b

)1/2
,

where dξ denotes the counting measure in Z, 〈x〉 = 1 + |x|, and vN corresponds to a classical
Littlewood-Paley decomposition (see [36]).

We also define the spaces Xs
2 and Xs

2

′

as

‖v‖Xs
2
= ‖v‖Xs,1/2 + ‖v‖Z̃s,0

and
‖v‖

Xs
2

′ = ‖v‖Xs,−1/2 + ‖v‖Z̃s,−1 .
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When s = 0 we will use X2 and X ′
2 to simplify the notation.

Next we define the restriction in time spaces. More precisely, for any function space B and
any T > 0, we denote by BT the corresponding restriction in time space endowed with the norm

‖u‖BT
= inf

v∈B

{
‖v‖B : v(·) = u(·) in [0, T )

}
. (2.3)

Note that, as pointed out in [36], we have the embedding

Xs
2,T ⊂ Z̃s,0

T ⊂ C([0, T ],Hs(T)).

We end this section by introducing the functional space X with the norm

‖(u,w)‖X = ‖u‖L∞([0,T ],L2) + ‖u‖L4([0,T ]×T) + ‖u‖X−1,1
T

+ ‖w‖
X

0,1/2
T

+ ‖w‖Z̃0,0
T

and we denote by X1 the functional space corresponding to the norm for u and X2 the func-
tional space given by the norm corresponding to w as above. We will also use the notation
U = (u,w) ∈ X.

2.1. Linear estimates. We will begin presenting some estimates in the Bourgain spaces. The
reader is referred to [17] for details.

Lemma 2.1. Let s ∈ R. Then

‖η(t)U(t)h‖Xs
2
. ‖h‖Hs .

Lemma 2.2. Let s ∈ R. Then for any 0 < δ < 1/2,

‖η(t)
∫ t

0
U(t− t′)H(t′) dt′‖

Xs, 1
2
+δ . ‖H‖

Xs,− 1
2
+δ (2.4)

and

‖η(t)
∫ t

0
U(t− t′)H(t′) dt′‖Xs

2
. ‖H‖

Xs,− 1
2
+ ‖H‖

Z̃s,−1 . (2.5)

Lemma 2.3. For any T > 0, s ∈ R and −1
2 < b′ ≤ b < 1

2 , it holds

‖u‖
X0,b′

T

. T b−b′‖u‖
X0,b

T
. (2.6)

The next estimate is a Strichartz type estimate (see [36]).

Lemma 2.4. It holds that

‖u‖L4
x,t

. ‖u‖
X0, 3

8

and for any T > 0 and 3
8 ≤ b ≤ 1

2 ,

‖u‖L4
x,T

. T b− 3

8 ‖u‖
X0,b

T
.

Recalling the notation X ′
2 = X0,−1/2 ∩ Z̃0,−1 we have that

Lemma 2.5. For 0 < ǫ ≪ 1, it holds

‖z‖X′
2
. T 1/2−ε‖z‖L2([0,T ]×T). (2.7)
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Proof. From the definition we have that

‖z‖2Z0,−1 =

∫

ξ

( ∫

τ

〈
τ + |ξ|ξ

〉−1|ẑ(τ, ξ)|
)2

=

∫

ξ

( ∫

σ

〈
σ
〉−1|ẑ(σ − |ξ|ξ, ξ)|

)2

.

∫

ξ

∫

σ

〈
σ
〉−1+2ε|ẑ(σ − |ξ|ξ, ξ)|2 .

∫

ξ

∫

τ

〈
τ + |ξ|ξ

〉−1+2ε|ẑ(τ, ξ)|2 = ‖z‖2
X0,−1/2+ε

where we have used the Cauchy-Schwarz inequality and the integrability of
〈
σ
〉−1−2ε

. We can
use Lemma 2.3 to finish the proof. �

Define F = ∂−1
x u where ∂̂−1

x u = ξ−1û, ξ ∈ Z∗.

Lemma 2.6. Let Fi, i = 1, 2, be defined as above. Then

‖e i
2
F1 − e

i
2
F2‖L∞(T) . ‖u1 − u2‖L2 , (2.8)

‖P+

(
e

i
2
F1 − e

i
2
F2
)
‖L∞(T) .

(
1 + ‖u1‖L2 + ‖u2‖L2

)
‖u1 − u2‖L2 , (2.9)

and
‖P+

(
e

i
2
F1 − 1

)
‖L∞(T) . ‖u1‖L2 . (2.10)

Proof. Using Sobolev embedding and the definition of F we have

‖e i
2
F1 − e

i
2
F2‖L∞(T) ≤ ‖F1 − F2‖L∞ ≤ C ‖F1 − F2‖H1 ≤ C ‖u1 − u2‖L2 .

Next we prove (2.9). Since P+ is not a continuous operator in L∞ we use first the Sobolev
embedding and then the L2 continuity.

‖P+

(
e

i
2
F1 − e

i
2
F2
)
‖L∞(T) ≤ C ‖e i

2
F1 − e

i
2
F2‖H1(T) ≤ C

(
1 + ‖F1‖H1 + ‖F2‖H1

)
‖F1 − F2‖H1 .

The definition of Fi yields the result.
Similarly, we obtain

‖P+

(
e

i
2
F1 − 1

)
‖L∞(T) ≤ C ‖e i

2
F1 − 1‖H1(T) ≤ C ‖F1‖H1 ≤ C ‖u1‖L2 .

�

The next result guarantees the existence of smooth solutions for the Cauchy problem (1.11).

Theorem 2.1 (Existence of smooth solutions).

• (Local) For a given T > 0 and s > 3/2, the initial value problem
{
ut +Huxx − uux = g, x ∈ T, t > 0,

u(x, 0) = u0(x)
(2.11)

is locally well-posed for initial data u0 ∈ Hs(T) and g ∈ L2([0, T ],Hs(T)). Moreover,
the map (u0, g) → u is continuous from Hs(T)× L2([0, T ],Hs(T)) → C([0, T ],Hs(T)).

• (Global) Let s ≥ 2, T > 0. Then for any (u0, g) ∈ Hs(T) × L2([0, T ],Hs(T)) the IVP
(2.11) has a unique solution

u ∈ C([0, T ],Hs(T)).

We notice that the result is also true with a damping term −GG∗u instead of g.
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Proof. The local theory follows using parabolic regularization (see for instance [21]) for the ex-
istence and uniqueness. The continuous dependence follows by using the Bona-Smith argument
[4].

To extend the local theory globally we will make use of some quantities conserved by the BO
flow. We will sketch the proof for completeness. We begin with the L2 estimate. We proceed as
follows. Multiply the equation in (2.11) by u and integrate with respect to x.

1

2

d

dt

∫
u2 dx =

∫
ug dx ≤ 1

2
‖u‖2 + ‖g(·, t)‖2. (2.12)

Gronwall’s inequality implies

‖u(t)‖2 ≤ C {‖u0‖2 +
∫ T

0
‖g(t)‖2L2 dt} exp(C T ), for 0 ≤ t ≤ T. (2.13)

Next we obtain a H1 a priori estimate. We use the fourth conserved quantity associated to
the BO flow, that is,

Ψ4(u) =

∫ (
2(∂xu)

2 − 3

2
u2 H(∂xu) +

u4

4

)
dx.

We apply the operator 4∂xu∂x − 3uH(∂xu) − 3
2 u

2H∂x + u3 to the equation in (2.11) and
integrate by parts to obtain

d

dt

∫ (
2(∂xu)

2 − 3

2
u2H(∂xu) +

u4

4

)
dx

=

∫
(4∂xu∂xg − 3uH(∂xu)g −

3

2
u2H∂xg + u3g) dx

(2.14)

The Cauchy-Schwarz inequality, interpolation and Hilbert transform’s properties give
∣∣∣
∫ (

4∂xu∂xg − 3uH(∂xu)g −
3

2
u2H∂xg + u3g

)
dx

∣∣∣

≤ C ‖∂xu‖2 + c
(
‖u‖2(‖g‖‖∂xg‖ + ‖∂xg‖4/3) + ‖u‖4‖g‖2 + ‖∂xg‖2

)
.

(2.15)

Combining (2.14) and (2.15) we obtain

d

dt
Ψ4(u(t)) ≤ C h(‖u(t)‖, ‖g(t)‖1) + C ‖∂xu(t)‖2, (2.16)

where

h(‖u(t)‖, ‖g(t)‖1) = ‖u(t)‖2(‖g(t)‖21 + ‖g(t)‖4/31 ) + ‖u(t)‖4‖g(t)‖2 + ‖g(t)‖21. (2.17)

By using the Cauchy-Schwarz inequality, Sobolev embedding and Gagliardo-Nirenberg inter-
polation we also deduce that

Ψ4(u(0)) ≤ C(‖u0‖1). (2.18)

Integrating (2.16) with respect to t and using (2.18) it follows then that

Ψ4(u(t)) ≤ C(‖u0‖1) +H(t) +C

∫ t

0
‖∂xu(s)‖2 ds (2.19)
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where

H(t) =

∫ t

0
h(‖u(s)‖, ‖g(s)‖1) ds ≤ h̃(t, sup

t
‖u(t)‖, ‖g‖L2([0,t],H1(T))).

On the other hand,

‖∂xu(t)‖2 =
1

2
Ψ4(u(t)) +

3

4

∫
u(t)2 H(∂xu(t)) dx − 1

8

∫
u(t)4 dx.

Interpolation and Young’s inequality imply then

‖∂xu(t)‖2 ≤ 1

2
Ψ4(u(t)) + (η1 + η2)‖∂xu(t)‖2 + c(η1, η2)‖u(t)‖6, (2.20)

where η1, η2 are positive numbers.
A suitable choice of η1, η2 in (2.18) combined with inequality (2.19) implies

‖∂xu(t)‖2 ≤ C(‖u0‖1) +H1(t) + C

∫ t

0
‖∂xu(t′)‖2 dt′,

where H1(t) = H(t) + C‖u(t)‖6.
Gronwall’s inequality implies

‖∂xu(t)‖2 ≤
{
C(‖u0‖1) +

∫ T

0
H1(t

′) dt′
}
exp{CT}, for 0 ≤ t ≤ T. (2.21)

This inequality and the estimate (2.13) for ‖u‖ give an a priori estimate for the H1-norm.

To establish a H2 a priori estimate for solutions of (2.11) we consider the sixth conserved
quantity associated to the Benjamin-Ono equation, that is,

Ψ6(u) =

∫ [
u6

6
−

{
5

4
u4H(∂xu) +

5

3
u3 H(u∂xu)

}]
dx

+
5

2

∫ [
5u2(∂xu)

2 + u2{H(∂xu)}2 + 2uH(∂xu)H(u∂xu)

]
dx

+ 10

∫ [
(∂xu)

2 H(∂xu) + 2u∂2
xuH(∂xu)

]
dx+ 8

∫
(∂2

xu)
2 dx.

The argument to show the a priori estimate in this case although similar is rather technical,
so we will give the final statement of the results without giving the details. Proceeding as in the
previous case we can show that

Φ6(u(t)) ≤ C(‖u0‖2) + F0(t) + C

∫ t

0
‖∂2

xu(t
′)‖2 dt′, (2.22)

where

F0(t) =

∫ t

0
f(‖u(s)‖, ‖∂xu(s)‖, ‖g(s)‖2) ds.
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Using the Cauchy-Schwarz inequality, Gagliardo-Nirenberg’s interpolation, Young’s inequality
and (2.22) we get

‖∂2
xu(t)‖2 ≤

1

8
Ψ6(u) + F1(‖u(t)‖, ‖∂xu(t)‖)

≤ C(‖u0‖2) + F0(t) + F1(‖u(t)‖1) + C

∫ t

0
‖∂2

xu(t
′)‖2 dt′.

Thus an application of Gronwall’s inequality gives

‖∂2
x u(t)‖2 ≤ {C(‖u0‖2) +

∫ t

0
(F0(t

′) + F1(‖u(t′)‖1)) dt′} exp(Ct). (2.23)

Once the H2 a priori estimates are available, the structure of the equation and the Sobolev
embedding theorem allow us to obtain an a priori estimate in higher order Sobolev spaces. This
is basically the content of the next claim.
Claim. For any s ≥ 2 and 0 ≤ t ≤ T the solutions of the IVP (2.11) satisfy

‖u(t)‖s ≤ C{‖u0‖s +
∫ T

0
‖g(t′)‖s dt′} exp{C

∫ T

0
(1 + ‖u(t′)‖2) dt′

}
. (2.24)

Proof of the Claim. Apply the operator Js to the equation (2.11), then multiply by Jsu and
integrate with respect to x:

1

2

d

dt

∫
(Jsu)2 dx =

∫
(Js(u∂xu)J

su) dx+

∫
JsuJsg dx

≤ |
∫

(Js(u∂xu)J
su) dx|+ ‖u‖s‖g‖s

(2.25)

where in the last inequality we use the Cauchy-Schwarz inequality. To estimate the first term on
the right hand side of the last inequality we use the periodic version of Kato-Ponce commutator
estimate (see [19], [22])

∣∣∣
∫

Js(u∂xu)J
su dx

∣∣∣ ≤
∣∣
∫

[Js, u]∂xuJ
su dx

∣∣+ |
∫

∂xu(J
su)2 dx

∣∣

≤ C(‖u‖L∞ + ‖∂xu‖L∞)‖u(t)‖2s .
(2.26)

Combining (2.25), (2.26) and Young’s inequality we obtain

1

2

d

dt
‖u(t)‖2s ≤ C(‖u‖L∞ + ‖∂xu‖L∞)‖u(t)‖2s + ‖g(t)‖2s . (2.27)

Hence Sobolev’s embedding and Gronwall’s inequality yield (2.24) proving our claim. �

Some estimates similar to all the previous ones, including the a priori estimate (2.24), are valid
if we add the term ǫ∂2

xu, ǫ > 0, on the right hand side of (2.11). We refer to Iorio [20] Lemma
B1 and Lemma B3 for more details (note that in this reference, the sign of the nonlinearity
is different but we can easily get to the same equation by the change of unknown u ↔ −u at
the cost of a slight change of the conserved quantities and the sign of their coefficients of odd
order). Since the local theory is established via the parabolic regularization method the a priori
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estimates above can be used to extend the local solution globally. This completes the proof of
Theorem 2.1 �

Lemma 2.7. Let u ∈ X then the function
{
f : (0, T ] → R

t 7→ ‖u‖Xt

(2.28)

is continuous, where Xt is the norm of restriction on [0, t). Moreover, there exists C such that

lim
t→0

f(t) ≤ C‖(u(0), w(0))‖L2 .

Proof. For a proof of this result see for instance [26] (Lemma 1.4) or [24] (Lemma 6.3). �

In what follows, we will omit the dependence on T of the space X and we will denote X = XT

for simplicity.

2.2. The equation after gauge transform. Now we define the gauge transformation to obtain
a new equation. Consider the IVP

{
∂tu+H∂2

xu = u∂xu+ g = 1
2∂x(u

2) + g,

u(0) = u0
(2.29)

where u a real valued function and u0, g are real valued functions with zero mean. Set w =

∂xP+(e
− i

2
F ), F = ∂−1

x u, and G = ∂−1
x g, then (2.29) becomes

{
∂tF +H∂2

xF = 1
2(∂xF )2 − 1

2P0(F
2
x ) + ∂−1

x g

F (0) = ∂−1
x u0.

(2.30)

Denote by W = P+(e
i
2
F ), the solution of

∂tW − i∂2
xW = −P+

[
(∂2

xP−F )e−
i
2
F
]
− i

2
P+

[(
− 1

2
P0(F

2
x ) +G

)
e−

i
2
F
]
.

Since e−
i
2
F = W + P≤0e

− i
2
F and the cancelation P+

[
(∂2

xP−F )P≤0e
− i

2
F
]
= 0 we obtain

∂tW − i∂2
xW = −P+

[
(∂2

xP−F )W
]
− i

2
P+

[(
− 1

2
P0(F

2
x ) +G

)
e−

i
2
F
]
.

Denoting w = ∂xW = − i
2P+(ue

− i
2
F ), it follows that

∂tw − i∂2
xw = −∂xP+

[
W (P−∂xu)

]
− i

2
∂xP+

[(
− 1

2
P0(F

2
x ) +G

)
e−

i
2
F
]

= −∂xP+

[
W (P−∂xu)

]
− i

2
P+

[
ge−

i
2
F
]
− 1

4
P+

[(
− 1

2
P0(u

2) +G
)
ue−

i
2
F
]
.

We want to prove that at order one, if u(0) = u0, w = − i
2P+u with

u(t) = etH∂2
xu0 +

∫ t

0
e(t−τ)H∂2

xg(τ) dτ + O(‖u0‖2L2 + ‖g‖2L2([0,T ],L2)).
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The main tool in our analysis is equation
{
∂tw − i∂2

xw = −∂xP+

[
W (P−∂xu)

]
− i

2P+

[
ge−

i
2
F
]
− 1

4P+

[(
− 1

2P0(u
2) +G

)
ue−

i
2
F
]

w(0) = w0.
(2.31)

We denote the right hand side of (2.31) as

−∂xP+

[
W (P−∂xu)

]
− i

2
P+

[
ge−

i
2
F
]
− 1

4
P+

[(
− 1

2
P0(u

2) +G
)
ue−

i
2
F
]

= I + II + III.
(2.32)

In our arguments we use the integral equivalent form of the solution of (2.31), that is,

w(t) = W(t)w0 +

∫ t

0
W(t− t′)(I + II + III)(t′) dt′,

= W(t)w0 + IW(t),

(2.33)

where W(t) denotes the unitary group associated to the linear Schrödinger equation.

Remark 2.1. We observe that the estimates in Lemmas 2.1-2.4 also hold for solution of the
IVP (2.31).

We will end this section giving the statement of the key (main) bilinear estimate we will use
in our analysis. It was proved by Molinet and Pilod (see Proposition 3.5 of [36]).

Lemma 2.8. Let θ ∈ (0, 1/8). We have uniformly for 0 ≤ T ≤ 1

‖∂xP+

[
W (P−∂xu)

]
‖X′

2
≤ CT θ‖(u,w)‖2X .

We shall remark that this estimate is a slight modification of the estimates in [36] since we
also have a factor T θ that will be very useful to make some bootstrap and absorption. In the
appendix, we sketch the modification of proof of Molinet-Pilod [36] that allows us to obtain that
term.

In what follows, we will fix θ ∈ (0, 1/8) such that Lemma 2.8 and (2.7) hold for 0 < T ≤ 1.

3. General estimates

In this section we will derive estimates needed in our argument which are independent of the
size of the initial data.

3.1. Estimates on w.

Lemma 3.1. Let w be the solution of (2.31). Then it holds that

‖w‖L∞([0,T ],L2) ≤ ‖w‖Z0,0
T

≤ ‖(u,w)‖X ,

and

‖w‖L4([0,T ]×T) ≤ ‖w‖
X

0,1/2
T

≤ ‖(u,w)‖X .

Proof. It follows readily from the space definition and Lemma 2.4. �
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Lemma 3.2. For w in (2.31) and θ ∈ (0, 1/8) the following estimates hold

‖w‖X2
≤ ‖w0‖L2 + CT θ

(
‖g‖L2([0,T ],L2) + ‖g‖2L2([0,T ],L2) + ‖(u,w)‖2X + ‖(u,w)‖3X

)
. (3.1)

Moreover,

‖w − wL‖X2
≤ CT θ

(
‖g‖L2([0,T ],L2)‖(u,w)‖X + ‖(u,w)‖2X + ‖(u,w)‖3X

)
(3.2)

where wL is solution of {
∂twL − i∂2

xwL = − i
2P+g

wL(0) = w0.
(3.3)

Proof. We first prove that

‖IW‖X2
≤ C T θ

(
‖(u,w)‖2X + ‖g‖L2([0,T ]×T) + ‖(u,w)‖3X + ‖g‖L2([0,T ],L2)‖(u,w)‖X

)
. (3.4)

Using Lemma 2.2 we obtain

‖IW‖X2
. ‖I‖X′

2
+ ‖II‖X′

2
+ ‖III‖X′

2
. (3.5)

From Lemma 2.8 we have that

‖I‖X′
2
≤ CT θ‖(u,w)‖2X .

The term II will be crucial in our analysis. We rewrite it as

II = − i

2
P+

[
ge−

i
2
F
]
= − i

2
P+g −

i

2
P+

[
g
(
e−

i
2
F − 1

)]

= IIL + IINL

(3.6)

Hence Lemma 2.5 yields

‖II‖X′
2
≤ CT θ‖IIL‖L2([0,T ]×T) + ‖IINL‖L2([0,T ]×T)

≤ CT θ
(
‖g‖L2([0,T ]×T) + ‖g‖L2([0,T ]×T)‖e−

i
2
F − 1‖L∞([0,T ]×T))

≤ CT θ
(
‖g‖L2([0,T ]×T) + ‖g‖L2([0,T ]×T)‖u‖L∞([0,T ],L2)

)

≤ CT θ
(
‖g‖L2([0,T ]×T) + ‖g‖L2([0,T ]×T)‖(u,w)‖X

)
.

For III, we also use Lemma 2.5

‖III‖X′
2
≤ C T θ‖III‖L2([0,T ]×T) ≤ CT θ‖ − 1

2
P0(u

2) +G‖L2([0,T ],L∞)‖u‖L∞([0,T ],L2)

≤ C T θ
(
‖u‖2L∞([0,T ],L2) + ‖g‖L2([0,T ],L2)

)
‖u‖L∞([0,T ],L2)

≤ C T θ
(
‖(u,w)‖3X + ‖g‖L2([0,T ],L2)‖(u,w)‖X

)
.

Combining the above estimates with (3.5) yields (3.4).
Finally, using Duhamel formulation, Lemmas 2.1, 2.2, (3.5) and standard estimates we have

‖w‖X2
= ‖w‖X0,1/2 + ‖w‖Z0,0

≤ ‖w0‖L2 + CT θ
(
‖g‖L2([0,T ],L2) + ‖g‖L2([0,T ],L2)‖(u,w)‖X + ‖(u,w)‖2X + ‖(u,w)‖3X

)

≤ ‖w0‖L2 + CT θ
(
‖g‖L2([0,T ],L2) + ‖g‖2L2([0,T ],L2) + ‖(u,w)‖2X + ‖(u,w)‖3X

)
.

(3.7)
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Similarly,

‖w − wL‖X2
= ‖w − wL‖X0,1/2 + ‖w −wL‖Z0,0

≤ CT θ
(
‖g‖L2([0,T ],L2)‖(u,w)‖X + ‖(u,w)‖2X + ‖(u,w)‖3X

) (3.8)

where wL is as in (3.3).
�

Next we derive the Lipschitz estimates corresponding to the X2 norm.

Lemma 3.3 (Lipschitz estimates). Let w1 and w2 be solutions of (2.31) and θ ∈ (0, 1/8). Then
the following estimates hold:

‖w1 − w2‖X2
≤ ‖w0,1 − w0,2‖+ CT θ ‖g1 − g2‖L2([0,T ]×T)(1 + ‖U1‖X)

+ CT θ‖U1 − U2‖X
(
‖U1‖X + ‖U2‖X + (‖U1‖X + ‖U2‖X)2

+ ‖U2‖3X + ‖g2‖L2([0,T ]×T)(1 + ‖U2‖X)
)

(3.9)

and

‖(w1 − wL,1)−(w2 − wL,2)‖X2
≤ CT θ ‖g1 − g2‖L2([0,T ]×T)‖U1‖X

+ CT θ‖U1 − U2‖X
(
‖U1‖X + ‖U2‖X + (‖U1‖X + ‖U2‖X)2

+ ‖U2‖3X + ‖g2‖L2([0,T ]×T)(1 + ‖U2‖X)
)

(3.10)

where wL,1 and wL,2 are solutions of (3.3).

Proof. We first show that

‖IW1 − IW2‖X2
≤ CT θ ‖g1 − g2‖L2([0,T ]×T)(1 + ‖U1‖X)

+ CT θ‖U1 − U2‖X
(
‖U1‖X + ‖U2‖X + (‖U1‖X + ‖U2‖X)2

+ ‖U2‖3X + ‖g2‖L2([0,T ]×T)(1 + ‖U2‖X)
)
.

(3.11)

Let w1 and w2 be two solutions of (2.31). We use the notation (2.32). From Lemma 2.2 we
obtain

‖IW1 − IW2‖X2
. ‖I‖X′

2
+ ‖II‖X′

2
+ ‖III‖X′

2
. (3.12)

Since I is bilinear, we get the estimates by writing

I1 − I2 = −∂xP+

[
W1(P−∂xu1)

]
+ ∂xP+

[
W2(P−∂xu2)

]

= −∂xP+

[
(W1 −W2)(P−∂xu1)

]
− ∂xP+

[
W2(P−∂x(u1 − u2))

]
.

Thus

‖I1 − I2‖X′
2
≤ CT θ‖w1 −w2‖X2

‖u1‖X1
+ ‖w2‖X2

‖u1 − u2‖X1

≤ CT θ‖U1 − U2‖X
(
‖U1‖X + ‖U2‖X

)
.

We write II = IIL + IINL as in (3.6) . Since IIL is linear, we obtain

‖IIL,1 − IIL,2‖X′
2
≤ CT θ‖IIL,1 − IIL,2‖L2([0,T ]×T) ≤ CT θ‖g1 − g2‖L2([0,T ]×T).
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For IINL, we write

IINL,1 − IINL,2 = − i

2
P+

[[
g1
(
e−

i
2
F1 − 1

)]
−

[
g2
(
e−

i
2
F2 − 1

)]]

= − i

2
P+

[[
(g1 − g2)

(
e−

i
2
F1 − 1

)]
+

[
g2
(
e−

i
2
F1 − e−

i
2
F2
)]]

‖IINL,1−IINL,2‖X′
2
≤ CT θ‖IINL,1 − IINL,2‖L2([0,T ]×T)

≤ CT θ
(
‖g1 − g2‖L2([0,T ]×T)‖u1‖L∞([0,T ],L2) + ‖g2‖L2([0,T ]×T)‖u1 − u2‖L∞([0,T ],L2)

)

≤ CT θ
(
‖g1 − g2‖L2([0,T ]×T)‖U1‖X + ‖g2‖L2([0,T ]×T)‖U1 − U2‖X

)
.

For III, we write

III1 − III2 =P+

([(
− 1

2
P0(u

2
1) +G1

)
u1e

− i
2
F1
]
−
[(

− 1

2
P0(u

2
2) +G2

)
u2e

− i
2
F2
])

=P+

[(
− 1

2
P0((u1 − u2)(u1 + u2)) +G1 −G2

)
u1e

− i
2
F1
]

+ P+

[(
− 1

2
P0(u

2
2) +G2

)(
(u1 − u2)e

− i
2
F1 + u2(e

− i
2
F1 − e−

i
2
F2)

)]

Using the same estimates (the only difference is that we use (2.6) for the Lipschitz estimate of

the term e−
i
2
F ), we have then

‖III1 − III2‖X′
2
≤ CT θ‖III1 − III2‖L2([0,T ]×T)

≤ CT θ‖ − 1

2
P0((u1 − u2)(u1 + u2)) +G1 −G2‖L2([0,T ],L∞)‖u1‖L∞([0,T ],L2)

+ CT θ‖ − 1

2
P0(u

2
2) +G2‖L2([0,T ],L∞)

(
‖u1 − u2‖L∞([0,T ],L2)

+ ‖u2‖L∞([0,T ],L2)‖e−
i
2
F1 − e−

i
2
F2‖L∞([0,T ]×T)

)

≤ CT θ‖u1 − u2‖L4([0,T ]×T)(‖u1‖L4([0,T ]×T) + ‖u2‖L4([0,T ]×T)

)
‖u1‖L∞([0,T ],L2)

+ CT θ‖g1 − g2‖L2([0,T ],L2)‖u1‖L∞([0,T ],L2)

+ CT θ
(
‖u2‖2L∞([0,T ],L2) + ‖g2‖L2([0,T ],L2)

)
(1 + ‖u2‖L∞([0,T ],L2))‖u1 − u2‖L∞([0,T ],L2)

≤ CT θ
(
‖U1 − U2‖X

(
‖U1‖X + ‖U2‖X

)2
+ ‖g1 − g2‖L2([0,T ],L2)‖U2‖X

)

+ CT θ
(
‖U2‖3X + ‖g2‖L2([0,T ],L2)(1 + ‖U2‖X)

)
‖U1 − U2‖X .

The estimates (3.9) and (3.10) follow by using Duhamel formulation, Lemmas 2.1, 2.2, (3.5)
and standard estimates. �

3.2. The estimates coming from the original Benjamin-Ono equation. We consider
again the IVP {

∂tu+H∂2
xu = 1

2∂x(u
2) + g

u(0) = u0.
(3.13)
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Lemma 3.4. Let u be a solution of (3.13). Then the following estimate holds:

‖u‖
X−1,1

T
≤ C‖u0‖L2 + ‖(u,w)‖2X + ‖g‖L2([0,T ],L2). (3.14)

Moreover, if we denote by uL the solution of

{
∂tuL +H∂2

xuL = g

u(0) = u0,

we have

‖u− uL‖X−1,1
T

≤ ‖(u,w)‖2X . (3.15)

Proof. Using the definition of the space X−1,1
T we have the estimate

‖u‖
X−1,1

T
≤ ‖u‖L2([0,T ],H−1) + ‖1

2
∂x(u

2) + g‖L2([0,T ],H−1)

Using energy estimates we get

‖u‖L2([0,T ],H−1) ≤ C‖u0‖L2 +C‖1
2
∂x(u

2) + g‖L1([0,T ],H−1).

Finally, we deduce that

‖u‖X−1,1
T

≤ C‖u0‖L2 + ‖1
2
∂x(u

2) + g‖L2([0,T ],H−1)

≤ C‖u0‖L2 + ‖u2‖L2([0,T ],L2) + ‖g‖L2([0,T ],L2)

≤ C‖u0‖L2 + ‖u‖2L4([0,T ],L4) + ‖g‖L2([0,T ],L2)

≤ C‖u0‖L2 + ‖(u,w)‖2X + ‖g‖L2([0,T ],L2).

(3.16)

�

Using the previous lemma, it is not difficult to deduce the Lipschitz estimates in the X−1,1
T -

norm. Indeed,

Lemma 3.5 (Lipschitz estimates). The next estimates hold

‖u1 − u2‖X−1,1
T

. ‖u0,1 − u0,2‖L2 + ‖g1 − g2‖L2([0,T ]×T)

+ ‖u1 − u2‖L4([0,T ]×T)

(
‖(u1, w1)‖X + ‖(u2, w2)‖X

) (3.17)

and

‖u1 − uL,1 − (u2 − uL,2)‖X−1,1
T

. ‖(u1, w1)− (u2, w2)‖X
(
‖(u1, w1)‖X + ‖(u2, w2)‖X

)
. (3.18)

Proof. The arguments in Lemma 3.4 with the required modifications yield the inequalities. �
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3.3. Estimates coming from the gauge transform. Since w = − i
2P+(ue

− i
2
F ) we have that

ue−
i
2
F = 2iw + P≤0(ue

− i
2
F ). Hence

u = 2iwe
i
2
F + e

i
2
FP≤0(ue

− i
2
F ). (3.19)

But the second term is bad, it roughly says (at the first order in u) that for the negative
frequencies, u = u, and so it does not allow to invert. But for positive frequencies

P+u = 2iP+

[
we

i
2
F
]
+ P+

[
P+(e

i
2
F )P≤0(ue

− i
2
F )

]

= 2iP+w + 2iP+

[
w(e

i
2
F − 1)

]
+ P+

[
P+(e

i
2
F )P≤0(ue

− i
2
F )

]

= 2iw +A+B,

(3.20)

where we have used P+

[
P≤0(e

i
2
F )P≤0(ue

− i
2
F )

]
= 0. In this case, the third term is quadratic in

u. Indeed,

B = P+

[
P+(e

i
2
F )P≤0(ue

− i
2
F )

]
= P+

[
P+(e

i
2
F − 1)P≤0(ue

− i
2
F )

]
+ P+

[
P≤0(ue

− i
2
F )

]

= P+

[
P+(e

i
2
F − 1)P≤0(ue

− i
2
F )

]
.

(3.21)

Lemma 3.6. It holds that

‖P+u‖L∞([0,T ],L2) + ‖P+u‖L4([0,T ]×T) ≤ ‖w‖X2
+ ‖(u,w)‖2X (3.22)

and

‖P+u− 2iw‖L∞([0,T ],L2) + ‖P+u− 2iw‖L4([0,T ]×T) ≤ ‖(u,w)‖2X . (3.23)

Proof. We use the decomposition (3.20) to estimate P+. From Lemma 3.1 it follows that

‖2iw‖L∞([0,T ],L2) + ‖2iw‖L4([0,T ]×T) ≤ ‖w‖Z0,0
T

+ ‖w‖
X

0,1/2
T

≤ ‖w‖X2
. (3.24)

Since P+ is a pseudo-differential operator of order 0, it maps L4 into itself. Hence

‖A‖L∞([0,T ],L2)+‖A‖L4([0,T ]×T)

.
(
‖w‖L∞([0,T ],L2) + ‖w‖L4([0,T ]×T)

)
‖e i

2
F − 1‖L∞([0,T ]×T)

.
(
‖w‖Z0,0

T
+ ‖w‖

X
0,1/2
T

)
‖u‖L∞([0,T ],L2) ≤ ‖(u,w)‖2X

(3.25)

and

‖B‖L∞([0,T ],L2) + ‖B‖L4([0,T ]×T) . ‖P+

(
e

i
2
F − 1

)
‖L∞([0,T ]×T)

(
‖u‖L∞([0,T ],L2) + ‖u‖L4([0,T ]×T)

)

. ‖(u,w)‖2X .

Combining these estimates we obtain the desired inequalities. �

Next we obtain Lipschitz estimates for the terms involving the operator P+. More precisely,

Lemma 3.7 (Lipschitz Estimates). It holds that

‖P+u1−2iw1 − (P+u2 − 2iw2)‖L∞([0,T ],L2) + ‖P+u1 − 2iw1 − (P+u1 − 2iw2)‖L4([0,T ]×T)

≤ ‖(u1, w1)− (u2, w2)‖X
(
‖(u1, w1)‖X + ‖(u2, w2)‖X + ‖(u2, w2)‖2X

) (3.26)
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and

‖P+u1 − P+u2‖L∞([0,T ],L2) + ‖P+u1 − P+u2‖L4([0,T ]×T)

≤ ‖w1 − w2‖X2
+ ‖(u1, w1)− (u2, w2)‖X

(
‖(u1, w1)‖X + ‖(u2, w2)‖X + ‖(u2, w2)‖2X

)
.

(3.27)

Proof. Recall the decomposition (3.20). To establish the corresponding Lipschitz estimates we
write

A1 −A2 = 2iP+

[
w1(e

i
2
F1 − 1)

]
− 2iP+

[
w2(e

i
2
F2 − 1)

]

= 2iP+

[
(w1 − w2)(e

i
2
F1 − 1) + w2

(
e

i
2
F1 − e

i
2
F2
)]
.

Hence

‖A1 −A2‖L∞([0,T ],L2) + ‖A1 −A2‖L4([0,T ]×T)

≤
(
‖w1 − w2‖L∞([0,T ],L2) + ‖w1 − w2‖L4([0,T ]×T)

)
‖e i

2
F1 − 1‖L∞([0,T ]×T)

+
(
‖w2‖L∞([0,T ],L2) + ‖w2‖L4([0,T ]×T)

)
‖e i

2
F1 − e

i
2
F2‖L∞([0,T ]×T)

≤
(
‖w1 − w2‖Z0,0

T
+ ‖w1 −w2‖X0,1/2

T

)
‖u1‖L∞([0,T ],L2)

+
(
‖w2‖Z0,0

T
+ ‖w2‖X0,1/2

T

)
‖u1 − u2‖L∞([0,T ],L2)

≤‖U1 − U2‖X
(
‖U1‖X + ‖U2‖X

)
.

On the other hand, we write

B1 −B2 = P+

[
P+(e

i
2
F1 − 1)P≤0(u1e

− i
2
F1)− P+(e

i
2
F2 − 1)P≤0(u2e

− i
2
F2)

]

= P+

[
P+(e

i
2
F1 − e

i
2
F2)P≤0(u1e

− i
2
F1) + P+(e

i
2
F2 − 1)P≤0

(
(u1 − u2)e

− i
2
F1 + u2(e

− i
2
F1 − e−

i
2
F2)

)]
.

Thus

‖B1 −B2‖L∞([0,T ],L2) + ‖B1 −B2‖L4([0,T ]×T)

≤ C
(
‖U1‖X + ‖U2‖X + (‖U1‖X + ‖U2‖X)2

)
‖U1 − U2‖X .

These estimates lead to inequalities (3.26) and (3.27). �

4. Small data estimates

The control results as well as the proof of Theorem 1.3 depend on the size data. In this
section we aim to establish all the estimates related to small data needed in our arguments. We
will also give the proof of Theorem 1.3 corresponding to small data.

Since we are just considering real valued functions we have P−u = P+u, thus

‖u‖L∞([0,T ],L2) + ‖u‖L4([0,T ]×T) ≈ ‖P+u‖L∞([0,T ],L2) + ‖P+u‖L4([0,T ]×T).

Gathering the information from Lemmas 3.2, 3.6 and 3.4 yields

‖w‖X2
≤ ‖w0‖L2 + C

(
‖g‖L2([0,T ],L2) + ‖g‖2L2([0,T ],L2) + ‖(u,w)‖2X + ‖(u,w)‖3X

)

‖u‖L∞([0,T ],L2) + ‖u‖L4([0,T ]×T) ≤ ‖w‖X2
+ ‖(u,w)‖2X

‖u‖
X−1,1

T
≤ ‖u0‖L2 + ‖(u,w)‖2X + ‖g‖L2([0,T ],L2).
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and finally

‖(u,w)‖X . ‖u0‖L2 + ‖g‖L2([0,T ],L2) + ‖g‖2L2([0,T ],L2) + ‖(u,w)‖2X + ‖(u,w)‖3X
If ‖g‖L2([0,T ],L2) is small enough, it follows that

‖(u,w)‖X . ‖u0‖L2 + ‖g‖L2([0,T ],L2) + ‖(u,w)‖2X + ‖(u,w)‖3X .

Then, since all these quantities are continuous in T and have value at t = 0 bounded by C‖u0‖L2 ,
see Lemma 2.7, we can apply a bootstrap argument to get for ‖u0‖ and ‖g‖L2([0,T ],L2), small
enough, that

‖(u,w)‖X . ‖u0‖L2 + ‖g‖L2([0,T ],L2). (4.1)

4.1. First order estimates. Using the Lipschitz bound in the previous section we will establish
some estimates useful to prove the control results.

The estimates (3.23) and (3.10) yield

‖P+u− 2iw‖L∞([0,T ],L2) ≤ ‖(u,w)‖2X ≤ ‖u0‖2L2 + ‖g‖2L2([0,T ],L2)

‖w − wL‖X2
= ‖w − wL‖X0,1/2 + ‖w − wL‖Z0,0 ≤ ‖g‖L2([0,T ],L2)‖(u,w)‖X + ‖(u,w)‖2X .

Finally, we have by triangular inequality (noting that Z0,0 ⊂ L∞([0, T ], L2))

‖P+u− 2iwL‖L∞([0,T ],L2) ≤ ‖u0‖2L2 + ‖g‖2L2([0,T ],L2)

where {
∂twL − i∂2

xwL = i
2P+g,

wL(0) = w0

In particular, since u is real valued, P−u = P+u, so

‖P−u− 2iwL‖L∞([0,T ],L2) ≤ ‖u0‖2L2 + ‖g‖2L2([0,T ],L2).

But, we notice that u = P+u+ P−u and uL = 2iwL + 2iwL. In particular, it follows that

‖u− uL‖L∞([0,T ],L2) . ‖u0‖2L2 + ‖g‖2L2([0,T ],L2). (4.2)

4.2. Lipschitz estimates. If ‖u0,i‖, ‖gi‖L2([0,T ],L2), i = 1, 2, are small enough, we still have

‖(ui, wi)‖X . ‖u0,i‖+ ‖gi‖L2([0,T ],L2).

Assume that ‖u0,i‖+ ‖gi‖L2([0,T ],L2) ≤ ε, with ε small. Then (3.9) becomes

‖w1 − w2‖X2
. ‖u0,1 − u0,2‖+ ‖g1 − g2‖L2([0,T ]×T) + ε‖(u1, w1)− (u2, w2)‖X .

Inequality (3.17) becomes

‖u1 − u2‖X−1,1
T

. ‖u0,1 − u0,2‖+ ‖g1 − g2‖L2([0,T ]×T) + ε‖(u1, w1)− (u2, w2)‖X
and inequality (3.27) becomes

‖P+u1 − P+u2‖L∞([0,T ],L2) + ‖P+u1 − P+u1‖L4([0,T ]×T)

. ‖w1 − w2‖X2
+ ε‖(u1, w1)− (u2, w2)‖X .
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Thus gathering all these estimates of the X–norm components (using again that u is real
valued and that the estimates about P+u are sufficient for the L∞([0, T ], L2) and L4([0, T ]×T)
norms), we get

‖(u1, w1)− (u2, w2)‖X . ‖u0,1 − u0,2‖+ ‖g1 − g2‖L2([0,T ]×T) + ε‖(u1, w1)− (u2, w2)‖X
which gives by absorption for ε small enough

‖(u1, w1)− (u2, w2)‖X . ‖u0,1 − u0,2‖+ ‖g1 − g2‖L2([0,T ]×T). (4.3)

For the estimates of the second order terms, we have from (3.10) and (4.3)

‖w1 − wL,1 − (w2 − wL,2)‖X2
. ε

(
‖u0,1 − u0,2‖+ ‖g1 − g2‖L2([0,T ]×T)

)

and from (3.26) that

‖P+u1 − 2iw1 − (P+u2 − 2iw2)‖L∞([0,T ],L2) . ε
(
‖u0,1 − u0,2‖+ ‖g1 − g2‖L2([0,T ]×T)

)
.

The triangular inequality yields

‖P+u1 − 2iwL,1 − (P+u2 − 2iwL,2)‖L∞([0,T ],L2) . ε
(
‖u0,1 − u0,2‖+ ‖g1 − g2‖L2([0,T ]×T)

)
.

Once again, we notice that since ui, gi are real valued, this implies

‖u1 − uL,1 − (u2 − uL,2)‖L∞([0,T ],L2) . ε
(
‖u0,1 − u0,2‖+ ‖g1 − g2‖L2([0,T ]×T)

)
. (4.4)

Proof of Theorem 1.3 (small data case). The main ingredient is the Lipschitz inequality (4.3).
Once this is established, the proof of the theorem follows from standard arguments. For a
detailed and careful proof of it, see [36]. �

5. Large data estimates

In this section we will complete the proof of Theorem 1.3 and establish some estimates for
large data useful for further analysis.

5.1. Low-frequency estimate. In this subsection, we establish some estimates of the low
frequency component of the solution for eventually large data. These estimates are necessary
because the gauge transform is not invertible at low frequency for large data.

Let N ∈ N∗ be fixed. We will prove some estimates that might depend on N .

Lemma 5.1. For u solution of the IVP (3.13), we have the following uniform estimate for
0 ≤ T ≤ 1

‖PNu‖L∞([0,T ],L2) + ‖PNu‖L4([0,T ]×T)

≤ C(N)‖u0‖L2 + C(N)‖g‖L2([0,T ]×T) + C(N)T 1/2‖u‖2L4([0,T ]×T),
(5.1)

and for two different solutions

‖PN (u1 − u2)‖L∞([0,T ],L2) + ‖PN (u1 − u2)‖L4([0,T ]×T)

≤ C(N)‖u0,1 − u0,2‖L2 + C(N)‖g1 − g2‖L2([0,T ]×T)

+ C(N)T 1/2
(
‖u1‖L4([0,T ]×T) + ‖u2‖L4([0,T ]×T)

)
‖u1 − u2‖L4([0,T ]×T).

(5.2)
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Proof. We first link the L4 estimate to the L∞
t L2

x one by using Sobolev estimates, that is,

‖PNu‖L4([0,T ]×T) ≤ CT 1/4‖PNu‖L∞([0,T ],L4) ≤ C‖PNu‖L∞([0,T ],H1) ≤ C(N)‖PNu‖L∞([0,T ],L2).

To estimate the L∞
t L2

x norm we use the solution uN of the equation satisfied by uN = PNu,
i.e. {

∂tuN +H∂2
xuN = 1

2PN∂x(u
2) + PNg,

uN (0) = PNu0.

From semi-group estimates we obtain

‖PNu‖L∞([0,T ],L2) ≤ C‖u0‖L2 + C‖PN∂x(u
2)‖L1([0,T ],L2) + C‖PNg‖L1([0,T ],L2)

≤ C‖u0‖L2 + C(N)T 1/2‖PN (u2)‖L2([0,T ],L2) + C‖g‖L1([0,T ],L2)

≤ C‖u0‖L2 + C‖g‖L2([0,T ],L2) + C(N)T 1/2‖u‖2L4([0,T ]×T).

The same argument leads to (5.2). �

5.1.1. Global large data estimates. We change a little the decomposition (3.19). The point is,
roughly speaking, to make the gauge transform “invertible” at high frequency (the frequency
will depend on the size of the data). For large F the second term of the gauge transform (3.19)
is bad, and the gauge transform cannot be inverted for large F . But in some sense, it can
be inverted at large positive frequencies. Note that another way of obtaining global estimates
for large data used by Molinet [33] was to use the scaling argument to get to some small data
(because the equation is subcritical). But this approach requires to have some estimates uniform
on the lengths of the interval. Many of the estimates we used are indeed uniform, but this is
not the case of the Sobolev embedding H1 →֒ L∞. One solution found by Molinet in [33] was
to apply this estimate to P1 and the estimate indeed becomes uniform. Our approach is quite in
the same spirit however we believe that it gives another point of view and may be more reliable
in the case of damped equation or source term.

Let N ∈ N∗ be large, to be chosen later. Applying the operator P≥N to both sides to (3.19)
we obtain

P≥Nu = 2iP≥N

[
we

i
2
F
]
+ P≥N

[
P≥N (e

i
2
F )P≤0(ue

− i
2
F )

]

= AN +BN .

We apply the same estimates as before to get (the action of operator P≥N on L4 can be easily
seen to be uniform on N by noticing that P≥N = eiNxP+e

−iNx)

‖AN‖L∞([0,T ],L2) + ‖AN‖L4([0,T ]×T) ≤ C
(
‖w‖L∞([0,T ],L2) + ‖w‖L4([0,T ]×T)

)

≤ C
(
‖w‖

Z0,0
T

+ ‖w‖
X

0,1/2
T

)
≤ C ‖w‖X2

.

For BN , we also use Lemma A.3 in the Appendix.

‖BN‖L∞([0,T ],L2) + ‖BN‖L4([0,T ]×T)

≤ ‖P≥N (e
i
2
F )‖L∞([0,T ]×T)

(
‖u‖L∞([0,T ],L2) + ‖u‖L4([0,T ]×T)

)

≤ C√
N

‖(u,w)‖2X .
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The above estimates yield

Lemma 5.2. For N ∈ N∗ large, it holds that

‖P≥Nu‖L∞([0,T ],L2) + ‖P≥Nu‖L4([0,T ]×T) ≤ ‖w‖X2
+

C√
N

‖(u,w)‖2X . (5.3)

5.1.2. Large data Lipschitz estimates. The previous decomposition is still not sufficient. This
time, it is because of the first term of the gauge transform. The difficulty now comes from the

the low frequency of F which a priori do not allow to make P≥N

[
w2

(
e

i
2
F1 − e

i
2
F2
)]

small.
We change a little bit the decomposition inspired by Molinet [33] p. 663. Let N ∈ N∗ be

large, to be chosen later.

e−
i
2
F = P≥NW + P≤N (e−

i
2
F )

Then decomposing F = QNF + PNF , we get

e−
i
2
QNF = e

i
2
PNF

(
P≥NW + P≤N (e−

i
2
F )

)
.

Taking derivative in x yields

(QNu)e−
i
2
QNF = −(PNu)e

i
2
PNF

(
P≥NW + P≤N (e−

i
2
F )

)
+ e

i
2
PNF

(
2iP≥Nw + P≤N (ue−

i
2
F )

)

or

QNu = −(PNu)e
i
2
PNF

(
P≥NW + P≤N (e−

i
2
F )

)
+ e

i
2
PNF

(
2iP≥Nw + P≤N (ue−

i
2
F )

)

+ (QNu)
(
1− e−

i
2
QNF

)
.

We now apply P≥3N to the last identity to obtain

P≥3Nu = −P≥3N

[
(PNu)e

i
2
PNFP≥NW

]
− P≥3N

[
(PNu)e

i
2
PNFP≤N (e−

i
2
F )

]

+ 2iP≥3N

[
e

i
2
PNFP≥Nw

]
+ P≥3N

[
e

i
2
PNFP≤N (ue−

i
2
F )

]

+ P≥3N

[
(QNu)

(
1− e−

i
2
QNF

)]

= AN +BN + CN +DN + EN .

We write

AN,1 −AN,2 = −P≥3N

[
(PN (u1 − u2))e

i
2
PNF1P≥NW1 + (PNu2)

(
e

i
2
PNF1 − e

i
2
PNF2

)
P≥NW1

+ (PNu2)e
i
2
PNF2P≥N (W1 −W2)

]
.

Then using the Sobolev estimate (A.1) of the Appendix on the terms with W , we get

‖AN,1−AN,2‖L∞([0,T ],L2) + ‖AN,1 −AN,2‖L4([0,T ]×T)

≤ C√
N

‖U1 − U2‖X
[
‖U1‖X + ‖U1‖2X‖U1‖X + ‖U1‖2X‖U2‖X + ‖U2‖2X

] (5.4)

To obtain estimates on BN , we first notice that due to the frequency localization, we have

BN = −P≥3N

[
(PNu)P≥N (e

i
2
PNF )P≤N (e−

i
2
F )

]
.
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Thus we can write

BN,1 −BN,2 = P≥3N

[
(PN (u1 − u2))P≥N (e

i
2
PNF1)P≤N (e−

i
2
F1)

+ (PNu2)P≥N (e
i
2
PNF1 − e

i
2
PNF2)P≤N (e−

i
2
F1)

+ (PNu2)P≥N (e
i
2
PNF2)P≤N (e−

i
2
F1 − e−

i
2
F2)

]

Using the estimates of Lemma A.3 for the term with P≥N , we obtain

‖BN,1 −BN,2‖L∞([0,T ],L2) + ‖BN,1 −BN,2‖L4([0,T ]×T)

≤ C√
N

‖U1 − U2‖X
[
‖U1‖X + ‖U1‖2X + ‖U1‖3X + ‖U2‖X + ‖U2‖2X + ‖U2‖3X

]
.

(5.5)

CN is the crucial term that contains the information on w and we have to estimate it with
respect to the norm of PNu.

CN,1 −CN,2 = 2iP≥3N

[(
e

i
2
PNF1 − e

i
2
PNF2

)
P≥Nw1 − e

i
2
PNF2P≥N (w1 − w2)

]
.

Thus

‖CN,1 −CN,2‖L∞([0,T ],L2) + ‖CN,1 − CN,2‖L4([0,T ]×T)

≤ C‖PN (un − u2)‖L∞([0,T ],L2)‖U1‖X + C‖w1 − w2‖X2
.

(5.6)

DN can be treated similarly as BN . By frequency localization, we also obtain

DN = P≥3N

[
P≥2N (e

i
2
PNF )P≤N (ue−

i
2
F )

]

and then

‖DN,1−DN,2‖L∞([0,T ],L2) + ‖DN,1 −DN,2‖L4([0,T ]×T)

≤ C√
N

‖U1 − U2‖X
[
‖U1‖X + ‖U1‖2X + ‖U1‖3X + ‖U2‖X + ‖U2‖2X + ‖U2‖3X

]
.

(5.7)

For EN , we use the third estimate of Lemma A.3.

EN,1 − EN,2 = P≥3N

[
(QN (u1 − u2))

(
1− e−

i
2
QNF1

)]
+ P≥3N

[
(QNu2)

(
e−

i
2
QNF2 − e−

i
2
QNF1

)]
.

Hence

‖EN,1 − EN,2‖L∞([0,T ],L2) + ‖EN,1 − EN,2‖L4([0,T ]×T)

≤ C√
N

‖U1 − U2‖X
[
‖U1‖X + ‖U1‖2X + ‖U2‖X + ‖U2‖2X

]
.

(5.8)

Gathering the estimates (5.4)-(5.8) results in the

Lemma 5.3.

‖P≥3N (u1 − u2)‖L∞([0,T ],L2) + ‖P≥3N (u1 − u2)‖L4([0,T ]×T)

≤ C‖PN (un − u2)‖L∞([0,T ],L2)‖U1‖X + C‖w1 − w2‖X2

+
C√
N

‖U1 − U2‖X
[
‖U1‖X + ‖U1‖2X + ‖U1‖3X + ‖U2‖X + ‖U2‖2X + ‖U2‖3X

]
.

(5.9)
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5.2. Large data global estimates. From Lemmas 3.2, 5.1, 5.2, and 3.16 we have

‖w‖X2
≤ ‖w0‖L2 + CT θ

(
‖g‖L2([0,T ],L2) + ‖g‖2L2([0,T ],L2) + ‖(u,w)‖2X + ‖(u,w)‖3X

)
,

‖P≥Nu‖L∞([0,T ],L2) + ‖P≥Nu‖L4([0,T ]×T) ≤ ‖w‖X2
+

C√
N

‖(u,w)‖2X ,

‖u‖X−1,1
T

≤ C‖u0‖L2 + ‖u‖2L4([0,T ],L4) + ‖g‖L2([0,T ],L2),

and

‖PNu‖L∞([0,T ],L2) + ‖PNu‖L4([0,T ]×T)

≤ C(N)‖u0‖L2 + C(N)‖g‖L2([0,T ]×T) + C(N)T 1/2‖u‖2L4([0,T ]×T).

Since the term ‖u‖2L4([0,T ],L4) in the third inequality has not factor of T or N−1/2 we need to

combine the second and third estimates to obtain

‖u‖X1
≤ C(N)

[
‖u0‖L2 + ‖g‖L2([0,T ],L2)

]
+ ‖w‖X2

+
C√
N

‖(u,w)‖2X + C(N)T 1/2‖u‖2L4([0,T ]×T)

+
(
C(N)

[
‖u0‖L2 + ‖g‖L2([0,T ],L2)

]
+ ‖w‖X2

+
C√
N

‖(u,w)‖2X + C(N)T 1/2‖u‖2L4([0,T ]×T)

)2
.

Notice that ‖w0‖L2 ≤ ‖u0‖L2 and since we assume that 0 ≤ T ≤ 1, N ∈ N∗, we have

‖(u,w)‖X ≤ C(N)
[
‖u0‖L2 + ‖g‖L2([0,T ],L2) + ‖g‖2L2([0,T ],L2)

]

+
(
CT θ +

C√
N

+ C(N)T 1/2
)(
‖(u,w)‖2X + ‖(u,w)‖3X

)

+ (C(N)
[
‖u0‖L2 + ‖g‖L2([0,T ],L2) + ‖g‖2L2([0,T ],L2)

]

+
(
CT θ +

C√
N

+ C(N)T 1/2
)(
‖(u,w)‖2X + ‖(u,w)‖3X )

)2

≤ C(N)
[
‖u0‖L2 + ‖u0‖2L2 + ‖g‖L2([0,T ],L2) + ‖g‖4L2([0,T ],L2)

]

+
(
CT θ +

C√
N

+ C(N)T 1/2
)(
‖(u,w)‖X + ‖(u,w)‖6X

)
.

(5.10)

With this estimate at hand we proceed to establish a uniform Lipschitz bound for large data.
We can now use a bootstrap argument (see for instance Lemma 2.2 of [5]) using Lemma 2.7

for the continuity and limit in zero. Let R > 0 such that ‖u0‖L2 + ‖g‖L2([0,T ],L2) ≤ R. We first
pick N large enough and then T small enough (only depending on R and universal constants)
to get by a boot strap

‖(u,w)‖X ≤ C(R)
[
‖u0‖L2 + ‖g‖L2([0,T ],L2)

]
.

This gives the expected result for times T small enough (the smallness only depending on R,
i.e. T ≤ C(R)). To globalize the result, we use the energy estimate (for t positive or negative),
obtained by multiplying the equation by u and integration by parts, and which is valid for
smooth solutions

‖u(t)‖2L2 = ‖u(0)‖2L2 − 2

∫ t

0
gu ds.
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By Cauchy-Schwarz inequality,

‖u(t)‖2L2 ≤ ‖u(0)‖2L2 + ‖g‖2L2([0,t],L2) +
1

2

∫ t

0
‖u(s)‖2L2 ds.

We conclude by Gronwall’s lemma that the L2 norm is bounded on every compact interval.

5.3. Large data Lipschitz estimates. We assume ‖u0‖L2 + ‖g‖L2([0,T ],L2) ≤ R. From the
previous section we have

‖U‖X ≤ C(R).

Thus the estimates (3.9) and (5.2) yield

‖w1 − w2‖X2
≤ ‖w0,1 − w0,2‖L2 + C(R)‖g1 − g2‖L2([0,T ]×T) + C(R)T θ‖U1 − U2‖X (5.11)

and

‖PN (u1 − u2)‖L∞([0,T ],L2) + ‖PN (u1 − u2)‖L4([0,T ]×T)

≤ C(N)‖u0,1 − u0,2‖L2 + C(N)‖g1 − g2‖L2([0,T ]×T) + C(N,R)T 1/2‖U1 − U2‖X .
(5.12)

The estimate (5.9) can be rewritten as

‖P≥N (u1 − u2)‖L∞([0,T ],L2) + ‖P≥N (u1 − u2)‖L4([0,T ]×T)

≤ C(R)‖PN (u1 − u2)‖L∞([0,T ],L2) + C‖w1 − w2‖X2
+

C(R)√
N

‖U1 − U2‖X .
(5.13)

and from Lemma 3.5 it follows that

‖u1 − u2‖X−1,1
T

≤ ‖u0,1 − u0,2‖L2 + ‖g1 − g2‖L2([0,T ]×T) + C(R)‖u1 − u2‖L4([0,T ]×T). (5.14)

Therefore, combining the estimates (5.11)-(5.14) leads to

‖U1 − U2‖X ≤ C(N,R)
(
‖u0,1 − u0,2‖L2 + ‖g1 − g2‖L2([0,T ]×T)

)

+
(
C(N,R)T 1/2 +

C(R)√
N

+ C(R)T θ
)
‖U1 − U2‖X .

So, by choosing N large enough only depending on R and then T small enough (only depending
on N,R so only on R), we get

‖U1 − U2‖X ≤ C(N,R)
(
‖u0,1 − u0,2‖L2 + ‖g1 − g2‖L2([0,T ]×T)

)
. (5.15)

The estimate (5.15) allows us to establish the existence and uniqueness of the solution of the
problem (1.14). The continuity of the flow follows by Bona-Smith argument. This completes
the proof of Theorem 1.3.

6. Control Results

In this section we will prove Theorem 1.1. First we will consider the damped equation and
use the theory established in the previous section to this case.
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6.1. Case of the damped equation. We consider the equation
{
∂tu+H∂2

xu = 1
2∂x(u

2)− GG∗u

u(T ) = 0
(6.1)

We view the damping term as a source term, setting g = −GG∗u. Thus, we have

‖g‖L2([0,T ],L2) ≤ CT 1/2‖u‖L∞([0,T ],L2) ≤ CT 1/2‖(u,w)‖X .

Hence estimate (5.10) becomes

‖(u,w)‖X ≤ C(N)
[
‖u0‖L2 + ‖u0‖2L2

]

+
(
CT θ +

C√
N

+ C(N)T 1/2
)(
‖(u,w)‖X + ‖(u,w)‖6X

)
.

We can conclude similarly by bootstrap for small times (only depending on the size). This
gives the expected result for small times. For large times, we use the energy estimate (for t
positive or negative)

‖u(t)‖2L2 = ‖u(0)‖2L2 − 2

∫ t

0
‖Gu(s)‖2L2 ds.

For positive times, the energy is decreasing, for negative times, we conclude by Gronwall’s
lemma.

We conclude similarly for the Lipschitz estimates.
Now we proceed to prove Theorem 1.1. We want to control the following problem

{
∂tu+H∂2

xu = u∂xu− GG∗h,

u(T ) = 0

where G is defined as in (1.4).
We seek a control of the form of a solution of (h0 is real valued with zero mean)

{
∂th+H∂2

xh = 0

h(0) = h0.

We denote by B the nonlinear operator defined by Bh0 = u(0). Let uL be the solution of
{
∂tuL +H∂2

xuL = −GG∗h

uL(T ) = 0.

The linear operator from L2(T) to itself defined by Lh0 = uL(0) is the HUM operator, which
is a bijection of L2(T) by the observability inequality of Linares-Ortega [29]. We note Wh0 =
u(0) = uL(0) +Kh0 = Lh0 +Kh0. (4.2) can be written as

‖Kh0‖L2 ≤ C‖h0‖2L2

for ‖h0‖L2 small enough. Let u0 ∈ L2(T). So, the objective Wh0 = Lh0+Kh0 = u0 is equivalent
to h0 = −L−1Kh0+L−1u0, that is h0 is a fixed point of B defined by Bh0 = −L−1Kh0+L−1u0.

But, we have

‖Bh0‖L2 ≤ C‖Kh0‖L2 + C‖u0‖L2 ≤ C‖h0‖2L2 + C‖u0‖L2 .
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Thus, if we denote BR the unit ball of L2 of radius R = 2C‖u0‖L2 , B sends BR into itself if
CR ≤ 1/2, that is, if ‖u0‖L2 is chosen small enough.

Moreover, estimate (4.4) shows that for two solutions of the nonhomogeneous problem u1, u2
coming from the controls gi = −GG∗hi (recall that we have assumed ‖gi‖L2([0,T ]×T) ≤ ε, which
is equivalent to ‖h0,i‖L2 . ε), we have the estimates

‖Kh0,1 −Kh0,1‖L2 ≤ ‖u1 − uL,1 − (u2 − uL,2)‖L∞([0,T ],L2) . ε‖g1 − g2‖L2([0,T ]×T).

Since Bh0,1−Bh0,2 = Kh0,1−Kh0,2, this means that for ε small enough (that is R = 2C‖u0‖L2

small enough), B is contracting and reproduce BR. Therefore, it has a fixed point which is the
expected control.

It ends the proof of Theorem 1.1 part (i) for small data.

7. Study of contradicting bounded sequences of damped equations

7.1. Large data. In this section un is a solution as in Lemma 7.1. We assume to be proved
that (un, wn) is bounded in X. The final aim is to prove the strong convergence in L2 as stated
in Theorem 7.2. We assume [u0] = 0 and explain the required modifications in a remark for
the general case. Mainly, according to Remark 1.2, the modifications require to apply the same
arguments to ũ and to replace G by Gµ.

Lemma 7.1. Suppose un,0 is a bounded sequence in L2 with [u0,n] = 0 with associated solutions
un {

∂tun +H∂2
xun = un∂xun(−GG∗un)

un(0) = u0,n.

Assume moreover that Gun → 0 in L2([0, T ] × T). Then, un ⇀ 0 in L2([0, T ], L2) and weakly-*
in L∞([0, T ], L2).

Remark 7.1. We could certainly get rid of the term GG∗un (converging to 0 in L2([0, T ]×L2))
and work with solutions of the free equation. Yet, we have chosen to keep it since it did not
perturb too much the analysis and it seemed easier than proving a general perturbation theorem.

Proof. We assume un ⇀ u in L2([0, T ], L2) up to subsequence. The only problem to use directly
Proposition 2.8 of [31] is that because of the nonlinear term, it is not clear that u is solution of
the Benjamin-Ono equation (see Molinet [34, 35] for some cases where the limit equation is a
modified equation).

Denote the sequence cn(t) =
∫
T
a(y)un(x, t)dy, bounded in L2([0, T ]) and weakly convergent

to c(t). Denote rn = un − cn. We have a(x)
[
rn
]
→ 0, in L2([0, T ] × T). In particular, rn → 0

in L2([0, T ] × ω) and r2n → 0 in L1([0, T ] × ω). Therefore, r2n ⇀ 0 in the distributional sense of
D′(]0, T [×ω) and hence it is the same for ∂xr

2
n. But we have

∂xr
2
n = ∂xu

2
n − 2∂x(cnun) + ∂xc

2
n = ∂xu

2
n − 2∂x(cnun)

= ∂xu
2
n − 2∂x(cnrn)

But, we have rn → 0 in L2([0, T ]× ω) so cnrn → 0 in L1([0, T ]× ω) and so in the distributional
sense in D′(]0, T [×ω), and the same for ∂x(cnrn).
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So, we conclude that ∂xu
2
n ⇀ 0 in the distributional sense of D′(]0, T [×ω). In particular, the

weak limit u is solution in the sense of distribution D′(]0, T [×ω) of

ut +Huxx = ċ(t) +Huxx = 0.

Therefore, we have Huxxx = 0 in the distributional sense of D′(]0, T [×ω).
Moreover, since rn converges to zero in the distributional sense of D′(]0, T [×ω), it is the same

for rn,xxx = un,xxx and we have uxxx = 0 in the distributional sense of D′(]0, T [×ω).
We conclude that u ≡ 0 as in Linares-Rosier [31] Proposition 2.8. �

Remark 7.2. In the case of [u0,n] = µ 6= 0, we can, for instance, set un = un − µ and obtain
similarly un ⇀ µ using that un is solution of ∂tun +H∂2

xun = µ∂xun + un∂xun − GG∗un.

Lemma 7.2. un ⇀ 0 in L2([0, T ], L2) implies wn ⇀ 0 in L2([0, T ], L2) with wn = P+(une
− i

2
Fn)

(for solutions). The same holds for une
− i

2
Fn .

Proof. Fn weakly-* converges to 0 in L∞([0, T ],H1) and ∂tFn is bounded in L∞([0, T ],H−1)
and hence by Aubin-Lions lemma, Fn converges strongly to 0 in L∞([0, T ], L∞). By the

mean value theorem, e−
i
2
Fn converges strongly to 1 in L∞([0, T ], L∞). Actually, ∂tFn =

−H∂2
xFn +

1
2(∂xFn)

2 − 1
2P0(F

2
n,x)+ ∂−1

x GG∗un is bounded in L∞([0, T ],H−1) since ∂2
xFn = ∂xun

and (∂xFn)
2 = u2n is bounded in L∞([0, T ], L1) ⊂ L∞([0, T ],H−1).

Let ϕ ∈ L2([0, T ], L2). We write
∫∫

[0,T ]×T

wnϕ =

∫∫

[0,T ]×T

une
− i

2
FnP+ϕ =

∫∫

[0,T ]×T

un(e
− i

2
Fn − 1)P+ϕ+

∫∫

[0,T ]×T

unP+ϕ.

The first term converges to 0 by strong convergence of e−
i
2
Fn − 1 in L∞([0, T ], L∞). The second

converges to 0 by weak convergence. The same proof without P+ gives the result for une
− i

2
Fn . �

Lemma 7.3. cn(t) =
∫
a(y)un(y, t)dy is bounded in H1([0, T ]) and converges strongly to 0 in

L2([0, T ]).

Proof. We compute

ċn(t) =

∫

T

a(y)
[
H∂2

yun(t, y) +
1

2
∂y(un(t, y)

2) + GG∗un
]
dy

= −
∫

T

H∂2
ya(y)un(t, y)dy − 1

2

∫

T

∂ya(y)(un(t, y)
2)dy +

∫

T

a(y)GG∗undy.

∣∣ċn(t)
∣∣ ≤ C‖un(t)‖L2(T) + C‖un(t)‖2L2(T)

So ‖ċn(t)‖L2(]0,T [) ≤ C‖un‖L2([0,T ],L2) + C‖un‖2L∞([0,T ],L2) ≤ C. Lemma 7.3 follows by Sobolev

embedding and weak convergence to 0 of un. �

Remark 7.3. For Lemma 7.2 and 7.3, the same argument applies with G replaced by Gµ since
we only use the boundedness as an operator of L∞([0, T ], L2).

Lemma 7.4. Gun → 0 in L2([0, T ] × T) implies that a(x)wn → 0 in L2([0, T ]× T).
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Proof. Lemma 7.3 implies that we have in fact a(x)un → 0 in L2([0, T ]×T) and so a(x)e−
i
2
Fnun →

0 in L2([0, T ] × T), and the same for P+(a(x)e
− i

2
Fnun).

We write

a(x)wn = a(x)P+(une
− i

2
Fn) = P+(a(x)une

− i
2
Fn) + [a(x), P+]

(
une

− i
2
Fn

)
.

So, it remains to prove that the second term in the right hand side is strongly convergent in
L2([0, T ]× T).

Using Lemma 2.5 of Linares-Rosier [31], we get

‖[a(x), P+]
(
une

− i
2
Fn

)
‖L2([0,T ]×T) ≤ ‖une−

i
2
Fn‖L2([0,T ],H−1).

Using Lemma 7.2, we get that une
− i

2
Fn ⇀ 0 in L2([0, T ]×T). To apply Aubin-Lions’ lemma,

we just need to prove that ∂t
(
une

− i
2
Fn

)
is bounded in some space Lp([0, T ],H−s), s ∈ R. We also

notice that une
− i

2
Fn = 2i∂xe

− i
2
Fn , so , we just have to prove that ∂te

− i
2
Fn = − i

2(∂tFn)e
− i

2
Fn is

bounded in some Lp([0, T ],H−s). But, we have shown in the proof of Lemma 7.2 that ∂tFn was

bounded in L∞([0, T ],H−1) and we notice easily that e−
i
2
Fn is bounded in L∞([0, T ],H1), since

∂xe
− i

2
Fn = − i

2une
− i

2
Fn is bounded in L∞([0, T ], L2). Thus by product, ∂te

− i
2
Fn is bounded in

L∞([0, T ],H−1). �

Remark 7.4. Lemma 7.4 has to be changed when G is replaced by Gµ. Indeed, in that case, the
zone of damping is moving at speed µ. But, we can use the infinite speed of propagation to get
a similar result as follows.

If Gµũn → 0 in L2([0, T ] × T), we infer similarly that a(x − tµ)ũn → 0 in L2([0, T ] × T). If
for instance [−c, c] ⊂ ω with c > 0, we easily conclude that there exists an ε (a priori depending
on µ) such that ũn → 0 in L2([0, ε] × [−ε, ε]).

This result will be enough for what follows since the time T > 0 and the open set ω are
arbitrary (ω non empty).

Now, we borrow a propagation theorem from [26].

Theorem 7.1. Let wn be a sequence of solutions of

i∂twn + ∂2
xwn = fn

such that for one 0 ≤ b ≤ 1, we have∥∥wn

∥∥
X0,b

T
≤ C,

∥∥wn

∥∥
X−1+b,−b

T
→ 0 and

∥∥fn
∥∥
X−1+b,−b

T
→ 0

Moreover, we assume that there is a non empty open set ω such that wn → 0 in L2([0, T ], L2(ω)).
Then wn → 0 in L2

loc([0, T ], L
2(T)).

We want to apply this lemma with b = 1/2 and

fn = −∂xP+

[
Wn(P−∂xun)

]
− i

2
P+

[
gne

− i
2
Fn

]
− 1

4
P+

[(
− 1

2
P0(u

2
n) +Gn

)
une

− i
2
Fn

]

with gn = GG∗un, Gn = ∂−1
x gn. That is, we need to prove∥∥wn

∥∥
X

0, 1
2

T

≤ C,
∥∥wn

∥∥
X

−
1
2
,− 1

2
T

→ 0 and
∥∥fn

∥∥
X

−
1
2
,− 1

2
T

→ 0.

We decompose fn = fa
n + f b

n with fa
n = −∂xP+

[
Wn(P−∂xun)

]
. We know that
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• ‖wn‖X0,1/2 ≤ C,
• ‖fn‖X0,−1/2 ≤ C.

Lemma 7.5. For any θ ∈ [0, 1], we have the bound

‖fn‖
X

−2θ,− 1−θ
2

T

≤ C.

Proof. If we prove ‖fn‖X−2,0
T

= ‖fn‖L2([0,T ],H−2) ≤ C, by interpolation, this gives

‖fn‖
X

−2θ,− 1−θ
2

T

≤ C.

So, to bound fa
n , we need to prove that Wn(P−∂xun) is bounded in L2([0, T ],H−1). We write

‖Wn(P−∂xun)‖L2([0,T ],H−1) ≤ C‖Wn‖L2([0,T ],H1)‖∂xun‖L∞([0,T ],H−1)

≤ C‖wn‖L2([0,T ],L2)‖un‖L∞([0,T ],L2) ≤ C

where we have used that H1 is an algebra and so by duality, H1 ∗H−1 →֒ H−1.
The bound for f b

n is easier (and corresponds actually to the estimates of II and III in section
3.1)

‖f b
n‖L2([0,T ],H−2) ≤ ‖f b

n‖L2([0,T ],L2) ≤ ‖gn‖L2([0,T ],L2) + ‖ − 1

2
P0(u

2
n) +Gn‖L∞([0,T ]×T)‖un‖L2([0,T ],L2)

≤ ‖gn‖L2([0,T ],L2) +
(
‖un‖2L∞([0,T ],L2) + ‖gn‖L2([0,T ],L2)

)
‖un‖L2([0,T ],L2).

�

With for instance θ = 1
5 ,

‖fn‖
X

−
2
5
,− 4

10
T

≤ C

So, since −1
2 < −2

5 and −1
2 < − 4

10 , the embedding of X
− 2

5
,− 4

10

T →֒ X
− 1

2
,− 1

2

T is compact and we
can extract a subsequence and pick a function f such that

‖fn − f‖
X

−
1
2
,− 1

2
T

→ 0.

We can get that f = 0 using the equation verified by wn, fn and use the fact that we already
know that wn ⇀ 0 in the distributional sense.

‖fn‖
X

− 1
2
,− 1

2
T

→ 0.

This constitutes the case b = 1
2 . The same holds for wn.

We can now state the following theorem.

Theorem 7.2. Under the same assumptions as in Lemma 7.1, we have un → 0 in L2
loc([0, T ], L

2(T))

Proof. Using Theorem 7.1 and the previous analysis, we get wn → 0 in L2
loc([0, T ], L

2(T)). By

definition of wn, we have wn = − i
2P+(une

− i
2
Fn). But, we have proved in Lemma 7.2 that e−

i
2
Fn

converges strongly to 1 in L∞([0, T ], L∞). So, we can write

P+un = 2iwn − P+

[
un(e

− i
2
Fn − 1)

]
.

This gives P+un → 0 in L2
loc([0, T ], L

2(T)) and the same result for un since un is real valued. �
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7.2. Small data.

Lemma 7.6. For u0 ∈ L2(T), let u denote the solution of
{
∂tu+H∂2

xu = u∂xu− GG∗u,

u(0) = u0,

and let uL denote the solution of
{
∂tuL +H∂2

xuL = −GG∗uL

uL(0) = u0.
(7.1)

Then, there exist some constants T0 > 0 , ǫ > 0 and C > 0 such that for T < T0 and ‖u0‖L2 ≤ ε,
we have

‖u− uL‖L∞([0,T ],L2) ≤ C ‖u0‖2L2

Proof. Let v denote the solution of
{
∂tv +H∂2

xv = −GG∗u

v(0) = u0.
(7.2)

From (4.2) applied with g = −GG∗u and ‖u0‖L2 small enough, we have

‖u− v‖L∞([0,T ],L2) . ‖GG∗u‖2L2([0,T ],L2) + ‖u0‖2L2

. ‖u‖2L2([0,T ],L2) + ‖u0‖2L2

. C1(T + 1) ‖u0‖2L2

(7.3)

for some constant C1 > 0 where we used the fact that ‖u(t)‖L2 ≤ ‖u0‖L2 for any t ≥ 0.
On the other hand, by classical semigroup estimates we have that

‖v − uL‖L∞([0,T ],L2) . ‖GG∗(u− uL)‖L1([0,T ],L2)

. ‖u− uL‖L1([0,T ],L2)

≤ C2 T ‖u− uL‖L∞([0,T ],L2).

(7.4)

Combining (7.3) and (7.4) and the triangle inequality yield

‖u− uL‖L∞([0,T ],L2) ≤ C1 ‖u0‖2L2 + C2 T ‖u− uL‖L∞([0,T ],L2).

Thus

‖u− uL‖L∞([0,T ],L2) ≤
C1 T

1− C2 T
‖u0‖2L2

whenever ‖u0‖L2 < ǫ and T < T0 =
1

2C2
.

�

Proposition 7.1. Suppose un,0 is a sequence of smooth functions strongly convergent to 0 in
L2, with associated solutions un of the problem

{
∂tun +H∂2

xun = un∂xun − GG∗un

un(0) = u0,n,
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and in addition assume that

‖Gun‖L2([0,T ]×T) ≤
1

n
‖u0,n‖L2 . (7.5)

Then, u0,n = 0 for n large enough.

Proof. We denote un,L the solution of
{
∂tun,L +H∂2

xun,L = −GG∗un,L

un,L(0) = u0,n.

By the observability of the linear damped system, proved in [29] Theorem 1.2, we know that for
some T that can be chosen T < T0, we have

‖u0,n‖2L2 ≤ C

∫ T

0
‖Gun,L‖2L2 . (7.6)

But, we have from triangular inequality, (7.5) and Lemma 7.6, that

‖Gun,L‖2L2([0,T ]×T) ≤ C‖Gun‖2L2([0,T ]×T) + C‖G(un,L − un)‖2L2([0,T ]×T)

≤ C

n
‖u0,n‖2L2 + C‖u0,n‖4L2

Combining the previous estimate with (7.6) gives

‖u0,n‖2L2 ≤ C
(1
n
+ ‖u0,n‖2L2

)
‖u0,n‖2L2

Since ‖u0,n‖L2 converges to zero, this gives u0,n = 0 for n large enough. �

8. Stabilization

In this section we will prove Theorem 1.2. We will use the argument in [31]. However to
complete the arguments we have to make some modifications as we did in the previous section.

Because of the identity

1

2
‖u(t)‖2 + ‖Gu‖2L2([0,T ]×T) =

1

2
‖u0‖2 (8.1)

we observe that ‖u(t)‖ is nonincreasing, so that the exponential decay is guaranteed if

‖u((n + 1)T )‖ ≤ κ‖u(nT )‖ for some κ < 1.

To prove the theorem, it is sufficient to show the following observability inequality: For any
T > 0 and any R ≫ 1 there exists a constant C(R,T ) such that for any u0 ∈ H0

0 (T) with
‖u0‖ ≤ R it holds

‖u0‖2 ≤ C

∫ T

0
‖Gu(t)‖2 dt (8.2)

where u denotes the solution of (1.12).
Suppose there exists a sequence u0,n ∈ H0

0 (T) such that for each n we have ‖u0,n‖ ≤ R (where
R ≫ 1) but

‖u0,n‖ > n

∫ T

0
‖Gun(t)‖2 dt. (8.3)
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Then from Theorem 7.2, we have for a subsequence (still denoted by un) that

un → 0 in L2
loc([0, T ], L

2(T)).

Thus one can select some t0 ∈ (0, T ) such that, extracting again a subsequence,

un(t0) → 0 in L2(T).

Since
1

2
‖un(t0)‖2 + ‖Gun‖2L2([0,t0]×T) =

1

2
‖u0,n‖2,

we conclude that
‖u0,n‖L2 → 0.

The assumptions of Proposition 7.1 are fulfilled. We finally get u0,n = 0 for n large enough,
which is a contradiction to (8.3).
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Appendix A.

In the following, we will establish a slight modification of the bilinear estimate of Molinet-
Pilod [36], Proposition 3.5, with a gain of a power of T . Such an estimate will allow to avoid
the dilation argument for small time and large data and it could also be interesting for other
purposes. This type of gain was already obtained by Bourgain in [7] for the KdV equation and
it relies mainly on the fact that the equation we consider is subcritical on L2 with respect to
the scaling.

Lemma A.1. We have for 0 ≤ T ≤ 1 the estimate

‖∂xP+

[
W (P−∂xu)

]
‖
X

0,−1/2
T

≤ CT 1/8‖(u,w)‖2X .

Proof. Let h, u, w be some extension (same notation by abuse). We use the same notation as
in [36] and continue the computations started in [36]. We continue the estimates of IA starting
from estimate (3.32) in [36].

|IA| ≤ ‖h‖L2‖w‖
X

0,3/8
T

‖u‖L4 ≤ CT 1/2−3/8‖h‖L2‖w‖
X

0,1/2
T

‖u‖L4 ,

For IB , we use (3.33) and (3.34) of [36] to get

|IB | ≤
(∑

N1

‖PN1

( ĥ
〈
σ
〉1/2

)∨‖2L4

)1/2‖w‖
X

0,1/2
T

‖u‖L4

≤ CT 1/2−3/8‖
( ĥ
〈
σ
〉1/2

)∨‖ X
0,1/2
T ‖h‖L2‖w‖

X
0,3/8
T

‖u‖L4

≤ CT 1/2−3/8‖h‖L2‖w‖
X

0,3/8
T

‖u‖L4 ,
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and using (3.38)

|IC | ≤
(∑

N1

‖PN1

( ĥ
〈
σ
〉1/2

)∨‖2L4

)1/2‖w‖
X

0,3/8
T

‖u‖X−1,1
T

≤ CT 1/2−3/8‖h‖L2‖w‖
X

0,1/2
T

‖u‖X−1,1
T

.

�

Lemma A.2. Let ε > 0. The following estimate holds uniformly for 0 ≤ T ≤ 1:

‖∂xP+

[
W (P−∂xu)

]
‖Z̃0,−1

T
≤ CT 1/8−ε‖(u,w)‖2X .

Proof. We can see using (3.43) of [36] that

|JA| ≤
(∑

N

‖gN‖2L2
ξL

∞
τ

)1/2‖w‖
X

0,3/8
T

‖u‖L4 ≤ CT 1/2−3/8
(∑

N

‖gN‖2L2
ξL

∞
τ

)1/2‖w‖
X

0,1/2
T

‖u‖L4

and using estimate line 15 p 381 of [36]

|JB |+ |JC | ≤
(∥∥∥

( g

〈σ〉
)∨∥∥∥

L̃4
+

∥∥∥
( |g|
〈σ〉

)∨∥∥∥
L̃4

)
‖w‖

X
0,1/2
T

(
‖u‖L4 + ‖u‖

X−1,1
T

)
.

But
∥∥∥
( g

〈σ〉
)∨∥∥∥

L̃4
+

∥∥∥
( |g|
〈σ〉

)∨∥∥∥
L̃4

≤ CT 1/2−3/8−ε
∥∥∥
( |g|
〈σ〉

)∨∥∥∥
X

0,1/2−ε
T

≤ CT 1/8−ε
∥∥∥ |g|
〈σ〉1/2+ε

∥∥∥
L2
τL

2
ξ

≤ CT 1/8−ε
(∑

N

‖
〈
σ
〉−1/2−ε

gN‖2L2
τL

2
ξ

)1/2

≤ CT 1/8−ε
(∑

N

∫

ξ

∫

τ

〈
τ + ξ|ξ|

〉−1−2ε|gN (τ, ξ)|2
)1/2

≤ CT 1/8−ε
(∑

N

‖gN‖2L2
ξL

∞
τ

)1/2
,

which gives

|JB |+ |JC | ≤ CT 1/8−ε
(∑

N

‖gN‖2L2
ξL

∞
τ

)1/2‖w‖
X

0,1/2
T

(
‖u‖L4 + ‖u‖X−1,1

T

)
.

The result follows by duality. �

Note that the two previous lemmas give Lemma 2.8.

Lemma A.3. Let N ∈ N∗. We have the following estimates, uniformly in N .

‖P≥N (ei
F
2 )‖L∞ ≤ C√

N
‖F‖H1 ,

‖P≥N (ei
F1
2 − ei

F2
2 )‖L∞ ≤ C√

N

[
1 + ‖F1‖H1 + ‖F2‖H1

]
‖F1 − F2‖H1 ,
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and

‖ei
QNF1

2 − ei
QNF2

2 ‖L∞ ≤ C√
N

[
1 + ‖F1‖H1 + ‖F2‖H1

]
‖F1 − F2‖H1 .

Remark A.1. Note that these estimates are very close to the estimate

‖P≥1(e
iF
2 )‖L∞([0,λ]) ≤ C‖Fx‖L2([0,λ])

but uniform on the length λ, as used by Molinet [33].
This gain comes from the fact that the inequality is subcritical. Roughly speaking, L∞ scales

like H1/2 which gives a gain at high frequency.

Proof. We will mainly use the following estimate, which is only the Sobolev embedding at high
frequency.

‖P≥N (f)‖L∞ ≤
+∞∑

n=N

∣∣f̂(n)
∣∣ ≤

( +∞∑

n=N

1

n2

)1/2( +∞∑

n=N

n2
∣∣f̂(n)

∣∣2)1/2 ≤ C√
N

‖f‖H1 . (A.1)

We apply this estimate to f = ei
F1
2 − ei

F2
2 .

‖P≥N (ei
F1
2 − ei

F2
2 )‖L∞

≤ C√
N

‖ei
F1
2 − ei

F2
2 ‖H1 ≤ C√

N

(
‖ei

F1
2 − ei

F2
2 ‖L2 + ‖(∂xF1)e

i
F1
2 − (∂xF2)e

i
F2
2 ‖L2

)

≤ C√
N

(
‖F1 − F2‖L2 + ‖F1‖H1 min(1, ‖F1 − F2‖H1) + ‖F2‖H1‖F1 − F2‖H1

)

where, for the last estimate, we have used estimate (2.6) together with

(∂xF1)e
i
F1
2 − (∂xF2)e

i
F2
2 = (∂xF1)

(
ei

F1
2 − ei

F2
2

)
+ ei

F2
2 ∂x(F1 − F2).

This proves the second inequality of the lemma. The first estimate of the lemma is a consequence

of the previous inequality with F2 = 0 using the fact that P≥N (ei
F
2 ) = P≥N (ei

F
2 − 1).

The last inequality is proved using the Gagliardo-Nirenberg inequality on T, i.e.

‖ei
QNF1

2 − ei
QNF2

2 ‖L∞ ≤ ‖ei
QNF1

2 − ei
QNF2

2 ‖L2 + ‖ei
QNF1

2 − ei
QNF2

2 ‖1/2
H1 ‖ei

QNF1
2 − ei

QNF2
2 ‖1/2

L2

The previous computation shows that

‖ei
QNF1

2 − ei
QNF2

2 ‖H1 ≤ C
[
1 + ‖QNF1‖H1 + ‖QNF2‖H1

]
‖QNF1 −QNF2‖H1

≤ C
[
1 + ‖F1‖H1 + ‖F2‖H1

]
‖F1 − F2‖H1

But, the mean value theorem gives

‖ei
QNF1

2 − ei
QNF2

2 ‖L2 ≤ ‖QN (F1 − F2)‖L2 ≤ C

N
‖F1 − F2‖H1 .

�
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