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We have developed an interpreter for the domain-specific language MGS using OCAML as the implementation language. In this third implementation of MGS, we wanted to provide the end-user with easy incremental addition of new data structures and their associated functions to the language. We detail in this paper our solution, in a functional setting, which is based on techniques similar to those found in aspectoriented programming. type expr = Constant of value | Apply of expr * expr and value = Int of int | Fun of (value -> value) let print_val = function | Int i -> Printf.printf "%d\n" i | Fun x -> Printf.printf "<fun>\n" let inc_val = Fun(function (Int i) -> Int (i + 1) | _ -> failwith "bad arg") let rec eval = function | Constant x -> x | Apply (e1, e2) -> (match (eval e1) with | Fun x -> x (eval e2) | _ -> failwith "apply: type error") let inc_expr = Constant inc_val let inc = Apply(inc_expr, Apply(inc_expr, Constant (Int 1)))

print_val (eval(inc))

Introduction

This work takes place in the MGS [START_REF] Giavitto | A framework for the recursive definition of data structures[END_REF][START_REF] Giavitto | Computation in space and space in computation[END_REF] project 1 which develops new data and control structures for the modelization and simulation of dynamical systems with a dynamical structure [START_REF] Giavitto | Modeling the topological organization of cellular processes[END_REF]. These features are embedded in a simple functional language, called also MGS, which is used to model various physical and biological processes [START_REF] Spicher | Using rewriting techniques in the simulation of dynamical systems: Application to the modeling of sperm crawling[END_REF][START_REF] Spicher | A topological framework for the specification and the simulation of discrete dynamical systems[END_REF][START_REF] Giavitto | Rewriting systems and the modelling of biological systems[END_REF].

The adequacy of MGS to its application domain is achieved through the following three features:

1. it embeds a very rich family of data structures used for the representation of the states of dynamical systems; 2. it provides a very large set of functions operating on these data structures; 3. it offers a new way of specifying uniformly functions defined by case on arbitrary data structures, using topological rewriting [START_REF] Giavitto | Topological collections, transformations and their application to the modeling and the simulation of dynamical systems[END_REF].

An interpreter for the MGS language has been implemented in the OCAML [START_REF] Leroy | The Objective Caml system, release 3.09[END_REF][START_REF] Remy | Objective ML: An effective object-oriented extension to ML[END_REF] language. The decisive advantages of OCAML for us were that (1) it provides both functional and object-oriented features in the same environment and (2) it produces very effective code [START_REF]Computer language shootout scorecard[END_REF][START_REF]Gentoo : Intel R pentium R 4 computer language shootout[END_REF]. One of the main problems raised by the MGS project is the wish to offer easy incremental addition of new data structures and their associated functions to answer the needs expressed by the end-users. As a matter of fact, the initial release of the interpreter did only include the collection data types sequences, sets and multisets. The current interpreter includes arbitrary graphs, Voronoï tessalation, group Fig. 1. A simple and basic interpreter expressed in a higher-order syntax style in ML.

based fields [START_REF] Giavitto | A framework for the recursive definition of data structures[END_REF] which generalize various kind of arrays, gmaps [START_REF] Lienhardt | Topological models for boundary representation : a comparison with n-dimensional generalized maps[END_REF], extensible records and maps, trees defined by automata, and many other data types [START_REF] Spicher | Transformation de collections topologiques de dimension arbitraire[END_REF]. All the additional data structures (together with their operators) have been added incrementally using the techniques described in this paper.

Usually, the values handled in the target language (that is, the language to be implemented, here, MGS), are represented through a unified data structure in the implementation language (that is the language used to implement the target language, here, OCAML). We call this data structure the value data structure. Using OCAML as the implementation language, there are two choices for the value data structure:

1. it can be represented using a sum type, following a functional style, 2. or, it can be represented using a class following an object-oriented style.

Both approaches have some shortcomings, with respect to the requirement of incremental development. To summarize 1. in the functional approach, it is easy to add new functions but difficult to add new target data structures; 2. on the contrary, in the object-oriented approach, it is easy to add new target data structures but difficult to add new functions.

To overcome these drawbacks, we have developed an original technique, inspired from aspect programming techniques, that consists in weaving both the value data structure and their associated functions. This technique has the advantages of:

allowing new target data structures to be added without modifying the already written implementation files of the interpreter, -facilitating the addition of new target data structures and functions to the point that even end-users are able to increment the MGS interpreter.

The rest of the paper is organized as follows. We briefly describe the MGS language in the next section to give the reader an idea of the complexity raised by the implementation of the rich data types in the interpreter. Section 3 describes the functional and the object-oriented approach used to implement the value data structure and details the problem raised by its incremental evolution. The implementation of heavily overloaded target functions are presented in the next section. The software architecture of the final implementation code of the interpreter is sketched in section 5. Section 6 presents how the informations gathered along all implementation files are collected to generate the value data type and to implement the multiple dispatch of the target functions. The conclusion summarizes our approach and shortly reviews related works.

Functions and Values in the MGS Programming Language

We briefly discuss in this section the values manipulated in the MGS language and their associated functions. Our aim is to show that the technique presented in this paper is required to deal with its complexity and to allow an easy incremental addition of new data structures and their associated functions.

The Type Hierarchy of the MGS Programming Language

We briefly give in this section an incomplete description of the type hierarchy of the MGS programming language. A graphical representation of the type hierarchy of MGS is given in figure 2. In MGS two main types of values are distinguished: the scalar values which are elementary constants and collections which allow to organize the values. Example of scalar values are integers, floats, symbols... Example of collection types are sets, bag, Delaunay graphs, group-based fields [START_REF] Giavitto | Pattern-matching and rewriting rules for group indexed data structures[END_REF], quasi-manifolds [START_REF] Lienhardt | Topological models for boundary representation : a comparison with n-dimensional generalized maps[END_REF][START_REF] Lienhardt | N-dimensional generalized combinatorial maps and cellular quasimanifolds[END_REF]... Collection values can be any combination of collections and scalar values such as a bag containing symbols and sequences of integers.

In the following example, we define three values equal to collections: v_seq which consists in the sequence (like a C one-dimensional array) composed of a string value ("str"), a floating-point value (3.5), two integers values (4, 4), a boolean value (true) and the identity function (expressed as an anonymous lambda-calculus expression: \x.x) and the same elements organized as a set (v_set) and a bag (bag).

mgs> v_seq := "str", 3. The comma operator is overloaded and used, following the context, to add an element to a collection, to merge two collections of the same type or to create a sequence composed of its elements. For most of the collection types, the empty collection type xxx is written xxx:() (for the example above, the empty collection for the sequence type is namely seq:()).

Functions For the Manipulation of Values

In MGS, most of the functions are overloaded to allow an easy handling of complex values. A collection value c has a type τ (µ) where τ is the collection type (like set, seq, bag, ...) and µ is the type of the elements of the collection. To allow an easy handling of complex values, most built-in functions are overloaded so that user-defined functions can handle collections of any type τ (µ) regardless of τ and µ. That property can be seen as a kind of polytypism [START_REF] Cohen | Intgration des collections topologiques et des transformations dans un langage fonctionnel[END_REF][START_REF] Jeuring | Polytypic programming[END_REF]. For example, the size functions, that returns the number of elements in the collection, can be applied to any collection: mgs> size(v_seq);; 6 mgs> size(v_set);; 5 mgs> size(v_bag);; 6

Among all the polytypic functions, we have the classics map, iter, fold, one_off, rest, member... The interested reader should refer to http://mgs.ibisc.univ-evry. fr/Online Manual/Collections.html for the detail of available functions defined on collection types.

A Short Example

MGS unifies the collection types together with the polytypic functions in a general rewriting scheme. Programs are written as a composition of transformations, a very expressive form of rewriting process [START_REF] Giavitto | Topological collections, transformations and their application to the modeling and the simulation of dynamical systems[END_REF][START_REF] Giavitto | Rewriting systems and the modelling of biological systems[END_REF][START_REF] Giavitto | Systems Self-Assembly: multidisciplinary snapshots[END_REF][START_REF] Spicher | Using rewriting techniques in the simulation of dynamical systems: Application to the modeling of sperm crawling[END_REF][START_REF] Spicher | Rewriting and Simulation -Application to the Modeling of the Lambda Phage Switch[END_REF] Pattern s* matches any path p (that is, a sequence of neighboring values) in G such that each element in p appears only once; the additional requirement that p is of the same size as G ensures that such paths are Hamiltonian. Of course, the complexity of the search remains, but the complexity of its expression is highly reduced.

3 The Implementation of the value Data Structure

The value Data Structure in a Functional Setting

In a functional setting, an evaluator consists in a function eval that, given an expression of type expr, returns a value of type value. A toy example of such an interpreter is given in figure 1.

In this example, the type value is restricted to integers and functions. The precise application area of MGS does not matter in this paper and detailing the handling of integers and integers operators should be enough to explain our approach.

Functions in the target language rely on the use of functions of the implementation language (see the example of the inc_val function at line 16 in figure 1). This mechanism of representing a target function by an implementation function lies at the heart of the higher-order abstract syntax [START_REF] Pfenning | Higher-order abstract syntax[END_REF][START_REF] Cohen | Interprétation par syntaxe abstraite d'ordre supérieur et traduction en combinateurs[END_REF] approach. For the sake of simplicity, we do not detail here on how to implement user-defined functions. In the current MGS interpreter, this is achieved by using combinators to translate on-the-fly a user-defined lambda expression into a Fun value [START_REF] Cohen | Interprétation par SK-traduction et syntaxe abstraite d'ordre supérieur[END_REF]. The same mechanism can be used in the OO approach presented below. With the higher-order syntax approach it is immediate to integrate existing libraries of functions as a predefined kernel of functions: predefined library functions are embedded using the Fun constructor. Note that the functions of the kernel have exactly the same status and implementation as the user-defined functions and so they can be arbitrarily mixed "for free" (e.g. using higher-order operators). In the rest of this paper we focus only on the handling of a set of predefined functional constants like inc val.

If one wants to extend the interpreter with a new primitive, like the addition of integers, it only requires to define the corresponding constant in a new file and to rely on separate compilation and linking to produce the new interpreter. The new function can be made available to the MGS programmer by registering the previous expression in the global environment under an adequate name. So, it is straightforward to extend the library of available functions. On the contrary, if we want to extend the available value type, for example with floating-points values, we face several problems:

1. the type value must be extended accordingly, which implies to edit an existing file, 2. all functions defined by case on type value have to be updated to take into account the new case.

The second point requires to edit all existing files related to the value type. For instance, in the context of the MGS project, which represents 50k lines of OCAML code, spread in about 75 files, it would require a huge amount of work.

The value Data Structure in an Object-Oriented Framework

In a object-oriented (OO) framework, the sum type used in the functional approach is replaced by an abstract class whose derived classes represent all the cases. Methods are used to implement predefined target functions. The corresponding interpreter, in C++, is given in figure 3. The dynamic cast<...>(...) is used for downward casting a class to one of its derived classes in a safe way. Failure to downcast corresponds to type errors during evaluation of MGS expressions. value are defined as a subtype of expression. A class Number gathers all classes that admit numerical operations like incrementation. Initially, the only descendant of Number is Int which represents integers. Despite the syntactic differences, the OO C++ code mimics closely the functional approach. The eval methods applies to any expression and is defined, case by case, on each derived subclasses. The real difference is that the cases are not gathered in one place but scattered in each derived classes. The evaluation of a value is always the identity and so it is defined at the level of the value class.

If in a new file and to rely on separate compilation and linking to produce the new interpreter.

So, it is straightforward to add new target data structures. On the contrary, if we want to extend the library of available functions, we have to add a virtual function to the mother-class value or one of its derived classes. This implies to edit the class value but also all the derived classes for which an implementation of the new method is relevant. 

Implementing Overloading

The implementation of an incremental interpreter has also to face an additional problem if we provide to the end-user overloaded target functions. In the previous example, the function inc has a meaning for both integer and floating-points values. It would be very convenient to offer to the end-user an overloaded function acting on both types. This means that from an MGS identifier inc and the type of the arguments in an application, some dispatch mechanism must be used to call the correct implementation method or function. This problem is not negligible. In the MGS context, there are many overloaded functions: figure 4 gives the number, and distribution with respect to their arity, of overloaded target functions available to the end-user.

In the functional framework, the dispatch is easily provided for unary functions, using definition by cases through the pattern matching on the constructors of the value data type. In the OO framework, this is also easily achieved using virtual methods.

Things get more complex when we consider functions with multiple arguments. For example, consider the addition of two values. Pattern matching can still be used, but at the price of explicitly writing the Cartesian product of the value constructors. For example, in the current MGS interpreter, there are 24 available data types. So, overloading the addition comes at the cost of writing 576 cases. Obviously, most of the cases correspond to errors and are handled similarly. Even if this can be done using wild-cards in patterns, there is still a huge number of cases to be written.

In the OO framework, the extension of the overloading of a target function to multiple arguments requires multiple dispatch [START_REF] Ingalls | A simple technique for handling multiple polymorphism[END_REF]. Multiple dispatch can be implemented (in languages with only single dispatch, like C++ or OCAML) using auxiliary methods [25, item 31]. The number of these functions also grows exponentially with the number of arguments meaningful for the dispatch.

5 An "Incremental" Software Architecture for the MGS Interpreter

Our first design decision in MGS was to rely on the functional approach. As a matter of fact multiple dispatch is easier to implement in this framework. However, the problems raised in section 3.1 have still to be addressed. Our idea is to split the various cases of an overloaded function into multiple OCAML functions spread through the whole set of files. A pre-processing phase gathers all the defined functions and merges them into the actual implementation. A similar process is done for the various constructors of the value data type. Splitting the definition into several files raises the problem of functional dependency. It is hopeless to force the developer to have a correct sequencing of the files when we want to enable at the same time the unconstrained addition of new data types and pieces of code. To solve this problem, we use a well-known technique of forward pointers that are correctly set at run-time (see for example [21, page 150]). We detail in the rest of this section the overall software organization through the description of a small example. We assume that the value data type is completely defined once and for all. Section 6.1 sketches how this data type can also be generated from informations gathered through all the code. The reader is supposed to be familiar with the OCAML language and its compilation tools.

Organization of the Code

The project consists in three set of files, S 1 , S 2 and S 3 . A dispatch will be computed from the definitions occurring in S 1 and S 2 . After S 1 , the signature of the dispatched functions are available (for the functions defined in S 2 and S 3 ). That is, the functions are called through a diversion mechanism. After S 2 , the functions can be directly called since all dispatched functions are known and initialized after S 2 . Then, the dispatch is effective and the direct call to the dispatched functions is possible. Figure 5 shows the clear timing of the operations occurring in the three phases and what files are used.

S 1 : Basic Definitions

The files in S 1 are definitions, usually types and functions, that do not rely on other previous definitions and that will be used everywhere in the project.

It includes a file types.ml that defines the type of the values (the value type) that are going to be handled. All the functions that will handle values in the code will require to have access to this file. From the .ml, a .mli include file is produced by the OCAML compiler. Using this include file through the open Types directive all other files are able to define functions on value.

type value = Int of int | Float of float

The Diversion Mechanism: Generation of Forward and Signatures

At this point, it is necessary to give access to the overloaded functions, which raises two problems:

1. since the functions are defined incrementally, there is no global repertory of them; 2. these functions must be made available for code in S 2 and S 3 independently of their actual implementation localization.

These two problems are solved by scanning all implementation files to collect the various function names to generate a unique file sig.ml providing the implementation of the forwarding mechanism. The scanning is made possible by enforcing a specific syntax for the function names (see below).

For our example, the generated sig. The forward mechanism works as follows: an overloaded function add is a wrapper that applies the value of the imperative variable add_forward. This imperative variable is initialized with a dummy function raising an error. This variable will be set later with the correct function (see lines 20 and 21 of the file dispatch.ml in section 5.5).

S 2 : Writing of Code

The files in the second set S 2 contains the implementation of the various cases of an overloaded function. Suppose that a unary function XX is overloaded on two types p and q. This suppose that the value data type has two constructors P and Q defined like type value = ... | P of type_p ... | Q of type_q ...

Then the MGS implementers have only to provide two functions called _XX_p and _XX_q both of arity one. The argument of _XX_p is of type type_p. The naming convention is simple: the name of the constructor (which is constrained to always begin with a capital letter in OCAML) is used in small letter in the name of the function case. The naming convention is straightforwardly extended to handle multiple arguments. A function definition: XX p 1 ... p n represents the handling of the arguments of type type p 1 , . . . , type p n for the overloaded function XX. The types type p i are arguments of constructors of the sum type value. Each constructor corresponds to a different MGS value type and we assume that the type p i are all different, even if the implementation type are the same by using alias type declaration. This naming convention enables the scanning described in the previous section and the generation of the diversion functions XX and XX forward as well as the dispatch function XX described in the next section.

An example of two overloaded functions, add and print is given in the def1.ml file below:

open Types;; open Sig;; let _add_int_int i1 i2 = Int (i1 + i2) let _print_int i1 = Printf.printf "%d" i1 let _print_float f1 = Printf.printf "%f" f1

Note that the definition of add is, at this point, not complete. Other cases are specified or will be specified in other files.

All functions are allowed to recursively call any overloaded function. For example, in another file def2.ml, the definition of _add_float_int Note however that add can only be effectively used once the wrapper has correctly been set at run-time. This means that, at this point, only function definitions, implying overloaded functions, can occur and no actual function calls to overloaded functions.

Generation of the Overloaded Functions

An overloaded function is implemented using pattern matching to dispatch to the several function cases. The implementation function corresponding to the overloaded function XX is called __XX. At the end of the file, the imperative variables used in the wrapper functions are set to their correct value, using the just defined __XX functions.

S 3 : Using Dispatched Functions

At this point, all function cases have been gathered, the overloaded functions have been generated and can be used even in the initialization phase, on the contrary to the code in the S 2 set of files. In the MGS project, the files in S 3 corresponds to the implementation of transformations, the parsing, the top-level, etc. To finalize our running example, the file code.ml below describes some pos- 

Compilation and Execution of the Code

The compilation follows five phases to respect the code organization:

1. in a first phase, all the files in S 1 are compiled;

2. in a second phase, all the files of the project are scanned to automatically generate and compile the sig.ml file; 3. in a third phase, all files from S 2 are compiled (which additionally produces the include files required for dispatch.ml); 4. in a fourth phase, dispatch.ml is generated and compiled; 5. finally, files in S 3 are compiled and the final linking is done. This process is fully automated by a Makefile. The compilation and the execution of our example gives: ibisc 12 > make ocamlc -c types.ml ocamlc -c sig.ml ocamlc -c def1.ml ocamlc -c def2.ml ocamlc -c dispatch.ml ocamlc -c code.ml ocamlc -o dsal types.cmo sig.cmo def1.cmo def2.cmo\ dispatch.cmo code.cmo ibisc 13 > dsal

Setting the forward pointer Setting the correct link 5.000000 3.000000 3.000000 3

Weaving the Implementation Code

In this section, we sketch the automatic generation of the type.ml, sig.ml and dispatch.ml files.

Weaving the value Data Structure

In the same way that the function cases are split through several files, the various constructor of the value data type are split in several files. This enables to add a new data structure to MGS simply by providing a new file introducing the corresponding constructor. The precise syntax used for the constructor declaration does not matter. The first weaving tool scans all the source files to gather all the constructors related to the value type and generates the types.ml file.

Weaving the Dispatch on value Type

The second weaving tool gathers all the function cases spread among the source files to generate the overloaded functions. The dispatch mechanism presents some subtleties. In the previous example, all the types used as the arguments of the constructors of the value type where incomparable. However, the situation is more complex in the implementation of MGS:

wild-cards are required to handle within the same case function various argument types; -there is a hierarchy of data types in the MGS language that is available to the developer of the MGS language.

A simple example of the last kind is the following: MGS values are split into atomic and compound values. Sometimes, cases functions are dispatched on this distinction, and not on the implementation type of the data structure. For example, the primitive function size returns -1 on all atomic values and returns the number of elements in its argument in case of a compound value. Interior nodes of the MGS hierarchy type corresponds to several constructor in the value type. The type of the argument passed to the dispatched function is then value and not the argument type of a constructor.

Having family of types produces a hierarchy that has to be taken into account while generating the pattern matching of the overloaded functions. For example, a case on _XX_int_int has to appear before the case _XX_int_atomic. The partial order relationships between the MGS types is used to sort lexicographically the collected cases of an overloaded function.

A "catch-all" case is produced to handle "bad argument types" error. To avoid spurious warnings by the OCAML compiler, this case is produced only if required.

Conclusion

The software organization and the weaving tools described in this paper have been successfully used in the development of the MGS interpreter. This represents over 50k lines of OCAML code (there is also over 100k lines of C++ libraries to provide basic support for sophisticated data structures like Voronoï tessalation, G-Maps, Cayley graphs, ...). The 50k lines of OCAML files are scattered over 75 files. The scanning of these files is almost immediate and does not slow down the compilation process. It generates 225 overloaded functions. These results show that our approach is well suited to the development, in a functional setting, of large incremental projects.

One of the originality of this work is the application of aspect weaving techniques in the context of a functional language (OCAML). As far as we know, this is the first attempt to merge these two worlds to ease the implementation of a domain-specific language. Our approach relies only on a tailored software architecture, a dedicated makefile, some naming conventions and two external tools to parse and collect informations on the various data types entering in the value type and on the overloaded functions. It does not involves any changes on the OCAML compiler nor sophisticated typing techniques. It is therefore a lightweight solution to the problem of incrementally building an interpreter.

Related Works.

The various techniques implied have already been used in other contexts (for example, wrapper functions are used to overcome the impossibility to have recursively defined modules spun across multiple files) and the problem that we have tried to solve has been coined the expression problem in [START_REF] Wadler | The expression problem. Email to the Java Genericity mailing list[END_REF] (with an enlightening discussion in [START_REF] Zenger | Independently extensible solutions to the expression problem[END_REF]). We briefly review, because of space limitation, some similar approaches.

Language Extensions. In [START_REF] Krishnamurthi | Synthesizing objectoriented and functional design to promote re-use[END_REF] is proposed a specific design pattern called the Extensible Visitor which is a combination of functional and object-oriented programming methods while our approach is purely functional.

An aspect-oriented programming extension to OCAML, very similar to As-pectJ [START_REF]AspectJ project[END_REF], is proposed in [START_REF] Masuhara | Aspectual caml: an aspectoriented functional language[END_REF]. It is a highly technical approach that uses the usual features of join points, pointcuts and advices declarations that leads to the definition of the Aspectual Caml language while our work do not change the language itself but consists in two additional tools to collect information and produce the dispatch files.

Extensible Interpreters. The conception of extensible interpreters has been considered for example in [START_REF] Steele | Building interpreters by composing monads[END_REF]. However, it requires sophisticated type inference techniques to be implemented that goes beyond standard ML type inference.

Multiple dispatch has been considered for overloaded functions in a functional language [START_REF] Bourdoncle | Type checking higher-order polymorphic multimethods[END_REF]. As for the previous work, it requires sophisticated types techniques.

Extensible sum data types [START_REF] Garrigue | Programming with polymorphic variants[END_REF][START_REF] Garrigue | Code reuse through polymorphic variants[END_REF] (which is further extended in [START_REF] Garrigue | Private row types: Abstracting the unnamed[END_REF] by adding private row types to functors) have been proposed and are implemented in OCAML. They enable the incremental definition of the value data type and of the functions but at the cost of requiring a lot of wrap/unwrap functions that are done for free in our approach. Moreover, since with polymorphic variants a matching case can easily be forgotten in a function definition, we believe that this approach would be too error-prone on a large-scale development like the MGS language Once again, a very technical solution is found in [START_REF] Ramsey | ML module mania: A type-safe, separately compiled, extensible interpreter[END_REF] by relying on modules and (higher-order) functors.
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 3 Fig. 3. A simple and basic interpreter expressed in an OO programming style.
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 25 Fig.5. Organisation of the code: the three phases S1, S2 and S3 are given together with the exact date when each file is produced and the functions are made available.

  ml file is open Types;; (* Signature declaration *) let (add_forward : (value -> value -> value) ref) = ref (function _ -> failwith "unitialized add") let (print_forward : (value -> unit) ref) = ref (function _ -> failwith "unitialized print") 10 Printf.printf "Setting the forward pointers\n" 11 12 let add x y = !add_forward x y 13 let print x = !print_forward x

  . (float_of_int i1)) let _add_float_float f1 f2 = Float (f1 +. f2) let _add_float_int f1 i1 = add (Int i1) (Float f1)

  one wants to extend the interpreter with a new data type, like floatingpoints values, it only requires to define the corresponding derived class

	struct Float : public Number {
	float val;
	Float(float f) : val(f) {}
	value& inc() { return *(new Float(val + 1.0)); }
	ostream& print(ostream& o)
	{ return o << val << "\n"; }
	};

  For our example, the generated dispatch.ml

		open Def2;;	
		let __add x y = match x, y with
		| (Int x0), (Int x1)	-> _add_int_int x0 x1
		| (Float x0), (Float x1) -> _add_float_float x0 x1
		| (Int x0), (Float x1)	-> _add_int_float x0 x1
	10	| (Float x0), (Int x1)	-> _add_float_int x0 x1
	11		
	12	and __print x = match x with
	13	| Int x0	-> _print_int x0
	14	| Float x0 -> _print_float x0
	15		
	16	Printf.printf "Setting the correct link\n"
	17	flush Pervasives.stdout
	18		
	19	Sig.add_forward	:= __add
	20	Sig.print_forward := __print
		file is:	
		open Types;;
		open Sig;;	
		open Def1;;

  sible use of the overloaded functions, add and print:

		open Types;;
		open Sig;;
		print (add (Float 2.0) (Float 3.0))
		print_newline()
		print (add (Float 2.0) (Int 1))
		print_newline()
		print (add (Int 2) (Float 1.0))
		print_newline()
	10	print (add (Int 2) (Int 1))
	11	print_newline()

The MGS project is available at: http://mgs.ibisc.univ-evry.fr
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