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STOCHASTIC HEAT EQUATIONS WITH GENERAL MULTIPLICATIVE
GAUSSIAN NOISES: HÖLDER CONTINUITY AND INTERMITTENCY

YAOZHONG HU, JINGYU HUANG, DAVID NUALART, AND SAMY TINDEL

Abstract. This paper studies the stochastic heat equation with multiplicative noises: ∂u

∂t
=

1

2
∆u+uẆ , where Ẇ is a mean zero Gaussian noise and uẆ is interpreted both in the sense

of Skorohod and Stratonovich. The existence and uniqueness of the solution are studied
for noises with general time and spatial covariance structure. Feynman-Kac formulas for
the solutions and for the moments of the solutions are obtained under general and different
conditions. These formulas are applied to obtain the Hölder continuity of the solutions.
They are also applied to obtain the intermittency bounds for the moments of the solutions.
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1. Introduction

In this paper we are interested in the stochastic heat equation in R
d driven by a general

multiplicative centered Gaussian noise. This equation can be written as

∂u

∂t
=

1

2
∆u+ uẆ , t > 0, x ∈ R

d, (1.1)

with initial condition u0,x = u0(x), where u0 is a continuous and bounded function. In this

equation, the notation Ẇ stands for the partial derivative ∂d+1W
∂t∂x1···∂xd

(or ∂dW
∂x1···∂xd

when the

noise does not depend on time), where W is a random field formally defined in the next

section. We assume that Ẇ has a covariance of the form

E

[
Ẇt,xẆs,y

]
= γ(s− t) Λ(x− y),

where γ and Λ are general nonnegative and nonnegative definite (generalized) functions
satisfying some integrability conditions. The product appearing in the above equation (1.1)

can be interpreted as an ordinary product of the solution ut,x times the noise Ẇt,x (which is
a distribution). In this case the evolution form of the equation will involve a Stratonovich
integral (or pathwise Young integral). The product in (1.1) can also be also interpreted
as a Wick product (defined in the next section) and in this case the solution satisfies an
evolution equation formulated by using the Skorohod integral. We shall consider both of
these formulations.

There has been a widespread interest in the model (1.1) in the recent past, with several
motivations for its study:

• It is one of the basic stochastic partial differential equations (PDEs) one might wish to
solve, either by extending Itô’s theory [16, 41] or by pathwise techniques [10, 22]. These
developments are also related to Zakai’s equation from filtering theory.

• It appears naturally in homogenization problems for PDEs driven by highly oscillating
stationary random fields (see [20, 24, 28] and references therein). Notice that in this case
limit theorems are often obtained through a Feynman-Kac representation of the solution to
the heat equation.

• Equation (1.1) is also related to the KPZ growth model through the Cole-Hopf’s transform.
In this context, definitions of the equation by means of renormalization and rough paths
techniques have been recently investigated in [21, 23].

• There is a strong connexion between equation (1.1) and the partition function of directed
and undirected continuum polymers. This link has been exploited in [33, 42] and is partic-
ularly present in [1], where basic properties of an equation of type (1.1) are translated into
corresponding properties of the polymer.

• The multiplicative stochastic heat equation exhibits concentration properties of its energy.
This interesting phenomenon is referred to as intermittency for the process u solution to (1.1)
(see e.g [12, 13, 14, 18, 31]), and as a localization property for the polymer measure [7]. The
intermittency property for our model is one of the main result of the current paper, and will
be developed later in the introduction.

• Finally, the large time behavior of equation (1.1) also provides some information on the

random operator Lu = ∆u+ Ẇu. A sample of the related Lyapunov exponent literature is
given by [8, 37].
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Being so ubiquitous, the model (1.1) has thus obviously been the object of numerous studies.

Indeed, when the noise Ẇ is white in time and colored in space, that is, when γ is the
Dirac delta function δ0(x), there is a huge literature devoted to our linear stochastic heat

equation. Notice that in this case the stochastic integral involving Ẇ is interpreted in an
extended Itô sense. Starting with the seminal paper by Dalang [15], these equations, even

with more general nonlinearities (namely uẆ in (1.1) is replaced by σ(u)Ẇ for a general
nonlinear function σ), have received a lot of attention. In this context, the existence and
uniqueness of a solution is guaranteed by the integrability condition

∫

Rd

µ(dξ)

1 + |ξ|2 <∞, (1.2)

where µ is the Fourier transform of Λ. This condition is sharp, in the sense that it is also
necessary in the case of an additive noise.

Recently, there also has been a growing interest in studying equation (1.1) when the noise
is colored in time. Unlike the case where the noise is white in time, one can no longer make
use of the martingale structure of the noise, and just making sense of the equation offers new
challenges. Recent progresses for some specific Gaussian noises include [4, 27, 29] by means
of stochastic analysis methods, and [10, 22, 17] using rough paths arguments.

As mentioned above, we shall focus in this article on intermittency properties for the
stochastic heat equation (1.1). There exist several ways to express this phenomenon, heuris-
tically meaning that the process u concentrates into a few very high peaks. However, all
the definitions involve two functions {a(t); t ≥ 0} and {ℓ(k); k ≥ 2} such that ℓ(k) ∈ (0,∞)
and:

ℓ(k) := lim sup
t→∞

1

a(t)
log
(
E
[
|ut,x|k

])
, (1.3)

where we assume that the limit above is independent of x. In this case, we call a(t) the
upper Lyapunov rate and ℓ(k) the upper Lyapunov exponent. The process u is then called
weakly intermittent if

ℓ(2) > 0 , and ℓ(k) <∞ ∀ k ≥ 2 .

The computation of the exact value of Lyapunov exponents is difficult in general. A related
property (which corresponds to the intuitive notion of intermittency) requires that for any
k1 > k2 the moment of order k1 is significantly greater than the moment of order k2, or
otherwise stated:

lim sup
t→∞

E
1/k1

[
|ut,x|k1

]

E1/k2 [|ut,x|k2 ]
= ∞ . (1.4)

Most of the studies concerning this challenging property involve a white noise in time, and
we refer to [6, 8, 18] for an account on the topic. The recent paper [3] tackles the problem
for a fractional noise in time, with some special (though important) examples of spatial
covariance structures, within the landmark of Skorohod equations. In this case the results
are confined to weak intermittency, with an upper bound on Lk moments obtained invoking
hypercontractivity arguments and lower bounds computed only for the L2 norm.
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With all those preliminary considerations in mind, the current paper proposes to study
existence-uniqueness results, Feynman-Kac representations, chaos expansions and intermit-
tency results for a very wide class of Gaussian noises Ẇ (including in particular those con-
sidered in [3, 16]), for both Skorohod and Stratonovich type equations (1.1). In particular
we obtain some lower bounds for ℓ(k) defined by (1.3) for all k ≥ 2, which are sharp in the
sense that they have the same exponential order as the upper bounds.

More specifically, here is a brief description of the results obtained in the current paper:

(i) In the Skorohod case, the mild solution has a formal Wiener chaos expansion, which
converges in L2(Ω) provided γ is locally integrable and the spectral measure µ of the
spatial covariance satisfies condition (1.2). Moreover, the solution is unique. This
result (proved in Theorem 3.2) is based on Fourier analysis techniques, and covers
the particular examples of the Riesz kernel and the Bessel kernel considered by Balan
and Tudor in [4]. Our results also encompass the case of the fractional covariance

Λ(x) =
∏d

i=1Hi(2Hi − 1)|xi|2Hi−2, where Hi >
1
2

and condition (1.2) is satisfied if

and only if
∑d

i=1Hi > d− 1. This particular structure has been examined in [27].
(ii) Under these general hypothesis to ensure the existence and uniqueness of the solution

of Skorohod type one cannot expect to have a Feynman-Kac formula for the solution,
but one can establish Feynman-Kac-type formulas for the moments of the solution.
The formulas we obtain (see (3.21)), generalize those obtained for the Riesz or the
Bessel kernels in [4, 27].

(iii) Under more restrictive integrability assumptions on γ and µ (see Hypothesis 4.1) we
derive a Feynman-Kac formula for the solution u to (1.1) in the Stratonovich sense.
An immediate application of the Feynman-Kac formula is the Hölder continuity of
the solution.

(iv) In the Stratonovich case, we give a notion of solution using two different methodolo-
gies. One is based on the Stratonovich integral defined as the limit in probability
of the integrals with respect to a regularization of the noise, and another one uses a
pathwise approach, weighted Besov spaces and a Young integral approach. We show
that the two notions coincide and some existence-uniqueness results which are (to
the best of our knowledge) the first link between pathwise and Malliavin calculus
solutions to equation (1.1).

(v) Under some further restrictions (see hypothesis at the beginning of Section 6), we
obtain some sharp lower bounds for the moments of the solution. Namely, we can
find explicit numbers κ1 and κ2 and constants cj , Cj for j = 1, 2 such that

C1 exp (c1t
κ1kκ2) ≤ E

[
|ut,x|k

]
≤ C2 exp (c2t

κ1kκ2)

for all t ≥ 0, x ∈ R
d and k ≥ 2.

As it might be clear from the description above, our central object for the study of (1.1) is
the Feynman-Kac formula for the solution u or for its moments, which is a very interesting
result in its own right. A substantial part of the article is devoted to establish these formulae
with optimal conditions on the covariances γ and Λ, including critical cases. Notice that we
also handle the case of noises which only depend on the space variable. This situation is
usually treated separately in the paper, due to its particular physical relevance.
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Here is the organization of the paper. In Section 2, we briefly set up some preliminary
material on the Gaussian noises that we are dealing with. We also recall some material from
Malliavin calculus. Section 3 is devoted to the stochastic heat equation of Skorohod type.
Existence and uniqueness of the mild solutions are obtained, and Feynman-Kac formula for
the moments of the solution is established. Section 4 focuses on the Feynman-Kac formula
related to equation (1.1) and studies the regularity of the process uF defined in that way
under some conditions on γ and Λ. In section 5 we first prove that the process uF can really
be seen as a solution to the stochastic heat equation interpreted in a mild sense related
to Malliavin calculus. However, uniqueness is missing in this general context. Under some
slightly more restrictive conditions on the noises, we then study the existence and uniqueness
of the mild solution to equation (1.1) using Young integration techniques. Finally, Section 6
is concerned with the bounds for the moments and related intermittency results.
Notations. In the remainder of the article, all generic constants will be denoted by c, C,
and their value may vary from different occurrences. We denote by pt(x) the d-dimensional

heat kernel pt(x) = (2πt)−d/2e−|x|2/2t, for any t > 0, x ∈ R
d.

2. Preliminaries

This section is devoted to a further description of the structure of our noise W . We
consider first the time dependent case and later the time independent case. We will also
provide some basic elements of Malliavin calculus used in the paper.

2.1. Time dependent noise. Let us start by introducing some basic notions on Fourier
transforms of functions: the space of real valued infinitely differentiable functions with com-
pact support is denoted by D(Rd) or D. The space of Schwartz functions is denoted by
S(Rd) or S. Its dual, the space of tempered distributions, is S ′(Rd) or S ′. If u is a vector of
tempered distributions from R

d to R
n, then we write u ∈ S ′(Rd,Rn). The Fourier transform

is defined with the normalization

Fu(ξ) =
∫

Rd

e−ı〈ξ,x〉u(x)dx,

so that the inverse Fourier transform is given by F−1u(ξ) = (2π)−dFu(−ξ).
Similarly to [15], on a complete probability space (Ω,F ,P) we consider a Gaussian noise

W encoded by a centered Gaussian family {W (ϕ); ϕ ∈ D([0,∞)× R
d)}, whose covariance

structure is given by

E [W (ϕ)W (ψ)] =

∫

R
2
+×R2d

ϕ(s, x)ψ(t, y)γ(s− t)Λ(x− y)dxdydsdt, (2.1)

where γ : R → R+ and Λ : Rd → R+ are non-negative definite functions and the Fourier
transform FΛ = µ is a tempered measure, that is, there is an integer m ≥ 1 such that∫
Rd(1 + |ξ|2)−mµ(dξ) <∞.

Let H be the completion of D([0,∞)× R
d) endowed with the inner product

〈ϕ, ψ〉H =

∫

R
2
+×R2d

ϕ(s, x)ψ(t, y)γ(s− t)Λ(x− y) dxdydsdt (2.2)

=

∫

R2
+×Rd

Fϕ(s, ξ)Fψ(t, ξ)γ(s− t)µ(dξ) dsdt,
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where Fϕ refers to the Fourier transform with respect to the space variable only. The
mapping ϕ→ W (ϕ) defined in D([0,∞)× R

d) extends to a linear isometry between H and
the Gaussian space spanned by W . We will denote this isometry by

W (φ) =

∫ ∞

0

∫

Rd

φ(t, x)W (dt, dx)

for φ ∈ H. Notice that if φ and ψ are in H, then E [W (φ)W (ψ)] = 〈φ, ψ〉H. Furthermore,
H contains the class of measurable functions φ on R+ × R

d such that
∫

R2
+×R2d

|φ(s, x)φ(t, y)| γ(s− t)Λ(x− y) dxdydsdt <∞ . (2.3)

We shall make a standard assumption on the spectral measure µ, which will prevail until
the end of the paper.

Hypothesis 2.1. The measure µ satisfies the following integrability condition:
∫

Rd

µ(dξ)

1 + |ξ|2 <∞. (2.4)

Let us now recall some of the main examples of stationary covariances, which will be our
guiding examples in the remainder of the paper.

Example 2.2. One of the most popular spatial covariances is given by the so-called Riesz
kernel, for which Λ(x) = |x|−η and µ(dξ) = cη,d|ξ|−(d−η) dξ. We refer to this kind of noise as
a spatial η-Riesz noise. In this case, Hypothesis 2.1 is satisfied whenever 0 < η < 2, which
will be our standing assumption.

Example 2.3. We shall also handle the space white noise case, namely Λ = δ0 (notice that
in this case Λ is not a function but a measure) and µ = Lebesgue. This noise satisfies
Hypothesis 2.1 only in dimension 1.

Example 2.4. The spatial covariance given by the so-called Bessel kernel is defined by

Λ(x) =

∫ ∞

0

w
η−d
2 e−we−

|x|2

4w dw .

In this case µ(dξ) = cη,d(1 + |ξ|2)− η
2 dξ and Hypothesis 2.1 is satisfied if η > d− 2.

Example 2.5. An example of time covariance γ that has received a lot of attention is the
case of a one-dimensional Riesz kernel, which corresponds to the fractional Brownian motion.
Suppose that γ(t) = H(2H − 1)|t|2H−2 with 1

2
< H < 1 and W is a noise with this time

covariance and a spatial covariance Λ. For any t ≥ 0 and any ϕ ∈ C∞
c (Rd), the function

1[0,t]ϕ belongs to the space H, and we can define Wt(ϕ) := W (1[0,t]ϕ). Then, for any fixed

ϕ ∈ D(Rd), the stochastic process {c−1/2
ϕ Wt(ϕ); t ≥ 0} is a fractional Brownian motion with

Hurst parameter H , where

cϕ =

∫

Rd

|Fϕ(ξ)|2µ(dξ).

That is E [Wt(ϕ)Ws(ϕ)] = RH(s, t)cϕ, where for each H ∈ (0, 1) we have:

RH(s, t) =
1

2

(
|s|2H + |t|2H − |s− t|2H

)
.
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Example 2.6. In the same way, the spatial fractional covariance is given by Λ(x) =
∏d

i=1Hi

(2Hi − 2)|xi|2Hi−2, where 1
2
< Hi < 1 for i = 1, . . . , d. The Fourier transform of Λ is

µ(dξ) = CH

∏d
i=1 |ξi|1−2Hidξ, where CH is a constant depending on the parameters Hi. Then

an easy calculation shows that when
∑d

i=1Hi > d− 1, Hypothesis 2.1 holds.

If W is a noise with fractional space and time covariances, with Hurst parameters H0 in
time, and H1, . . . , Hd in space, then we can write formally W (ϕ) as the distributional integral∫
R+×Rd ϕ(t, x)ẆH(t, x)dtdx, where ẆH(t, x) is the formal partial derivative ∂d+1WH

∂t∂x1···∂xd
(t, x)

and WH is centered Gaussian random field which is a fractional Brownian motion on each
coordinate, that is,

E [WH(s, x)WH(t, y)] = RH0(s, t)

d∏

i=1

RHi
(xi, yi) , s, t ≥ 0, x, y ∈ R

d .

2.2. Time independent noise. In this case we consider a zero mean Gaussian family
W = {W (ϕ);ϕ ∈ D(Rd)}, defined in a complete probability space (Ω,F ,P), with covariance

E [W (ϕ)W (ψ)] =

∫

R2d

ϕ(x)ψ(y)Λ(x− y) dxdy , (2.5)

where, as before, Λ : Rd → R+ is a non-negative definite function whose Fourier transform
µ is a tempered measure. In this case H is the completion of D(Rd) endowed with the inner
product

〈ϕ, ψ〉H =

∫

R2d

ϕ(x)ψ(y)Λ(x− y)dxdy =

∫

Rd

Fϕ(ξ)Fψ(ξ)µ(dξ). (2.6)

The mapping ϕ→ W (ϕ) defined in D(Rd) extends to a linear isometry between H and the
Gaussian space spanned by W , denoted by

W (φ) =

∫

Rd

φ(x)W (dx)

for φ ∈ H. If φ and ψ are in H, then E [W (φ)W (ψ)] = 〈φ, ψ〉H and H contains the class of
measurable functions φ on R

d such that
∫

R2d

|φ(x)φ(y)|Λ(x− y) dxdy <∞ . (2.7)

2.3. Elements of Malliavin calculus. Consider first the case of a time dependent noise.
We will denote by D the derivative operator in the sense of Malliavin calculus. That is, if F
is a smooth and cylindrical random variable of the form

F = f(W (φ1), . . . ,W (φn)) ,

with φi ∈ H, f ∈ C∞
p (Rn) (namely f and all its partial derivatives have polynomial growth),

then DF is the H-valued random variable defined by

DF =

n∑

j=1

∂f

∂xj
(W (φ1), . . . ,W (φn))φj .
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The operator D is closable from L2(Ω) into L2(Ω;H) and we define the Sobolev space D
1,2

as the closure of the space of smooth and cylindrical random variables under the norm

‖DF‖1,2 =
√

E[F 2] + E[‖DF‖2H] .

We denote by δ the adjoint of the derivative operator given by the duality formula

E [δ(u)F ] = E [〈DF, u〉H] , (2.8)

for any F ∈ D
1,2 and any element u ∈ L2(Ω;H) in the domain of δ. The operator δ is

also called the Skorohod integral because in the case of the Brownian motion, it coincides
with an extension of the Itô integral introduced by Skorohod. We refer to Nualart [40] for a
detailed account of the Malliavin calculus with respect to a Gaussian process. If DF and u
are almost surely measurable functions on R+×R

d verifying condition (2.3), then the duality
formula (2.8) can be written using the expression of the inner product in H given in (2.2)

E [δ(u)F ] = E

[∫

R
2
+×R2d

Ds,xF ut,y γ(s− t) Λ(x− y) dsdtdxdy

]
. (2.9)

Let us recall 3 other classical relations in stochastic analysis, which will be used in the
paper:

(i) Divergence type formula. For any φ ∈ H and any random variable F in the Sobolev space
D

1,2, we have

FW (φ) = δ(Fφ) + 〈DF, φ〉H. (2.10)

(ii) A duality relationship. Given a random variable F ∈ D
2,2 and two elements h, g ∈ H,

the duality formula (2.8) implies

E [F W (h)W (g)] = E
[
〈D2F, h⊗ g〉H⊗2

]
+ E [F ] 〈h, g〉H. (2.11)

(iii) Definition of the Wick product of a random and a Gaussian element. If F ∈ D
1,2 and

h is an element of H, then Fh is Skorohod integrable and, by definition, the Wick product
equals to the Skorohod integral of Fh

δ(Fh) = F ⋄W (h). (2.12)

When handling the stochastic heat equation in the Skorohod sense we will make use
of chaos expansions, and we should give a small account on this notion. For any integer
n ≥ 0 we denote by Hn the nth Wiener chaos of W . We recall that H0 is simply R and
for n ≥ 1, Hn is the closed linear subspace of L2(Ω) generated by the random variables
{Hn(W (h)); h ∈ H, ‖h‖H = 1}, where Hn is the nth Hermite polynomial. For any n ≥ 1, we
denote by H⊗n (resp. H⊙n) the nth tensor product (resp. the nth symmetric tensor product)
of H. Then, the mapping In(h

⊗n) = Hn(W (h)) can be extended to a linear isometry between

H⊙n (equipped with the modified norm
√
n!‖ · ‖H⊗n) and Hn.

Consider now a random variable F ∈ L2(Ω) measurable with respect to the σ-field FW

generated by W . This random variable can be expressed as

F = E [F ] +

∞∑

n=1

In(fn), (2.13)
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where the series converges in L2(Ω), and the elements fn ∈ H⊙n, n ≥ 1, are determined by
F . This identity is called the Wiener-chaos expansion of F .

The Skorohod integral (or divergence) of a random field u can be computed by using
the Wiener chaos expansion. More precisely, suppose that u = {ut,x; (t, x) ∈ R+ × R

d} is
a random field such that for each (t, x), ut,x is an FW -measurable and square integrable
random variable. Then, for each (t, x) we have a Wiener chaos expansion of the form

ut,x = E [ut,x] +

∞∑

n=1

In(fn(·, t, x)). (2.14)

Suppose also that

E

[∫ ∞

0

∫ ∞

0

∫

R2d

|ut,x us,y| γ(s− t)Λ(x− y) dxdydsdt

]
<∞.

Then, we can interpret u as a square integrable random function with values in H and the
kernels fn in the expansion (2.14) are functions in H⊗(n+1) which are symmetric in the first n
variables. In this situation, u belongs to the domain of the divergence (that is, u is Skorohod
integrable with respect to W ) if and only if the following series converges in L2(Ω)

δ(u) =

∫ ∞

0

∫

Rd

ut,s δWt,x =W (E[u]) +

∞∑

n=1

In+1(f̃n(·, t, x)), (2.15)

where f̃n denotes the symmetrization of fn in all its n + 1 variables.

The operators D and δ can be introduced in a similar way in the time independent case.
If DF and u are almost surely measurable functions on R

d verifying condition (2.7), then
formula (2.8) can be written using the expression of the inner product in H given in (2.6):

E [δ(u)F ] = E

[∫

R2d

DxF u(y) Λ(x− y) dxdy

]
. (2.16)

3. Equation of Skorohod type

The first part of this section is devoted to the study of the following d-dimensional sto-
chastic heat equation with the time dependent multiplicative Gaussian noise W introduced
in Section 2.1, where the product is understood in the Wick sense (see (2.12)):

∂u

∂t
=

1

2
∆u+ u ⋄ ∂d+1W

∂t∂x1 · · ·∂xd
, (3.1)

the initial condition being a continuous and bounded function u0(x). This equation is formal
and below we provide a rigorous definition of a mild solution using the Skorohod integral.
The main objective of this section is to show that the mild solution exists and is unique
in L2(Ω), assuming that the spectral measure µ satisfies Hypothesis 2.1. This is proved by
showing that the formal Wiener chaos expansion which defines the solution converges in
L2(Ω). In a second part of this section we obtain a Feynman-Kac formula for the moments
of the solution. In the last part we will extend these results to the case where the noise is
time independent.
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3.1. Existence and uniqueness of a solution via chaos expansions. Recall that we
denote by pt(x) the d-dimensional heat kernel pt(x) = (2πt)−d/2e−|x|2/2t, for any t > 0,
x ∈ R

d. For each t ≥ 0 let Ft be the σ-field generated by the random variables W (ϕ), where
ϕ has support in [0, t]×R

d. We say that a random field ut,x is adapted if for each (t, x) the
random variable ut,x is Ft-measurable. We define the solution of equation (3.1) as follows.

Definition 3.1. An adapted random field u = {ut,x; t ≥ 0, x ∈ R
d} such that E[u2t,x] < ∞

for all (t, x) is a mild solution to equation (3.1) with initial condition u0 ∈ Cb(R
d), if for any

(t, x) ∈ [0,∞)×R
d, the process {pt−s(x−y)us,y1[0,t](s); s ≥ 0, y ∈ R

d} is Skorohod integrable,
and the following equation holds

ut,x = ptu0(x) +

∫ t

0

∫

Rd

pt−s(x− y)us,y δWs,y. (3.2)

Suppose now that u = {ut,x; t ≥ 0, x ∈ R
d} is a solution to equation (3.2). Then according

to (2.13), for any fixed (t, x) the random variable ut,x admits the following Wiener chaos
expansion

ut,x =

∞∑

n=0

In(fn(·, t, x)) , (3.3)

where for each (t, x), fn(·, t, x) is a symmetric element in H⊗n. Thanks to (2.15) and using
an iteration procedure, one can then find an explicit formula for the kernels fn for n ≥ 1

fn(s1, x1, . . . , sn, xn, t, x) =
1

n!
pt−sσ(n)

(x− xσ(n)) · · · psσ(2)−sσ(1)
(xσ(2) − xσ(1))psσ(1)

u0(xσ(1)) ,

where σ denotes the permutation of {1, 2, . . . , n} such that 0 < sσ(1) < · · · < sσ(n) < t (see,
for instance, equation (4.4) in [27], where this formula is established in the case of a noise
which is white in space). Then, to show the existence and uniqueness of the solution it
suffices to show that for all (t, x) we have

∞∑

n=0

n!‖fn(·, t, x)‖2H⊗n <∞ . (3.4)

Theorem 3.2. Suppose that µ satisfies Hypothesis 2.1 and γ is locally integrable. Then re-
lation (3.4) holds for each (t, x). Consequently, equation (3.1) admits a unique mild solution
in the sense of Definition 3.1.

Proof. Fix t > 0 and x ∈ R
d. Set fn(s, y, t, x) = fn(s1, y1, . . . , sn, yn, t, x). We have the

following expression

n!‖fn(·, t, x)‖2H⊗n

= n!

∫

[0,t]2n

∫

R2nd

fn(s, y, t, x)fn(r, z, t, x)

n∏

i=1

Λ(yi − zi)

n∏

i=1

γ(si − ri) dydzdsdr

≤ n!‖u0‖2∞
∫

[0,t]2n

∫

R2nd

gn(s, y, t, x)gn(r, z, t, x)
n∏

i=1

Λ(yi − zi)
n∏

i=1

γ(si − ri) dydzdsdr

where dx = dx1 · · · dxn, the differentials dy, ds and dr are defined similarly and

gn(s, y, t, x) =
1

n!
pt−sσ(n)

(x− yσ(n)) · · · psσ(2)−sσ(1)
(yσ(2) − yσ(1)) . (3.5)
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Set now µ(dξ) ≡
∏n

i=1 µ(dξi). Using the Fourier transform and Cauchy-Schwarz, we obtain

n!‖fn(·, t, x)‖2H⊗n

≤ n!‖u0‖2∞
∫

[0,t]2n

∫

Rnd

Fgn(s, ·, t, x)(ξ)Fgn(r, ·, t, x)(ξ)µ(dξ)
n∏

i=1

γ(si − ri)dsdr

≤ n!‖u0‖2∞
∫

[0,t]2n

(∫

Rnd

|Fgn(s, ·, t, x)(ξ)|2µ(dξ)
)1

2
(∫

Rnd

|Fgn(r, ·, t, x)(ξ)|2µ(dξ)
)1

2

×
n∏

i=1

γ(si − ri)dsdr,

and thus, thanks to the basic inequality ab ≤ 1
2
(a2 + b2) and the fact that γ is locally

integrable, this yields:

n!‖fn(·, t, x)‖2H⊗n ≤ n!‖u0‖2∞
∫

[0,t]2n

∫

Rnd

|Fgn(s, ·, t, x)(ξ)|2µ(dξ)
n∏

i=1

γ(si − ri)dsdr

≤ Cnn!‖u0‖2∞
∫

[0,t]2n

∫

Rnd

|Fgn(s, ·, t, x)(ξ)|2µ(dξ)ds, (3.6)

where C = 2
∫ t

0
γ(r)dr. Furthermore, it is readily checked from expression (3.5) that there

exists a constant C > 0 such that the Fourier transform of gn satisfies

|Fgn(s, ·, t, x)(ξ)|2 =
Cn

(n!)2

n∏

i=1

e−(sσ(i+1)−sσ(i))|ξσ(i)+···+ξσ(1)|2,

where we have set sσ(n+1) = t. As a consequence,

(n!)2
∫

Rnd

|Fgn(s, ·, t, x)(ξ)|2µ(dξ)

≤ Cn

n∏

i=1

sup
η∈Rd

∫

Rd

e−(sσ(i+1)−sσ(i))|ξσ(i)+η|2µ(dξσ(i))

= Cn
n∏

i=1

sup
η∈Rd

∣∣∣∣∣∣∣

∫

Rd

e
−

|xσ(i)|
2

4(sσ(i+1)−sσ(i))

(4π(sσ(i+1) − sσ(i)))
d
2

eıxσ(i)·η Λ(xσ(i))dxσ(i)

∣∣∣∣∣∣∣

≤ Cn

n∏

i=1

∫

Rd

e−(sσ(i+1)−sσ(i))|ξσ(i)|2µ(dξσ(i)), (3.7)

where we invoke the fact that |eıxσ(i)·η| = 1 to get rid of the supremum in η. Therefore, from
relations (3.6) and (3.7) we obtain

n!‖fn(·, t, x)‖2H⊗n ≤ ‖u0‖2∞Cn

∫

Rnd

∫

Tn(t)

n∏

i=1

e−(si+1−si)|ξi|2 ds µ(dξ) , (3.8)

where we denote by Tn(t) the simplex

Tn(t) = {0 < s1 < · · · < sn < t}. (3.9)
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Let us now estimate the right hand side of (3.7): making the change of variables si+1−si = wi

for 1 ≤ i ≤ n− 1, and t− sn = wn, and denoting dw = dw1dw2 · · · dwn, we end up with

n!‖fn(·, t, x)‖2H⊗n ≤ ‖u0‖2∞Cn

∫

Rnd

∫

St,n

e−
∑n

i=1 wi|ξi|2dw

n∏

i=1

µ(dξi) ,

where St,n = {(w1, . . . , wn) ∈ [0,∞)n : w1 + · · ·+ wn ≤ t}. We also split the contribution of
µ in the following way: fix N ≥ 1 and set

CN =

∫

|ξ|≥N

µ(dξ)

|ξ|2 , and DN = µ{ξ ∈ R
d : |ξ| ≤ N}. (3.10)

By Lemma 3.3 below, we can write

n!‖fn(·, t, x)‖2H⊗n ≤ ‖u0‖2∞Cn
n∑

k=0

(
n

k

)
tk

k!
Dk

N(2CN)
n−k . (3.11)

Next we choose a sufficiently large N such that 2CCN < 1, which is possible because of
condition (2.4). Using the inequality

(
n
k

)
≤ 2n for any positive integers n and 0 ≤ k ≤ n, we

have
∞∑

n=0

n!‖fn(·, t, x)‖2H⊗n ≤ ‖u0‖2∞
∞∑

n=0

Cn

n∑

k=0

(
n

k

)
tk

k!
Dk

N(2CN)
n−k

≤ ‖u0‖2∞
∞∑

k=0

∞∑

n=k

Cn2n
tk

k!
Dk

N(2CN)
n−k = ‖u0‖2∞

∞∑

k=0

tk

k!
Dk

N(2CN)
−k

∞∑

n=k

(2CCN)
n

≤ ‖u0‖2∞
1

1− 2CCN

∞∑

k=0

tkDk
N(2CN)

−k(2CCN)
k

k!
<∞ .

This proves the theorem. �

Next we establish the lemma that is used in the proof of Theorem 3.2.

Lemma 3.3. Let µ satisfy the condition (2.4). For any N > 0 we let DN and CN be given
by (3.10). Then we have

∫

Rnd

∫

St,n

e−
∑n

i=1 wi|ξi|2dw

n∏

i=1

µ(dξi) ≤
n∑

k=0

(
n

k

)
tk

k!
Dk

N(2CN)
n−k .

Proof. By our assumption (2.4), CN is finite for all positive N . Let I be a subset of
{1, 2, . . . , n} and Ic = {1, 2, . . . , n} \ I. Then we have

∫

Rnd

∫

St,n

n∏

i=1

e−wi|ξi|2 dw µ(dξ)

=

∫

Rnd

∫

St,n

n∏

i=1

e−wi|ξi|2(1{|ξi|≤N} + 1{|ξi|>N}) dw µ(dξ)

=
∑

I⊂{1,2,...,n}

∫

Rnd

∫

St,n

∏

i∈I
e−wi|ξi|21{|ξi|≤N} ×

∏

j∈Ic
e−wj |ξj |21{|ξj |≥N} dw µ(dξ).
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For the indices i in the set I we estimate e−wj |ξj |2 by 1. Then, using the inclusion

St,n ⊂ SI
t × SIc

t ,

where SI
t = {(wi, i ∈ I) : wi ≥ 0,

∑
i∈I wi ≤ t} and SIc

t = {(wi, i ∈ Ic) : wi ≥ 0,
∑

i∈Ic wi ≤ t}
we obtain

∫

Rnd

∫

St,n

n∏

i=1

e−wi|ξi|2 dw µ(dξ)

≤
∑

I⊂{1,2,··· ,n}

∫

Rnd

∫

SI
t ×SIc

t

∏

i∈I
1{|ξi|≤N} ×

∏

j∈Ic
e−wj |ξj |21{|ξj |≥N} dw µ(dξ).

Furthermore, one can bound the integral over SIc

t in the following way
∫

SIc
t

∏

j∈Ic
e−wj |ξj |2 dw ≤

∫

[0,t]Ic

∏

j∈Ic
e−wj |ξj |2 dw =

∏

j∈Ic

1− e−t|ξj |2

|ξj|2
≤
∏

j∈Ic

1

|ξj|2
.

We can thus bound
∫
Rnd

∫
St,n

∏n
i=1 e

−wi|ξi|2 dw µ(dξ) by:

∑

I⊂{1,2,··· ,n}

t|I|

|I|!
(
µ{ξ ∈ R

d : |ξ| ≤ N}
)|I|

2|I
c|
∫

|ξj |>N,∀j∈Ic

∏

j∈Ic

µ(dξj)

|ξj|2

=
∑

I⊂{1,2,··· ,n}

t|I|

|I|!D
|I|
N (2CN)

|Ic| =

n∑

k=0

(
n

k

)
tk

k!
Dk

N(2CN)
n−k ,

which is our claim. �

3.2. Feynman-Kac formula for the moments. Our next objective is to find a formula
for the moments of the mild solution to equation (3.1). For any δ > 0, we define the function
ϕδ(t) =

1
δ
1[0,δ](t) for t ∈ R. Then, ϕδ(t)pε(x) provides an approximation of the Dirac delta

function δ0(t, x) as ε and δ tend to zero.
We set

Ẇ ε,δ
t,x =

∫ t

0

∫

Rd

ϕδ(t− s)pε(x− y)W (ds, dy) . (3.12)

Now we consider the approximation of equation (3.1) defined by

∂uε,δt,x

∂t
=

1

2
∆uε,δt,x + uε,δt,x ⋄ Ẇ ε,δ

t,x . (3.13)

We recall that the Wick product uε,δt,x ⋄ Ẇ ε,δ
t,x is well defined as a square integrable random

variable provided the random variable uε,δt,x belongs to the space D
1,2 (see (2.12)), and in this

case we have

uε,δs,y ⋄ Ẇ ε,δ
s,y =

∫ s

0

∫

Rd

ϕδ(s− r)pε(y − z)uε,δs,yδWr,z. (3.14)

Furthermore, the mild or evolution version of (3.13) is

uε,δt,x = ptu0(x) +

∫ t

0

∫

Rd

pt−s(x− y)uε,δs,y ⋄ Ẇ ε,δ
s,y dsdy. (3.15)
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Substituting (3.14) into (3.15), and formally applying Fubini’s theorem yields

uε,δt,x = ptu0(x) +

∫ t

0

∫

Rd

(∫ t

0

∫

Rd

pt−s(x− y)ϕδ(s− r)pε(y − z)uε,δs,ydsdy

)
δWr,z. (3.16)

This leads to the following definition.

Definition 3.4. An adapted random field uε,δ = {uε,δt,x; t ≥ 0, x ∈ R
d} is a mild solution to

equation (3.13) if for each (r, z) ∈ [0, t]× R
d the integral

Y t,x
r,z =

∫ t

0

∫

Rd

pt−s(x− y)ϕδ(s− r)pε(y − z)uε,δs,ydsdy

exists and Y t,x is a Skorohod integrable process such that (3.16) holds for each (t, x).

Notice that according to relation (2.8), the above definition is equivalent to saying that

uε,δt,x ∈ L2(Ω), and for any random variable F ∈ D
1,2 , we have

E

[
Fuε,δt,x

]
= E [F ] ptu0(x) + E

[
〈Y t,x, DF 〉H

]
. (3.17)

In order to derive a Feynman-Kac formula for the moment of order k ≥ 2 of the solution
to equation (3.1) we need to introduce k independent d-dimensional Brownian motions Bj ,
j = 1, . . . , k, which are independent of the noise W driving the equation. We shall study
the probabilistic behavior of some random variables with double randomness, and we thus
introduce some additional notation:

Notation 3.5. We denote by P,E the probability and expectation with respect to the annealed
randomness concerning the couple (B,W ), where B = (B1, . . . , Bk), while we set respectively
EB and EW for the expectation with respect to one randomness only.

With this notation in mind, define

uε,δt,x = EB

[
exp

(
W (Aε,δ

t,x)−
1

2
αε,δ
t,x

)]
, (3.18)

where

Aε,δ
t,x(r, y) =

1

δ

(∫ δ∧(t−r)

0

pε(B
x
t−r−s − y)ds

)
1[0,t](r), and αε,δ

t,x = ‖Aε,δ
t,x‖2H, (3.19)

for a standard d-dimensional Brownian motion B independent of W . Then one can prove
that uε,δt,x is a mild solution to equation (3.13) in the sense of Definition 3.4. The proof is
similar to the proof of Proposition 5.2 in [27] and we omit the details.

The next theorem asserts that the random variables uε,δt,x have moments of all orders,
uniformly bounded in ε and δ, and converge to the mild solution of equation (3.1), which is
unique by Theorem 3.2, as δ and ε tend to zero. Moreover, it provides an expression for the
moments of the mild solution of equation (3.1).

Theorem 3.6. Suppose γ is locally integrable and µ satisfies Hypothesis 2.1. Then for any
integer k ≥ 1 we have

sup
ε,δ

E

[
|uε,δt,x|k

]
<∞ , (3.20)
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the limit limε↓0 limδ↓0 u
ε,δ
t,x exists in Lp for all p ≥ 1, and it coincides with the mild solution u

of equation (3.1). Furthermore, we have for any integer k ≥ 2

E
[
ukt,x
]
= EB

[
k∏

i=1

u0(B
i
t + x) exp

(
∑

1≤i<j≤k

∫ t

0

∫ t

0

γ(s− r)Λ(Bi
s − Bj

r)dsdr

)]
, (3.21)

where {Bj ; j = 1, . . . , k} is a family of d-dimensional independent standard Brownian mo-
tions independent of W .

Proof. To simplify the proof we assume that u0 is identically one. Fix an integer k ≥ 2.
Using (3.18) we have

E

[(
uε,δt,x

)k]
= EW

[
k∏

j=1

EB

[
exp

(
W (Aε,δ,Bj

t,x )− 1

2
αε,δ,Bj

t,x

)]]
,

where for any j = 1, . . . , k, Aε,δ,Bj

t,x and αε,δ,Bj

t,x are evaluations of (3.19) using the Brownian

motion Bj . Therefore, since W (Aε,δ,Bj

t,x ) is a Gaussian random variable conditionally on B,
we obtain

E

[(
uε,δt,x

)k]
= EB

[
exp

(
1

2
‖

k∑

j=1

Aε,δ,Bj

t,x ‖2H − 1

2

k∑

j=1

αε,δ,Bj

t,x

)]

= EB

[
exp

(
1

2
‖

k∑

j=1

Aε,δ,Bj

t,x ‖2H − 1

2

k∑

j=1

‖Aε,δ,Bj

t,x ‖2H

)]

= EB

[
exp

(
∑

1≤i<j≤k

〈Aε,δ,Bi

t,x , Aε,δ,Bj

t,x 〉H
)]

. (3.22)

Let us now evaluate the quantities 〈Aε,δ,Bi

t,x , Aε,δ,Bj

t,x 〉H above: by the definition of Aε,δ,Bi

t,x , for
any i 6= j we have

〈Aε,δ,Bi

t,x , Aε,δ,Bj

t,x 〉H =

∫ t

0

∫ t

0

∫

Rd

FAε,δ,Bi

t,x (u, ·)(ξ)FAε,δ,Bj

t,x (v, ·)(ξ)γ(u− v)µ(dξ)dudv. (3.23)

On the other hand, for u ∈ [0, t] we can write

FAε,δ,Bi

t,x (u, ·)(ξ) =
1

δ

∫ δ∧(t−u)

0

Fpε(Bi
t−u−s + x− ·)(ξ)ds

=
1

δ

∫ δ∧(t−u)

0

exp

(
−ε

2|ξ|2
2

+ ı
〈
ξ, Bi

t−u−s + x
〉)

ds.

Thus

〈Aε,δ,Bi

t,x , Aε,δ,Bj

t,x 〉H (3.24)

=

∫

Rd

(∫ t

0

∫ t

0

(
1

δ2

∫ δ∧v

0

∫ δ∧u

0

eı〈ξ,Bi
u−s1

−Bj
v−s2

〉ds1ds2
)
γ(u− v)dudv

)
× e−ε2|ξ|2µ(dξ),

and we divide the proof in several steps.
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Step 1: We claim that,

lim
ε↓0

lim
δ↓0

〈Aε,δ,Bi

t,x , Aε,δ,Bj

t,x 〉H =

∫ t

0

∫ t

0

γ(u− v)Λ(Bi
u − Bj

v)dudv , (3.25)

where the convergence holds in L1(Ω). Notice first that the right-hand side of equation (3.25)
is finite almost surely because

EB

[∫ t

0

∫ t

0

γ(u− v)Λ(Bi
u −Bj

v)dudv

]
=

∫ t

0

∫ t

0

∫

Rd

γ(u− v)e−
1
2
(u+v)|ξ|2µ(dξ)dudv

and we show that this is finite making the change of variables x = u − v, y = u + v, and
using our hypothesis on γ and µ like in the proof of Theorem 3.2.

In order to show the convergence (3.25) we first let δ tend to zero. Then, owing to the
continuity of B and applying some dominated convergence arguments to (3.24), we obtain
the following limit almost surely and in L1(Ω)

lim
δ↓0

〈Aε,δ,Bi

t,x , Aε,δ,Bj

t,x 〉H =

∫

Rd

(∫ t

0

∫ t

0

eı〈ξ,Bi
u−Bj

v〉γ(u− v)dudv

)
e−ε2|ξ|2 µ(dξ). (3.26)

Finally, it is easily checked that the right-hand side of (3.26) converges in L1(Ω) to the
right-hand side of (3.25) as ε tends to zero, by means of a simple dominated convergence
argument again.

Step 2: For notational convenience, we denote by B and B̃ two independent d-dimensional

Brownian motions, and E will denote here the expectation with respect to both B and B̃.
We claim that for any λ > 0

sup
ε,δ

E

[
exp

(
λ
〈
Aε,δ,B

t,x , Aε,δ,B̃
t,x

〉

H

)]
<∞ . (3.27)

Indeed, starting from (3.24), making the change of variables u−s1 → u, v−s2 → v, assuming
δ ≤ t, and using Fubini’s theorem, we can write

〈
Aε,δ,B

t,x , Aε,δ,B̃
t,x

〉
H
=

1

δ2

∫ δ

0

∫ δ

0

∫ t−s1

0

∫ t−s2

0

∫

Rd

exp
(
−ı(Bu − B̃v) · ξ

)

× exp(−ε|ξ|2)γ(u+ s1 − v − s2)µ(dξ) dudvds1ds2 .

We now control the moments of 〈Aε,δ,B
t,x , Aε,δ,B̃

t,x 〉H in order to reach exponential integrability:

〈
Aε,δ,B

t,x , Aε,δ,B̃
t,x

〉n
H
=

1

δ2n

∫

Oδ,n

∫

Rdn

exp

(
−ı

n∑

l=1

(Bul
− B̃vl) · ξl

)

× e−ε
∑n

l=1 |ξl|2
n∏

l=1

γ(ul + sl − vl − s̃l)µ(dξ) dsds̃dudv, (3.28)

where µ(dξ) =
∏n

l=1 µ(dξl), the differentials ds, ds̃, du, dv are defined similarly, and

Oδ,n = {(s, s̃, u, v); 0 ≤ sl, s̃l ≤ δ, 0 ≤ ul ≤ t− sl, 0 ≤ vl ≤ t− s̃l, for all 1 ≤ l ≤ n} .
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Moreover, we have:

E

[
exp

(
−ı

n∑

l=1

(Bul
− B̃vl) · ξl

)]
= exp

(
−1

2
Var

(
n∑

l=1

(Bul
− B̃vl) · ξl

))
(3.29)

= exp

(
−1

2

∑

1≤i,j≤n

(ui ∧ uj + vi ∧ vj)ξi · ξj
)
.

Taking into account the fact that γ is locally integrable, this yields

E

[〈
Aε,δ,B

t,x , Aε,δ,B̃
t,x

〉n
H

]
≤ Cn

∫

[0,t]2n

∫

Rdn

exp

(
−1

2

∑

1≤i,j≤n

(si ∧ sj + s̃i ∧ s̃j)ξi · ξj
)
µ(dξ)dsds̃

≤ Cn

∫

Rdn

∫

[0,t]n
exp

(
−
∑

1≤i,j≤n

(si ∧ sj) ξi · ξj
)
dsµ(dξ) .

Since
∫

Rdn

exp

(
−
∑

1≤i,j≤n

(si ∧ sj)ξi · ξj
)
µ(dξ)

is a symmetric function of s1, s2, . . . , sn, we can restrict our integral to Tn(t) = {0 < s1 <
s2 < · · · < sn < t}. Hence, using the convention s0 = 0, we have

E

[〈
Aε,δ,B

t,x , Aε,δ,B̃
t,x

〉n
H

]
≤ Cnn!

∫

Rdn

∫

Tn(t)

exp

(
−
∑

1≤i,j≤n

(si ∧ sj)ξi · ξj
)
dsµ(dξ) (3.30)

= Cnn!

∫

Rdn

∫

Tn(t)

exp

(
−

n∑

i=1

(si − si−1)|ξi + · · ·+ ξn|2
)
dsµ(dξ).

Thus, using the same argument as in the proof of the estimate (3.7), we end up with

E

[〈
Aε,δ,B

t,x , Aε,δ,B̃
t,x

〉n
H

]
≤ Cnn!

∫

Tn(t)

n∏

i=1

(
sup
η∈Rd

∫

Rd

e−(si−si−1)|ξi+η|2µ(dξ)

)
ds

≤ Cnn!

∫

Tn(t)

n∏

i=1

(∫

Rd

e−(si−si−1)|ξi|2µ(dξi)

)
ds .

Making the change of variable wi = si − si−1, the above integral is equal to

Cnn!

∫

St,n

∫

Rdn

n∏

i=1

e−wi|ξi|2µ(dξ)dw ≤ Cnn!
n∑

k=0

(
n

k

)
tk

k!
Dk

N(2CN)
n−k,

where we have resorted to Lemma 3.3 for the last inequality. Therefore,

1

n!
E

[〈
Aε,δ,B

t,x , Aε,δ,B̃
t,x

〉n
H

]
≤ Cn

n∑

k=0

(
n

k

)
tk

k!
Dk

N(2CN)
n−k ,
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which is exactly the right hand side of (3.11). Thus, along the same lines as in the proof of
Theorem 3.2, we get

E

[
exp

(
λ
〈
Aε,δ,B

t,x , Aε,δ,B̃
t,x

〉
H

)]
=

∞∑

n=0

λn

n!
E

[〈
Aε,δ,B

t,x , Aε,δ,B̃
t,x

〉n
H

]
<∞,

which completes the proof of (3.27).

Step 3: Starting from (3.22), (3.25) and (3.27) we deduce that E[(uε,δt,x)
k] converges as δ and

ε tend to zero to the right-hand side of (3.21). On the other hand, we can also write

E

[
uε,δt,xu

ε′,δ′

t,x

]
= EB

[
exp

(
〈Aε,δ,B1

t,x , Aε′,δ′,B2

t,x 〉H
)]

.

As before we can show that this converges as ε, δ, ε′, δ′ tend to zero. So, uε,δt,x converges in L2

to some limit vt,x, and the limit is actually in Lp , for all p ≥ 1. Moreover, E[vkt,x] equals to
the right hand side of (3.21). Finally, letting δ and ε tend to zero in equation (3.17) we get

E[Fvt,x] = E[F ] + E [〈DF, vpt−·(x− ·)〉H]
which implies that the process v is the solution of equation (3.1), and by the uniqueness of
the solution we have v = u. �

Remark 3.7. If the space dimension is 1, we can consider equation (3.1) assuming that
the time covariance function is γ(t) = H(2H − 1)|t|2H−2, 1

2
< H < 1, and the noise is

white in space, which means Λ(x) is the Dirac delta function δ0(x). The integral form of
this Gaussian noise is a two-parameter process which is a Brownian motion in space and a
fractional Brownian motion with Hurst parameter H in time. This equation has been studied
in [27], where the existence of a unique mild solution has been proved, and the following
formula for the moments of the solution has been obtained

E
[
ukt,x
]
= EB

[
k∏

i=1

u0(B
i
t + x) exp

(
αH

∑

1≤i<j≤k

∫ t

0

∫ t

0

|s− r|2H−2δ0(B
i
s −Bj

r)dsdr

)]
,

(3.31)
where αH = H(2H − 1). Notice that in the above expression the exponent is a sum of
weighted intersection local times.

3.3. Time independent noise. In this section we consider the following stochastic heat
equation in the Skorohod sense driven by the multiplicative time independent noise intro-
duced in Section 2.2:

∂u

∂t
=

1

2
∆u+ u ⋄ ∂dW

∂x1 · · ·∂xd
. (3.32)

The notion of mild solution based on the Skorohod integral is similar to Definition 3.1.

Definition 3.8. An adapted random field u = {ut,x; t ≥ 0, x ∈ R
d} such that E[u2t,x] < ∞

for all (t, x) is a mild solution to equation (3.32) with initial condition u0 ∈ Cb(R
d), if for

any 0 ≤ s ≤ t, x ∈ R
d, the process {pt−s(x − y)us,y; y ∈ R

d} is Skorohod integrable in the
sense given by relation (2.16), and the following equation holds:

ut,x = ptu0(x) +

∫ t

0

(∫

Rd

pt−s(x− y)us,yδWy

)
ds. (3.33)
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Suppose that u = {ut,x; t ≥ 0, x ∈ R
d} is a mild solution to equation (3.32). Then for any

fixed (t, x), the random variable ut,x admits the following Wiener chaos expansion:

ut,x =
∞∑

n=0

In(fn(·, t, x)) , (3.34)

where for each (t, x), fn(·, t, x) is a symmetric element in H⊗n. Notice that here the space H
contains functions of the space variable y only. Using an iteration procedure similar to the
one described at Section 3.1, one can find the explicit formula for the kernels fn for n ≥ 1:

fn(x1, . . . , xn, t, x)

=
1

n!

∫

[0,t]n
pt−sσ(n)

(x− xσ(n)) · · ·psσ(2)−sσ(1)
(xσ(2) − xσ(1)) psσ(1)

u0(xσ(1)) ds1 · · · dsn ,

where σ denotes the permutation of {1, 2, . . . , n} such that 0 < sσ(1) < · · · < sσ(n) < t. Then,
to show the existence and uniqueness of the solution it suffices to show that for all (t, x) we
have

∞∑

n=0

n!‖fn(·, t, x)‖2H⊗n <∞ . (3.35)

Theorem 3.9. Assume that µ satisfies Hypothesis 2.1. Then (3.35) holds for each (t, x)
and equation (3.32) has a unique mild solution.

The proof of this theorem is analogous to the proof of Theorem 3.2 and is omitted for sake
of conciseness. As in the previous subsection, we can deduce the following moment formula
for the solution to equation (3.32).

E
[
ukt,x
]
= EB

[
k∏

i=1

u0(B
i
t + x) exp

(
∑

1≤i<j≤k

∫ t

0

∫ t

0

Λ(Bi
s − Bj

r)dsdr

)]
, (3.36)

where Bi, i = 1, . . . , k, are d-dimensional independent Brownian motions.

4. Feynman-Kac functional

In this section we construct a candidate solution for equation (1.1) using a suitable version
of Feynman-Kac formula. The construction has been inspired by the approach developed
in [29] for the case of fractional noises. We will establish the existence and Hölder continuity
properties of the Feynman-Kac functional.

4.1. Construction of the Feynman-Kac functional. We first consider the time depen-
dent noise introduced in Section 2.1, and later we deal with the time independent noise
introduced in Section 2.2.

4.1.1. Time dependent noise. Suppose first that W is the time dependent noise introduced
in Section 2.1. If the initial condition of equation (1.1) is a continuous and bounded function
u0, analogously to [29] we define

ut,x = EB

[
u0(B

x
t ) exp

(∫ t

0

∫

Rd

δ0(B
x
t−r − y)W (dr, dy)

)]
, (4.1)
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where Bx is a d-dimensional Brownian motion independent of W and starting at x ∈ R
d.

Our first goal is thus to give a meaning to the functional

Vt,x =

∫ t

0

∫

Rd

δ0(B
x
t−r − y)W (dr, dy) (4.2)

appearing in the exponent of the Feynman-Kac formula (4.1). To this aim, like in the case
of the formula for moments (see (3.12)), we will proceed by approximation. Namely, we will
approximate V by the process

V ε
t,x =

∫ t

0

∫

Rd

pε(B
x
t−r − y)W (dr, dy) , ε > 0 , (4.3)

which is well defined as a Wiener integral for a fixed path of the Brownian motion B. The
convergence of the approximation V ε is obtained in the next proposition, for which we need
to impose the following conditions on the function γ and the measure µ.

Hypothesis 4.1. There exists a constant 0 < β < 1 such that for any t ∈ R,

0 ≤ γ(t) ≤ Cβ|t|−β (4.4)

for some constant Cβ > 0, and the measure µ satisfies
∫

Rd

µ(dξ)

1 + |ξ|2−2β
<∞ . (4.5)

Proposition 4.2. Let V ε
t,x be the functional defined in (4.3) and suppose that Hypothesis 4.1

holds. Then for fixed t ≥ 0 and x ∈ R
d, the random variable V ε

t,x converges in L2(Ω) towards
a functional denoted by Vt,x. Moreover, conditioned by B, Vt,x is a Gaussian random variable
with mean 0 and variance

VarW (Vt,x) =

∫ t

0

∫ t

0

γ(r − s)Λ(Br − Bs)drds . (4.6)

Proof. Our first goal is to find

lim
ε1,ε2→0

E
[
V ε1
t,x V

ε2
t,x

]
. (4.7)

To this aim, we set Aε
t,x(r, y) = pε(B

x
t−r − y)1[0,t](r). Then

E
[
V ε1
t,x V

ε2
t,x

]
= E

[
W
(
Aε1

t,x

)
W
(
Aε2

t,x

)]
= EB

[〈
Aε1

t,x, A
ε2
t,x

〉
H
]

= EB

[∫ t

0

∫ t

0

∫

Rd

FAε1
t,x(u, ·)(ξ)FAε2

t,x(v, ·)(ξ)γ(u− v)µ(dξ)dudv

]
.

Furthermore, we can write for u ≤ t

FAε1
t,x(u, ·)(ξ) = Fpε1(Bx

t−u − ·)(ξ) = e−
1
2
ε21|ξ|2+ı〈ξ,Bx

u〉,

and thus

〈
Aε1

t,x, A
ε2
t,x

〉
H =

∫

Rd

(∫

[0,t]2
eı〈ξ,Bv−Bu〉γ(u− v)dudv

)
e−

1
2
(ε21+ε22)|ξ|2µ(dξ). (4.8)
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This yields

E
[
V ε1
t,x V

ε2
t,x

]
= EB

[〈
Aε1

t,x, A
ε2
t,x

〉
H
]

=

∫

Rd

(∫

[0,t]2
e−

1
2
|ξ|2|v−u|γ(u− v)dudv

)
e−

1
2
(ε21+ε22)|ξ|2µ(dξ). (4.9)

Set now

σ2
t :=

∫

Rd

(∫

[0,t]2
e−

1
2
|ξ|2|v−u|γ(u− v)dudv

)
µ(dξ).

Is easily seen by direct integration and by using the hypothesis (4.4) that
∫

[0,t]2
e−

1
2
|ξ|2|v−u|γ(u− v)dudv ≤ cβ

∫

[0,t]2
e−

1
2
|ξ|2|v−u||u− v|−βdudv ≤ c

1 + |ξ|2−2β
.

Thus

σ2
t ≤ c

∫

Rd

µ(dξ)

1 + |ξ|2−2β
,

which is a finite quantity by hypothesis (4.5). As a consequence, for every sequence εn
converging to zero, V εn

t,x converges in L2 to a limit denoted by Vt,x which does not depend on
the choice of the sequence εn. Finally, by a similar argument, we show (4.6). This completes
the proof of the proposition. �

Remark 4.3. We could also regularize the noise in time, and define

V ε,δ
t,x = W (Aε,δ

t,x), (4.10)

where Aε,δ
t,x has been introduced in (3.19). Then it is easy to check that V ε,δ

t,x converges as δ
tend to zero in L2(Ω) to V ε

t,x.

In order to give a meaning to formula (4.1) we need to establish the existence of exponential
moments for Vt,x. To complete this task, we need the following lemma.

Lemma 4.4. Suppose that Hypothesis 4.1 holds. Then for any ε > 0 there exists a constant
Cε such that for any v > 0 we have:

sup
η∈Rd

∫

Rd

e−
v
2
|ξ−η|2 µ(dξ) ≤ Cε +

ε

v1−β
. (4.11)

Proof. The fact that the left hand side of (4.11) is uniformly bounded in η is proven similarly
to (3.7), but is included here for sake of readability. Indeed, consider η ∈ R

d, v > 0 and

define a function ϕη : Rd → R+ by ϕη(ξ) = e−
v
2
|ξ−η|2 . Then according to Parseval’s identity

we have ∫

Rd

ϕη(ξ)µ(dξ) = c

∫

Rd

Fϕη(x) Λ(x)dx = c

∫

Rd

v−d/2e−
|x|2

2v eı〈x, η〉 Λ(x)dx.

We now use the fact that Λ is assumed to be nonnegative in order to get the following
uniform bound in η

∫

Rd

ϕη(ξ)µ(dξ) ≤ c

∫

Rd

v−d/2e−
|x|2

2v Λ(x)dx =

∫

Rd

ϕ0(ξ)µ(dξ) =

∫

Rd

e−
v
2
|ξ|2 µ(dξ).
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To estimate the right-hand side of the above inequality we introduce a constantM > 0, whose
exact value is irrelevant for our computations, and let cM,1 = µ(B(0,M)), where B(0,M)

stands for the ball of radius M centered at 0 in R
d. Then the trivial bound e−

v
2
|ξ|2 ≤ 1 yields

∫

Rd

e−
v
2
|ξ|2 µ(dξ) ≤ cM,1 +

∫

|ξ|>M

e−
v
2
|ξ|2 µ(dξ).

Invoking the fact that the function x 7→ x1−βe−x is bounded on R+, we thus get
∫

|ξ|>M

e−
v
2
|ξ|2 µ(dξ) ≤ c2

v1−β

∫

|ξ|>M

µ(dξ)

|ξ|2−2β
≤ c2
v1−β

∫

|ξ|>M

µ(dξ)

1 + |ξ|2−2β
.

Summarizing the above, we have obtained that
∫

Rd

e−
v
2
|ξ−η|2 µ(dξ) ≤ cM,1 +

c2
v1−β

∫

|ξ|>M

µ(dξ)

1 + |ξ|2−2β
,

uniformly in η ∈ R
d. Our claim is thus obtained by choosing M large enough so that

c2
∫
|ξ|>M

µ(dξ)
1+|ξ|2−2β ≤ ε, which is possible by hypothesis (4.5). �

The following elementary integration result will also be crucial for the moment estimates
we deduce later.

Lemma 4.5. Let α ∈ (−1 + ε, 1)m with ε > 0 and set |α| =∑m
i=1 αi. Recall (see (3.9)) that

Tm(t) = {(r1, r2, . . . , rm) ∈ R
m : 0 < r1 < · · · < rm < t}. Then there is a constant κ such

that

Jm(t, α) :=

∫

Tm(t)

m∏

i=1

(ri − ri−1)
αidr ≤ κmt|α|+m

Γ(|α|+m+ 1)
,

where by convention, r0 = 0.

Proof. Using identities on Beta functions and a recursive algorithm we can snow that

Jm(t, α) =

∏m
i=1 Γ(αi + 1)t|α|+m

Γ(|α|+m+ 1)
,

and the result follows thanks to the fact that the Γ function is bounded on (ε, 2). �

With these preliminary results in hand, we can now prove the exponential integrability of
the random variable Vt,x defined in Proposition 4.2.

Theorem 4.6. Let Vt,x be the functional defined in Proposition 4.2, and assume Hypothesis
4.1. Then for any λ ∈ R and T > 0, we have supt∈[0,T ], x∈Rd E[exp(λ Vt,x)] <∞. In particular,
the functional (4.1) is well defined.

Proof. Fix t > 0 and x ∈ R
d. Conditionally to B, the random variable Vt,x is Gaussian and

centered. From (4.6), we obtain

E [exp(λVt,x)] = EB

[
exp

(
λ2

2

∫ t

0

∫ t

0

γ(r − s)Λ(Br −Bs)drds

)]
= EB

[
exp

(
λ2

2
Y

)]
,

where

Y =

∫ t

0

∫ t

0

γ(r − s)Λ(Br −Bs)drds .
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In order to show that E [exp(λY )] <∞ for any λ ∈ R, we are going to use an elaboration of
a method introduced by Le Gall [34] (see also [27, 29]). With respect to those contributions,
our case requires a careful handling of the weights Λ and γ. Notice in particular that in our
general setting we do not have scaling properties, and some additional work is necessary to
overcome this difficulty.

Le Gall’s method starts from the following construction: for n ≥ 1 and k = 1, . . . , 2n−1 we
set

Jn,k :=

[
(2k − 2) t

2n
,
(2k − 1) t

2n

)
, In,k :=

[
(2k − 1) t

2n
,
2k t

2n

)
, and An,k := Jn,k × In,k.

Notice then that {An,k; n ≥ 1, k = 1, . . . , 2n−1} is a partition of the simplex T2(t), and in
addition In,k−1 ∩ In,k = ∅ and Jn,k−1 ∩ Jn,k = ∅ (see Figure 1 for an illustration). We can
thus write

Y =
∞∑

n=1

2n−1∑

k=1

an,k, where an,k =

∫

An,k

γ(r − s)Λ(Br − Bs)drds .

Figure 1. Le Gall’s partition of T2(t) into disjoint rectangles of decreasing area.
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Observe that for fixed n the random variables {an,k; k = 1, . . . , 2n−1} are independent,
owing to the fact that they depend on the increments of B on disjoint sets. Now, thanks
to the fact that Jn,k ∩ In,k = ∅, for all (r, s) ∈ An,k we can decompose Br − Bs into
(Br − B (2k−1) t

2n
) − (Bs − B (2k−1) t

2n
), where the two pieces of the difference are independent

Brownian motions. Thus the following identity in law holds true:

{Br − Bs; (r, s) ∈ An,k}
(d)
=
{
B

r− (2k−1) t
2n

− B̃
s− (2k−1) t

2n
; (r, s) ∈ An,k

}
,
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where B and B̃ are two independent Brownian motions. With an additional change of

variables r − (2k−1)t
2n

7→ r and (2k−1)t
2n

− s 7→ s, this easily yields the following identity

an,k
(d)
=

∫

An,k

γ(r + s) Λ
(
B (2k−1)t

2n
+r

− B̃ (2k−1)t
2n

−s

)
dsdr

(d)
=

∫ t
2n

0

∫ t
2n

0

γ(r + s) Λ(Br + B̃s) dsdr := an.

Summarizing the considerations above, we have found that

Y =
∞∑

n=1

2n−1∑

k=1

an,k, (4.12)

where for each n ≥ 1 the collection {an,k; k = 1, . . . , 2n−1} is a family of independent random
variables such that

an,k
(d)
= an, with an =

∫ t
2n

0

∫ t
2n

0

γ(r + s) Λ(Br + B̃s) dsdr,

where B, B̃ are two independent Brownian motions. Notice that the transformation of

Br − Bs into Br + B̃s we have achieved is essential for our future computations. Indeed, it
will be translated into some singularities (r − s)−1 in a neighborhood of 0 in R

2
+ becoming

some more harmless singularities of the form (r + s)−1. The proof is now decomposed in
several steps.

Step 1. First we need to estimate the moments of the random variable an. We claim that
for any ε > 0 there exist constants Cε,1 > 0 and C2 > 0 (which depend on t) such that

E[amn ] ≤ Cε,1m!

(
C2ε

2n

)m

. (4.13)

In order to show (4.13), we first write

E [amn ] =

∫

[0, t
2n

]m

∫

[0, t
2n

]m

m∏

i=1

γ(ri + si)E

[
m∏

i=1

Λ(Bri + B̃si)

]
dsdr .

Let pB be the joint density of (Br1 + B̃s1, . . . , Brm + B̃sm), which is a Schwartz function.
Hence, using the Fourier transform and the same considerations as for (3.29), we get

E

[
m∏

i=1

Λ(Bri + B̃si)

]
=

∫

Rmd

m∏

i=1

Λ(xi)pB(x)dx =

∫

Rmd

e−
1
2

∑m
i,j=1 ξi·ξj(ri∧rj+si∧sj)

m∏

i=1

µ(dξi) .

We now proceed as in the proof of Theorem 3.6, with an additional care in the computation
of terms. Thanks to our assumption (4.4) on γ and the basic inequality a + b ≥ 2

√
ab for
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nonnegative a, b, we have

E [amn ] =

∫

[0, t
2n

]m

∫

[0, t
2n

]m

∫

Rmd

e−
1
2

∑m
i,j=1 ξi·ξj(ri∧rj+si∧sj)

m∏

i=1

µ(dξi)
m∏

i=1

γ(ri + si)dsdr

≤ (2−βCβ)
m

∫

[0, t
2n

]m

∫

[0, t
2n

]m

∫

Rmd

e−
1
2

∑m
i,j=1 ξi·ξj(ri∧rj+si∧sj)

m∏

i=1

µ(dξi)

m∏

i=1

(risi)
−β

2 dsdr,

and thus, invoking Cauchy-Schwarz inequality with respect to the measure
∏m

i=1(risi)
−β

2 drds,
we end up with

E [amn ] ≤ (2−βCβ)
m

∫

[0, t
2n

]m

∫

[0, t
2n

]m

(∫

Rmd

e−
∑m

i,j=1 ξi·ξj(ri∧rj)
m∏

i=1

µ(dξi)

) 1
2

×
(∫

Rmd

e−
∑m

i,j=1 ξi·ξj(si∧sj)
m∏

i=1

µ(dξi)

) 1
2 m∏

i=1

(risi)
−β

2 dsdr.

Since in the above expression, both integrals with respect to the measure
∏m

i=1 µ(dξi) are
symmetric functions of the ri’s and si’s, we can restrict the integral to the region Tm(

t
2n
),

where Tm(t) has been defined in (3.9). Therefore, similarly to (3.30) and with the convention
r0 = 0, we obtain that for any ε > 0 the expectation E[amn ] is bounded by

(2−βCβ)
m(m!)2




∫

Tm( t
2n

)

(∫

Rmd

e−
∑m

i=1(ri−ri−1)|ξi+···+ξm|2
m∏

i=1

µ(dξi)

) 1
2 m∏

i=1

|ri|−
β
2 dr




2

≤ (2−βCβ)
m(m!)2

(∫

Tm( t
2n

)

m∏

i=1

(
Cε +

ε

(ri − ri−1)1−β

) 1
2

m∏

i=1

(ri − ri−1)
−β

2 dr

)2

,

where we have used Lemma 4.4 and we have bounded r
−β

2
i by (ri − ri−1)

−β
2 . We now resort

to the inequality (a+ b)
1
2 ≤ a

1
2 + b

1
2 in order to get

E [amn ] ≤ (2−βCβ)
m(m!)2

(∫

Tm( t
2n

)

m∏

i=1

(
√
Cε +

√
ε

(ri − ri−1)
1−β
2

)
m∏

i=1

(ri − ri−1)
−β

2 dr

)2

= (2−βCβ)
m(m!)2



∫

Tm( t
2n

)

∑

θ∈{0,1}m

m∏

i=1

C
θi
2
ε ε

1
2
(1−θi)(ri − ri−1)

β−1
2

(1−θi)−β
2 dr




2

.

Hence, a direct application of Lemma 4.5 shows that there exists a positive constant K such
that

E [amn ] ≤ Km(m!)2

(
m∑

l=0

(
m

l

)
C

l
2
ε ε

m−l
2

( t
2n
)
(1−β)l

2
+m

2

Γ( (1−β)l
2

+ m
2
+ 1)

)2

.
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We now simply bound
(
m
l

)
by 2m and recall that (x/3)x ≤ Γ(x+1) ≤ xx for x ≥ 0. Allowing

the constant K to change from line to line, this yields

E [amn ] ≤ Km(m!)2




m∑

l=0

C
l
2
ε ε

m−l
2

(
t
2n

) (1−β)l
2 ( t

2n
)
m
2

(m!)
1
2 (l!)

1−β
2




2

≤ Kmm!εm
(
t

2n

)m
( ∞∑

l=0

C
l
2
ε ε−

l
2 t

1−β
2

l

(l!)
1−β
2

)2

.

This completes the proof of (4.13) with Cε,1 = (
∑∞

l=0C
l
2
ε ε−

l
2 t

1−β
2

l(l!)
β−1
2 )2, which is finite

because this series is convergent, and C2 = Kt.

Step 2. We now start from relation (4.13) and prove the finiteness of exponential moments
for the random variable Y . It turns out that centering is useful in this context, and we thus
define an,k = an,k −E[an,k]. Then E[an,k] = 0, and for any integer m ≥ 2 notice that:

E [(an,k)
m] ≤ 2m−1

(
E
[
amn,k
]
+ (E[an,k])

m) ≤ 2mE[amn,k] .

Also recall that an,k
(d)
= an. Thus, using (4.13)

E [exp(λan,k)] = 1 +
∞∑

m=2

λm

m!
E [(an,k)

m] ≤ 1 +
∞∑

m=2

(2λ)m

m!
E [(an,k)

m]

≤ 1 +
∞∑

m=2

Cε,1

(
2C2λε

2n

)m

.

Now choose and fix ε such that C2λε2
−n+1 ≤ 1

2
, and we obtain the bound

E [exp(λan,k)] ≤ 1 +
Cε,2λ

2

22n
, (4.14)

for some positive constant Cε,2. Next we choose 0 < h < 1, define bN =
∏N

j=2

(
1− 2−h(j−1)

)
,

and notice that limN→∞ bN = b∞ > 0. Then, by Hölder’s inequality, for all N ≥ 2 we have

E

[
exp

(
λbN

N∑

n=1

2n−1∑

k=1

an,k

)]

≤
[
E

[
exp

(
λbN−1

N−1∑

n=1

2n−1∑

k=1

an,k

)]]1−2−h(N−1) 

E



exp



λbN2h(N−1)
2N−1∑

k=1

aN,k












2−h(N−1)

,

and taking into account the independence of the {aN,k; k ≤ 2N−1} plus the identity aN,k
(d)
=

aN , the above expression is equal to

(
E

[
exp

(
λbN−1

N−1∑

n=1

2n−1∑

k=1

an,k

)])1−2−h(N−1)

(
E
[
exp

(
λbN2

h(N−1)aN
)])2(1−h)(N−1)

:= ANBN .
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We now appeal to the estimate (4.14) and the elementary inequality 1 + x ≤ ex, valid for
any x ∈ R. This yields

BN ≤
(
1 + Cε,2b

2
N2

−2Nλ222h(N−1)
)2(1−h)(N−1)

≤ exp
(
Cε,32

−N(1−h)
)
,

for some positive constant Cε,3. Notice that this is where the centering argument on an,k is
crucial. Indeed, without centering we would get a factor 2−N instead of 2−2N in the left hand
side of the above expression, and BN would not be uniformly bounded. Thus, recursively we
get

E

[
exp

(
λbN

N∑

n=1

2n−1∑

k=1

an,k

)]
≤ exp

(
N∑

n=2

C2−n(1−h)

)
E [exp(a1,1)] <∞ .

Recalling now from (4.12) that Y − E[Y ] =
∑∞

n=1

∑2n−1

k=1 ān,k and applying Fatou’s lemma,
we finally get

E [exp (λb∞(Y −E[Y ]))] <∞,

which completes the proof. �

Our next result is an approximation result for the Feynman-Kac functional which will be
used in the next section (see Theorem 5.3). Towards this aim, for any ε, δ > 0 we define

uε,δt,x = E

[
u0(B

x
t ) exp(V

ε,δ
t,x )
]
, (4.15)

where V ε,δ
t,x = W (Aε.δ

t,x) and Aε,δ
t,x is defined in (3.24).

Proposition 4.7. For any p ≥ 2 and T > 0 we have

lim
ε↓0

lim
δ↓0

sup
(t,x)∈[0,T ]×Rd

E

[
|uε,δt,x − ut,x|p

]
= 0. (4.16)

Proof. First, we recall that (see Proposition 4.2 and Remark 4.3) for any fixed t ≥ 0 and

x ∈ R
d the random variable V ε,δ

t,x converges in L2(Ω) to Vt,x if we let first δ tend to zero and
later ε tend to zero. Then in order to show (4.16) it suffices to check that for any λ ∈ R

sup
ε,δ

sup
(t,x)∈[0,T ]×Rd

E

[
exp

(
λV ε,δ

t,x

)]
<∞. (4.17)

Taking first the expectation with respect to the noise W yields

E

[
exp

(
λV ε,δ

t,x

)]
= EB

[
exp

(
λ2

2
‖Aε,δ

t,x‖2H
)]

.

Expanding the exponential into a power series, we will need to bound the moments of the
random variable ‖Aε,δ

t,x‖2H. To do this, we use formula (3.28) with B = B̃ and ε = ε′, δ = δ′.
Computing the mathematical expectation of this expression, we end up with:

E

[∥∥∥Aε,δ
t,x

∥∥∥
2n

H

]
=

1

δ2n

∫

Oδ,n

∫

Rdn

exp

(
−1

2

n∑

i,j=1

EB[(Bui
−Bvi)(Buj

− Bvj )]〈ξi, ξj〉
)

× e−ε
∑n

l=1 |ξl|2
n∏

l=1

γ(ul + sl − vl − s̃l)µ(dξ) dsds̃dudv.
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Thanks to the estimate

sup
0≤δ≤1

1

δ2

∫ δ

0

∫ δ

0

|u+ s− v − r|−βdsdr ≤ cT,β|u− v|−β, (4.18)

which holds for any u, v ∈ [0, T ], and owing to assumption (4.4), we get

E

[∥∥∥Aε,δ
t,x

∥∥∥
2n

H

]
≤ cnT,βEB

[∣∣∣∣
∫ t

0

∫ t

0

|u− v|−βΛ(Bu − Bv)dudv

∣∣∣∣
n]
. (4.19)

It is now readily checked that (4.17) follows from (4.19) and Theorem 4.6. �

4.1.2. Time independent noise. Suppose that W is the time independent noise introduced
in Section 2.2. The Feynman-Kac functional is defined as

ut,x = E

[
u0(B

x
t ) exp

(∫ t

0

∫

Rd

δ0(B
x
r − y)W (dy)dr

)]
, (4.20)

where Bx = {Bt+ x, t ≥ 0} is a d-dimensional Brownian motion independent of W , starting
from xm and u0 ∈ Cb(R

d) is the initial condition.
As in the case of a time dependent noise, to give a meaning to this functional for every

t > 0, x ∈ R
d and ε > 0 we introduce the family of random variables

V ε
t,x =

∫ t

0

∫

Rd

pε(B
x
r − y)W (dy)dr ,

Then, if the spectral measure of the noise µ satisfies condition (2.4), the family V ε
t,x converges

in L2 to a limit denoted by

Vt,x =

∫ t

0

∫

Rd

δ0(B
x
r − y)W (dy)dr . (4.21)

Conditional on B, Vt,x is a Gaussian random variable with mean 0 and variance

VarW (Vt,x) =

∫ t

0

∫ t

0

Λ(Br − Bs)drds . (4.22)

Furthermore, for any λ ∈ R, we have E [exp(λVt,x)] <∞. These properties can be obtained
using the same arguments as in the time dependent case and we omit the details.

4.2. Hölder continuity of the Feynman-Kac functional. In this subsection, we estab-
lish the Hölder continuity in space and time of the the Feynman-Kac functional given by
formulas (4.1) and (4.20). These regularity properties will hold under some additional inte-
grability assumptions on the measure µ. To simplify the presentation we will assume that
u0 = 1, and as usual we separate the time dependent and independent cases.

4.2.1. Time dependent noise. For the case of a time dependent noise, we will make use of
the following condition in order to ensure Hölder type regularities.

Hypothesis 4.8. Let W be a space-time stationary Gaussian noise with covariance structure
encoded by γ and Λ. We assume that condition (4.4) in Hypothesis 4.1 holds for some β > 0
and the spectral measure µ satisfies

∫

Rd

µ(dξ)

1 + |ξ|2(1−β−α)
<∞
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for some α ∈ (0, 1− β).

Theorem 4.9. Assume Hypothesis 4.8. Let u be the process introduced by relation (4.1)
with u0 = 1, namely:

ut,x = EB [exp (Vt,x)] , where Vt,x =

∫ t

0

∫

Rd

δ0(B
x
t−r − y)W (dr, dy). (4.23)

Then u admits a version which is (γ1, γ2)-Hölder continuous on any compact set of the form
[0, T ]× [−M,M ]d, with any γ1 <

α
2
, γ2 < α and T,M > 0.

Proof. Owing to standard considerations involving Kolmogorov’s criterion, it is sufficient to
prove the following bound for all large p and s, t ∈ [0, T ], x, y ∈ R

d with T > 0:

E [|ut,x − us,y|p] ≤ cp,T

(
|t− s|αp

2 + |x− y|αp
)
. (4.24)

We now focus on the proof of (4.24). From the elementary relation |ex−ey| ≤ (ex+ey)|x−y|,
valid for x, y ∈ R and applying the Cauchy-Schwarz inequality it follows

E [|ut,x − us,y|p] = EW [|EB [exp (Vt,x))]− EB [exp (Vs,y))]|p]
≤ EW {Ep

B [(exp(Vt,x) + exp(Vs,y)) |Vt,x − Vs,y|]} (4.25)

≤ E
1/2
W

{
E

p
B

[
(exp(Vt,x) + exp(Vs,y))

2]}
E

1/2
W

{
E

p
B

[
|Vt,x − Vs,y|2

]}
.

We now resort to our exponential bound of Theorem 4.6 for Vt,x, Minkowsky inequality and
the relation between Lp and L2 moments for Gaussian random variables in order to obtain:

E [|ut,x − us,y|p] ≤ cp
[
E
[
|Vt,x − Vs,y|2

]]p/2
.

We now evaluate the right hand side of this inequality.

Let us start by studying a difference of the form Vt,x − Vt,y, for t ∈ (0, T ] and x, y ∈ R.
The variance of Vt,x − Vt,y conditioned by B can be computed as in (4.6) and we can write

E
[
|Vt,x − Vt,y|2

]

= 2EB

[∫ t

0

∫ t

0

γ(r − s)Λ(Br − Bs)drds−
∫ t

0

∫ t

0

γ(r − s)Λ(Br − Bs + x− y)drds

]

= 2

∫ t

0

∫ t

0

∫

Rd

γ(r − s) (1− cos〈ξ, x− y〉) e− 1
2
|r−s||ξ|2µ(dξ)drds.

Using condition (4.4) and the estimate |1−cos〈ξ, x−y〉| ≤ |ξ|2α|x−y|2α, where 0 < α < 1−β,
yields

E
[
|Vt,x − Vt,y|2

]
≤ C|x− y|2α

∫ t

0

∫ t

0

∫

Rd

|r − s|−βe−
1
2
|r−s||ξ|2|ξ|2αµ(dξ)drds .

Finally, as in the proof of Proposition 4.2, Hypothesis 4.8 implies
∫ T

0

∫ T

0

∫

Rd

|r − s|−βe−
1
2
|r−s||ξ|2|ξ|2αµ(dξ)drds <∞,

and thus E[|Vt,x − Vt,y|2] ≤ C|x− y|2α.
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The evaluation of the variance of Vt,x − Vs,x, with 0 ≤ s < t ≤ T , x ∈ R
d goes along the

same lines. Indeed, we write E[|Vt,x − Vs,x|2] ≤ 2(A1 + A2), with

A1 = E

[∣∣∣∣
∫ t

s

∫

Rd

δ0(B
x
t−r − y)W (dr, dy)

∣∣∣∣
2
]

A2 = E

[∣∣∣∣
∫ s

0

∫

Rd

(
δ0(B

x
t−r − y)− δ0(B

x
s−r − y)

)
W (dr, dy)

∣∣∣∣
2
]
.

For the term A1, computing the variance as in (4.6) and using condition (4.4), we obtain

A1 = EB

[∫ t−s

0

∫ t−s

0

γ(u− v)Λ(Bu −Bv) dudv

]

≤ Cβ

∫ t−s

0

∫ t−s

0

∫

Rd

|u− v|−βe−
1
2
|u−v||ξ|2 µ(dξ)dudv

≤ C(t− s)

∫ t−s

0

∫

Rd

u−βe−
1
2
u|ξ|2 µ(dξ)du.

Then, Hypothesis 4.8 allows us to write
∫

Rd

e−
1
2
u|ξ|2µ(dξ) = C1 + uα+β−1

∫

|ξ|>1

|ξ|2(α+β−1)µ(dξ)

for any α < 1− β, which leads to the bound A1 ≤ C(t− s)1+α.

The term A2 can be handled as follows: as in (4.6) we write:

A2 = EB

[ ∫ s

0

∫ s

0

γ(u− v)
[
Λ(Bt−u − Bt−v) + Λ(Bs−u − Bs−v)

− 2Λ(Bt−u −Bs−v)
]
dudv

]
, (4.26)

and changing to Fourier coordinates, this yields:

A2 ≤ 2

∫ s

0

∫ s

0

γ(u− v)

∫

Rd

∣∣∣e−
1
2
|u−v||ξ|2 − e−

1
2
|t−s−u+v||ξ|2

∣∣∣µ(dξ)dudv . (4.27)

Using the estimate |e−x − e−y| ≤ (e−x + e−y)|x − y|α, for any 0 < α < 1 − β and x, y ≥ 0
and condition (4.4), we obtain

A2 ≤ C|t− s|α
∫ s

0

∫ s

0

∫

Rd

|u− v|−β
(
e−

1
2
|u−v||ξ|2 + e−

1
2
|t−s−u+v||ξ|2

)
|ξ|2αµ(dξ)dudv .

Then, in order to achieve the bound A2 ≤ |t− s|α, it suffices to prove that
∫ s

0

∫ s

0

|u− v|−β

∫

Rd

e−
1
2
|t−s−u+v||ξ|2|ξ|2αµ(dξ)dudv

is uniformly bounded for 0 ≤ s < t ≤ T . We decompose the integral with respect to the
measure µ into the regions {|ξ| ≤ 1} and {|ξ| > 1}. The integral on {|ξ| ≤ 1} is clearly
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bounded because µ is finite on compact sets. Taking into account of the hypothesis 4.8, the
integral over {|ξ| > 1} can be handled using the estimate

sup
s,t∈[0,T ]

∫ s

0

∫ s

0

|u− v|−βe−
1
2
|t−s−u+v||ξ|2dudv ≤ C|ξ|2β−2.

Putting together our bounds on A1 and A2, we have been able to prove that E[|Vt,x−Vs,x|2] ≤
|t− s|α. Furthermore, gathering our estimates for Vt,x − Vt,y and Vt,x − Vs,x, this completes
the proof of the theorem. �

Remark 4.10. The results of Theorem 4.9 do not give the optimal Hölder continuity exponents
for the process u defined by (4.1). Another strategy could be implemented, based on the
Feynman-Kac representation for the (2p)-th moments of u. This method is longer than the
one presented here, but should lead to some better estimates of the continuity exponents.
We stick to the shorter version of Theorem 4.9 for sake of conciseness, and also because
optimal exponents will be deduced from the pathwise results of Section 5 (in particular
Proposition 5.24).

4.2.2. Time independent noise. In the case of time independent noise, the next result pro-
vides a result on the Hölder continuity of the Feynman-Kac functional defined in (4.20). In
this case we impose the following additional integrability condition on µ.

Hypothesis 4.11. Let W be a spatial Gaussian noise with covariance structure encoded by
Λ. Suppose that the spectral measure µ satisfies

∫

Rd

µ(dξ)

1 + |ξ|2(1−α)
<∞

for some α ∈ (0, 1).

Theorem 4.12. Let u be the Feynman-Kac functional defined in (4.20) with u0 ≡ 1, namely:

ut,x = EB [exp (Vt,x)] , where Vt,x =

∫ t

0

(∫

Rd

δ0(B
x
r − y)W (dy)

)
dr.

Then u admits a version which is (γ1, γ2)-Hölder continuous on any compact set of the form
[0, T ]× [−M,M ]d, with any γ1 <

1+α
2

, γ2 < α and T,M > 0.

Proof. The proof is similar to the proof of Theorem 4.9 and we omit the details. �

4.3. Examples. Let us discuss the validity of Hypothesis 4.8 and Hypothesis 4.11 in the
examples presented in the introduction. In the case of a time dependent noise we assume
that the time covariance has the form γ(x) = |x|−β, 0 < β < 1.

For the Riesz kernel Λ(x) = |x|−η, where µ(dξ) = Cβ|ξ|η−ddξ, we already know that
Hypothesis 2.1 holds if η < 2. On the other hand, Hypothesis 4.1, which allows us to define
the Feynman-Kac functional in the time dependent case, is satisfied if η < 2 − 2β. For
the Hölder continuity, Hypothesis 4.8 holds for any α ∈ (0, 1 − β − η

2
) and Hypothesis 4.11

holds for any α′ ∈ (0, 1 − η
2
). Then, by Theorem 4.9 and 4.12, for any α ∈ (0, 1 − β − η

2
),

α′ ∈ (0, 1 − η
2
), assuming u0 ≡ 0, the Feynman-Kac functional (4.1) is Hölder continuous

of order α in the space variable and of order α
2

in the time variable, and the Feynman-Kac

functional (4.20) is Hölder continuous of order α in the space variable and of order α′+1
2

in
the time variable.
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For the Bessel kernel, we know that Hypothesis 2.1 is satisfied when η > d − 2, and
Hypothesis 4.8 holds when η > d+2β−2. By Theorem 4.9 and 4.12, for any α ∈ (0,min(η−d

2
−

β + 1, 1)) and α′ ∈ (0,min(β−d
2

+ 1, 1)), assuming u0 ≡ 0, the Feynman-Kac functional (4.1)
is Hölder continuous of order α in the space variable and of order α

2
in the time variable, the

Feynman-Kac functional (4.20) is Hölder continuous of order α′ in the space variable and of
order α′+1

2
in the time variable.

Consider the case of a fractional noise with covariance function γ(t) = H(2H − 1)|t|2H−2

and Λ(x) =
∏d

i=1Hi(2Hi−2)|xi|2Hi−2. We know that Hypothesis 2.1 holds when
∑d

i=1Hi >

d− 1. Moreover, when
∑d

i=1Hi > d− 2H + 1, Hypothesis 4.8 is satisfied. By Theorem 4.9

and 4.12, for any α ∈ (0,
∑d

i=1Hi + 2H − d − 1) and α′ ∈ (0,
∑d

i=1Hi − d + 1), assuming
u0 ≡ 0, Feynman-Kac functional (4.1) is Hölder continuous of order α in the space variable
and of order α

2
in the time variable, which recovers the result in [29]). On the other hand,

Feynman-Kac functional (4.20) is Hölder continuous of order α′ in the space variable and of
order α′+1

2
in the time variable.

5. Equation in the Stratonovich sense

In this section we consider the following stochastic heat equation of Stratonovich type
with the multiplicative Gaussian noise introduced in Section 2.1:

∂u

∂t
=

1

2
∆u+ u

∂d+1W

∂t∂x1 · · ·∂xd
. (5.1)

As in the previous sections, the initial condition is a continuous and bounded function u0.
We will discuss two notions of solution. The first one is based on the Stratonovich integral,
which is controlled using techniques of Malliavin calculus and a second one is completely
pathwise and is based on Besov spaces. We will show that the Feynman-Kac functional (4.1)
is a solution in both senses, and in the pathwise formulation it is the unique solution to
equation (5.1).

We will also discuss the case of a time independent multiplicative Gaussian noise intro-
duced in Section 2.2, that is

∂u

∂t
=

1

2
∆u+ u

∂dW

∂x1 · · ·∂xd
, (5.2)

with an initial condition u0 ∈ Cb(R
d). As in the case of a time dependent noise, we will show

that the Feynman-Kac functional (4.20) is both a mild Stratonovich solution and a pathwise
solution.

5.1. Stratonovich solution. Our aim is to define a notion of solution to equation (5.1)
by means of a Russo-Vallois type approach, which happens to be compatible with Malliavin
calculus tools. As usual, we divide our study into time dependent and time independent
cases.

5.1.1. Time dependent case. Let W be the time dependent noise introduced in Section 2.1.
In this case, we make use of the following definition of Stratonovich integral.
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Definition 5.1. Given a random field v = {vt,x; t ≥ 0, x ∈ R
d} such that

∫ T

0

∫

Rd

|vt,x| dxdt <∞

almost surely for all T > 0, the Stratonovich integral
∫ T

0

∫
Rd vt,xW (dt, dx) is defined as the

following limit in probability, if it exists:

lim
ε↓0

lim
δ↓0

∫ T

0

∫

Rd

vt,xẆ
ε,δ
t,x dxdt ,

where Ẇ ε,δ
t,x is the regularization of W defined in (3.12).

With this definition of integral, we have the following notion of solution for equation (5.1).

Definition 5.2. A random field u = {ut,x; t ≥ 0, x ∈ R
d} is a mild solution of equation (5.1)

with initial condition u0 ∈ Cb(R
d) if for any t ≥ 0 and x ∈ R

d the following equation holds

ut,x = ptu0(x) +

∫ t

0

∫

Rd

pt−s(x− y)us,yW (ds, dy), (5.3)

where the last term is a Stratonovich stochastic integral in the sense of Definition 5.1.

The next result asserts the existence of a solution to equation (5.3) based on the Feynman-
Kac representation.

Theorem 5.3. Assume Hypothesis 4.1 holds true. Then, the process u defined in (4.1) is a
mild solution of equation (5.1), in the sense given by Definition 5.2.

Proof. We proceed similarly to Section 3.2. Consider the following approximation to equa-
tion (5.1)

∂uε,δ

∂t
=

1

2
∆uε,δ + uε,δẆ ε,δ

t,x , (5.4)

with initial condition u0, where Ẇ ε,δ
t,x is defined in (3.12). From the classical Feynman-Kac

formula, we know that

uε,δt,x = EB

[
u0(B

x
t ) exp

(∫ t

0

Ẇ ε,δ(t− s, Bx
s )ds

)]
. (5.5)

Moreover, thanks to Fubini’s theorem, we can write
∫ t

0

Ẇ ε,δ(t− s, Bx
s )ds =

1

δ

∫ t

0

(∫ t−s

(t−s−δ)+

∫

Rd

pε(B
x
s − y)W (dr, dy)

)
ds

= W (Aε.δ
t,x) = V ε,δ

t,x ,

where Aε,δ
t,x is defined in (3.19) and V ε,δ

t,x is defined in (4.10). Therefore, the process uε,δt,x is
given by (4.15), and Proposition 4.7 implies that (4.16) holds.

Next we prove that u is a mild solution of equation (5.1) in the sense of Definition 5.2.
Taking into account of the definition of the Stratonovich integral, is suffices to show that

Gε,δ :=

∫ t

0

∫

Rd

pt−s(x− y)
(
uε,δs,y − us,y

)
Ẇ ε,δ

s,y dyds



34 Y. HU, J. HUANG, D. NUALART, S. TINDEL

converges in L2(Ω) to zero when first δ tends to zero and later ε tends to zero. To this aim,
we are going to use the following notation:

ψε,δ
s,y(r, z) =

1

δ
1[(s−δ)+,s](r)pε(y − z), and ũε,δs,y = uε,δs,y − us,y.

In particular, notice that Ẇ ε,δ
s,y =W

(
ψε,δ
s,y

)
. Then,

E

[(
Gε,δ

)2]
=

∫ t

0

∫ t

0

∫

R2d

pt−s(x− y)pt−r(x− z)E
[
ũε,δs,yũ

ε,δ
r,zW

(
ψε,δ
s,y

)
W
(
ψε,δ
r,z

)]
dydzdsdr,

and the expected value above can be analyzed by integration by parts. Indeed, according to
relation (5.5), it is readily checked that ũε,δs,yũ

ε,δ
r,z = EB,B̃[Z

ε,δ
s,y,r,z], with

Zε,δ
s,y,r,z = u0(B

y
s )
[
exp

(
V ε,δ,B
s,y

)
− exp

(
V B
s,y

)]
u0(B̃

z
r )
[
exp

(
V ε,δ,B̃
r,z

)
− exp

(
V B̃
r,z

)]
,

and where B, B̃ designate two independent d-dimensional Brownian motions. Moreover, a
straightforward application of Fubini’s theorem yields:

E
[
ũε,δs,yũ

ε,δ
r,zW

(
ψε,δ
s,y

)
W
(
ψε,δ
r,z

)]
= EB,B̃

{
EW

[
Zε,δ

s,y,r,zW
(
ψε,δ
s,y

)
W
(
ψε,δ
r,z

)]}
.

We can now invoke formula (2.11) plus some easy computations of Malliavin derivatives in
order to get:

E

[(
Gε,δ

)2]
= A1 + A2, (5.6)

where

A1 =

∫ t

0

∫ t

0

∫

R2d

pt−s(x− y)pt−r(x− z)E
[
ũε,δs,yũ

ε,δ
r,z

]
〈ψε,δ

s,y, ψ
ε,δ
r,z〉Hdydzdsdr

and

A2 =

∫ t

0

∫ t

0

∫

R2d

pt−s(x− y)pt−r(x− z)E
[
Zε,δ

s,y,r,zΓ
ε,δ
s,y,r,z

]
dydzdsdr,

with the notation

Γε,δ
s,y,r,z = 〈ψε,δ

s,y, A
ε,δ,B̃
r,z − δ0(B̃

z
r−· − ·)〉H〈ψε,δ

r,z , A
ε,δ,B
s,y − δ0(B

y
s−· − ·)〉H

+〈ψε,δ
s,y, A

ε,δ,B
s,y − δ0(B

y
s−· − ·)〉H〈ψε,δ

r,z , A
ε,δ,B̃
r,z − δ0(B̃

r
z−· − ·)〉H

+〈ψε,δ
s,y, A

ε,δ,B
s,y − δ0(B

s
y−· − ·)〉H〈ψε,δ

r,z , A
ε,δ,B
s,y − δ0(B

y
s−· − ·)〉H

+〈ψε,δ
s,y, A

ε,δ,B̃
r,z − δ0(B̃

r
z−· − ·)〉H〈ψε,δ

r,z , A
ε,δ,B̃
r,z − δ0(B̃

r
z−· − ·)〉H

According to Proposition 4.7, we know that

lim
ε↓0

lim
δ↓0

sup
s∈[0,T ],y∈Rd

E
[
|ũε,δs,y|2

]
= 0,

and with the same arguments as in Proposition 4.7 we can also show that

lim
ε↓0

lim
δ↓0

sup
s,r∈[0,T ],y,z∈Rd

E
[
|Zε,δ

s,yr,z|2
]
= 0.

Therefore, with formula (5.6) in mind, the convergence to zero of Bε,δ will follow, provided
we show the following quantities are uniformly bounded in ε ∈ (0, 1) and δ ∈ (0, 1)

θ1 :=

∫ t

0

∫ t

0

∫

R2d

pt−s(x− y)pt−r(x− z)
∣∣〈ψε,δ

s,y, ψ
ε,δ
r,z〉H

∣∣ dydzdsdr (5.7)



STOCHASTIC HEAT EQUATION WITH MULTIPLICATIVE COLORED NOISE 35

and

θ2 :=

∫ t

0

∫ t

0

∫

R2d

pt−s(x− y)pt−r(x− z)
∥∥Γε,δ

s,y,r,z

∥∥
2
dydzdsdr, (5.8)

where ‖Γε,δ
s,y,r,z‖2 stands for the norm of Γε,δ

s,y,r,z in L2(Ω). The remainder of the proof is thus
just reduced to an estimation of (5.7) and (5.8).

In order to bound θ1, we apply the estimate (4.18) and the semigroup property of the heat
kernel, which yields

〈ψε,δ
s,y, ψ

ε,δ
r,z〉H =

(
1

δ2

∫ s

(s−δ)+

∫ r

(r−δ)+

γ(u− v)dudv

)∫

R2d

pε(y − z1)pε(z − z2)Λ(z1 − z2)dz1dz2

≤ cT,β|r − s|−β

∫

Rd

p2ε(y − z − w)Λ(w)dw.

Substituting this estimate into (5.7), we obtain

θ1 ≤ cT,β

∫ t

0

∫ t

0

∫

Rd

p2t−s−r+2ε(w)Λ(w)|r− s|−βdw ≤ c′T,β

∫ 2t

0

∫

Rd

p2t−s(w)Λ(w)dwds <∞,

where we get rid of ε in Fourier mode, similarly to the proof of (3.27).

We now turn to the control of θ2: we first write, using the estimate (4.18) and the semi-
group property of the heat kernel,

〈ψε,δ
s,y, A

ε,δ
r,z〉H =

1

δ2

∫ s

(s−δ)+

∫ r−σ

(r−σ−δ)+

∫ r

0

∫

R2d

pε(y − z1)pε(B
z
σ − z2)γ(u− v)

×Λ(z1 − z2)dz1dz2dσdvdu

≤ cT,β

∫ r

0

∫

Rd

p2ε(y − Bz
r−σ − w)Λ(w)|s− σ|−βdwdσ

Invoking again arguments of Fourier analysis, analogous to those in the proof of (3.27), we
can show that

E

[∣∣∣∣
∫ r

0

∫

Rd

p2ε(y − Bz
r−σ − w)Λ(w)|s− σ|−βdwdσ

∣∣∣∣
4
]
≤ E

[∣∣∣∣
∫ r

0

Λ(Br−σ)|s− σ|−βdσ

∣∣∣∣
4
]
,

and

sup
r,s∈[0,T ]

E

[∣∣∣∣
∫ r

0

Λ(Br−σ)|s− σ|−βdσ

∣∣∣∣
4
]
<∞.

This implies that
∥∥Γε,δ

s,y,r,z

∥∥
2
, and thus, θ2, are uniformly bounded. The proof of the theorem

is complete. �

Remark 5.4. Consider the case where the space dimension is 1, Λ(x) is the Dirac delta func-
tion δ0(x) corresponding to the white noise, which in our setting means that condition (4.5)
is satisfied with 0 < β < 1

2
. Then our theorems of Section 4 cover assumption (4.4), with

0 < β < 1
2

too, if we interpret the composition Λ(Br−Bs) as a generalized Wiener functional.
Notice that in the case of the fractional Brownian motion with Hurst parameter H (that is
γ(x) = cH |x|2H−2) the condition 0 < β < 1

2
means that H > 3

4
. In this case it is already

known that the process defined by (4.1) is still a solution to equation (5.1) (see [29]).
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5.1.2. Time independent case. Let W be the time independent noise introduced in Sec-
tion 2.2. We claim that as in the time independent case, the Feynman-Kac functional given
by (4.20) is a mild solution to equation (5.2) in the Stratonovich sense.

The Stratonovich integral with respect to the noise W is defined as the limit of the integrals
with respect to regularization of the noise.

Definition 5.5. Given a random field v = {vx; x ∈ R
d} such that

∫
Rd |vx|dx < ∞ almost

surely, the Stratonovich integral
∫
Rd vxW (dx) is defined as the following limit in probability,

if it exists:

lim
ε↓0

∫

Rd

vxẆ
ε
xdx ,

where Ẇ ε
x =

∫
Rd pε(x− y)W (dy).

With this definition of integral, we have the following notion of solution for equation (5.2).

Definition 5.6. A random field u = {ut,x; t ≥ 0, x ∈ R
d} is a mild solution of equation (5.2)

if we have

ut,x = ptu0(x) +

∫ t

0

(∫

Rd

pt−s(x− y)us,yW (dy)

)
ds

almost surely for all t ≥ 0, where the last term is a Stratonovich stochastic integral in the
sense of Definition 5.5.

The next result is the existence of a solution based on the Feynman-Kac representation.

Theorem 5.7. Suppose that µ satisfies (2.4). Then, the process ut,x given by (4.20) is a
mild solution of equation (5.2).

The proof of this theorem is similar to that of Theorem 5.3, and it is omitted.

5.2. Existence and uniqueness of a pathwise solution. In this section we define and
solve equations (5.1) and (5.2) in a pathwise manner in R

d, when the noise W satisfies some
additional hypotheses. Contrarily to the Stratonovich technology invoked at Section 5.1,
the pathwise method yields uniqueness theorems, which will be used in order to identify
Feynman-Kac and pathwise solutions. At a technical level, our results will be achieved in
the framework of weighted Besov spaces, that we proceed to recall now.

5.2.1. Besov spaces. The definition of Besov spaces is based on Littlewood-Paley theory,
which relies on decompositions of functions into spectrally localized blocks. We thus first
introduce the following basic definitions.

Definition 5.8. We call annulus any set of the form C = {x ∈ R
d : a 6 |x| 6 b} for some

0 < a < b. A ball is a set of the form B = {x ∈ R
d : |x| 6 b}.

The localizing functions for the Fourier domain alluded to above are defined as follows.

Notation 5.9. In the remaining part of this section, we shall use χ, ϕ to denote two smooth
nonnegative radial functions with compact support such that:

(1) The support of χ is contained in a ball and the support of ϕ is contained in an annulus
C with a = 3/4 and b = 8/3;
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(2) We have χ(ξ) +
∑

j>0 ϕ(2
−jξ) = 1 for all ξ ∈ R

d;

(3) It holds that supp(χ) ∩ supp(ϕ(2−i·)) = ∅ for i > 1 and if |i − j| > 1, then
supp(ϕ(2−i·)) ∩ supp(ϕ(2−j·)) = ∅.

In the sequel, we set ϕj(ξ) := ϕ(2−jξ).

For the existence of χ and ϕ see [2, Proposition 2.10]. With this notation in mind, the
Littlewood-Paley blocks are now defined as follows.

Definition 5.10. Let u ∈ S ′(Rd). We set

∆−1u = F−1(χFu), and for j > 0 ∆ju = F−1(ϕj Fu).
We also use the notation Sku =

∑k−1
j=−1∆ju, valid for all k ≥ 0.

Observe that one can also write ∆−1u = K̃ ∗ u and ∆ju = Kj ∗ u for j > 0 , where

K̃ = F−1χ and Kj = 2jdF−1ϕ(2j·). In particular the ∆ju are smooth functions for all
u ∈ S ′(Rd).

In order to handle equations whose space parameter lies in an unbounded domain like R
d,

we shall use spaces of weighted Hölder type functions for polynomial or exponential weights,
where the weights satisfy some smoothness conditions. In this way we define the following
class of weights.

Definition 5.11. We denote by W the class of weights w ∈ C∞
b (Rd;R+) consisting of:

• The weights ρκ obtained as functions of the form c (1+ |x|κ)−1, with κ ≥ 1, smoothed
at 0.

• The weights eλ obtained as functions of the form c e−λ|x|, with λ > 0, smoothed at 0.
• Products of these functions.

Notice that more general classes of weights are introduced in [44]. We have also tried to
stick to the notation given in [24], from which our developments are inspired.

Weighted Besov spaces are sets of functions characterized by their Littlewood-Paley block
decomposition. Specifically, their definition is as follows.

Definition 5.12. Let w ∈ W and κ ∈ R. We set

Bκ
w(R

d) =

{
f ∈ S ′(Rd); ‖f‖w,κ := sup

j≥−1
2jκ‖w∆jf‖L∞ <∞

}
. (5.9)

We call this space a weighted Besov-Hölder space. When w = 1, we just denote the space by
Bκ(Rd), and it corresponds to the usual Besov space Bκ

∞,∞(Rd).

Notice that we follow here the terminology of [44]. The weighted Besov-Hölder spaces are
well understood objects, and let us recall some basic facts about them.

Proposition 5.13. Let w,w1, w2 ∈ W, κ ∈ R and f ∈ Bκ
w(R

d). Then the following holds
true:

(i) There exist some positive constants c1κ,w, c
2
κ,w such that c1κ,w‖fw‖κ ≤ ‖f‖w,κ ≤ c2κ,w‖fw‖κ.

(ii) For κ ∈ (0, 1), we have f ∈ Bκ
w(R

d) iff fw is a κ-Hölder function.

(iii) If w1 < w2 we have ‖f‖w1,κ ≤ ‖f‖w2,κ.
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Proof. Item (i) is borrowed from [44, Chapter 6]. The fact that Bκ(Rd) coincides with the
space of Hölder continuous functions Cκ(Rd) for κ ∈ [0, 1] is shown in [2, Theorem 2.36], and
it yields item (ii) thanks to (i). Finally, item (iii) is also taken from [44, Chapter 6]. �

Let us now state a result about products of distributions which turns out to be useful for
our existence and uniqueness result.

Proposition 5.14. Let w1, w2 be two weight functions in W, and κ1, κ2 ∈ R such that
κ2 < 0 < κ1 and κ1 > |κ2| and let w = w1w2. Then

(f1, f2) ∈ Bκ1
w1

× Bκ2
w2

7−→ f1 f2 ∈ Bκ2
w is continuous. (5.10)

Furthermore, the following bound holds true:

‖f1 f2‖Bκ2
w

≤ ‖f1‖Bκ1
w1

‖f2‖Bκ2
w2
. (5.11)

Finally we label the action of the heat semigroup on functions in weighted Besov spaces.

Proposition 5.15. Let w ∈ W, κ ∈ R and f ∈ Bκ
w(R

d). Then for all t ∈ [0, τ ], γ > 0 and
κ̂ > κ we have

‖ptf‖w,κ̂ ≤ cτ,w,κ,κ̂t
− κ̂−κ

2 ‖f‖w,κ, and ‖[Id− pt]f‖w,κ−2γ ≤ cτ,w,γ t
γ‖f‖w,κ.

5.2.2. Notion of solution. In order to give a pathwise definition of solution for equation (5.1),
we will replace the noise W by a nonrandom Hölder continuous function in time with values
in a Besov space of distributions, denoted by W . We will show later (see Proposition 5.22)
that under Hypothesis 4.8, almost surely the mapping t → W (1[0,t]ϕ), ϕ ∈ D, is Hölder
continuous with values in this Besov space. We thus label a notation for this kind of space.

Notation 5.16. Let θ ∈ (0, 1), κ ∈ R and w ∈ W. The space of θ-Hölder continuous

functions from [0, T ] to a weighted Sobolev space Bκ
w is denoted by Cθ,κ

T,w. Otherwise stated,

we have Cθ,κ
T,w = Cθ([0, T ];Bκ

w). In order to alleviate notations, we shall write Cθ,κ
w only when

the value of T is non ambiguous.

Now we introduce the pathwise type assumption that we shall make on the multiplicative
input distribution W .

Hypothesis 5.17. We assume that there exist two constants θ, κ ∈ (0, 1) satisfying 1+κ
2
<

θ < 1, such that W ∈ Cθ,−κ
T,ρσ

, for any σ > 0 arbitrarily small.

We also label some more notation for further use:

Notation 5.18. For a function f : [0, T ] → B, where B stands for a generic Banach space,
we set δfst = ft − fs for 0 ≤ s ≤ t ≤ T . Notice that δ has also been used for Skorohod
integrals, but this should not lead to ambiguities since Skorohod integrals won’t be used in
this section.

With these preliminaries in hand, we shall combine the following ingredients in order to
solve equation (5.1):

• Like the input W , the solution u will live in a space of Hölder functions in time, with
values in a weighted Sobolev space of the form Bκu

eλ
. This allows the use of estimates of

Young integration type in order to define integrals involving increments of the form u dW .
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• We have to take into account of the fact that, when one multiplies the function us ∈ Bκu
eλ

by the distribution δWst ∈ B−κ
ρσ , the resulting distribution usδWst lies (provided κu > κ) into

the space B−κ
eλρσ

. This will force us to assume in fact us ∈ Bκu
ws

, where the weight ws ∈ W
decreases with s.

Let us turn now to the technical part of our task. We first fix positive constants λ, σ and
define a weight wt = eλ+σt. We shall seek the solution to equation (5.1) in the following
space:

Dθu,κu

λ,σ =
{
f ∈ C([0, T ]× R

d); ‖ft‖Bκu
wt

≤ cT,f

and ‖ft − fs‖Bκu
wt

≤ cf |t− s|θu ∀0 ≤ s < t ≤ T
}
. (5.12)

We introduce the Hölder norm in this space by

‖f‖Dθu,κu
λ,σ

= sup
0≤s<t≤T

‖ft − fs‖Bκu
wt

|t− s|θu . (5.13)

We now introduce a pathwise mild formulation for equation (5.1) in the spaces Dθu,κu

λ,σ .

Definition 5.19. Suppose that W satisfies Hypothesis 5.17. Let u ∈ Dθu,κu

λ,σ for fixed λ, σ > 0,
θu + θ > 1 and κu ∈ (κ, 1). Consider an initial condition u0 ∈ Bκu

eλ
. We say that u is a mild

solution to equation
∂u

∂t
=

1

2
∆u+ u

∂W

∂t
(5.14)

with initial condition u0 if it satisfies the following integral equation

ut = ptu0 +

∫ t

0

pt−s (us W (ds)) , (5.15)

where the product uW is interpreted in the distributional sense of (5.10) and the time integral
is understood in the Young sense.

Remark 5.20. Let us specify what we mean by Ju
t :=

∫ t

0
pt−s (us W (ds)) under the conditions

of Definition 5.19. First, we should understand Ju
t as

Ju
t = lim

ε→0
Ju,ε
t , where Ju,ε

t =

∫ t−ε

0

pt−s (us W (ds)) .

The integration on [0, t− ε] avoids any singularity of pt−s as an operator from B−κ to Bκu ,
so that Ju,ε

t is defined as a Young integral. This integral is in particular limit of Riemann
sums along dyadic partitions of [0, t]:

Ju,ε
t = lim

n→∞

2n−1∑

j=0

pt−tnj

(
utnj δWtnj t

n
j+1

)
1[0,t−ε](t

n
j+1), where tnj =

jt

2n
.

We then assume that one can combine the limiting procedures in n and ε (the justification
of this step is left to the patient reader), and finally we define:

Ju
t = lim

n→∞
Ju,n
t , where Ju,n

t =

2n−1∑

j=0

pt−tnj

(
utnj δWtnj t

n
j+1

)
. (5.16)
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Here again, recall that the product utnj δWtnj t
n
j+1

is interpreted according to (5.10). This will

be our way to understand equation (5.15).

We can now turn to the resolution of the equation in this context.

5.2.3. Resolution of the equation. Our existence and uniqueness result takes the following
form:

Theorem 5.21. Let W be a Hölder continuous distribution valued function satisfying Hy-
pothesis 5.17, and let λ, σ be two strictly positive constants. Consider an initial condition
u0 ∈ Bκu

eλ
. Then:

(a) There exist θu, κu satisfying θu + θ > 1 and κu ∈ (κ, 1), such that equation (5.15) admits

a unique solution in Dθu,κu

λ,σ .

(b) The application (u0,W ) 7→ u is continuous from Bκu
eλ

× Cθ,−κ
T,ρσ

to Dθu,κu

λ,σ .

Proof. We divide this proof into several steps.

Step 1: Definition of a contracting map. We fix a time interval [0, τ ], where τ ≤ T , and

along the proof we denote by Dθu,κu

λ,σ and ‖ · ‖Dθu,κu
λ,σ

the space and the Hölder norm defined

in (5.12) and (5.13), respectively, but restricted to the interval [0, τ ].

We consider a map Γ defined on Dθu,κu

λ,σ by Γ(u) = v, where v is the function defined by
v := ptu0 + Ju

t as in Remark 5.20. The proof of our result relies on two steps: (i) Show that

Γ defines a map from Dθu,κu

λ,σ to Dθu,κu

λ,σ , independently of the length of the interval [0, τ ]. (ii)
Check that Γ is in fact a contraction if τ is made small enough. The two steps hinge on the
same type of computations, so that we shall admit point (i) and focus on point (ii) for sake
of conciseness.

In order to prove that Γ is a contraction, consider u1, u2 ∈ Dθu,κu

λ,σ , and for j = 1, 2 set

vj = Γ(uj). For notational sake, we also set u12 = u1 − u2 and v12 = v1 − v2. Consistently
with equation (5.15), v12 satisfies the relation

v12t =

∫ t

0

pt−r

(
u12r W (dr)

)
.

Notice that the function v12 is in fact defined by relation (5.16). We have admitted point (i)
above, which means in particular that we assume that the Riemann sums in (5.16) are

converging whenever u12 ∈ Dθu,κu

λ,σ . We now wish to prove that, provided τ is small enough,

we have ‖v12‖Dθu,κu
λ,σ

≤ 1
2
‖u12‖Dθu,κu

λ,σ
.

Step 2: Study of differences. Let 0 ≤ s < t ≤ τ . We decompose v12t − v12s as L1
st + L2

st, with

L1
st =

∫ s

0

[pt−s − Id] ps−v

(
u12v W (dv)

)
, and L2

st =

∫ t

s

pt−v

(
u12v W (dv)

)
,

where the Young integrals with respect to W (dv) are understood as limit of Riemann sums
as in (5.16). We now proceed to the analysis of L1

st and L2
st.
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As in relation (5.16), we write L1
st = limn→∞ L1,n

st , where we consider points snk = 2−nks in
the dyadic partition of [0, s] and where we set

L1,n
st =

2n−1∑

j=0

[pt−s − Id] ps−snj

(
u12snj δWsnj s

n
j+1

)
. (5.17)

In order to estimate L1
st, let us thus first analyze the quantity L1,n+1

st − L1,n
st . Indeed, it is

readily checked that L1,n+1
st − L1,n

st =
∑2n−1

j=0 L1,n,j
st , where L1,n,j

st is defined by:

L1,n,j
st = [pt−s − Id] ps−sn+1

2j+1

(
u12
sn+1
2j+1

δWsn+1
2j+1s

n+1
2j+2

)
− [pt−s − Id] ps−sn+1

2j

(
u12
sn+1
2j

δWsn+1
2j+1s

n+1
2j+2

)
.

We now drop the index n + 1 in the next computations for sake of readability, and write
L1,n,j
st = L11,n,j

st − L12,n,j
st with

L11,n,j
st = [pt−s − Id] ps−s2j+1

(
δu12s2js2j+1

δWs2j+1s2j+2

)
:= [pt−s − Id] L̂11,n,j

st

L12,n,j
st = [pt−s − Id]

[
ps2j+1−s2j − Id

]
ps−s2j+1

(
u12s2j δWs2j+1s2j+2

)
:= [pt−s − Id] L̂12,n,j

st .

We treat again the two terms L11,n,j
st , L12,n,j

st separately.

Owing to Proposition 5.15, we have

‖L11,n,j
st ‖Bκu

wt
≤ c (t− s)θu ‖L̂11,n,j

st ‖Bκu+2θu
wt

≤
c (t− s)θu ‖δu12s2js2j+1

δWs2j+1s2j+2
‖B−κ

wt

(s− s2j+1)
θu+

κu+κ
2

Let us now recall the following elementary bound:

ϕα,κ(x) := xα e−κx =⇒ 0 ≤ ϕα,κ(x) ≤
cα
κα
, for x, α, κ ∈ R+. (5.18)

This entails wt ≤ cσ(t− t2j+1)
−σwt2j+1

ρσ, and according to (5.11) we obtain

‖L11,n,j
st ‖Bκu

wt
≤

cσ (t− s)θu‖δu12s2js2j+1
δWs2j+1s2j+2

‖B−κ
ws2j+1ρσ

(s− s2j+1)
θu+

κu+κ
2

+σ

≤
cσ (t− s)θu‖δu12s2js2j+1

‖Bκu
ws2j+1

‖δWs2j+1s2j+2
‖B−κ

ρσ

(s− s2j+1)
θu+

κu+κ
2

+σ

≤
cσ (t− s)θu‖u12‖Dθu,κu

λ,σ
‖W ‖Cθ,−κ

ρσ

(s− s2j+1)
θu+

κu+κ
2

+σ

( s
2n

)θu+θ

.

As far as L12,n,j
st is concerned, we have as above:

‖L12,n,j
st ‖Bκu

wt
≤ c (t− s)θu ‖L̂12,n,j

st ‖Bκu+2θu
wt

. (5.19)

We now take an arbitrarily small and strictly positive constant ε and write:

‖L̂12,n,j
st ‖Bκu+2θu

wt
≤ (s2j+1 − s2j)

1−θ+ε
∥∥∥ps−s2j+1

(
u12s2j δWs2j+1s2j+2

)∥∥∥
Bκu+2θu+2(1−θ+ε)
wt

≤ (s2j+1 − s2j)
1−θ+ε

(s− s2j+1)
1+θu−θ+ε+κu+κ

2

‖u12s2j δWs2j+1s2j+2
‖B−κ

wt
,
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and thus relation (5.19) entails:

‖L12,n,j
st ‖Bκu

wt
≤
cσ (t− s)θu ‖u12‖Dθu,κu

λ,σ
‖W ‖Cθ,−κ

ρσ

(s− s2j+1)
1+θu−θ+ε+κu+κ

2
+σ

( s
2n

)1+ε

.

Putting together the last two estimates on L11,n,j
st and L12,n,j

st and choosing θu = 1 − θ + ε,
we thus end up with:

‖L1,n,j
st ‖Bκu

wt
≤
cσ (t− s)θu‖u12‖Dθu,κu

λ,σ
‖W ‖Cθ,−κ

ρσ

(s− s2j+1)
2−2θ+2ε+κu+κ

2
+σ

( s
2n

)1+ε

. (5.20)

Let us now discuss exponent values: for the convergence of L1,n
st we need the condition

2− 2θ + 2ε+
κu + κ

2
+ σ < 1

to be fulfilled. If we choose κu = κ + 2ε, we can recast this condition into θ > 1+κ
2

+ 3ε+σ
2

.
Since ε, σ are chosen to be arbitrarily small, we can satisfy this constraint as soon as θ > 1+κ

2
,

which was part of our Hypothesis 5.17. For the remainder of the discussion, we thus assume
that

2− 2θ + 2ε+
κu + κ

2
+ σ = 1− η, with η > 0.

Step 3: Bound on L1
st. We express limn→∞L1,n

st as L1,0
st +

∑∞
n=0(L

1,n+1
st − L1,n

st ). Now

∞∑

n=0

‖L1,n+1
st − L1,n

st ‖Bκu
wt

≤
∞∑

n=0

2n−1∑

j=0

‖L1,n,j
st ‖Bκu

wt
,

and plugging our estimate (5.20), we get that
∑∞

n=0 ‖L
1,n+1
st − L1,n

st ‖Bκu
wt

is bounded by:

cσ ‖u12‖Dθu,κu
λ,σ

‖W ‖Cθ,−κ
ρσ

(t− s)θu
∞∑

n=0

( s
2n

)ε
(
s

2n

2n−1∑

j=0

1

(s− s2j+1)1−η

)
.

Furthermore, the following uniform bound holds true:

s

2n

2n−1∑

j=0

1

(s− s2j+1)1−η
≤ c

∫ s

0

dr

r1−η
= c sη,

and thus
∞∑

n=0

‖L1,n+1
st − L1,n

st ‖Bκu
wt

≤ c sη (t− s)θu
∞∑

n=0

( s
2n

)ε
≤ c sη+ε (t− s)θu ,

which ensures the convergence of L1,n
st . Finally, invoking our definition (5.17) plus the fact

that u120 = 0, it is readily checked that L1,0
st = 0. Thus the relation above transfers into:

‖L1
st‖Bκu

wt
≤ c sη+ε ‖u12‖Dθu,κu

λ,σ
‖W ‖Cθ,−κ

ρσ
(t− s)θu

≤ c τ η+ε ‖u12‖Dθu,κu
λ,σ

‖W ‖Cθ,−κ
ρσ

(t− s)θu . (5.21)

Step 4: Bound on L2
st. The bound on L2

st follows along the same lines as for L1,n
st , and is in

fact slightly easier. Let us just mention that we approximate L2
st by a sequence L2,n

st based
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on the dyadic partition of [s, t], namely snj = s+ j2−n(t− s). Like in Step 2, we end up with

some terms L21,n,j
st , L22,n,j

st , where

L21,n,j
st = ps−s2j+1

(δu12s2js2j+1
δWs2j+1s2j+2

)

and

L22,n,j
st =

[
ps2j+1−s2j − Id

]
pt−s2j+1

(
u12s2j δWs2j+1s2j+2

)
.

From this decomposition, we leave to the patient reader the task of checking that rela-
tion (5.21) also holds true for L2

st.

Step 5: Conclusion. Putting together the last 2 steps, we have been able to prove that for
all 0 ≤ s < t ≤ τ we have

‖v12t − v12s ‖Bκu
wt

≤ c τ η+ε ‖u12‖Dθu,κu
λ,σ

‖W ‖Cθ,−κ
ρσ

(t− s)θu.

Thus, choosing τ = (c ‖W ‖Cθ,−κ
ρσ

/2)1/(ε+η), this yields

‖v12t − v12s ‖Bκu
wt

≤ 1

2
‖u12‖Dθu,κu

λ,σ
(t− s)θu,

namely the announced contraction property. We have thus obtained existence and uniqueness
of the solution to equation (5.15) on [0, τ ]. In order to get a global solution on an arbitrary
interval, it suffices to observe that all our bounds above do not depend on the initial condition
of the solution. One can thus patch solutions on small intervals of constant length τ . The
continuity result (b) is obtained thanks to the same kind of considerations, and we spare the
details to the reader for sake of conciseness.

�

5.2.4. Identification of the Feynman-Kac solution. This section is devoted to the identifica-
tion of the solution to the stochastic heat equation given by the Feynman-Kac representation
formula and the pathwise solution constructed in this section. Calling uF the Feynman-Kac
solution, the global strategy for this identification procedure is the following:

(1) Relate the covariance structure (2.1) of the Gaussian noise W to Hypothesis 5.17.
We shall see that our Hypothesis 4.8 implies that W satisfies 5.17 almost surely for
suitable values of the parameters θ and κ.

(2) Prove that uF coincides with the pathwise solution to (5.15), by means of approxi-
mations of the noise W .

We now handle those three problems.

Let us start by establishing the pathwise property of W as a distribution valued function.

Proposition 5.22. Let W be a centered Gaussian noise defined by µ and γ as in (2.1),
satisfying Hypothesis 4.8 for some 0 < α < 1− β. Then the mapping (t, ϕ) → W (1[0,t]ϕ) is
almost surely Hölder continuous of order θ in time with values in B−κ

ρσ for arbitrarily small

σ and for all θ, κ ∈ (0, 1) such that θ < 1− β
2

and κ > 1− α− β. That is, almost surely W
satisfies Hypothesis 5.17. Moreover, ‖W‖Cθ,−κ

ρσ
is a random variable which admits moments

of all orders.
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Proof of Proposition 5.22. Fix κ > κ′ > 1− α− β. For q ≥ 1, let us denote the Besov space
B−κ′

2q,2q,ρσ by Aq, and recall that the norm on Aq is given by:

‖f‖2qAq
=
∑

j≥−1

2−2qjκ′‖∆jf‖2qL2q
ρσ

.

We will choose q large enough so that Aq →֒ B−κ
ρσ , a fact which is ensured by Besov embedding

theorems. We will show that almost surely:

‖δWst‖Aq ≤ Z (t− s)θ, (5.22)

for any θ ∈ (0, 1− β
2
) and the random variable Z admitting moments of all orders. This will

complete the proof of the proposition.

To this aim, recall from Section 5.2.1 that ∆jf(x) = [Kj ∗f ](x), where Kj(z) = 2jdK(2jz)
and K is the inverse Fourier transform of ϕ. Otherwise stated, Kj is the inverse Fourier
transform of ϕj. With these preliminary considerations in mind, set Kj,x(y) := Kj(x − y)
and evaluate:

E

[
‖δWst‖2qAq

]
=

∑

j≥−1

2−2qjκ′

∫

Rd

E

[∣∣W
(
1[s,t] ⊗Kj,x

)∣∣2q
]
ρ2qσ (x) dx

≤ cq
∑

j≥−1

2−2qjκ′

∫

Rd

E
q
[∣∣W

(
1[s,t] ⊗Kj,x

)∣∣2
]
ρ2qσ (x) dx (5.23)

Moreover, we have

E

[∣∣W
(
1[s,t] ⊗Kj,x

)∣∣2
]

=

∫

[s,t]2

(∫

Rd

|FKj,x|2 µ(dξ)
)
γ(u− v) dudv

≤ (t− s)2−β

∫

Rd

∣∣ϕ
(
2−jξ

)∣∣2 µ(dξ). (5.24)

Let us introduce the measure ν(dξ) = µ(dξ)/(1 + |ξ|2(1−α−β)), which is a finite measure on
R

d according to our standing assumption. Also recall from Notation 5.9 that Supp(ϕ) ⊂
{x ∈ R

d : a 6 |x| 6 b}. Hence
∫

Rd

∣∣ϕ
(
2−jξ

)∣∣2 µ(dξ) ≤
∫

Rd

1[0,2jb](|ξ|)
[
1 + |ξ|2(1−α−β)

]
ν(dξ) ≤ cµ 2

2(1−α−β)j .

Plugging this identity into (5.24) and then (5.23) we end up with the relation E[‖δWst‖2qAq
] ≤

cq(t− s)(2−β)q, valid for all 0 ≤ s < t ≤ T and any q ≥ 1. A standard application of Garsia’s
and Fernique’s lemma then yields relation (5.22), and thus Hypothesis 5.17 . �

Remark 5.23. In particular, equation (5.14) driven by W admits a unique pathwise solution

in Dθu,κu

λ,σ , as in Theorem 5.21, for some θu >
β
2

and κu > 1 − α − β. Notice here that one
obtains (see Theorem 5.3) the existence of a solution to our equation in the Stratonovich
sense under Hypothesis 4.1 only. We call this assumption the critical case. In order to
get existence and uniqueness of a pathwise solution we have to impose the more restrictive
Hypothesis 4.8 with an arbitrarily small constant α, which can be seen as a supercritical
situation. This is the price to pay in order to get uniqueness of the solution.
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We now turn to the second point of our strategy, namely prove that the Feynman-Kac
solution uF coincides with the unique pathwise solution to equation 5.14 driven by W .

Proposition 5.24. Let uF be the random field given by equation (4.1). Assume that W
satisfies Hypothesis 4.8. Then there exist θu >

β
2

and κu > 1−α− β such that almost surely

uF belongs to the space Dθu,κu

λ,σ . Moreover, uF is the pathwise solution to equation (5.14)
driven by W .

Proof. To show that uF is the pathwise solution to equation 5.14, we use the fact that uFt,x
is the limit in Lp(Ω) of the approximating sequence uε,δt,x introduced in (4.15) (see (4.16)) as

ε and δ tend to zero, for any p ≥ 1. On the other hand, it is clear that uε,δ is the pathwise
solution to equation (5.14) driven by the trajectories of W ε,δ

uε,δt = ptu0 +

∫ t

0

pt−s

(
uε,δs W ε,δ(ds)

)
.

Then, it suffices to take the limit in the above equation to show that uF is a pathwise solution
to equation (5.14) driven by W . In fact, that for two particular sequences εn ↓ 0 and δn ↓ 0

W εn,δn converges to W almost surely in the space Cθ,−κ
T,ρσ

. This implies (see Theorem 5.21

item (b)) that uεn,δn converges almost surely to a process u in Dθu,κu

λ,σ , which is the pathwise

solution to equation 5.14 driven by W . Therefore, u = uF and this concludes the proof. �

5.2.5. Time independent case. The case of a time independent noise is obviously easier to
handle than the time dependent one. Basically, the Young integration arguments invoked
above can be skipped, and they are replaced by Gronwall type lemmas for Lebesgue in-
tegration. We won’t detail the proofs here, and just mention the main steps for sake of
conciseness.

First, the pathwise type assumption we make on the noise W , considered as a distribution
on R

d, is the following counterpart of Hypothesis 5.17:

Hypothesis 5.25. Suppose that W is a distribution on R
d such that W ∈ B−κ

ρσ with κ ∈ (0, 1)
and an arbitrarily small constant σ > 0.

Another simplification of the time independent case is that one can solve the equation in a
space of continuous functions in time (compared to the Hölder regularity we had to consider
before), with values in weighted Besov spaces. We thus define the following sets of functions

Cκu

λ,σ =
{
f ∈ C([0, T ]× R

d); ‖ft‖Bκu
wt

≤ cf

}
, where wt := eλ+σt.

With these conventions in hand, we interpret equation (5.2) as a mild equation in the
spaces Cκu

λ,σ.

Definition 5.26. Let u ∈ Cκu

λ,σ for λ, σ > 0 and κu ∈ (κ, 1). Consider an initial condition
u0 ∈ Bκu

eλ
. We say that u is a mild solution to equation

∂u

∂t
=

1

2
∆u+ uW (5.25)

with initial condition u0 if it satisfies the following integral equation

ut = ptu0 +

∫ t

0

pt−s (us W ) ds, (5.26)
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where the product uW is interpreted in the distributional sense.

We can now turn to the resolution of the equation in this context, and the main theorem
in this direction is the following.

Theorem 5.27. Let W be a distribution satisfying Hypothesis 5.25 and let λ be a strictly
positive constant. Then equation (5.26) admits a unique solution in Cκu

λ,σ, in the sense given
by Definition 5.26, with κ < κu < 1.

Proof. As in the proof of Theorem 5.21, we focus on the proof of uniqueness, and fix a
small time interval [0, τ ]. Consider u1, u2 two solutions in Cκu

λ,σ and we set u12 = u1 − u2.

Consistently with Definition 5.26, the equation for u12 is given by:

u12t =

∫ t

0

pt−s

(
u12s W

)
ds, (5.27)

and we wish to prove that u12 ≡ 0.

Towards this aim, let us bound the Besov norm of u starting from equation (5.27). Owing
to Proposition 5.15, we get

‖u12t ‖Bκu
wt

≤
∫ t

0

‖pt−s

(
u12s W

)
‖Bκu

wt
ds ≤ cτ,λ,σ

∫ t

0

(t− s)−
(κu+κ)

2 ‖u12s W ‖B−κ
wt
ds.

Along the same lines as in the proof of Theorem 5.21, we now invoke the bound (5.18), which
yields wt ≤ cτ,λ,σ (t− s)−σws ρσ. Hence, according to Proposition 5.13 item (iii), we have

‖u12t ‖Bκu
wt

≤ cλ,σ

∫ t

0

(t− s)−
(κu+κ)

2
−σ ‖u12s W ‖B−κ

wsρσ
ds.

Since κu > κ, we now apply relation (5.11) with w1 = ws, κ1 = κu, w2 = ρσ and κ2 = κ. We
end up with

‖u12t ‖Bκu
wt

≤ cτ,λ,σ ‖W ‖B−κ
ρσ

∫ t

0

‖u12s ‖Bκu
ws

(t− s)
(κu+κ)

2
+σ

ds .

Taking into account that κu + κ < 2 and σ can be arbitrarily small, our conclusion u12 ≡ 0
follows easily from a Gronwall type argument. �

We now state a result which allows to identify the Feynman-Kac and the pathwise solution
to our spatial equation. Its proof is omitted for sake of conciseness, since it is easier than in
the time dependent case.

Proposition 5.28. Let W be a spatial Gaussian noise defined by the covariance struc-
ture (2.5) and (2.6). Assume that the measure µ satisfies the condition

∫

Rd

µ(dξ)

1 + |ξ|2(1−α)
<∞, (5.28)

for a constant α ∈ (0, 1). Then:

(i) There exists κ ∈ (0, 1) such that for any arbitrarily σ > 0, W has a version in B−κ
ρσ and

the random variable ‖W‖B−κ
ρσ

has moments of all orders, that is the trajectories of W satisfy

Hypothesis 5.25. As a consequence, equation (5.26) driven by the trajectories of W admits
a unique pathwise solution in Cκu

λ,σ.
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(ii) Let uF be the Feynman-Kac solution to the heat equation given by (4.20). Then almost
surely the process uF lies into Cκu

λ,σ, and it coincides with the unique pathwise solution to
equation (5.26).

Remark 5.29. Here again, we see that the Feynman-Kac solution uF exists under the critical
condition

∫
Rd(1 + |ξ|2)−1µ(dξ) <∞, while the pathwise solution requires the more stringent

condition (5.28).

6. Moment estimates

As mentioned in the introduction, intermittency properties for u are characterized by the
family of Lyapounov type coefficients ℓ(k) defined by (1.3) or by the limiting behavior (1.4).
In any case, the intermittency phenomenon stems from an asymptotic study of the moments
of u, for large values of k and t. We propose to lead this study in the context of the general
Gaussian noises considered in the current paper.

Notice that delicate results such as limiting behaviors for moments will rely on more specific
conditions on the noise W . We are thus going to make use of the following conditions.

Hypothesis 6.1. There exist constants c0, C0 and 0 < β < 1, such that

c0|x|−β ≤ γ(x) ≤ C0|x|−β.

Hypothesis 6.2. There exist constants c1, C1 and 0 < η < 2, such that

c1|x|−η ≤ Λ(x) ≤ C1|x|−η.

Hypothesis 6.3. There exist constants c2, C2 and 0 < ηi < 1, with
∑d

i=1 ηi < 2, such that

c2

d∏

i=1

|xi|−ηi ≤ Λ(x) ≤ C2

d∏

i=1

|xi|−ηi.

Clearly, Hypothesis 6.1 and Hypothesis 6.2 generalize the case of Riesz kernels and Hy-
pothesis 6.3 generalizes the case of fractional noises. Notice that under Hypotheses 6.2 or 6.3
the spectral measure µ satisfies the integrability condition (2.4).

Theorem 6.4. Suppose that γ satisfies Hypothesis 6.1 and Λ satisfies Hypothesis 6.2 or
Hypothesis 6.3. Denote

a =

{
η if Hypothesis 6.2 holds∑d

i=1 ηi if Hypothesis 6.3 holds.

Consider the following two cases:

(i) u is the solution to the Skorohod equation (3.1) driven by a time dependent noise with
time covariance γ and space covariance Λ.

(ii) u is the solution to the Stratonovich equation (5.1) driven by a time dependent noise
with time covariance γ and space covariance Λ, and we assume that a < 2− 2β.

Then in both of these two cases we have

exp
(
Ct

4−2β−a
2−a k

4−a
2−a

)
≤ E

[
ukt,x
]
≤ exp

(
C ′t

4−2β−a
2−a k

4−a
2−a

)
(6.1)

for all t ≥ 0 , x ∈ R
d , k ≥ 2, where C,C ′ are constants independent of t and k.
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Proof. Let us first discuss the upper bound. For the Skorohod equation, using the chaos
expansion and the hypercontractivity property we can derive the upper bound as it has been
done in [3]. For the Stratonovich equation, notice first that Hypothesis 4.8 holds because
a < 2 − 2β. Using the Feynmann-Kac formula (4.1) for the solution to equation (5.1), and
applying Cauchy-Schwartz inequality yields

E
[
ukt,x
]

= EB

[
exp

(
∑

1≤i,j≤k

∫ t

0

∫ t

0

γ(r − s)Λ(Bi
r − Bj

s)drds

)]

≤
[
EB

[
exp

(
2
∑

1≤i<j≤k

∫ t

0

∫ t

0

γ(r − s)Λ(Bi
r − Bj

s)drds

)]] 1
2

×
[
EB

[
exp

(
2

k∑

i=1

∫ t

0

∫ t

0

γ(r − s)Λ(Bi
r − Bi

s)drds

)]] 1
2

.

In the above expression, the first term is just the square root of the Feynman-Kac for-
mula (3.21) for the moment of order k of the solution of a Skorohod equation with multi-
plicative noise, with covariances 2γ and 2Λ. For this term we know that we can derive the
upper bound (6.1) using the chaos expansion and the hypercontractivity property as it has
been done in [3]. For the second factor, using the asymptotic result proved in Proposition 2.1
in [11], we derive the estimate

E
k
2

[
exp

(
2

∫ t

0

∫ t

0

γ(r − s)Λ(B1
r − B1

s )drds

)]
≤ Ck exp

(
Ct

4−2β−a
2−a k

)
.

Therefore, in this way we can obtain the desired upper bound of E
[
ukt,x
]
.

Let us now discuss the lower bound. Taking into account again the Feynman-Kac for-
mula (3.21) for the moments of u, it suffices to consider the case of the Skorohod equation
(it is readily checked from (3.21) that the moments of u for the Stratonovich equation are
greater than those of the Skorohod equation). The argument of the proof is then based in
the small ball probability estimates for Brownian motion. We consider only the case when
Λ satisfies the lower bound given in hypothesis Hypothesis 6.2 (Riesz kernel case), since the
case Hypothesis 6.3 (fractional noise) is analogous. In this case, owing to formula (3.21) and
the scaling property of the Brownian motion, it is easy to see that

E
[
ukt,x
]
≥ E

[
exp

(
c0c1t

2−β− η
2

∑

1≤i<j≤k

∫ 1

0

∫ 1

0

|s− r|−β|Bi
s − Bj

r |−ηdsdr

)]
.

Denote Bi,l
s , l = 1, 2, · · · , d the l-th component of the d-dimensional Brownian motion Bi

s.
Consider the set

Aε =

{
sup

1≤i<j≤k
sup
1≤l≤d

sup
0≤s,r≤1

|Bi,l
s −Bj,l

r | ≤ ε

}
.
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Restricting the above expectation to this event and recalling that the value of a generic
constant c might change from line to line, we obtain:

E [ut,x]
k ≥ E

[
exp

(
c t2−β− η

2

∑

1≤i<j≤k

∫ 1

0

∫ 1

0

|s− r|−β|Bi
s − Bj

r |−ηdsdr

)
1Aε

]
(6.2)

≥ exp

(
c k(k − 1)

(2− β)(1− β)
t2−β− η

2 ε−η

)
P
(
Aε

)
≥ exp

(
c t2−β− a

2k2ε−η
)
P
(
Aε

)
.

Moreover, notice that

∩k
i=1 ∩d

l=1 Fi,l ⊂ Aε, with Fi,l =

(
sup
0≤s≤1

|Bi,l
s | ≤ ε

2

)
.

The events Fi,l being i.id, we get:

P
(
Aε

)
≥ P

kd (Fε) , with Fε =

(
sup
0≤s≤1

|bs| ≤
ε

2

)
,

where b stands for a one dimensional standard Brownian motion. In addition, it is a well
known fact (see e.g (1.3) in [35]) that limε→0P(Fε)/ exp(− π2

2ε2
) = 1. Hence, there exists an

ε0 > 0 such that for ε ≤ ε0, we have P(Fε) ≥ exp(−Cε−2), for some constant C > 0. Under
the condition ε ≤ ε0, this entails:

E [ut,x]
k ≥ exp

(
c t2−β− η

2 k2ε−η − Cdk

ε2

)
.

In order to optimize this expression, we try to equate the two terms inside the exponential
above. To this aim, we set

ε =
t
2−β−

η
2

η−2 (c k)
1

η−2

(2dC)
1

η−2

,

and notice that for k ≥ 2 and t sufficiently large, the condition ε ≤ ε0 is fulfilled. Therefore,
we conclude that for t and k large enough

E
[
ukt,x
]
≥ exp

(
c

η
2−η t

4−2β−η
2−η k

4−η
2−η

8(2dC)
a

2−a

)
, (6.3)

which finishes the proof of (6.1). �

We now give two extensions of the theorem above. The first one concerns the moment
estimates in the time independent case. Its proof is very similar to the proof of Theorem 6.4,
and is thus omitted for sake of conciseness.

Theorem 6.5. Suppose that Λ satisfies Hypothesis 6.2 or Hypothesis 6.3. Set a = η if
Hypothesis 6.2 holds, and a =

∑d
i=1 ηi if Hypothesis 6.3 holds. Suppose that u is the solution

to the Skorohod equation (3.32) or the Stratonovich equation (5.2) driven by a multiplicative
time independent noise with covariance Λ. Then, for any x ∈ R

d, k ≥ 2, we have

exp
(
Ct

4−a
2−ak

4−a
2−a

)
≤ E

[
ukt,x
]
≤ exp

(
C ′t

4−a
2−ak

4−a
2−a

)
, (6.4)

where C,C ′ > 0 are constants independent of t and k.
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Finally, when d = 1 we can also obtain moment estimates in the case where the space
covariance is a Dirac delta function, that is, the noise is white in space.

Theorem 6.6. Suppose that γ satisfies condition Hypothesis 6.1 and the spatial dimension
is 1. Consider two cases:

(i) Suppose that u satisfies either the Skorohod equation (3.1) or the Stratonovich equa-
tion (5.1) driven by a multiplicative noise with time covariance γ and spatial covari-
ance Λ(x) = δ0(x). Then, for any x ∈ R

d, k ≥ 2 and t > 0, we have

exp
(
Ct3−2βk3

)
≤ E

[
ukt,x
]
≤ exp

(
C ′t3−2βk3

)
, (6.5)

where C,C ′ > 0 are constants independent of t and k.
(ii) Suppose that u satisfies either the Skorohod equation (3.32) or the Stratonovich equa-

tion (5.2) driven by a time independent multiplicative noise with spatial covariance
Λ(x) = δ0(x). Then, for any x ∈ R

d, k ≥ 2 and t > 0, we have

exp
(
Ct3k3

)
≤ E

[
ukt,x
]
≤ exp

(
C ′t3k3

)
, (6.6)

where C,C ′ > 0 are constants independent of t and k.

Proof. In the Skorohod case with time dependent noise, the moments of ut,x are given by
equation (3.31). We will only discuss the lower bound because the upper bound can be
obtained by using chaos expansions as in [3]. We consider the approximation of the Dirac
delta function by the heat kernel pε, and define

It,k,ε = EB

[
exp

(
∑

1≤i<j≤k

∫ t

0

∫ t

0

γ(s− r)pε(B
i
s −Bj

r)dsdr

)]
. (6.7)

Expanding the exponential and using Fourier analysis as in [27], one can show that E
[
ukt,x
]
≥

It,k,ε, for any ε > 0. For any positive ε, denote

Ak,ε,t =

{
max
1≤i≤k

sup
0≤s≤t

|Bi
s| ≤

√
ε

}
.

On the event Ak,ε,t we have pε(B
i
s−Bj

r) ≥ C√
ε

for some positive constant C. Therefore, using

the lower bound in Hypothesis 6.1, we can write similarly to (6.2):

It,k,ε ≥ exp

(
c k2

∫ t

0

∫ t

0

|s− r|−β C√
ε
dsdr

)
P (Ak,ε,t) .

Furthermore, by the scaling property of Brownian motion, P (Ak,ε,t) can be written as:

P (Ak,ε,t) = P

(
max
1≤i≤k

sup
0≤s≤1

|Bi
s| ≤

√
ε/t

)
=

(
P

(
max
0≤s≤1

|bs| ≤
√
ε/t

))k

,

where b stands for a one-dimensional standard Brownian motion. We now invoke again (1.3)

in [35], which yields limε→0P(sup0≤s≤1 |Bs| ≤
√

ε
t
)/ exp(−π2

8
t
ε
) = 1. Thus, when ε is suffi-

ciently small,

P

(
sup
0≤s≤1

|Bs| ≤
√
ε

t

)
≥ exp

(
−C t

ε

)
,



STOCHASTIC HEAT EQUATION WITH MULTIPLICATIVE COLORED NOISE 51

for some positive constant C which does not depend on t. Hence, we end up with the
following lower bound:

It,k,ε ≥ exp

(
C1k

2t2−β 1√
ε
− C2

t

ε

)
.

As in the proof of Theorem 6.4, we optimize this expression by choosing ε =
4C2

2

C2
1k

3t2−2β , and

we obtain that

It,k,ε ≥ exp(C3t
3−2βk3) (6.8)

when t is sufficiently large, where the positive constant C3 does not depend on t or k.

For the Stratonovich case, the lower bound is obvious and for the upper bound we use the
Cauchy-Schwartz inequality and Lemma 2.2 in [11]. The estimate (6.6) is proved similarly,
which completes the proof. �

Remark 6.7. As a consequence of Theorems 6.4, 6.5 and 6.6, the solution u of both the
Skorohod and Stratonivich equations is intermittent in the sense of condition (1.4).
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