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ON NON-REALIZATION RESULTS AND CONJECTURES OF N.

KUHN

NGUYEN THE CUONG, GÉRALD GAUDENS, GEOFFREY POWELL,
AND LIONEL SCHWARTZ

Abstract. We discuss two extensions of results conjectured by Nick Kuhn
about the non-realization of unstable algebras as the mod p singular cohomol-
ogy of a space, for p a prime. The first extends and refines earlier work of
the second and fourth authors, using Lannes’ mapping space theorem. The
second (for the prime 2) is based on an analysis of the −1 and −2 columns of
the Eilenberg-Moore spectral sequence, and of the associated extension.

In both cases, the statements and proofs use the relationship between the
categories of unstable modules and functors between Fp-vector spaces. The
second result in particular exhibits the power of the functorial approach.

1. Introduction

Let p be a prime number, U denote the category of unstable modules and K the
category of unstable algebras over the mod p Steenrod algebra Ap [Sch94]. The
mod p singular cohomology of a space X is denoted H∗X .

In the first part of the paper, the topological spaces X considered are p-complete
and connected. We assume that H∗X is of finite type (finite dimensional in each
degree) and, moreover, that Jean Lannes’ functor TV acts nicely on H∗X , in the
sense that TV (H

∗X) is of finite type for all V . In order to apply Lannes’ theory
[Lan92] we also suppose the spaces considered are 1-connected and that TV (H

∗X) is
1-connected for all V . For the current arguments, the connectivity hypothesis is not
a significant restriction, since it is always possible to collapse the 1-skeleton. The
finiteness hypotheses can be relaxed using methods of Fabien Morel, as explained
by François-Xavier Dehon and Gérald Gaudens [DG03].

In an earlier paper1, the second and fourth authors gave a proof of the following
result, Nick Kuhn’s realization conjecture [Kuh95b]:

Theorem 1.1. [GS13] Let X be a space such that H∗X is finitely-generated as an
Ap-module, then H∗X is finite.

This result is a consequence of the following stronger result, Kuhn’s strong real-
ization conjecture [Kuh95b], which uses the Krull filtration

U0 ⊂ U1 ⊂ U2 ⊂ . . . ⊂ U

of the category U (see Section 2); in particular, U0 is the full subcategory of locally
finite unstable modules.

This work was partially supported by the VIASM and the program ARCUS Vietnam of the

Ŕégion Ile de France and Minisistère des Affaires Etrangères’.
1[GS13] was published two years late, due to an email lost by the second of the two authors.

1



2 NGUYEN T.C., G. GAUDENS, G. POWELL, AND L. SCHWARTZ

Theorem 1.2. [GS13] Let X be a space such that H∗X ∈ Un for some n ∈ N, then
H∗X ∈ U0

The aim of this paper is to extend these results in two directions. The first
exploits the nilpotent filtration (see Section 3)

U = N il0 ⊃ N il1 ⊃ N il2 ⊃ . . . ⊃ N ils ⊃ . . .

of the category of unstable modules.
Here N il1 is the full subcategory of nilpotent unstable modules. For p = 2, an

unstable module is nilpotent if the operator Sq0 : x 7→ Sq|x|x acts nilpotently on
any element (a similar definition applies for p odd), hence, by the restriction axiom,
a connected unstable algebra is nilpotent if and only if its augmentation ideal is a
nilpotent unstable module.

Recall that an unstable module is reduced if it contains no non-trivial nilpotent
submodule. The following result explains how unstable modules are built from
(suspensions of) reduced unstable modules:

Proposition 1.3. [Sch94, Kuh95b] An unstable module M has a natural, conver-
gent decreasing filtration {nilsM}s≥0 with nilsM ∈ N ils and nilsM/nils+1M ∼=
ΣsRsM , where RsM is a reduced unstable module.

A reduced unstable moduleM is said to have degree n ∈ N (written deg(M) = n)
if M ∈ Un \ Un−1, otherwise deg(M) = ∞. Following Kuhn, define the profile
function wM : N → N ∪ {∞} of an unstable module M by

wM (i) := deg(RiM).

Recall that the module of indecomposable elements QH∗X := H̃∗X/(H̃∗X)2,
of the cohomology of a space X is an unstable module. Set wX := wH∗X and
qX := wQH∗X .

The following theorem provides a generalization of Theorem 1.2 and stresses the
relationship between the profile functions wX and qX (which is examined in greater
detail in Section 4). A version of the theorem was announced with a sketch proof
in [GS12]; the current statement strengthens and unifies existing results.

Theorem 1.4. Let X be a space such that H̃∗X is nilpotent. The following con-
ditions are equivalent:

(1) H∗X ∈ U0;
(2) wX = 0;
(3) qX = 0;
(4) wX ≤ Id;
(5) qX ≤ Id;
(6) wX − Id is bounded.

To see that this result implies Theorem 1.2, let X be a space such that H∗(X) ∈
Un. This condition implies easily (see Sections 2 and 3) that wΣX − Id is bounded,
hence H∗(ΣX) is locally finite, by Theorem 1.4, thus H∗X also.

Theorem 1.4 provides evidence for the following:

Conjecture 1. Let X be a space such that H̃∗X is nilpotent. If qX is bounded,
then H∗X ∈ U0.

This should be compared with the following stronger conjecture, which is equiv-
alent to the unbounded strong realization conjecture of [Kuh95b]:
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Conjecture 2. Let X be a space such that H̃∗X is nilpotent. If qX takes finite
values, then H∗X ∈ U0.

The second generalization concerns the first and second layers of the nilpotent
filtration. The method of proof is of independent interest and can be applied in
other situations; a generalization of this approach may lead to a proof of Conjecture
1.

The fact that the argument is based upon the Eilenberg-Moore spectral sequence
for computing H∗ΩX from H∗X means that the restrictions upon the space X can
be relaxed in the following theorem, in which the prime is taken to be 2.

Theorem 1.5. Let X be a 1-connected space such that H̃∗X is of finite type and
nilpotent. If deg(R1H

∗X) = d ∈ N then deg(R2H
∗X) ≥ 2d.

The result proved is slightly stronger, giving a precise statement on the cup
product on H∗X (see Remark 6.14).

The strategy of proof for Theorem 1.5 is different from that of the previous
results and is related to that of [Sch98]. It depends on an analysis of the second
stage of the Eilenberg-Moore filtration of H∗ΩX and using results on triviality and
non-triviality of certain extension groups Ext1F(−,−), where F is the category of
functors on F2-vector spaces (see Section 2).

The paper is organized as follows. The Krull filtration is reviewed in Section 2
and the nilpotent filtration in Section 3; using this material, the profile functions
are considered in Section 4. Theorem 1.4 is proved in Section 5 based on Lannes’
theory, which is reviewed rapidly. Section 6 is devoted to the proof of Theorem 1.5,
using the Eilenberg-Moore spectral sequence.

Remark 1.6. A first version of this work was made available by three of the authors
in [NGS14]. The third-named author proposed the current approach in Section 6.

2. The Krull filtration on U

Gabriel [Gab62] introduced the Krull filtration of an abelian category; for the
category of unstable modules, U , this gives the filtration

U0 ⊂ U1 ⊂ U2 ⊂ . . . ⊂ U

by thick subcategories stable under colimits, which is described in [Sch94].
The category U0 is the largest thick sub-category generated by the simple objects

and stable under colimits, which identifies with the subcategory of locally finite
modules (M ∈ U is locally finite if Apx is finite for any x ∈ M). The categories
Un are then defined recursively as follows. Having defined Un, form the quotient
category U/Un; then Un+1 is the pre-image under the canonical projection U →
U/Un of the subcategory (U/Un)0 ⊂ (U/Un) (which is defined as above).

For M an unstable module and n ∈ N, knM denotes the largest sub-module of
M that is in Un (see [Kuh13], for example).

Proposition 2.1. For M ∈ U , M = ∪nknM.

Example 2.2. For k, n ∈ N, ΣkF (n) ∈ Un \ Un−1, where F (n) is the free unsta-
ble module on a generator of degree n. (In the terminology of the introduction,
degF (n) = n.)
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Proposition 2.3. ([Sch94, 6.1.4] and [Kuh95b].) If M is a finitely-generated un-
stable module,

(1) there exists d ∈ N such that M ∈ Ud;
(2) for each n ∈ N, RnM is finitely-generated;
(3) the nilpotent filtration of M is finite (nilsM = 0 for s≫ 0).

There is a characterization of the Krull filtration in terms of Lannes’ T -functor.
Recall that the functor TV , for V an elementary abelian p-group, is left adjoint
to M 7→ H∗BV ⊗ M ; TFp

is denoted simply T . Since H∗BZ/p splits in U as

Fp ⊕ H̃∗BZ/p, the functor T is naturally equivalent to Id ⊕ T̄ , where T̄ is left

adjoint to H̃∗BZ/p⊗−.

Theorem 2.4. [Lan92, Sch94] The functor TV is exact and commutes with colimits;
moreover there is a canonical isomorphism

TV (M1 ⊗M2) ∼= TV (M1)⊗ TV (M2);

in particular, TV (ΣM) ∼= ΣTV (M).

Theorem 2.5. [Sch94, Kuh13] The following are equivalent:

(1) M ∈ Un ,
(2) T̄ n+1M = 0.

Corollary 2.6. If M ∈ Um and N ∈ Un then M ⊗N ∈ Um+n.

There is also a combinatorial characterization of modules in Un which are of
finite type. This is stated here for p = 2; there are analogous results for odd
primes. Denote by α(k) the sum of the digits in the 2-adic expansion of k.

Theorem 2.7. [Sch94, Sch06] For M an unstable A2-module and n ∈ N,

(1) if M is reduced, M ∈ Un if and only if M j = 0 for α(j) > n;
(2) if M is finitely-generated, M ∈ Un if and only if its Poincaré series Σiait

i

has the following property: there exits k ∈ N such that, if ad 6= 0, then
α(d − i) ≤ n, for some 0 ≤ i ≤ k.

Let F be the category of functors from finite dimensional Fp-vector spaces
to Fp-vector spaces. There is an exact functor [HLS93] f : U −→ F defined
by f(M)(V ) := HomU (M,H∗(BV ))′ = TV (M)0 which induces an embedding of
U/N il1 in F .

The functor T̄ corresponds to the difference functor ∆ : F → F which is defined
on F ∈ F by

∆(F )(V ) := Ker
(

F (V ⊕ Fp) −→ F (V )
)

.

Namely, for M ∈ U , ∆(fM) ∼= f(T̄M).
Let Fn ⊂ F be the subcategory of polynomial functors of degree at most n, de-

fined as the full subcategory of functors F such that ∆n+1(F ) = 0. The polynomial
degree of a functor F is written degF ∈ N ∪ {∞}.

By Theorem 2.5, the following holds:

Proposition 2.8. For n ∈ N, the functor f : U → F restricts to an exact functor
f : Un → Fn.

Corollary 2.9. [Sch94] For M a reduced module, the following are equivalent

(1) M ∈ Ud;
(2) deg(fM) ≤ d;
(3) M j = 0 for all j such that α(j) > d.
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3. The nilpotent filtration

The main results of the paper concern spaces X such that the positive degree el-
ements of the cohomology H∗X are nilpotent; by the restriction axiom for unstable
algebras this corresponds to H̃∗X being nilpotent as an unstable module.

For p = 2, the following definition applies, where Sq0 is the operator x 7→

Sq[x|(x).

Definition 3.1. An unstable A2-module M is nilpotent if, for any x ∈ M , there
exists k such that Sqk0x = 0.

The archetypal example of a nilpotent unstable module is a suspension and the
following holds for all primes.

Proposition 3.2. [Sch94] An unstable module is nilpotent if and only if it is the
colimit of unstable modules which have a finite filtration whose quotients are sus-
pensions.

The full subcategory of nilpotent unstable modules is denoted N il1 ⊂ U and an
unstable module is said to be reduced if it contains no non-trivial subobject which
lies in N il1 (this is equivalent to containing no non-trivial suspension).

More generally the category U is filtered by thick subcategories N ils, s ≥ 0,
where N ils is the smallest thick subcategory stable under colimits and containing
all s-fold suspensions:

U = N il0 ⊃ N il1 ⊃ N il2 ⊃ . . . ⊃ N ils ⊃ . . . .

Proposition 3.3. [Sch94, Kuh95b, Kuh13] The inclusion functor N ils →֒ U ad-
mits a right adjoint nils : U → N ils so that M ∈ U has a convergent decreasing
filtration

. . . ⊂ nils+1M ⊂ nilsM ⊂ . . . ⊂M

and nilsMs/nils+1M ∼= ΣsRsM , where Rs(M) is a reduced unstable module.

The convergence statement is a consequence of the fact that, for any unstable
module M , nilsM is (s− 1)-connected.

Proposition 3.4. [Sch94, Kuh95b, Kuh13]

(1) The T -functor restricts to T : N ils → N ils and T ◦ nils ∼= nils ◦ T .
(2) The tensor product restricts to ⊗ : N ils ⊗N ilt → N ils+t.
(3) For M a finitely-generated unstable module, the nilpotent filtration is finite

(i.e. nilsM = 0 for s≫ 0) and each RsM is finitely-generated.
(4) An unstable module M lies in Un if and only if RsM ∈ Un for all s ∈ N.

Proof. The result follows from the commutation of T with suspension and the
respective definitions. For the final part, since T does not commute with projective
limits in general, in addition the connectivity of elements of N ils is used. �

Notation 3.5. For K an augmented unstable algebra with augmentation ε : K −→
Fp, denote by K̄ the augmentation ideal kerε and QK ∈ U the module of indecom-
posables: QK := K̄/(K̄)2.

Proposition 3.6. [Sch94, Section 6.4] For K an unstable algebra, QK ∈ N il1. If
p = 2, QK is a suspension.
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The following result is applied in Section 6; for simplicity only the case p = 2 is
considered.

Proposition 3.7. Let ψ : M → N be a morphism of unstable A2-modules such
that

(1) M ∈ N ild and N ∈ N ild+1, for some d ∈ N;
(2) RdM is finitely-generated.

Then there exists a finitely-generated submodule U ⊂M such that

(1) the restriction ψ|U is trivial;
(2) the monomorphism Rdψ : RdU → RdM has nilpotent kernel (equivalently

fRdψ is an isomorphism).

Proof. It is straightforward to reduce to the case where M is finitely-generated.
Moreover, without loss of generality, we may assume that ψ is surjective.

For k ≫ 0 (an explicit bound can be supplied), consider the following diagram

M
ψ

// //

����

N

ΣdΦkRdM

σk

88
p

p

p

p

p

p

� � // ΣdRdM

where Φ denotes the Frobenius functor and the bottom arrow is the canonical
inclusion (recall that RdM is reduced). The dashed arrow denotes a choice of
linear section σk (not A2-linear in general).

By hypothesis, M is finitely-generated, hence so is N ; thus there exists h ∈ N

such that RsN = 0 if s 6∈ [d+1, h]. Moreover, since each RsN is finitely-generated,
Proposition 2.9 implies that N is concentrated in degrees of the form ℓ + t, ℓ ∈
[d+ 1, h] and t ∈ N such that α(t) ≤ D for some D ∈ N. (This argument is related
to the second part of Theorem 2.7.)

Elements of ΣdΦkRdM lie in degrees of the form d + 2kv, for v ∈ N; hence a
non-zero element in the image of ψσk lies in a degree of the form:

d+ 2kv = ℓ+ t,

so that t = 2kv− (ℓ− d), where α(t) ≤ D and ℓ− d ∈ [1, h− d], where the values of
D and h are independent of k. If k is sufficiently large, this leads to a contradiction;
thus, for k ≫ 0, ψσk = 0.

Finally, consider the submodule U of M generated by the image under σk of a
(finite-dimensional) space of generators of the unstable module ΣdΦkRdM , which is
finitely-generated, since RdM is. The functor Rd preserves monomorphisms, hence
RdU ⊂ RdM and the conclusion follows. �

4. Kuhn’s profile functions

The profile function of an unstable module is defined using ideas of Kuhn [Kuh95b]:

Definition 4.1. For M ∈ U , the profile function wM : N −→ N ∪ {∞} is defined
by:

wM (i) := deg f(RiM) = degRiM.

Remark 4.2. For M an unstable module, wM = 0 if and only if M is locally finite
(i.e. M ∈ U0).
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Notation 4.3. For functions f, g : N −→ N ∪ {∞} write f ≤ g if f(i) ≤ g(i) for
all i ∈ N. The inclusion N →֒ N ∪ {∞} is denoted Id.

The following operations on functions N −→ N ∪ {∞} are useful:

Definition 4.4. For functions f, g : N −→ N ∪ {∞}, define functions:

(1) f • g(i) := supk{f(k) + g(i− k)};
(2) sup{f, g}(i) := sup{f(i), g(i)} (likewise for arbitrary sets of functions);
(3) ∂f(i) := sup{0, f(i)− 1}.
(4) [f ](i) := sup{f(j)|0 ≤ i ≤ j}.

Proposition 4.5. For M,N unstable modules,

(1) wM⊗N ≤ wM • wN ;
(2) wT̄M = ∂wM .

For a short exact sequence of unstable modules, 0 → M1 → M2 → M3 → 0, the
following hold

(1) wM1
≤ wM2

;
(2) wM2

≤ sup{wM1
, wM3

};
(3) wM3

≤ [wM2
].

Proof. For tensor products, the statement holds by the behaviour of the functor
Ri with respect to tensor products [Kuh95b, Proposition 2.5]. The statement for
the reduced T -functor is a consequence of the compatibility of T with the nilpotent
filtration and the definition of polynomial degree (see Proposition 3.4 and [Sch94,
Kuh95b]).

For the short exact sequence, the first two properties follow from the left exact-
ness of the composite functor f ◦Ri [Kuh07, Corollary 3.2] and the fact that Fn is
thick.

For the final point, it suffices to show that ΣtRtM3 lies in Ud, where

d = [wM2
](t) = sup{wM2

(i)|0 ≤ i ≤ t}.

Now ΣtRtM3 is a subquotient of M2/nilt+1M2 and the latter lies in Ud, since each
ΣiRiM2 does, for 0 ≤ i ≤ t, by definition of d. �

Remark 4.6. The final statement on wM3
can be strengthened slightly; the current

presentation is sufficient for current purposes.

Example 4.7. Let M,N be unstable modules such that wM ≤ Id and wN ≤ Id,
then wM⊗N ≤ Id. Hence, if T(M) :=

⊕

iM
⊗i denotes the tensor algebra on M ,

wT(M) ≤ Id.

For K an unstable algebra, Proposition 4.5 immediately provides a bound for
wQK in terms of wK ; the following provides a converse.

Proposition 4.8. Let K be an augmented unstable algebra such that K̄ ∈ N il1
(thus K is connected). Then

wK ≤ sup{[wQK ]•t|t ∈ N}.

Proof. The result follows from an analysis of the short exact sequence

0 → (K̄)2 → K̄ → QK → 0

together with the surjection K̄ ⊗ K̄ ։ (K̄)2. Proposition 4.5 provides the inequal-
ities w(K̄)2 ≤ [wK̄⊗K̄ ] ≤ [wK̄ ] • [wK̄ ], so that wK ≤ sup{wQK , [wK̄ ] • [wK̄ ]}.
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The hypothesis that K̄ is nilpotent implies that wK̄(0) = 0 = wQK(0). It follows
that wK̄⊗K̄(i) only depends on wK̄(j) for 0 < j < i. A similar statement holds for
[wK̄ ] • [wK̄ ] in terms of [wK̄ ].

The result follows by showing by induction on i that [wK ](i) ≤ [wQK ]•t(i) for
1 ≤ t ≤ i. The cases i ∈ {0, 1} are clear. For the inductive step, as above

[wK ](i) ≤ sup{[wQK ](i), [wK̄ ] • [wK̄ ](i)}.

Now

[wK̄ ] • [wK̄ ](i) = sup
j

{[wK̄ ](j) + [wK̄ ](i − j)}

≤ sup
j

{[wQK ]•t1(j) + [wQK ]•t2(i − j)}

by the inductive hypothesis, where 1 ≤ t1 ≤ j and 1 ≤ t2 ≤ i − j. One identi-
fies supj{[wQK ]•t1(j) + [wQK ]•t2(i − j)} = [wQK ]•(t1+t2)(i), which concludes the
inductive step, since t1 + t2 ≤ i. �

The following is clear:

Corollary 4.9. Let K be an augmented unstable algebra such that K̄ ∈ N il1, then
K̄ is locally finite if and only if QK is locally finite; equivalently wK = 0 if and
only if wQK = 0.

Corollary 4.10. Let K be an augmented unstable algebra such that K̄ ∈ N il1,
then wK ≤ Id if and only if wQK ≤ Id.

Proof. The hypothesis wK ≤ Id implies that [wK ] ≤ [Id] = Id. The result follows
from the observation that Id • Id = Id. �

Notation 4.11. For X a space, write wX := wH∗X and qX := wQH∗X .

5. Proof of Theorem 1.4

We commence by a rapid review of Lannes’ theory, which is the main ingredient
in the proof of Theorem 1.4 and is also the reason for the restrictions imposed on
the topological spaces considered.

Let X be a p-complete, 1-connected space and assume that TH∗X is of finite
type and 1-connected. The evaluation map:

BZ/p×map(BZ/p,X) −→ X

induces a map in cohomology H∗X −→ H∗BZ/p ⊗H∗map(BZ/p,X) and hence,
by adjunction, TH∗X −→ H∗map(BZ/p,X).

Theorem 5.1. [Lan92] Under the above hypotheses, the natural map TH∗X →
H∗map(BZ/p,X) is an isomorphism of unstable algebras.

Notation 5.2. [Kuh95b] Denote by ∆(X) the homotopy cofibre of the map X −→
map(BZ/p,X) induced by BZ/p→ ∗.

Theorem 5.1 yields the following:

Proposition 5.3. Under the above hypotheses on X, H∗∆(X) ∼= T̄H∗X, hence

(1) w∆(X) = ∂wX ;
(2) if H∗X ∈ Un, then H∗∆(X) ∈ Un−1.
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The functor T induces T : K → K, which commutes with the indecomposables
functor for augmented unstable algebras [Sch94, Lemma 6.4.2]: namely, for K an
augmented unstable algebra, there is a natural isomorphism T (QK) ∼= Q(TK).
There is no analogous statement for T̄ ; however, if Z is an H-space, there is a
homotopy equivalence:

map(BZ/p, Z) ∼= Z ×map∗(BZ/p, Z).

For example, this leads to:

Proposition 5.4. [CCS07] For Z an H-space (also satisfying the global hypotheses)

QH∗map∗(BZ/p∧n, Z) ∼= T̄ nQH∗Z.

Proof of Theorem 1.4. Proposition 3.4 implies that an unstable moduleM is locally
finite if and only if wM = 0, which implies the equivalence (1) ⇔ (2). Corollary 4.9
gives the equivalence (2) ⇔ (3) and Corollary 4.10 the equivalence (4) ⇔ (5). The
implications (2) ⇒ (4) and (4) ⇒ (6) are clear, hence it suffices to establish:

• (6) ⇒ (2): if wX − Id is bounded then wX = 0.

For clarity, we first establish (4) ⇒ (2) and then indicate how to deduce the
more general result.

Suppose that there exists a space X (satisfying the global hypotheses) such that

0 6= wX ≤ Id and H̃∗X ∈ N il1; reductio ad absurdam. The first step is Kuhn’s
reduction [Kuh95b]. For s = inf{i|wX(i) 6= 0}, the space Y := ∆wX(s)−1X satisfies

wY (i) = 0, i < s

wY (s) = 1

wY (i) ≤ i− s+ 1, i > s.

By collapsing down a low-dimensional skeleton and p-completing, we may assume
that Y satisfies the global hypotheses and thatRiH

∗Y = 0 for 0 < i < s. In order to
work with pointed mapping spaces, consider Z := Ω(ΣX)∧p . By the Bott-Samelson

theorem H∗Z ∼= T(H̃∗X) as an unstable module, hence the global hypotheses are
satisfied by Z. Moreover, by Proposition 4.5, one has RiH

∗Z = 0 for 0 < i < s
and RiH

∗Z ∈ Ui−s+1 for i ≥ s. Thus, by Theorem 2.5 and the definition of the
nilpotent filtration, T̄ nH∗Z is (n+ s− 2)-connected.

It follows from [BK72] (in particular using Chapters 6 and 9 to show that there
are no phantom maps) that map∗(BZ/p∧n, Z) is (n+ s− 2)-connected.

By construction, RsH
∗Z is a reduced unstable module in U1, hence (by [Kuh95b,

Proposition 0.6], for example) there exists a non-trivial morphism RsH
∗Z → F (1),

where F (1) is the free unstable module on a generator of degree 1. Composing with

the canonical inclusion F (1) →֒ H̃∗BZ/p gives

ϕ∗
s : H

∗Z ։ H∗Z/nils+1H
∗Z ∼= F2⊕ΣsRsH

∗Z → F2⊕ΣsF (1) ⊂ F2⊕ΣsH̃∗BZ/p,

which is a morphism of unstable algebras, by compatibility of the nilpotent filtration
with multiplicative structures.

By Lannes’ theory [Lan92], the morphism ϕ∗
s can be realized as the cohomology

of a map ϕs : Σ
sBZ/p→ Z, by applying Theorem 5.1 together with the Hurewicz

theorem, since map∗(BZ/p, Z) is (s− 1)-connected.
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Thus, consider the extension problem

ΣsBZ/p
ϕs

//

��

Z

Σs−1K(Z/p, 2),

99

where the vertical map is the (s−1)-fold suspension of the canonical map ΣBZ/p→
K(Z/p, 2).

Algebraically it is clear that no such extension can exist, since ϕ∗
s is non-trivial

in positive degrees (by construction), whereas

HomU(H̃
∗Z, H̃∗Σs−1K(Z/p, 2)) = 0

since H̃∗Z ∈ N ils and H̃
∗Σs−1K(Z/p, 2) is the (s−1)-fold suspension of a reduced

module (H∗K(Z/p, 2) is reduced by Proposition 5.5 below).
However, obstruction theory shows that one can construct such a factorization,

as follows. Recall that K(Z/p, 2) can be built, starting from ΣBZ/p, using Milnor’s
construction; in particular there is a filtration ∗ = C0 ⊂ C1 = ΣBZ/p ⊂ C2 ⊂ . . . ⊂
∪nCn = K(Z/p, 2) with associated (homotopy) cofibre sequences

Σn−1BZ/p∧n → Cn−1 → Cn.

The associated obstructions to extending ϕs : Σ
sBZ/p → Z lie in the pointed

homotopy groups

[Σn+s−2(BZ/p)∧n, Z] = πn+s−2map∗(BZ/p∧n, Z).

The groups πn+s−2map∗BZ/p∧n, Z) are trivial, since map∗(BZ/p∧n, Z) is (n+ s−
2)-connected, as observed above. It follows that an extension exists, which is a
contradiction to the existence of such a space X , completing the proof of (4) ⇒ (2).

Finally consider (6) ⇒ (2). Suppose that X is a space such that wX − Id ≤
t for some t ∈ N; if t = 0 then the previous case applies, otherwise consider
∆tX . Proposition 5.3 implies that w∆tX ≤ Id, so, by the previous argument
(collapsing a low-dimensional skeleton and p-completing as required), w∆tX = 0 so
that wX ≤ t, again by Proposition 5.3. This implies that H∗X ∈ Ut, by Proposition
3.4 and, without significant loss of generality, we may assume that H∗X 6∈ Ut−1.
Suppose that t > 0, then ∆t−1X (again collapsing a low-dimensional skeleton and
p-completing as required) satisfies 0 6= w∆t−1X ≤ Id, contradicting the previous
result. Thus t = 0, as required. �

Proposition 5.5. The unstable module H∗K(Z/p, 2) is reduced.

Proof. (This result is well known to the experts, and holds for H∗K(Z/p, n) for
any n ∈ N. As we do not know a convenient reference, we indicate a proof.)

The cohomology H∗K(Z/p, 2) is isomorphic (with the usual notation) to

Fp[x, βP
Ihβ(x)] ⊗ E(P Iℓβ(x)) ∼= Fp[x, xh;h ≥ 1]⊗ E(yℓ; ℓ ≥ 0)

with |x| = 2, Ih = (ph−1, ph−2, . . . , p, 1), h ≥ 1, and β(x) = y0; in particular,
β(yh) = xh, h ≥ 1. It is enough to show that, for any non zero element z ∈
H̃∗K(Z/p, 2), there exists an operation θ such that θ(z) ∈ Fp[x, xh] and θ(z) 6= 0.

Any element z can be written as a sum
∑

0≤i≤t

∑

j Pi,j(x, xh) ⊗ Li,j(yℓ). If z
has degree 2n, and in such an expression there is a non-trivial term with exterior
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part of degree 0, a straightforward application of the Cartan formula shows that
θ = Pn suffices, since the reduced powers act trivially on the exterior generators.

For a general element, one reduces to such elements by applying operations which
decrease (non-trivially) the length of the exterior factors that occur. Consider
amongst the exterior factors a term Li,j of minimal length, and the minimal ℓ for
which yℓ occurs in it. Let Qi be the usual Milnor derivation at an odd prime. The
element [β,Qi] is also a derivation; it acts trivially on the xh, sends x to yi+1, and

yℓ to x
pℓ

i−ℓ+1. Using a standard lexicographic order argument, one can see that this
operation does the job for i large enough. �

6. Using the Eilenberg-Moore spectral sequence

In this section, the prime p is taken to be 2 and the space X is 1-connected such
that H̃∗X is nilpotent and of finite type.

The object of this last section is to prove the following:

Theorem 6.1. Let X be a space such that H̃∗X is of finite type and is nilpotent.
If wX(1) = d ∈ N then wX(2) ≥ 2d.

The interest of the result is to give some control on R2H
∗X , starting from

information about R1H
∗X . See Remark 6.14 for a slightly refined version of this

theorem.

Remark 6.2. This theorem is proved only for p = 2; the difficulties that occur in
the odd primary case in [Sch98, Sch10] also arise here, but look more manageable.

The method was originally suggested by the following observation:

Proposition 6.3. LetM be a connected, reduced unstable module such that deg(fM) =
d ∈ N. If d > 0, then the unstable module T(M) =

⊕

iM
⊗i does not carry the

structure of an unstable algebra.

Remark 6.4. This result is a special case of a general structure result for reduced
unstable algebras. The idea, from the point of view of this paper, is that cup
products of classes in M should appear in M ⊗M whereas the restriction axiom
for unstable algebras implies that cup squares occur in M . Thus, the triviality of
the extension between M and M ⊗M is incompatible with an unstable algebra
structure.

The proof of Theorem 1.5 is based on the analysis of an Ext1F group, playing off
the following non-splitting result against a vanishing criterion.

Recall from Section 2 that F denotes the category of functors on F2-vector spaces;
a functor of F is finite if it has a finite composition series. As usual, Sn denotes
the nth symmetric power functor and Λn the nth exterior power functor.

Lemma 6.5. For F ∈ F a non-constant finite functor, post-composition with the
short exact sequence 0 → S1 → S2 → Λ2 → 0, where S1 → S2 is the Frobenius
x 7→ x2, induces an exact sequence

0 // F // S2(F ) // Λ2(F ) // 0

which does not split.

Proof. Follows from [Kuh95a, Theorem 4.8], since 0 −→ S1 → S2 → Λ2 −→ 0 does
not split. �



12 NGUYEN T.C., G. GAUDENS, G. POWELL, AND L. SCHWARTZ

Notation 6.6. For F ∈ F a finite functor of polynomial degree d, set F :=
ker{F ։ qd−1F}, where qd−1F is the largest quotient of degree ≤ d− 1.

Lemma 6.5 will be played off against the vanishing result for Ext1F in the following
statement.

Lemma 6.7. Let F be a finite functor of polynomial degree d, G<d of degree < d,
G<2d of degree < 2d and G≤d of degree ≤ d. Then

(1) HomF (F ,G<d) = 0;
(2) HomF (F ⊗ F,G<2d) = 0 = HomF (Λ

2(F ), G<2d);
(3) Ext1F (F ⊗ F ,G≤d) = 0.

Proof. The first statement is a consequence of the definition of F .
The second is similar and follows from the compatibility of the polynomial fil-

tration of F with tensor products, which implies that F ⊗ F has no quotient of
polynomial degree < 2d. The second equality follows from the fact that the functor
Λ2(F ) is a quotient of F ⊗ F .

The result for Ext1 is proved as follows. Using dévissage it is straightforward
to reduced to the case where G≤d is simple. Since a simple functor of polynomial
degree n embeds in the nth tensor functor T n : V 7→ V ⊗n, which is finite and has
polynomial degree n, using the previous statement for Hom, it suffices to show that
Ext1F (F ⊗ F , T n) = 0 for n ≤ d. This follows by the standard methods introduced
in [FLS94], exploiting the tensor product on the left hand side. �

Using these results in conjunction with the Eilenberg-Moore spectral sequence,
we prove Theorem 1.5. For relevant details (and further references) on the Eilenberg-
Moore spectral sequence computing H∗ΩX from H∗X , see [Sch94, Section 8.7].
Note that the hypothesis that X is simply-connected ensures strong convergence of
the spectral sequence.

Recall that the (−2)-layer of the Eilenberg-Moore filtration F−2,∗
∞ on H∗ΩX is

an extension in unstable modules between the column E−1,∗
∞ desuspended once and

the column E−2,∗
∞ desuspended twice:

0 −→ Σ−1E−1,∗
∞ −→ F−2,∗

∞ −→ Σ−2E−2,∗
∞ −→ 0.

The term E−1,∗
∞ is a quotient of QH∗X ∼= E−1,∗

2 by a submodule in N il2, by

[Sch94, Theorem 8.7.1]. Similarly, E−2,∗
∞ is a quotient of Tor−2

H∗X(F2,F2) (which

belongs to N il2 by [Sch94, Theorem 6.1]), by a submodule in N il3 by [Sch94,
Proposition 8.7.7]. (Here N il3 is generated by N il3 and U0 - see [Sch94, Section
6.2].)

Thus, applying the exact functor f : U → F yields the short exact sequence:

0 → fR1QH
∗X → fF−2,∗

∞ → fR2Tor
−2
H∗X(F2,F2) → 0(6.1)

and, moreover, fR1QH
∗X ∼= fR1H̃

∗X . This allows arguments to be carried out
in the category of functors F .

Notation 6.8. Write

F1 := fR1H̃
∗X ∼= f(Σ−1E−1,∗

∞ )

F2 := f(F−2,∗
∞ ),

so that F2/F1
∼= fR2Tor

−2
H∗X(F2,F2) by (6.1).
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Remark 6.9. With this notation, the short exact sequence (6.1) represents a class
[F2] ∈ Ext1F (F2/F1, F1).

The compatibility of the cup product with the Eilenberg-Moore spectral sequence
gives a morphism S2(F1) → F2 which gives a morphism of short exact sequences

0 // F1
// S2(F1) //

��

Λ2(F1) //

��

0

0 // F1
// F2

// // F2/F1
// 0

so that the right hand square is a pull-back.
By hypothesis, the functor F1 is of degree d; the inclusion F1 ⊂ F1 induces

inclusions S2(F1) ⊂ S2(F1) and Λ2(F1) ⊂ Λ2(F1) which fit into the following
diagram of morphisms of short exact sequences:

0 // F1� _

��

// S2(F1) //

��

Λ2(F1) // 0

0 // F1
// E //

��

Λ2(F1) //

��

0

0 // F1
// S2(F1) //

��

Λ2(F1) //

��

0

0 // F1
// F2

//// F2/F1
// 0

(6.2)

in which the second row can be viewed either as the pushout of the top row or the
pullback of the second. Moreover, the first and third rows are not split, by Lemma
6.5, hence the bottom row is not split.

Lemma 6.10. If F1 is non-constant the short exact sequence

0 → F1 → E → Λ2(F1) → 0

does not split.

Proof. Consider the long exact sequence for Ext∗F induced by the defining short
exact sequence F1 → F1 → qd−1F1, which gives the exact sequence:

Hom(Λ2(F1), qd−1F1) → Ext1F (Λ
2(F1), F1) → Ext1F(Λ

2(F1), F1)

in which the first term is zero, by Lemma 6.7. Thus the second morphism is
injective.

The top row in diagram (6.2) represents a non-trivial class in Ext1(Λ2(F1), F1),
by Lemma 6.5, hence pushes out to a non-split short exact sequence represented
by a non-zero class in Ext1F (Λ

2(F1), F1). �

Proposition 6.11. The morphism Λ2F1 → F2/F1 does not factor over F1 ⊗ F1:

Λ2F1
//

��

F1 ⊗ F1

6∃
yy

F2/F1.
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Proof. The non-trivial extension of Lemma 6.10 is the image of the class [F2] ∈
Ext1F (F2/F1, F1) under the morphism induced by Λ2(F̄1) → F2/F1. Hence there
can be no factorization across the group Ext1F(F ⊗F, F ), which is trivial by Lemma
6.7. �

Proposition 6.12. Assume that H̃∗X is nilpotent and of finite type.
If deg(fR1H

∗X) = d ∈ N and deg(fR2(H
∗X)) < 2d, then

(1) there is an inclusion F1⊗F1 →֒ fR2Tor
−2
H∗X(F2,F2) ∼= F2/F1 with cokernel

of degree < 2d;
(2) the morphism Λ2(F1) → F2/F1 factors across F1⊗F1 →֒ fR2Tor

−2
H∗X(F2,F2).

Proof. The cup product of H∗X induces a morphism H̃∗X ⊗ H̃∗X → nil2H
∗X ,

since H̃∗X ∈ N il1, hence in F

F1 ⊗ F1 = fR1H
∗X ⊗ fR1H

∗X → fR2H
∗X.

Restricting to F1 ⊗ F1 ⊂ F1 ⊗ F1 this morphism is trivial, by Lemma 6.7, since
deg fR2H

∗X < 2d, by hypothesis.
Lift F1 to a submodule M of H̃∗X (so that fR1M corresponds to F1) and

consider the restriction of the product. By construction this gives:

M ⊗M → nil3H
∗X

with M ⊗M ∈ N il2. Moreover, it is easily checked that the finiteness hypothesis
required to apply Proposition 3.7 is satisfied, hence there exists a finitely-generated
submodule U ⊂ M ⊂ H̃∗X such that fR1U = fR1M = F1 and the cup product
restricts to a trivial map U ⊗U → H̃∗X . (This is a slight extension of Proposition
3.7 using the fact that the choices in the proof can be taken to be compatible with
the tensor product M ⊗M .)

The calculation of Tor−2
H∗X(F2,F2) using the bar construction then implies that

there is an inclusion F1 ⊗ F1 →֒ fR2Tor
−2
H∗X(F2,F2). Moreover, by the definition

of F1 ⊂ F1, it is clear that the cokernel has degree < 2d.
Finally, again by Lemma 6.7, there is no non-trivial map from Λ2(F1) to a functor

of degree < 2d, which gives the factorization statement. �

Remark 6.13. The appeal to Proposition 3.7 can be avoided so that the argument
is carried out entirely within F .

Proof of Theorem 6.1. Suppose that deg(fR2H
∗X) < 2d, then Proposition 6.12

provides a factorization

Λ2(F1) → F1 ⊗ F1 → F2/F1.

This contradicts Proposition 6.11. �

Remark 6.14. The result proved is slightly stronger, without supposing wX(2) < 2d.
Namely the argument shows that the composite:

F1 ⊗ F1 ⊂ F1 ⊗ F1 → fR2H
∗X,

where the second morphism is induced by the cup product of H∗X , is necessarily
non-trivial.
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