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Around conjectures of N. Kuhn

Nguyen The Cuong, Gérald Gaudens, and Lionel Schwartz

UMR 7539 CNRS, Université Paris 13
LIA CNRS Formath Vietnam

Abstract

The following note discuss two ways to extend conjectures of N. Kuhn about the non realization of certain
unstable algebras as the mod p singular cohomology of spaces. The first case (established for all primes p) extends
and refines preceding work the second and the third author [GS13]. The second one (only for the prime 2) discuss
another approach, not depending on Lannes’ mapping space theorem and relies on an analysis of the columns −1
and −2 of the Eilenberg-Moore spectral sequence, and the triviality of the associated extension in the category of
unstable modules. In both case the statements and proofs will use the links between the categories of unstable
modules and functors. In both cases it would be possible to work entirely within the category of unstable modules,
however it is much more cleaner and efficient to use both categories, thus this note is propaganda for this point of
view.

1 Introduction

Let p be a prime number, in all the sequel H∗X will denote the the mod p singular cohomology of the topological
space X . All spaces X will be supposed p-complete and connected. We will denote as usual by U the abelian category
of unstable modules and by K the category unstable algebras [S94]. One will assume moreover that the cohomology
groups are finite dimensional in any degree and that the functor TV of Jean Lannes acts nicely onH∗X in the sense that
TV (H

∗X) is also of finite dimension in any degree. As well, in order to apply a theorem of Lannes we will suppose the
spaces 1-connected, as well as TV (H

∗X . For the problem we will consider this is not a significant restriction because it
will be possible to collapse down the 1-skeleton. The dimensional condition could be relaxed using methods of Fabien
Morel, as explained by François-Xavier Dehon and Gaudens. In a preceding paper [GS13] the second and the third
author gave a proof of the conjecture of Nick Kuhn which follows

Theorem 1.1 [G. Gaudens, L. Schwartz] Let X be a space such that H∗X is finitely generated as an Ap-module.
Then H∗X is finite.

This result is as a consequence of the following stronger result also conjectured by Kuhn, and proved in the same
reference, which uses the Krull filtration

U0 ⊂ U1 ⊂ U2 ⊂ . . . ⊂ U

on the category U (see section 2) which is defined for any abelian category [Gab62].

Theorem 1.2 [G. Gaudens, L. Schwartz] Let X, If H∗X ∈ Un for some n, then H∗X ∈ U0

The aim of this article is to extend the results in two directions, and to give details on 1.5 announced with ashort
proof in [GS12] (note that [GS13] has been published two years in late, due to an email lost by the third author).

The first direction is that more can be said about the behavior of H̃∗X with respect to its nilpotent filtration. To
describe the statements one needs to introduce a function associated to an unstable module M and its nilpotent
filtration. Above we introduced spaces with nilpotent cohomology. The restriction axiom for unstable algebras allows
to express this in term of the action of the Steenrod algebra. The nilpotency condition (for p = 2) it is equivalent
to require that the operation Sq0 : x 7→ Sq|x|x acts nilpotently on any element. It makes it possible to extend the
definition of nilpotency to any unstable module and also to define higher order of nilpotency. The subcategory N ils,
s ≥ 0, is the smallest thick subcategory stable under colimits and containing all s-suspensions of unstable modules.

U = N il0 ⊃ N il1 ⊃ N il2 ⊃ . . . ⊃ N ils ⊃ . . .

By the very definition any M ∈ N ils is (s− 1)-connected..
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Proposition 1.3 [S94], [K95] Any M has a convergent decreasing filtration {Ms}s≥0 with Ms/Ms+1
∼= ΣsRs(M)

where Rs(M) is a reduced unstable module, i.e. which does not contain a non trivial suspension.

For a reduced unstable module M say that deg(M) = n if and only if M ∈ Un \ Un−1. Following N. Kuhn, to an
unstable module M , let us associate to M the function wM : N → N ∪∞ by:

wM (i) = deg(Ri(M))

Set wX = wH∗X .
Recall the indecomposable elements of the cohomology:

QH∗X = H̃∗X/(H̃∗X)2

Set qX = wQH∗X .
One gets:

Theorem 1.4 (Gaudens, Schwartz) Let X be such that H̃∗X ∈ N il1. The function wX either is equal to 0 or
wX − Id takes arbitrary large values, may be ∞.

Theorem 1.5 (Nguyen T. Cuong, Gaudens, Schwartz) Let X be such that H̃∗X ∈ N il1. The function qX
either is equal to 0 or qX − Id takes at least one positive (non zero) value.

These are evidences (there are others) for:

Conjecture 1.1 (G. Gaudens) Let X be a space so that any element in H̃∗X is nilpotent. If QH∗X ∈ Un, then
QH∗X ∈ U0.

Conjecture 1.2 (G. Gaudens) Let X be a space so that any element in H̃∗X is nilpotent. If QH∗X 6∈ U0, then
for some integer i, deg(Ri(QH∗X) = +∞.

Below is the second generalization. It concerns only the first and the second layers of the nilpotent filtration. Hopefully
the method (comments about it are made below) extends to more general cases and may lead to a proof of the preceding
conjectures.

Theorem 1.6 (Nguyen T. Cuong, Gaudens, Schwartz) Let X be a space so that any element in H̃∗X is nilpo-
tent. Assume that R1H

∗X ∈ Ud then R2H
∗X ∈ U2d.

The proof of this theorem will be slightly different from the proof of the preceding ones and be closer from the one
in [S94]. It depends on an analysis of the second step of the Eilenberg-Moore filtration on H∗ΩX , and computing
certain Ext1U (−,−).
The Krull and nilpotent filtrations will be shortly described in the first sections, for details we refer to [S94], and to
[K95] and also [K13].
This work was partially supported by the VIASM, and the program ARCUS Vietnam of ”Région Ile de France and
Minisistère des Affaires Etrangères”.

2 The Krull filtration on U

The category of unstable modules U , as any abelian category, has a Krull filtration. The filtration is by thick
subcategories stable under colimits

U0 ⊂ U1 ⊂ U2 ⊂ . . . ⊂ U

This is described in [S94], U0 is the largest thick sub-category generated by simple objects and stable under colimits.
It is the subcategory of locally finite modules, M ∈ U is locally finite if the span over Ap of any x ∈ M is finite. Having
defined by induction Un one defines Un+1 as follows. One introduces the quotient category U/Un whose objects are
the same of those of U but where morphisms in U that have kernel and cokernel in U0 are formally inverted. Then
(U/Un)0 is defined as above and Un+1 is the pre-image of this subcategory in U via the canonical projection functor,
see [Gab62] for details. One has:

Theorem 2.1 Let M ∈ U and Kn(M) be the largest sub-object of M that is in Un, then

M = ∪nKn(M)
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Here is basic example:

• ΣkF (n) ∈ Un \ Un−1, the unstable modules F (n) are the canonical generators of U , generated in degree n by ιn
and Fp-basis P

Iιn, I an admissible multi-index of excess less than n;

Proposition 2.2 If M is a finitely generated unstable module, there exist d such that M ∈ Ud, the nilpotent filtration
is finite, and for any d Rd(M) is finitely generated.

See in particular [S94] 6.1.4 and [K95].
There is a characterization of the filtration in terms of the functor T̄ introduced by Jean Lannes [S94]. The functor
functor TV , V elementary abelian p-group,is left adjoint to M 7→ H∗BV ⊗M . If V = Fp denote it by T . As H∗BZ/p

splits up, in U , as Fp ⊕ H̃∗BZ/p the functor T is naturally equivalent to Id⊕ T̄ .
Below are the main properties of TV

Theorem 2.3 [L92], [S94] The functor TV commutes with colimits (as a left adjoint). It is exact. Moreover there is
a canonical isomorphism

TV (M1 ⊗M2) ∼= TV (M1)⊗ TV (M2)

If M1 = ΣFp it writes as TV (ΣM) ∼= ΣTV (M).

Below is the characterization of the Krull filtration

Theorem 2.4 The following two conditions are equivalent:

• M ∈ Un ,

• T̄ n+1(M) = {0}.

Corollary 2.5 If M ∈ Um and N ∈ Un then M ⊗N ∈ Um+n

There is also a characterization of objects in Un of combinatorial nature (as soon as they are of finite dimension in
any degree) for p = 2. As usual denote by α(k) is the number of 1 in the 2-adic expansion of k:

Theorem 2.6 [S94] (see also [S06]) Let R be a reduced module, the R ∈ Ud if and only if:

• T̄ d+1(R) ∼= {0},

• R is trivial in degrees k such that α(k) > d.

A similar condition holds for any prime p, but this result will be used in the last section which is done only at the
prime 2.
In [S94] one refers in particular to chapter 5: 5.5.5, 5.5.7 and chapter 6: 6.1.4, 6.2.4, 6.2.5, 6.2.6. More generally one
has:

Theorem 2.7 [S06] A finitely generated unstable A2-module M is in Un if and only if its Poincaré series Σnant
n

has the following property. There exits an integer k so that the only non zero coefficients ad satisfy α(d − i) ≤ n, for
some 0 ≤ i ≤ k.

There are analogous results for p > 2.
Let F be the category of functors from finite dimensional Fp-vector spaces to all vector spaces. Define a functor,
[HLS93], f : U → F by

f(M)(V ) = HomU (M,H∗(BV ))∗ = TV (M)0

Let Fn be the sub-category of polynomial functors of degree less than n. It is defined as follows. Let F ∈ F , let
∆(F ) ∈ F defined by

∆(F )(V ) = Ker(F (V ⊕ Fp) → F (V ))

Then by definition F ∈ Fn if and only if ∆n+1(F ) = 0. As an an example V 7→ V ⊗n is in Fn. The following holds for
any M ∈ U

∆(f(M)) ∼= f(T̄ (M)) ∼= T 0
V (M)

Thus, the diagram below commutes:
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U0

f

��

. . . Un−1

f

��

→֒ Un

f

��

→֒ U

f

��

F0 . . . Fn−1 →֒ Fn →֒ F

Theorem 2.6 can be rewritten as:

Theorem 2.8 [S94] Let R be a reduced module, the R ∈ Ud if and only if:

• deg(f(R)) ≤ d,

• T̄ d+1(R) ∼= {0},

• R is trivial in degrees k such that α(k) > d.

3 The nilpotent filtration and Kuhn’s profile functions

Above one considered spaces so that any element in H̃∗X is nilpotent and one introduced the terminology ”nilpotent”
for the cohomology. The restriction axiom allows to express this in term of the action of the Steenrod algebra. More
precisely (for p = 2) it is equivalent to ask that the operation Sq0 : x 7→ Sq|x|x is ”nilpotent” on any element. This
makes it possible to extend this definition to any unstable module.

Definition 3.1 One says that an unstable module M is nilpotent if for any x ∈ M there exists k such that Sqk0x = 0.

In particular an unstable module is 0-connected. A suspension is nilpotent. In fact:

Proposition 3.2 An unstable module M is nilpotent if and only if it is the colimit of unstable modules which have a
finite filtration whose quotients are suspensions.

This allows to extend the definition for p > 2.
More generally one can define a filtration on U . It is filtered by subcategories N ils, s ≥ 0, N ils is the smallest thick
subcategory stable under colimits and containing all s-suspensions.

U = N il0 ⊃ N il1 ⊃ N il2 ⊃ . . . ⊃ N ils ⊃ . . .

By the very definition any M ∈ N ils is (s− 1)-connected..

Proposition 3.3 Any M has a convergent decreasing filtration {Ms}s≥0 with Ms/Ms+1
∼= ΣsRs(M) where Rs(M)

is a reduced unstable module, i.e. does not contain a non trivial suspension.

Only the second part of the proposition needs a small argument see [S94]. The following results are easy consequences
of the commutation of T with suspension, the definition, and of ??. The last part needs a small amount of care because
T does not commutes with limits.

Proposition 3.4 • Let Mbe a finitely generated unstable module, then the nilpotent filtration is finite (i.e. if k is
large enough Mk is trivial), moreover all Ri(M) are finitely generated;

• if M ∈ N ilm, N ∈ N iln then M ⊗N ∈ N ilm+n;

• if M ∈ N ilm then T (M) ∈ N ilm, in fact T preserves the nilpotent filtration,

• M ∈ Un if and only if for any s f(Rs(M)) ∈ Fn.

Concerning the second claim If M ∈ N ils the other condition is satisfied because of 2.4. On the other hand let Ms be
the largest submodule of M in N ils. Consider the short exact sequence

{0} → Ms → M → M/Ms → {0}

Apply T̄ n+1, the right hand side term cancels by hypothesis. As T̄ n+1(Ms) is (s − 1)-connected, T̄ n+1(M) is also
(s− 1)-connected. But this holds for any s, the result follows.

Let ε : K → Fp be an augmented unstable algebra. QK the quotient of indecomposable elements of K: QK =
ker(ε)/ker(ε)2.
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Proposition 3.5 The unstable module of indecomposable elements of an augmented unstable algebra K is in N il1. If
p = 2 this is even a suspension.

Following Kuhn, for an unstable module M , one defines a function wM : N → N ∪∞ by

wM (i) = deg f(Ri(M))

The following lemma easily follows from the definitions, of the main properties of T , and of 2.4, see also [K95]

Lemma 3.6 One has
wM⊗N (i) = supk (wM (k) + wN (i− k))

Corollary 3.7 Let M be such that wM ≤ Id: wM (i) ≤ i for any i. Let T(M) be the the tensor algebra on M , the
function wT(M) has the same property.

Proposition 3.8 Let K be a connected unstable algebra, such that K̃ ∈ N il1. If qK ≤ Id then wK ≤ Id.

Denote by Ki the nilpotent filtration on K̃ = K1 and by Qi the one on Q(K), i ≥ 1. The result is proved by induction.

Lemma 3.9 Let M be in N ils, then Rs(M) ∈ Uk \ Uk−1 if and only if T̄ k(M)s is non trivial and T̄ ℓ(M)s is trivial
for all ℓ > k.

Note that T̄ i(M) is (s− 1)-connected for all i. The lemma follows from 2.4 and the definitions.
Let us come back to the proof of the proposition and start the induction. Consider the exact sequence (note that the
hypothesis that K̃ ∈ N il1 is used)

K1 ⊗K1
µ
→ K1 → Q1

apply T̄ 2. In degree 1 one gets
{0} → T̄ 2(K1)

1 → T̄ 2(Q1)
1 = {0}

this case follows. More generally let Mi be the inverse image of Ki in K1 ⊗K1 via the product, M1 = M2 = K1⊗K1.

Filter the module K1 ⊗ K1 by the sub-modules
{

Ln =
∑

ℓ≥1 Kℓ ⊗Kn−ℓ

}

n≥2
and assume that the result is true at

step i− 1.
The exact sequence

Mi → Ki → Qi

shows it is enough to prove triviality of T̄ i+1(Mi)
i. The exact sequence:

{0} → Li → Mi → K1 ⊗K1/Li

reduces to the case of Li and of (K1⊗K1)/Li. Both of these modules are by induction hypothesis in Ui, being filtered
with sub-quotients Σh(Rh−k(K)⊗Rk(K)), k ≤ i. The result follows.

Definition 3.10 Let X be a space, define wX = wH∗X and qX = wQH∗X .

4 Lannes’ theorem and Kuhn’s reduction, proof of 1.5 and 1.4

Let X be p-complete, 1-connected, assume that TH∗X is finite dimensional in each degree and 1-connected. The
following theorem of Lannes is the main input in the proof of 1.4 and of 1.5. The evaluation map:

BZ/p×map(BZ/p,X) → X

induces a map in cohomology

H∗X → H∗BZ/p⊗H∗map(BZ/p,X)

and by adjunction a map
TH∗X → H∗map(BZ/p,X)
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Theorem 4.1 [L92] Under the hypothesis mentioned above the natural map TH∗X → H∗map(BZ/p,X) is an iso-
morphism of unstable algebras.

Kuhn considers the homotopy cofiber ∆(X), of the natural map X → map(BZ/p,X). Theorem 4.1 yields

Proposition 4.2
H∗(∆(X)) ∼= T̄H∗X

and by definition

w∆(X) = wX − 1

If H∗X ∈ Un \ Un−1, then H∗∆(X) ∈ Un−1 \ Un−2.
Given an augmented unstable algebra K, as T is exact and commutes with tensor product the indecomposable functor
Q commutes with T ([S94] Lemma 6.4.2)

T (Q(K)) ∼= Q(TK)

This is not true with T̄ . However if Z be an H-space, one has a homotopy equivalence:

map(BZ/p, Z) ∼= Z ×map∗(BZ/p, Z)

and it follows clearly that [CCS07]

Proposition 4.3 QH∗map∗(BZ/p∧n, Z) = T̄ nQH∗Z.

In order to prove 1.5 we will proceed as follows. Assume given a space X

• such that H̃∗X ∈ N il1,

• and such that qX is not 0 and less or equal to Id,

we will show, considering mapping spaces, that this is impossible.

First part of the proof
Applying 3.8, we can suppose wX ≤ Id. Then, replacing X by ∆k(X), and thus wX by wX − k (take k + 1 =
min(Id− wX)) allows to suppose that

• Ri(H
∗X) ∈ U0, i < s,

• Rs(H
∗X) ∈ U1 \ U0,

• wX(s+ i− 1) ≤ i.

This is Kuhn’s reduction. Collapsing down a low dimensional skeleton (and after that taking p-completion) allows

to assume that Ri(H
∗X) = {0} , 0 < i < s. Next let Z be Ω(ΣX )̂p, then H∗Z ∼= T(H̃∗X). Observe that Lannes’

theorem applies to Z.
With the hypothesis Ri(H

∗X) ∈ U0, i < s and wX(s+ i− 1) ≤ i one gets easily (using 3.6),

Corollary 4.4 wZ(j) = 0 if 0 < j < s, wZ(s+ i− 1) ≤ i, i ≥ 1.

The corollary below is a key step of the proof.

Corollary 4.5 T̄ nH∗Z is (n+ s− 2)-connected.

It follows that:

Corollary 4.6 The space map∗(B/Z/p∧n, Z) is (n+ s− 2)-connected.

This uses [BK87], in particular chapters 6 and 9 to show there are no phantom maps.
Because the largest sub-module Ns of H∗Z in N ils+1 is an ideal, one gets a non trivial algebraic map of unstable
algebras:

ϕ∗
s : H∗Z → H∗Z/Ns+1

∼= F2 ⊕ ΣsRsH
∗Z → F2 ⊕ ΣsF (1) ⊂ F2 ⊕ ΣsH̃∗BZ/p .

It cannot factor through H∗Σs−1K(Z/p, 2), because there are no non trivial map from an s-suspension (and thus from
an unstable module in N ils) to an (s− 1)-suspension of a reduced module, and because:
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Proposition 4.7 H∗K(Z/p, 2) is reduced.

This result is known to experts, and in fact true for any H∗K(Z/p, n). As we do not know a reference we give at the
end a proof (for n = 2).

Second part of the proof
The contradiction comes from the fact that using obstruction theory one can construct a factorization.
The existence of a map realising ϕ∗

s is a consequence, using Lannes’ theorem, of the Hurewicz theorem because
map∗(BZ/p, Z) is (s− 1)-connected.
K(Z/p, 2) is built up, starting with ΣBZ/p, as follows (Milnor’s construction). There is a filtration ∗ = C0 ⊂ C1 =
ΣBZ/p ⊂ C2 ⊂ . . . ⊂ ∪nCn = K(Z/p, 2), a diagram

· · · −−−−→ B∗n+1 −−−−→ B∗n+2 −−−−→ · · ·




y





y





y





y

· · · −−−−→ Cn −−−−→ Cn+1 −−−−→ · · ·

and cofibrations, up to homotopy
Σn−1B∧n → Cn−1 → Cn

Σn−2+sB∧n → Σs−1Cn−1 → Σs−1Cn

The obstructions to extend ϕs : Σ
sBZ/p → Z to Σs−1K(Z/p, 2) are in the groups

[Σn+s−2(BZ/p)∧n, Z] = πn+s−2map∗(BZ/p∧n, Z)

. Indeed on has to solve the extension problem

Σn−2+sB∧n // Σs−1Cn−1

��

// Σs−1Cn

xxq
q

q

q

q

q

Z

These groups are trivial. It follows one can do the extension, this is a contradiction.
To complete the proof of 1.4 it is now enough to use again w∆(X) = wX − 1.

Proof of 4.7
The cohomology H∗K(Z/p, 2) is isomorphic to (with obvious notations)

Fp[x, βP
Ihβ(x)]⊗ E(P Iℓβ(x)) ∼= Fp[x, xh;h ≥ 1]⊗ E(yℓ; ℓ ≥ 0)

with |x| = 2, Ih = (ph−1, ph−2, . . . , p, 1), h ≥ 1, and β(x) = y0. One gets β(yh) = xh, h ≥ 1. It is enough to show
that for any non zero element z ∈ H̃∗K(Z/p, 2) one can find a operation θ so that θ(z) ∈ Fp[x, xh] and θ(z) 6= 0.
Any element z writes as a sum

∑

0≤i≤t

∑

j Pi,j(x, xh) ⊗ Li,j(yℓ). If the element z has degree 2n, and in its above
decomposition there are some non trivial terms where the exterior part is of degree 0, a straightforward application of
the Cartan formula shows that Pn does the job. Indeed it is zero on any element an exterior generator. Otherwise it
is enough to create such elements. One applies some operations which decreases (non trivially) the length of exterior
factors that occur. Consider in the exterior factors Li,j of minimal length, and in there the occurrence of yℓ for the
smallest possible value of ℓ. Let Qi be the usual Milnor derivation at an odd prime. The bracket [β,Qi] is also a

derivation. It acts trivially on the xh, sends x onto yi+1, and yℓ onto xpℓ

i−ℓ+1. It is easily shown using a standard
lexicographic order argument that it does the job for i large enough.

5 The Eilengerg- Moore spectral sequence, triviality of Ext1U(−,−).

In the sequel the spaces X are still p-complete, 1-connected, such that H̃∗X ∈ N il1 and of finite dimension in each
degree. One will also assume that for any i the reduced unstable modules RiH

∗X are finitely generated. The object
of this last section is to prove the following:

Theorem 5.1 Let X be a space such that H̃∗X ∈ N il1. Assume moreover that deg(f(R1H
∗X)) = d > 0 then

deg(R2H
∗X) ≥ 2d.
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The value of the result is to give some control on R2H
∗X , starting from some information on R1H

∗X . The hypothesis
d > 0 is not significant, the result being obviously true if d = 0. This theorem is proved only for p = 2, the difficulties
that occur in [S94], [S10] occur again, even if they look more manageable.
One would like also to extend the result and get one of the following type. One assumes that R1H

∗X, . . . , Rk−1H
∗X ∈

U0, RkH
∗X ∈ Ud, and conclude that RkH

∗X , for some k > d. The possibility of such an extension is likely but does
not look direct.
The proof does not depend on Lannes’ mapping space theorem, but on minimal information on the Eilenberg-Moore
spectral sequence. It still depends on the algebraic properties of TV . It should be also said that this proof should be
compared, and was motivated by:

Proposition 5.2 Let M be a connected reduced unstable module such that deg(f(M)) is finite non zero. The unstable
module T(M) does not carry the structure of an unstable algebra.

The proof of this proposition is left to the reader.
The proof of the theorem is divided in three steps. One assumes there exists a space for which the theorem does not
hold. In the two first parts one shows the triviality of certain cup-products. Using this information, in the last part one
shows that an extension in the Eilenberg-Moore spectral sequence is trivial, this leads immediately to a contradiction.

First part of the proof: triviality of cup-products I.
Assume that deg(f(R1H

∗X)) = d > 0 and suppose that deg(f(R2H
∗X)) ≤ 2d − 1. Denote by Hk the largest

sub-module of H∗X which belongs to N ilk, Hk/Hk+1
∼= ΣkRkH

∗X .
This hypothesis, and 2.7, implies that the non-trivial classes in R1H

∗X live in degrees i with α(i) ≤ d, and that there
exist non-trivial classes in degrees i such that α(i) = d. Denote by R the sub-module generated in R1H

∗X by these
latter classes. For a class x ∈ R1H

∗X denote by σ(x) the suspension in ΣR1H
∗X . By the very construction the

sub-module R has the property to be the smallest sub-module in R1H
∗X such that R1H

∗X/R ∈ Ud−1. For a while
it will be easier to establish results in the category of functors, here is the property that defines f(R):

Lemma 5.3 The functor f(R) is the smallest sub-functor of f(R1H
∗X) such that the quotient f(R1H

∗X/R)) is of
degree strictly less than d. In particular any non trivial quotient of R is of degree d and not of degree less or equal
than d− 1.

Corollary 5.4 Any non-trivial quotient of the functor f(R⊗R) ∼= f(R)⊗ f(R) is of degree 2d and not of degree less
or equal than 2d− 1.

This property follows from the lemma and various references about the Taylor series of a tensor product of functors,
see [K94-1] see also [Dj07] 1.13 (applying Kuhn duality) for example.
Thus if deg(f(R2H

∗X)) ≤ 2d− 1 any morphism f(R)⊗ f(R) → f(R2H
∗X) is trivial.

Choose a finite set of classes gi, i ∈ I, in H∗X which projects onto generators γi of ΣR. These classes generate
a sub-module U ⊂ H∗X . As the tensor product of nilpotents modules belongs to N il2 the cup-product defines a
morphism U ⊗ U → H2. In fact:

Proposition 5.5 The cup-product takes values in H3.

This is a direct consequence of what precedes. If it is not true this would provide a non-trivial morphism f(R)⊗f(R) →
f(R2H

∗X), and a non trivial quotient of f(R ⊗ R) ∼= f(R) ⊗ f(R) of degree less or equal to 2d − 1. Indeed, the
composite U ⊗ U → ΣR⊗ ΣR → Σ2R2H

∗X would be non-trivial, which implies the result.

Second part of the proof: triviality of cup-products II.
First recall, for an unstable module M , the operation Sq1 : M → M , x 7→ Sq|x|−1x and some of its properties: the
derivation formula Sq1(x⊗ y) = Sq0(x) ⊗ Sq1(y) + Sq1(x)⊗ Sq0(y), and the Adem relations Sq1Sq0 = 0.
For a given integer k the classes Sqk1 (gi), i ∈ I, generate a sub-module Uk which projects onto ΣΦkR. This because if
p : U → ΣR1H

∗X is the canonical map, and p(gi) = σγi then p(Sqk1 (gi)) = σ(Sqk0γi).

Corollary 5.6 All cup-products of classes in Uk, k large enough, are trivial.

It is better now to return in the category U and to use 2.8 to prove the corollary. The cup product of the image of
two classes in Uk is of degree 2 + 2k(i + j), i, j > 0, for some i and j. The cup-products belongs to a quotient S of
the second symmetric power S2(U) which is finitely generated, and thus has a it finite nilpotent filtration, denote it
Sℓ, 3.4. Thus, for some h if ℓ > h then Sℓ is trivial. Moreover each quotient Sℓ/Sℓ+1

∼= ΣℓRℓS is finitely generated, it
belongs to Un(ℓ) for some n(ℓ). Let t be the supremum of these n(ℓ) for ℓ ≤ h.
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In conclusion the degree a non trivial cup-product should satisfy the equation:

2 + 2k(i+ j) = ℓ+ u

with 3 ≤ tℓ ≤ h and α(u) ≤ t. It rewrites
2k(i+ j) + 2− ℓ = u

Clearly such an equation cannot hold if k is large enough because of the length of the 2-adic expansions on both sides.

Third part of the proof, triviality of Ext1(−,−)
Consider the term F−2,∗

∞ ⊂ H∗ΩX of the Eilenberg-Moore filtration. The columns −1 and −2 of the spectral sequence
yield an extension:

{0} → ΣE−1,∗
∞ → Σ2F−2,∗

∞ → E−2,∗
∞ → {0}

As Σ2R1H
∗X is a quotient of QH∗X ∼= E−1,∗

2 , there is an epimorphism E−1,∗
∞ → R1H

∗X one gets by composition an
extension:

{0} → Σ2R1H
∗X → Σ2E0 → E−2,∗

∞ → {0}

The term E−2,∗
∞ is a quotient of Tor−2

H∗X(F2,F2), this gives rise to another extension after suspending twice:

{0} → Σ2R1H
∗X → Σ2E1 → Tor−2

H∗X(F2,F2) → {0}

Next Tor−2
H∗X(F2,F2) receives, because of 5.6, Uk ⊗ Uk. Thus there is a map ΣΦkR ⊗ ΣΦkR → Tor−2

H∗X(F2,F2) and
one gets an extension:

{0} → Σ2R1H
∗X → E2 → Σ2(ΦkR⊗ ΦkR) → {0}

Proposition 5.7 For k large enough

Ext1U (Σ
2(ΦkR⊗ ΦkR),Σ2R1H

∗X)

is trivial.

In a first step one uses the derivative Ω1 of Ω to reduce to the computation of Ext1U (Φ
kR⊗ΦkR,R1H

∗X). One uses
in particular the following: Ω1 applied to a second suspension is a third suspension, and Ω1 applied to a suspension
is a suspension ([Mil84], [S94]). Then, recall from [CS13]

Lemma 5.8 Let R be a finitely generated reduced unstable module, M be a finitely generated unstable module. For k
large enough one has

Ext1U (Φ
kR,M) ∼= Ext1U (Φ

kR,M/N) ∼= Ext1F (f(R), f(M))

where N is the largest nilpotent submodule of M .

Lemma 5.9 Let S be a functor of degree n such that all simple quotients are of degree n, such that S({0}) = {0},
and F a functor of degree less than 2n− 1. Then, Ext1F (S ⊗ S, F ) is trivial.

For this lemma use [FFSS99], the category bi−F and the hypothesis that f(R) has no quotient of degree strictly less
than d.
Proof of the theorem
Choose a non zero class g ∈ R such that α(|g|) = d. This defines a class γ of the same degree in H∗ΩX . Be careful
that the notations gi and γi used above in part II were for classes originated in H∗X , thus there is degree shift because

of the suspension. The class γ is not nilpotent, as Sq0 acts non nilpotently on g, γ1+2h 6= 0. If h is large enough

α(|γ1+2h |) = 2d, in such a degree E−1,∗
∞ /N il is trivial. So the cup product γ1+2h is detected in the Eilenberg-Moore

spectral sequence by σ(g) ⊗ σ(Sq2
k

1 g) + σ(Sq2
k

1 g)⊗ σ(g). All of these classes are in a sub-module of the cohomology

H∗ΩX , which projects onto ΦKR⊗ΦkR⊕R1H
∗X because the extension above splits. The class γ1+2h projects to 0

on the summand R1H
∗X . There should not exist an operation such that θ(γ1+2h) = γ2h+1

. This is a contradiction
because such an operation exists and the class γ projects to a non-zero class on this summand as well as all the classes
Sqk0 (γ).
The key point (as in [S94]) is the triviality of the −1-column in a certain degree. It is worth to observe that when
computing cup-products in H∗ΩΣX the above phenomenon does not occur, because the cup-product is given by the
following formula:

• x ∪ y = x⊗ y + y ⊗ x+ xy,

in this formula x, y, xy ∈ H∗X , which are considered by abuse as classes in H∗ΩΣX using duality and the identification
as Hopf algebras of H∗ΩΣX (X connected) with the tensor algebra T(H̃∗X), the elements of H̃∗X being primitive
following Bott-Samelson.
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