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ON NON-REALIZATION RESULTS AND CONJECTURES OF N.

KUHN

NGUYEN THE CUONG, GÉRALD GAUDENS, GEOFFREY POWELL,
AND LIONEL SCHWARTZ

Abstract. We discuss two extensions of results conjectured by Nick Kuhn
about the non-realization of unstable algebras as the mod-p singular cohomol-
ogy of a space, for p a prime. The first extends and refines earlier work of
the second and fourth authors, using Lannes’ mapping space theorem. The
second (for the prime 2) is based on an analysis of the −1 and −2 columns of
the Eilenberg-Moore spectral sequence, and of the associated extension.

In both cases, the statements and proofs use the relationship between the
categories of unstable modules and functors between Fp-vector spaces. The
second result in particular exhibits the power of the functorial approach.

1. Introduction

Let p be a prime number, U denote the category of unstable modules and K
the category of unstable algebras over the mod p Steenrod algebra Ap [Sch94]. The
mod-p singular cohomology of a space X is denoted H∗X .

In the first part of the paper, the topological spaces X considered are p-complete
and connected. We assume that H∗X is of finite type (finite dimensional in each
degree) and, moreover, that Jean Lannes’ functor TV acts nicely on H∗X , in the
sense that TVH

∗X is of finite type for all V . In order to apply Lannes’ theory
[Lan92] we also suppose the spaces considered are 1-connected and that TVH

∗X
is 1-connected for all V . For the current arguments, the connectivity hypothesis is
not a significant restriction, since it is always possible to collapse the 1-skeleton; the
finiteness hypotheses can be relaxed using methods of Fabien Morel, as explained
by François-Xavier Dehon and Gérald Gaudens [DG03].

In an earlier paper, the second and fourth authors gave a proof of the following
result, Nick Kuhn’s realization conjecture [Kuh95b]:

Theorem 1.1. [GS13] Let X be a space such that H∗X is finitely generated as an
Ap-module, then H∗X is finite.

This is a consequence of the following result, Kuhn’s strong realization conjecture
[Kuh95b], which uses the Krull filtration

U0 ⊂ U1 ⊂ U2 ⊂ . . . ⊂ U

of the category U (see Section 2); in particular, U0 is the full subcategory of locally
finite unstable modules.

Theorem 1.2. [GS13] Let X be a space such that H∗X ∈ Un for some n ∈ N,
then H∗X ∈ U0
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The aim of this paper is to extend these results in two directions. The first
exploits the nilpotent filtration (see Section 3)

U = N il0 ⊃ N il1 ⊃ N il2 ⊃ . . . ⊃ N ils ⊃ . . .

of the category of unstable modules. Here N il1 is the full subcategory of nilpotent
unstable modules. For p = 2, an unstable module is nilpotent if the operator

Sq0 : x 7→ Sq|x|x acts nilpotently on any element (a similar definition applies for
p odd); in particular, a connected unstable algebra is nilpotent if and only if its
augmentation ideal is a nilpotent unstable module.

Recall that an unstable module is reduced if it contains no non-trivial nilpotent
submodule. The following result explains how unstable modules are built from
(suspensions of) reduced unstable modules:

Proposition 1.3. [Sch94, Kuh95b] An unstable module M has a natural, conver-
gent decreasing filtration {nilsM}s≥0 with nilsM ∈ N ils and nilsM/nils+1M ∼=
ΣsRsM , where RsM is a reduced unstable module.

A reduced unstable moduleM is said to have degree n ∈ N (written deg(M) = n)
if M ∈ Un \ Un−1, otherwise deg(M) = ∞. Following Kuhn, define the profile
function wM : N → N ∪ {∞} of an unstable module M by

wM (i) := deg(RiM).

Recall that the module of indecomposable elements QH∗X := H̃∗X/(H̃∗X)2,

of the cohomology of a pointed space X is an unstable module (here H̃∗X is the
augmentation ideal). Set wX := wH∗X and qX := wQH∗X .

The following theorem provides a generalization of Theorem 1.2 and stresses the
relationship between the profile functions wX and qX (which is examined in greater
detail in Section 4). A version of the theorem was announced with a sketch proof
in [GS12]; the current statement strengthens and unifies existing results.

Theorem 1.4. Let X be a space such that H̃∗X is nilpotent. The following con-
ditions are equivalent:

(1) H∗X ∈ U0;
(2) wX = 0;
(3) qX = 0;
(4) wX ≤ Id;
(5) qX ≤ Id;
(6) wX − Id is bounded.

To see that this result implies Theorem 1.2, let X be a space such that H∗(X) ∈
Un. This condition implies easily (see Sections 2 and 3) that wΣX − Id is bounded,
hence H∗(ΣX) is locally finite, by Theorem 1.4, thus H∗X also.

Theorem 1.4 provides evidence for the following:

Conjecture 1. Let X be a space such that H̃∗X is nilpotent. If qX is bounded,
then H∗X ∈ U0.

This should be compared with the following stronger conjecture, which is equiv-
alent to the unbounded strong realization conjecture of [Kuh95b]:

Conjecture 2. Let X be a space such that H̃∗X is nilpotent. If qX takes finite
values, then H∗X ∈ U0.
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The second generalization concerns the first and second layers of the nilpotent
filtration. The method of proof is of independent interest and can be applied in
other situations; a generalization of this approach may lead to a proof of Conjecture
1.

The fact that the argument is based upon the Eilenberg-Moore spectral sequence
for computing H∗ΩX from H∗X means that the restrictions upon the space X can
be relaxed in the following theorem, in which the prime is taken to be 2.

Theorem 1.5. Let X be a 1-connected space such that H̃∗X is of finite type and
nilpotent. If deg(R1H

∗X) = d ∈ N then deg(R2H
∗X) ≥ 2d.

The result proved is slightly stronger, giving a precise statement on the cup
product on H∗X (see Remark 6.14).

The strategy of proof for Theorem 1.5 is different from that of the previous
results and is related to that of [Sch98]. It depends on an analysis of the second
stage of the Eilenberg-Moore filtration of H∗ΩX and uses results on triviality and
non-triviality of certain extension groups Ext1F (−,−), where F is the category of
functors on F2-vector spaces (see Section 2).

The paper is organized as follows. The Krull filtration is reviewed in Section 2
and the nilpotent filtration in Section 3; using this material, the profile functions
are considered in Section 4. Theorem 1.4 is proved in Section 5, based on Lannes’
theory, which is reviewed rapidly. Section 6 is devoted to the proof of Theorem 1.5,
using the Eilenberg-Moore spectral sequence.

Remark 1.6. A first version of this work was made available by three of the authors
in [NGS14]. The third-named author proposed the current approach in Section 6.

2. The Krull filtration on U

Gabriel introduced the Krull filtration of an abelian category in [Gab62]; for the
category of unstable modules, U , this gives the filtration

U0 ⊂ U1 ⊂ U2 ⊂ . . . ⊂ U

by thick subcategories stable under colimits, which is described in [Sch94].
For an abelian category C, the category C0 is the largest thick sub-category

generated by the simple objects and stable under colimits; U0 identifies with the
subcategory of locally finite modules (M ∈ U is locally finite if Apx is finite for
any x ∈ M). The categories Un are then defined recursively as follows. Having
defined Un, form the quotient category U /Un; then Un+1 is the pre-image under
the canonical projection U → U /Un of the subcategory (U /Un)0 ⊂ (U /Un).

For M an unstable module and n ∈ N, write knM for the largest sub-module of
M that is in Un.

Proposition 2.1. [Kuh14] For M ∈ U , M = ∪nknM.

Example 2.2. For k, n ∈ N, ΣkF (n) ∈ Un \ Un−1, where F (n) is the free unsta-
ble module on a generator of degree n. (In the terminology of the Introduction,
degF (n) = n.)

Proposition 2.3. ([Sch94, 6.1.4] and [Kuh95b].) If M is a finitely generated
unstable module,

(1) there exists d ∈ N such that M ∈ Ud;
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(2) for each n ∈ N, RnM is finitely generated;
(3) the nilpotent filtration of M is finite (nilsM = 0 for s≫ 0).

There is a characterization of the Krull filtration in terms of Lannes’ T -functor.
The functor TV (for V an elementary abelian p-group) is left adjoint to M 7→
H∗BV ⊗M ; TFp

is denoted simply T . Since H∗BZ/p splits in U as Fp⊕ H̃∗BZ/p,

the functor T is naturally equivalent to Id⊕ T̄ , where T̄ is left adjoint to H̃∗BZ/p⊗
−.

Theorem 2.4. [Lan92, Sch94] The functor TV is exact and commutes with colimits;
moreover there is a canonical isomorphism

TV (M1 ⊗M2) ∼= TV (M1)⊗ TV (M2);

in particular, TV (ΣM) ∼= ΣTV (M).

Theorem 2.5. [Sch94, Kuh14] The following are equivalent:

(1) M ∈ Un ,
(2) T̄ n+1M = 0.

Corollary 2.6. If M ∈ Um and N ∈ Un then M ⊗N ∈ Um+n.

There is also a combinatorial characterization of modules in Un which are of
finite type. This is stated here for p = 2; there are analogous results for odd
primes. Denote by α(k) the sum of the digits in the binary expansion of k.

Theorem 2.7. [Sch94, Sch06] For M an unstable A2-module and n ∈ N,

(1) if M is reduced, M ∈ Un if and only if M j = 0 for α(j) > n;
(2) if M is finitely generated, M ∈ Un if and only if its Poincaré series Σiait

i

has the following property: there exits k ∈ N such that, if ad 6= 0, then
α(d − i) ≤ n, for some 0 ≤ i ≤ k.

Let F be the category of functors from finite dimensional Fp-vector spaces to
Fp-vector spaces. There is an exact functor [HLS93] f : U −→ F defined by
f(M)(V ) := HomU (M,H∗(BV ))′ = TV (M)0 which induces an embedding of
U /N il1 in F .

The functor T̄ corresponds to the difference functor ∆ : F → F which is defined
on F ∈ F by

∆(F )(V ) := Ker
(

F (V ⊕ Fp) −→ F (V )
)

.

Namely, for M ∈ U , ∆(fM) ∼= f(T̄M).
Let Fn ⊂ F be the subcategory of polynomial functors of degree at most n, de-

fined as the full subcategory of functors F such that ∆n+1(F ) = 0. The polynomial
degree of a functor F is written degF ∈ N ∪ {∞}.

By Theorem 2.5, the following holds:

Proposition 2.8. For n ∈ N, the functor f : U → F restricts to an exact functor
f : Un → Fn.

Corollary 2.9. [Sch94] For M a reduced module, the following are equivalent

(1) M ∈ Ud;
(2) deg(fM) ≤ d.
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3. The nilpotent filtration

The main results of the paper concern spaces X such that the positive degree el-
ements of the cohomology H∗X are nilpotent; by the restriction axiom for unstable
algebras this corresponds to H̃∗X being nilpotent as an unstable module.

For p = 2, the following definition applies, where Sq0 is the operator x 7→

Sq|x|(x). (A similar characterization exists for p odd.)

Definition 3.1. An unstable A2-module M is nilpotent if, for any x ∈ M , there
exists k such that Sqk0x = 0.

The archetypal example of a nilpotent unstable module is a suspension and, in
general, one has:

Proposition 3.2. [Sch94] An unstable module is nilpotent if and only if it is the
colimit of unstable modules which have a finite filtration whose quotients are sus-
pensions.

The full subcategory of nilpotent unstable modules is denoted N il1 ⊂ U and an
unstable module is said to be reduced if it contains no non-trivial subobject which
lies in N il1 (this is equivalent to containing no non-trivial suspension).

More generally the category U is filtered by thick subcategories N ils, s ≥ 0,
where N ils is the smallest thick subcategory stable under colimits and containing
all s-fold suspensions:

U = N il0 ⊃ N il1 ⊃ N il2 ⊃ . . . ⊃ N ils ⊃ . . . .

Proposition 3.3. [Sch94, Kuh95b, Kuh14] The inclusion N ils →֒ U admits a
right adjoint nils : U → N ils so that M ∈ U has a convergent decreasing filtration

. . . ⊂ nils+1M ⊂ nilsM ⊂ . . . ⊂M

and nilsMs/nils+1M ∼= ΣsRsM , where RsM is a reduced unstable module.

The convergence statement is a consequence of the fact that, for any unstable
module M , nilsM is (s− 1)-connected.

Proposition 3.4. [Sch94, Kuh95b, Kuh14]

(1) The T -functor restricts to T : N ils → N ils and T ◦ nils ∼= nils ◦ T .
(2) The tensor product restricts to ⊗ : N ils ⊗N ilt → N ils+t.
(3) For M a finitely generated unstable module, the nilpotent filtration is finite

(i.e. nilsM = 0 for s≫ 0) and each RsM is finitely generated.
(4) An unstable module M lies in Un if and only if RsM ∈ Un for all s ∈ N.

Proof. The result follows from the commutation of T with suspension and the re-
spective definitions. For the final part, since T does not commute with projective
limits in general, in addition one uses the fact that the category U is locally noe-
therian [Sch94, Section 1.8] and the connectivity of objects of N ils. �

Notation 3.5. For ε : K −→ Fp an augmented unstable algebra, denote by K̄
the augmentation ideal kerε and QK ∈ U the module of indecomposables: QK :=
K̄/(K̄)2.

Proposition 3.6. [Sch94, Section 6.4] For K an unstable algebra, QK ∈ N il1. If
p = 2, QK is a suspension.
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Recall (see [Sch94, Section 6.1]) that, for s ∈ N, Ωs : U −→ U is the left
adjoint to the iterated suspension functor Σs (hence is right exact) and restricts to
a functor

Ωs : N ilk+s → N ilk

for k ∈ N. The following is applied in Section 6.

Lemma 3.7. For M ∈ N ils (s ∈ N), the natural surjection M ։ ΣsRsM induces
an isomorphism

f(ΩsM)
∼=
→ f(RsM).

If N ⊂ M is a submodule such that N ∈ N ils+1, then the surjection N ։ M/N

induces an isomorphism f(ΩsM)
∼=
→ f(Ωs(M/N)); in particular f(Ωs(M/N)) ∼=

f(RsM).

Proof. By hypothesis, there is a short exact sequence of unstable modules:

0 −→ nils+1M −→M −→ ΣsRsM −→ 0

so that applying Ωs gives the exact sequence:

Ωsnils+1M −→ ΩsM −→ RsM −→ 0,

where Ωsnils+1M ∈ N il1 (see [Sch94, Section 6.1]). Applying the exact functor f
gives the isomorphism f(ΩsM) ∼= f(RsM).

The proof of the second statement is similar. �

The following technical result is used in the proof of Theorem 1.5 in Section 6;
for simplicity only the case p = 2 is considered.

Proposition 3.8. Let ψ : M → N be a morphism of unstable A2-modules such
that

(1) M ∈ N ild and N ∈ N ild+1, for some d ∈ N;
(2) RdM is finitely generated.

Then there exists a finitely generated submodule U ⊂M such that

(1) the restriction ψ|U is trivial;
(2) the monomorphism Rdψ : RdU → RdM has nilpotent cokernel (equivalently

fRdψ is an isomorphism).

Proof. It is straightforward to reduce to the case where M is finitely generated.
Moreover, without loss of generality, we may assume that ψ is surjective.

For k ≫ 0 (an explicit bound can be supplied), consider the following diagram

M
ψ

// //

����

N

ΣdΦkRdM

σk

88
p

p

p

p

p

p

� � // ΣdRdM

where Φ denotes the Frobenius functor (see [Sch94, Section 1.7]) and the bottom
arrow is the canonical inclusion (recall that RdM is reduced). The dashed arrow
denotes a choice of linear section σk (not A2-linear in general).

By hypothesis, M is finitely generated, hence so is N ; thus there exists h ∈ N

such that RsN = 0 if s 6∈ [d+1, h]. Moreover, since each RsN is finitely generated,
Theorem 2.7 implies that N is concentrated in degrees of the form ℓ+t, ℓ ∈ [d+1, h]
and t ∈ N such that α(t) ≤ D for some D ∈ N.
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Elements of ΣdΦkRdM lie in degrees of the form d + 2kv, for v ∈ N; hence a
non-zero element in the image of ψσk lies in a degree of the form:

d+ 2kv = ℓ+ t,

so that t = 2kv− (ℓ− d), where α(t) ≤ D and ℓ− d ∈ [1, h− d], where the values of
D and h are independent of k. If k is sufficiently large, this leads to a contradiction;
thus, for k ≫ 0, ψσk = 0.

Consider the submodule U of M generated by the image under σk of a (finite
dimensional) space of generators of the unstable module ΣdΦkRdM , which is finitely
generated, since RdM is.

By construction, ψσk = 0, hence U ⊂ kerψ. The functor Rd preserves monomor-
phisms, hence RdU ⊂ RdM ; moreover, from the construction, it is clear that the
cokernel is nilpotent. �

4. Kuhn’s profile functions

The profile function of an unstable module is defined using ideas of Kuhn [Kuh95b]:

Definition 4.1. For M ∈ U , the profile function wM : N −→ N ∪ {∞} is defined
by:

wM (i) := deg f(RiM) = degRiM.

Remark 4.2. For M an unstable module, wM = 0 if and only if M is locally finite
(i.e. M ∈ U0).

Notation 4.3. For functions f, g : N −→ N ∪ {∞} write f ≤ g if f(i) ≤ g(i) for
all i ∈ N. The inclusion N →֒ N ∪ {∞} is denoted Id.

The following operations on functions N −→ N ∪ {∞} are useful:

Definition 4.4. For functions f, g : N −→ N ∪ {∞}, define functions:

(1) f • g(i) := supk{f(k) + g(i− k)};
(2) f ◦ g(i) := sup0<k<i{f(k) + g(i− k)} for i > 1 and := 0 otherwise;
(3) sup{f, g}(i) := sup{f(i), g(i)} (likewise for arbitrary sets of functions);
(4) ∂f(i) := sup{0, f(i)− 1}.
(5) [f ](i) := sup{f(j)|0 ≤ i ≤ j}.

The following states some evident properties:

Lemma 4.5. For functions fi, gi : N −→ N ∪ {∞}, i ∈ {1, 2} such that fi ≤ gi:

(1) [fi] ≤ [gi];
(2) ∂fi ≤ ∂gi;
(3) fi ◦ gi ≤ fi • gi;
(4) sup{f1, g1} ≤ sup{f2, g2};
(5) f1 ◦ g1 ≤ f2 ◦ g2 and f1 • g1 ≤ f2 • g2.

Proposition 4.6. For M,N unstable modules,

(1) wM⊗N ≤ wM • wN and, if M,N are both nilpotent, wM⊗N ≤ wM ◦ wN ;
(2) wT̄M = ∂wM .

For a short exact sequence of unstable modules, 0 → M1 → M2 → M3 → 0, the
following hold

(1) wM1
≤ wM2

;
(2) wM2

≤ sup{wM1
, wM3

};
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(3) wM3
≤ [wM2

].

Proof. For tensor products, the statement holds by the behaviour of the functor
Ri with respect to tensor products [Kuh95b, Proposition 2.5]. When M and N are
both nilpotent, R0M = 0 = R0N , so that the terms R0M ⊗RkN and RkM ⊗R0N
do not contribute.

The statement for the reduced T -functor is a consequence of the compatibil-
ity of T with the nilpotent filtration and the definition of polynomial degree (see
Proposition 3.4 and [Sch94, Kuh95b]).

For the short exact sequence, the first two properties follow from the left exact-
ness of the composite functor f ◦Ri [Kuh07, Corollary 3.2] and the fact that Fn is
thick.

For the final point, it suffices to show that ΣtRtM3 lies in Ud, where

d = [wM2
](t) = sup{wM2

(i)|0 ≤ i ≤ t}.

Now ΣtRtM3 is a subquotient of M2/nilt+1M2 and the latter lies in Ud, since each
ΣiRiM2 does, for 0 ≤ i ≤ t, by definition of d. �

Remark 4.7. The final statement on wM3
can be strengthened slightly; the current

presentation is sufficient for current purposes.

Example 4.8. Let M,N be unstable modules such that wM ≤ Id and wN ≤ Id,
then wM⊗N ≤ Id. Hence, if T(M) :=

⊕

iM
⊗i denotes the tensor algebra on M ,

wT(M) ≤ Id.

For K an unstable algebra, Proposition 4.6 immediately provides a bound for
wQK in terms of wK ; the following provides a converse.

Proposition 4.9. For K a connected unstable algebra such that K̄ ∈ N il1,

wK ≤ sup{[wQK ]◦t|t ∈ N}.

Proof. Since K ∼= K̄ ⊕ Fp as unstable modules, wK = wK̄ , hence it suffices to
consider the latter.

The result follows from an analysis of the short exact sequence

0 → (K̄)2 → K̄ → QK → 0

together with the surjection K̄ ⊗ K̄ ։ (K̄)2. Proposition 4.6 provides the inequal-
ities w(K̄)2 ≤ [wK̄⊗K̄ ] ≤ [wK̄ ] ◦ [wK̄ ], so that wK̄ ≤ sup{wQK , [wK̄ ] ◦ [wK̄ ]}, since

K̄ is nilpotent. It follows from Lemma 4.5 that

[wK̄ ] ≤ sup{[wQK ], [wK̄ ] ◦ [wK̄ ]}.(4.1)

The result follows by induction on i showing that

[wK̄ ](i) ≤ sup
t
{[wQK ]◦t(i)}.

The cases i ∈ {0, 1} are clear and the inductive step uses (4.1). �

The following is clear:

Corollary 4.10. For K a connected unstable algebra such that K̄ ∈ N il1, K̄ is
locally finite if and only if QK is locally finite; equivalently wK = 0 if and only if
wQK = 0.

Corollary 4.11. For K a connected unstable algebra such that K̄ ∈ N il1, wK ≤ Id
if and only if wQK ≤ Id.
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Proof. The hypothesis wK ≤ Id implies that [wK ] ≤ [Id] = Id. The result follows
from the observation that Id • Id = Id. �

The profile function of an unstable module M gives information about the con-
nectivity of the iterates T̄ nM of the reduced T -functor applied toM . The following
results are used in the proof of Theorem 1.4 in Section 5.

Lemma 4.12. For M an unstable module such that wM ≤ sup{Id + d, 0} (d ∈ Z)
and 0 < n ∈ N, T̄ nM is (n− d− 1)-connected.

Proof. By definition of the profile function and the hypothesis, RiM ∈ Usup{Id+d,0}.

Hence, by Theorem 2.5, T̄ nRiM = 0 for n > i + d, with the first non-trivial value
for i = n− d (here it is essential that n > 0). By compatibility of the action of the
T -functor with the nilpotent filtration (see Proposition 3.4), it follows that

T̄ nM = niln−dT̄
nM.

This implies, in particular, that T̄ nM is (n− d− 1)-connected. �

This result can be applied in the study of unstable modulesM for which wM−Id
is bounded:

Lemma 4.13. Let M ∈ U be an unstable module such that wM − Id is bounded
and set

d := sup{wM (i)− i}

s := inf{i|wM (i)− i = d}.

If d > 0, then T̄ s+d−1M ∈ N ils (equivalently RiT̄
s+d−1M = 0 for i < s) and

RiT̄
s+d−1M ∈

{

U1\U0 i = s
Ui−s+1 i > s.

In particular, wT̄ s+d−1M − Id is bounded above by 1 − s and, for 0 < n ∈ N,
T̄ n+s+d−1M ∈ N iln+s−1, thus T̄

n+s+d−1M is (n+ s− 2)-connected.

Proof. The first statement follows from the relationship between T̄ and ∂ given in
Proposition 4.6, in addition checking the vanishing of RiT̄

s+d−1M for i < s. The
second part follows by applying Lemma 4.12. �

5. Proof of Theorem 1.4

We commence by a rapid review of Lannes’ theory, which is the main ingredient
in the proof of Theorem 1.4 and is also the reason for the restrictions imposed on
the topological spaces considered.

Let X be a p-complete, 1-connected space and assume that TH∗X is of finite
type and 1-connected. The evaluation map

BZ/p×map(BZ/p,X) −→ X

induces a map in cohomology H∗X −→ H∗BZ/p ⊗H∗map(BZ/p,X) and hence,
by adjunction, TH∗X −→ H∗map(BZ/p,X).

Theorem 5.1. [Lan92] Under the above hypotheses, the natural map TH∗X →
H∗map(BZ/p,X) is an isomorphism of unstable algebras.

Notation 5.2. [Kuh95b] Denote by ∆(X) the homotopy cofibre of the map X −→
map(BZ/p,X) induced by BZ/p→ ∗.
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Theorem 5.1 yields the following:

Proposition 5.3. Under the above hypotheses on X, H∗∆(X) ∼= T̄H∗X, hence

(1) w∆(X) = ∂wX ;
(2) if H∗X ∈ Un, then H

∗∆(X) ∈ Un−1.

The functor T induces T : K → K, which commutes with the indecomposables
functor for augmented unstable algebras [Sch94, Lemma 6.4.2]: namely, for K an
augmented unstable algebra, there is a natural isomorphism T (QK) ∼= Q(TK).
There is no analogous statement for T̄ ; however, if Z is an H-space, there is a
homotopy equivalence:

map(BZ/p, Z) ∼= Z ×map∗(BZ/p, Z).

For example, this leads to:

Proposition 5.4. [CCS07] For Z an H-space (also satisfying the global hypotheses)

QH∗map∗(BZ/p∧n, Z) ∼= T̄ nQH∗Z.

Notation 5.5. For X a connected space, write wX := wH∗X and qX := wQH∗X .

Proof of Theorem 1.4. Proposition 3.4 implies that an unstable moduleM is locally
finite if and only if wM = 0, which implies the equivalence (1) ⇔ (2). Corollary
4.10 gives the equivalence (2) ⇔ (3) and Corollary 4.11 the equivalence (4) ⇔ (5).
The implications (2) ⇒ (4) and (4) ⇒ (6) are clear, hence it suffices to establish:

• (6) ⇒ (2): if wX − Id is bounded then wX = 0.

Suppose that there exists a space X (satisfying the global hypotheses) such that

0 6= wX ≤ Id and H̃∗X ∈ N il1; reductio ad absurdam.
The first step is analogous to Kuhn’s reduction [Kuh95b]. As in Lemma 4.13,

set d := sup{wX(i) − i} and s := inf{i|wX(i) − i = d}. Proceeding as in Lemma
4.13, set Y := (∆s+d−1X)∧p , so that Proposition 5.3 gives

wY (i) = 0, i < s

wY (s) = 1

wY (i) ≤ i− s+ 1, i > s.

Moreover, by collapsing down a low-dimensional skeleton and p-completing, one
can arrange that RiH

∗Y = 0 for 0 < i < s.
In order to work with pointed mapping spaces, consider Z := Ω(ΣX)∧p . By the

Bott-Samelson theorem, H∗Z ∼= T(H̃∗X) as an unstable module, hence the global
hypotheses are satisfied by Z. Moreover, by Proposition 4.6, one has RiH

∗Z = 0
for 0 < i < s and RiH

∗Z ∈ Ui−s+1 for i ≥ s. Lemma 4.12 therefore implies that
T̄ nH∗Z is (n+ s− 2)-connected for n > 0 (and H∗Z is s− 1-connected).

It follows from [BK72] (in particular using Chapters 6 and 9 to show that there
are no phantom maps) that map∗(BZ/p∧n, Z) is (n+ s− 2)-connected.

By construction, RsH
∗Z is a reduced unstable module in U1, hence (by [Kuh95b,

Proposition 0.6], for example) there exists a non-trivial morphism RsH
∗Z → F (1),

where F (1) is the free unstable module on a generator of degree 1. Composing with

the canonical inclusion F (1) →֒ H̃∗BZ/p gives

ϕ∗
s : H

∗Z ։ H∗Z/nils+1H
∗Z ∼= F2⊕ΣsRsH

∗Z → F2⊕ΣsF (1) ⊂ F2⊕ΣsH̃∗BZ/p,
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that is a morphism of unstable algebras, by compatibility of the nilpotent filtration
with multiplicative structures.

By Lannes’ theory [Lan92], the morphism ϕ∗
s can be realized as the cohomology

of a map ϕs : Σ
sBZ/p→ Z, by applying Theorem 5.1 together with the Hurewicz

theorem, since map∗(BZ/p, Z) is (s− 1)-connected.
Thus, consider the extension problem

ΣsBZ/p
ϕs

//

��

Z

Σs−1K(Z/p, 2),

99

where the vertical map is the (s−1)-fold suspension of the canonical map ΣBZ/p→
K(Z/p, 2).

Algebraically it is clear that no such extension can exist, since ϕ∗
s is non-trivial

in positive degrees (by construction), whereas

HomU (H̃∗Z, H̃∗Σs−1K(Z/p, 2)) = 0

since H̃∗Z ∈ N ils and H̃
∗Σs−1K(Z/p, 2) is the (s−1)-fold suspension of a reduced

module (H∗K(Z/p, 2) is reduced by Proposition 5.6 below).
However, obstruction theory shows that one can construct such a factorization,

as follows. Recall that K(Z/p, 2) ≃ B(BZ/p) can be built, starting from ΣBZ/p,
using Milnor’s construction: there is a filtration ∗ = C0 ⊂ C1 = ΣBZ/p ⊂ C2 ⊂
. . . ⊂ ∪nCn = K(Z/p, 2) with associated (homotopy) cofibre sequences

Σn−1BZ/p∧n → Cn−1 → Cn.

The associated obstructions to extending ϕs : Σ
sBZ/p → Z lie in the pointed

homotopy groups

[Σn+s−2(BZ/p)∧n, Z] = πn+s−2map∗(BZ/p∧n, Z).

The groups πn+s−2map∗(BZ/p∧n, Z) are trivial, since map∗(BZ/p∧n, Z) is (n +
s− 2)-connected, as observed above. It follows that an extension exists, which is a
contradiction to the existence of such a space Z, completing the proof. �

Proposition 5.6. The unstable module H∗K(Z/p, 2) is reduced.

Proof. This result is well known to the experts, and holds for H∗K(Z/p, n) for any
n ∈ N. For p = 2 the result is established in [Kuh98]; a proof is sketched here for
p odd, since we do not know a convenient reference.

The cohomology H∗K(Z/p, 2) is isomorphic (with the usual notation) to

Fp[x, βP
Ihβ(x)]⊗ E(P Iℓβ(x)) ∼= Fp[x, xh|h ≥ 1]⊗ E(yℓ|ℓ ≥ 0)

with |x| = 2, Ih = (ph−1, ph−2, . . . , p, 1), h ≥ 1, and β(x) = y0; in particular,
β(yh) = xh, h ≥ 1. It is enough to show that, for any non zero element z ∈
H̃∗K(Z/p, 2), there exists an operation θ such that θ(z) ∈ Fp[x, xh] and θ(z) 6= 0.

Any element z can be written as a sum
∑

0≤i≤t

∑

j Pi,j(x, xh) ⊗ Li,j(yℓ). If
z has degree 2n and there is a non-trivial term with exterior part of degree 0, a
straightforward application of the Cartan formula shows that θ = Pn suffices, since
the reduced powers act trivially on the exterior generators.

For a general element, one reduces to such elements by applying operations which
decrease (non-trivially) the length of the exterior factors that occur. Consider
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amongst the exterior factors a term Li,j of minimal length, and the minimal ℓ
for which yℓ occurs in it. Let Qi be the usual Milnor derivation, [β,Qi] is also a

derivation; it acts trivially on the xh, sends x to yi+1, and yℓ to xp
ℓ

i−ℓ+1. Using a
standard lexicographic order argument, one can see that this operation does the
job for i large enough. �

6. Using the Eilenberg-Moore spectral sequence

In this section, the prime p is taken to be 2 and the space X is 1-connected such
that H̃∗X is nilpotent and of finite type. The objective of this section is to prove
the following, which is equivalent to Theorem 1.5 of the Introduction.

Theorem 6.1. Let X be a space such that H̃∗X is of finite type and is nilpotent.
If wX(1) = d ∈ N then wX(2) ≥ 2d.

The interest of the result is to give some control on R2H
∗X , starting from

information about R1H
∗X . See Remark 6.14 for a slightly refined version of this

theorem.

Remark 6.2. The theorem is stated only for p = 2; the difficulties that occur in the
odd primary case in [Sch98, Sch10] also arise here, but look more manageable.

The method was originally suggested by the following observation:

Proposition 6.3. LetM be a connected, reduced unstable module such that deg(fM) =
d ∈ N. If d > 0, then the unstable module T(M) =

⊕

iM
⊗i does not carry the

structure of an unstable algebra.

Remark 6.4. This result is a special case of a general structure result for reduced
unstable algebras. From the viewpoint of this paper, heuristically the idea is that
cup products of classes inM should appear inM⊗M whereas the restriction axiom
for unstable algebras implies that cup squares occur in M . Thus, the triviality of
the extension between M and M ⊗M is incompatible with an unstable algebra
structure.

The proof of Theorem 6.1 is based on the analysis of an Ext1F group, playing off
the following non-splitting result against a vanishing criterion.

Recall from Section 2 that F denotes the category of functors on F2-vector
spaces; a functor of F is finite if it has a finite composition series. As usual, Sn

denotes the nth symmetric power functor and Λn the nth exterior power functor.

Lemma 6.5. For F ∈ F a non-constant finite functor, post-composition with the
short exact sequence 0 → S1 → S2 → Λ2 → 0, where S1 → S2 is the Frobenius
x 7→ x2, induces an exact sequence

0 // F // S2(F ) // Λ2(F ) // 0

which does not split.

Proof. The result follows from [Kuh95a, Theorem 4.8], since the Frobenius fits into
the non-split short exact sequence 0 −→ S1 → S2 → Λ2 −→ 0. �

Notation 6.6. For F ∈ F a finite functor of polynomial degree d, set F :=
ker{F ։ qd−1F}, where qd−1F is the largest quotient of degree ≤ d− 1.
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Lemma 6.5 will be played off against the vanishing result for Ext1F in the fol-
lowing statement.

Lemma 6.7. Let F be a finite functor of polynomial degree d, G<d of degree < d,
G<2d of degree < 2d and G≤d of degree ≤ d. Then

(1) HomF (F ,G<d) = 0;
(2) HomF (F ⊗ F ,G<2d) = 0 = HomF (Λ2(F ), G<2d);
(3) Ext1F (F ⊗ F ,G≤d) = 0.

Proof. The first statement is a consequence of the definition of F .
The second is similar and follows from the compatibility of the polynomial fil-

tration of F with tensor products, which implies that F ⊗ F has no quotient of
polynomial degree < 2d. The second equality follows from the fact that the functor
Λ2(F ) is a quotient of F ⊗ F .

The result for Ext1F is proved as follows. Using dévissage it is straightforward
to reduced to the case where G≤d is simple. Since a simple functor of polynomial
degree n embeds in the nth tensor functor T n : V 7→ V ⊗n, which is finite and
has polynomial degree n, using the previous statement for HomF , it suffices to
show that Ext1F (F ⊗ F , T n) = 0 for n ≤ d. This follows by the standard methods
introduced in [FLS94], exploiting the tensor product on the left hand side. �

The proof of Theorem 6.1 uses these results in conjunction with the Eilenberg-
Moore spectral sequence. For relevant details (and further references) on the
Eilenberg-Moore spectral sequence computing H∗ΩX from H∗X , see [Sch94, Sec-
tion 8.7]. Note that the hypothesis that X is simply-connected ensures strong
convergence of the spectral sequence.

Recall that the (−2)-layer of the Eilenberg-Moore filtration F−2,∗
∞ on H∗ΩX is

an extension in unstable modules between the column E−1,∗
∞ desuspended once and

the column E−2,∗
∞ desuspended twice:

0 −→ Σ−1E−1,∗
∞ −→ F−2,∗

∞ −→ Σ−2E−2,∗
∞ −→ 0.

The term E−1,∗
∞ is a quotient of QH∗X ∼= E−1,∗

2 by a submodule in N il2, by

[Sch94, Theorem 8.7.1]. Similarly, E−2,∗
∞ is a quotient of Tor−2

H∗X(F2,F2) (which
belongs to N il2 by [Sch94, Theorem 6.1]), by a submodule in N il3 (see [Sch94,

Proposition 8.7.7]). (In the reference N il3 is used, where N il3 is generated by
N il3 and U0 [Sch94, Section 6.2], however here the situation reduces to N il3.)

From Lemma 3.7, it follows that applying the exact functor f : U → F yields
the short exact sequence:

0 → fR1QH
∗X → fF−2,∗

∞ → fR2Tor
−2
H∗X(F2,F2) → 0.(6.1)

Moreover, the surjection H̃∗X ։ QH∗X induces an isomorphism fR1H̃
∗X ∼=

fR1QH
∗X . This allows arguments to be carried out in the category of functors

F .

Notation 6.8. Write

F1 := fR1H̃
∗X ∼= f(Σ−1E−1,∗

∞ )

F2 := f(F−2,∗
∞ ),

so that F2/F1
∼= fR2Tor

−2
H∗X(F2,F2) by (6.1).



14 NGUYEN T.C., G. GAUDENS, G. POWELL, AND L. SCHWARTZ

Remark 6.9. With this notation, the short exact sequence (6.1) represents a class
[F2] ∈ Ext1F (F2/F1, F1).

The compatibility of the cup product with the Eilenberg-Moore spectral sequence
gives a morphism S2(F1) → F2 and hence a morphism of short exact sequences

0 // F1
// S2(F1) //

��

Λ2(F1) //

��

0

0 // F1
// F2

// // F2/F1
// 0

so that the right hand square is a pull-back.
By hypothesis, the functor F1 is of degree d; the inclusion F1 ⊂ F1 induces

inclusions S2(F1) ⊂ S2(F1) and Λ2(F1) ⊂ Λ2(F1) which fit into the following
diagram of morphisms of short exact sequences:

0 // F1� _

��

// S2(F1) //

��

Λ2(F1) // 0

0 // F1
// E //

��

Λ2(F1) //

��

0

0 // F1
// S2(F1) //

��

Λ2(F1) //

��

0

0 // F1
// F2

//// F2/F1
// 0

(6.2)

in which the second row can be viewed either as the pushout of the top row or the
pullback of the second. Moreover, the first and third rows are not split, by Lemma
6.5, hence the bottom row is not split.

Lemma 6.10. If F1 is non-constant the short exact sequence

0 → F1 → E → Λ2(F1) → 0

does not split.

Proof. Consider the long exact sequence for Ext∗F induced by the defining short
exact sequence F1 → F1 → qd−1F1, which gives the exact sequence:

Hom(Λ2(F1), qd−1F1) → Ext1F (Λ2(F1), F1) → Ext1F (Λ2(F1), F1)

in which the first term is zero, by Lemma 6.7. Thus the second morphism is
injective.

The top row in diagram (6.2) represents a non-trivial class in Ext1F (Λ2(F1), F1),
by Lemma 6.5, hence pushes out to a non-split short exact sequence represented
by a non-zero class in Ext1F (Λ2(F1), F1). �

Proposition 6.11. The morphism Λ2F1 → F2/F1 does not factor over F1 ⊗ F1:

Λ2F1
//

��

F1 ⊗ F1

6∃
yy

F2/F1.
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Proof. The non-trivial extension of Lemma 6.10 is the image of the class [F2] ∈
Ext1F (F2/F1, F1) under the morphism induced by Λ2(F̄1) → F2/F1. Hence there
can be no factorization across the group Ext1F (F1 ⊗ F1, F1), which is trivial by
Lemma 6.7. �

Proposition 6.12. Assume that H̃∗X is nilpotent and of finite type.
If deg(fR1H

∗X) = d ∈ N and deg(fR2(H
∗X)) < 2d, then

(1) there is an inclusion F1⊗F1 →֒ fR2Tor
−2
H∗X(F2,F2) ∼= F2/F1 with cokernel

of degree < 2d;
(2) the morphism Λ2(F1) → F2/F1 factors across F1⊗F1 →֒ fR2Tor

−2
H∗X(F2,F2).

Proof. The cup product of H∗X induces a morphism H̃∗X ⊗ H̃∗X → nil2H
∗X ,

since H̃∗X ∈ N il1, hence in F

F1 ⊗ F1 = fR1H
∗X ⊗ fR1H

∗X → fR2H
∗X.

Restricting to F1 ⊗ F1 ⊂ F1 ⊗ F1 this morphism is trivial, by Lemma 6.7, since
deg fR2H

∗X < 2d, by hypothesis.
Lift F1 to a submodule M of H̃∗X (so that fR1M corresponds to F1) and

consider the restriction of the product. By construction this gives:

M ⊗M → nil3H
∗X

with M ⊗M ∈ N il2. Moreover, it is easily checked that the finiteness hypothesis
required to apply Proposition 3.8 is satisfied, hence there exists a finitely generated
submodule U ⊂ M ⊂ H̃∗X such that fR1U = fR1M = F1 and the cup product
restricts to a trivial map U ⊗U → H̃∗X . (This is a slight extension of Proposition
3.8 using the fact that the choices in the proof can be taken to be compatible with
the tensor product M ⊗M .)

The calculation of Tor−2
H∗X(F2,F2) using the bar construction then implies that

there is an inclusion F1 ⊗ F1 →֒ fR2Tor
−2
H∗X(F2,F2). Moreover, by the definition

of F1 ⊂ F1, it is clear that the cokernel has degree < 2d.
Finally, again by Lemma 6.7, there is no non-trivial map from Λ2(F1) to a functor

of degree < 2d, which gives the factorization statement. �

Remark 6.13. The appeal to Proposition 3.8 can be avoided so that the argument
is carried out entirely within F .

Proof of Theorem 6.1. Suppose that deg(fR2H
∗X) < 2d, then Proposition 6.12

provides a factorization

Λ2(F1) → F1 ⊗ F1 → F2/F1.

This contradicts Proposition 6.11. �

Remark 6.14. The result proved is slightly stronger, without supposing wX(2) < 2d.
Namely the argument shows that the composite:

F1 ⊗ F1 ⊂ F1 ⊗ F1 → fR2H
∗X,

where the second morphism is induced by the cup product of H∗X , is necessarily
non-trivial.
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